Solutions: Homework 5

Problem 1. Let \(f, g \) be two entire functions of finite order \(\lambda \). Assume
\[f(a_n) = g(a_n) \]
for a sequence \(\{a_n\}_{n \geq 0} \) with
\[\sum_{n=0}^{\infty} \frac{1}{|a_n|^{\lambda+1}} = \infty. \]
Show that \(f = g \).

Proof. Let us suppose that \(f \neq g \). Let \(h = f - g \). Then
\[\text{order} (h) \leq \max \{ \text{order} (f), \text{order} (g) \} = \lambda. \]
Suppose \(h \) has a zero of order \(m \) at 0 so that
\[h(z) = z^m H(z). \]
We have seen in class that multiplication by a polynomial does not affect the order. Thus, \(H \) has order \(\leq \lambda \) as well and \(H(a_n) = 0 \).

Now, let \(\{b_n\}_{n \geq 0} \) be the non-zero zeros of \(H \). Then, \(\{a_n\}_{n \geq 0} \subset \{b_n\}_{n \geq 0} \), and hence
\[\sum_{n=0}^{\infty} \frac{1}{|b_n|^{\lambda+1}} = \infty. \]
In particular, if \(\alpha \) is the exponent of convergence we must have \(\alpha > \lambda + 1 \).
By part (ii) of Problem 5, HW 4, we have \(\alpha \leq \lambda \). This is a contradiction.
Hence, \(h = 0 \) so that \(f = g \). \(\square \)

Problem 2. (i) Find all entire functions \(f \) of finite order such that \(f(\log n) = n \) for all integers \(n \geq 1 \).
(ii) Give an example of an entire function \(f \) with zeroes only at \(\log n \) for integers \(n \geq 1 \).

Proof. (i) Note that in Problem 1 above, we just used the fact that the order of \(f \) and \(g \) is \(\leq \lambda \), not necessarily equal to \(\lambda \). Suppose that \(f \) is an entire function of finite order such that \(f(\log n) = n \) for all integers \(n \geq 1 \). Let \(\lambda \) denote \(\max \{ \text{order of } f, 1 \} \). Let \(N \geq 2 \) be such that for all \(n \geq N \),
\[\log n \leq n^{\frac{1}{\lambda+1}} \]
Then
\[\sum_{n=N}^{\infty} \frac{1}{n} \leq \sum_{n=2}^{\infty} \frac{1}{(\log n)^{\lambda+1}} \]

Applying Problem 1 to \(f \) and \(g(z) = e^z \), we see that \(f(z) = e^z \).

(ii) By Theorem 5.12, the function

\[f(z) = z \prod_{n=1}^{\infty} E_{n-1} \left(\frac{z}{\log(n+1)} \right) \]

is an entire function with zeros only at \(\log n \) for integers \(n \geq 1 \).

\[\Box \]

Problem 3. If \(f \) is an entire function of order \(\lambda \), show that \(f' \) also has order \(\lambda \).

Proof. Let \(M'(R) = \sup \{|f'(z)| : |z| = R\} \), and let \(\lambda' \) denote the order of \(f' \).

Let \(|z| = R \). Then, applying Cauchy’s estimate to \(f \) on \(\Delta(z; 1) \subset \Delta(0, R+1) \), we have

\[|f'(z)| \leq \sup_{|w-z|=1} |f(w)| \leq M(R+1) \]

and hence

\[M'(R) \leq M(R+1). \]

Thus

\[\limsup_{R \to \infty} \frac{\log \log M'(R)}{\log R} \leq \limsup_{R \to \infty} \frac{\log \log M(R+1)}{\log(R+1)} = \limsup_{R \to \infty} \frac{\log \log M(R+1)}{\log(R+1)}. \]

This shows that

\[\lambda' \leq \lambda. \]

For the opposite inequality, WLOG, we can assume that \(f(0) = 0 \) since else we can work with the function \(f - f(0) \) which has the same order as shown in class. We then have

\[f(z) = \int_0^1 (f(tz))' \, dt = z \int_0^1 f'(tz) \, dt. \]

Note that

\[M'(R) = \sup_{|w|=R} |f'(w)| = \sup_{|w| \leq R} |f'(w)|. \]
by the maximum modulus principle. Hence for all $|z| = R$, we have

$$|f'(tz)| \leq M'(R)$$

for $0 \leq t \leq 1$, and thus by the above we conclude

$$|f(z)| \leq RM'(R) \implies M(R) \leq RM'(R).$$

Fix $\epsilon > 0$. Then, taking log, we have

$$\log M(R) \leq \log R + \log M'(R) \leq \log R + R^{\lambda' + \epsilon} \leq R^{\lambda' + 2\epsilon}$$

for $R \gg 0$. Thus

$$\lambda = \lim_{R \to \infty} \frac{\log \log M(R)}{\log R} \leq \lambda' + 2\epsilon.$$

As $\epsilon > 0$ is arbitrary, this shows that

$$\lambda \leq \lambda'.$$

In conclusion, $\lambda = \lambda'$.

\[\square \]

Problem 4. Let f be entire, $|f'(z)| \leq e^{|z|}$ and

$$f(\sqrt{n}) = 0 \quad \text{for all } n \in \mathbb{Z}_{>0}.$$

Show that $f = 0$.

Proof. Since $|f'(z)| \leq e^{|z|}$ it follows that f' has order $\lambda' \leq 1$. By the previous question, the order of f must satisfy $\lambda \leq 1$. In particular, the rank

$$p \leq h \leq \lambda \leq 1.$$

By definition of the rank, this means that

$$\sum_n \frac{1}{|n|^{p+1}} = \sum_n \frac{1}{n} < \infty$$

which is clearly a contradiction. Thus $f = 0$. \[\square \]
Problem 5. Let $f : \mathbb{C} \to \mathbb{C}$ be given by $f(z) = z - \sin z$.

(i) Show that f is an odd entire function of order less or equal to 1.

(ii) Using (i), show that f can be represented as a product

$$f(z) = \frac{z^3}{6} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{a_n^2} \right)$$

where $\{a_n\}$ is a sequence of non-zero complex numbers with

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^2} < \infty.$$

Proof. (i) The fact that f is entire and odd is clear. For the order, note that if $|z| = R$, we have

$$|f(z)| \leq |z| + |\sin z| \leq |z| + \left| \frac{1}{2i} (e^{iz} - e^{-iz}) \right| \leq |z| + \frac{1}{2} |e^{iz}| + \frac{1}{2} |e^{-iz}|$$

$$\leq |z| + \frac{1}{2} e^{\text{Re}(iz)} + \frac{1}{2} e^{\text{Re}(-iz)} \leq |z| + \frac{1}{2} e^{|iz|} + \frac{1}{2} e^{|-iz|} = |z| + e^{i|z|} \leq R + e^R.$$

Thus

$$\lambda \leq \limsup_{R \to \infty} \frac{\log \log(R + e^R)}{\log R} = 1.$$

(ii) Since $\lambda \leq 1$ by Hadamard’s theorem, we must have $h \leq \lambda \leq 1$. Thus the rank $p \leq 1$, the and by the definition of the rank, we must have

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^{p+1}} < \infty,$$

where $\{a_n\}$ denote the zeroes of f not equal to 0. Since $p + 1 \leq 2$ and $a_n \to \infty$, it follows that $|a_n| > 1$ for n sufficiently large and

$$\frac{1}{|a_n|^2} \leq \frac{1}{|a_n|^{p+1}}.$$

This implies

$$\sum_{n=1}^{\infty} \frac{1}{|a_n|^2} < \infty.$$

By Weierstraß factorization we have

$$f(z) = z^m e^{\theta} \prod_{n=1}^{\infty} E_1 \left(-\frac{z}{a_n} \right).$$
Recall that in Weierstraß we can increase the value of p without affecting convergence, so using $p = 1$ is justified. Alternatively, one can split this into two cases $p = 0$ which is simpler, and $p = 1$ which is treated explicitly below.

Since f is odd, the zeroes of f come in pairs $(a_n, -a_n)$. We can combine

$$E_1 \left(\frac{z}{a} \right) E_1 \left(-\frac{z}{a} \right) = \left(1 - \frac{z}{a} \right) e^{\frac{z}{a}} \left(1 + \frac{z}{a} \right) e^{-\frac{z}{a}} = 1 - \frac{z^2}{a^2}. $$

Thus, we may write

$$f(z) = z^m e^g \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{a_n^2} \right),$$

after relabelling/discarding some of the zeroes. Combining terms is justified by the local absolute convergence of the product.

Note that m is order of f at 0. Computing the Taylor expansion, we see that

$$f(z) = z - \sin z = \frac{z^3}{6} + \ldots $$

Thus $m = 3$.

The degree q of g satisfies

$$q \leq h \leq \lambda \leq 1.$$

Thus $g(z) = az + b$ for some a, b. Since f is odd, it follows at once that e^g must be even so

$$e^{g(z)} = e^{g(-z)} \implies e^{az+b} = e^{-az+b} \implies e^{2az} = 1 \implies a = 0.$$

Thus $g = b$ must be a constant

$$f(z) = z^3 e^b \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{a_n^2} \right).$$

Therefore,

$$\lim_{z \to 0} \frac{f(z)}{z^3} = e^b$$

using the fact that the product converges to an entire (hence continuous) function. However,

$$\lim_{z \to 0} \frac{f(z)}{z^3} = \frac{1}{6}$$
as we see from the Taylor expansion for instance. Thus $e^{b} = \frac{1}{6}$ and

$$f(z) = \frac{z^3}{6} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{a_n^2}\right).$$

\[\square\]

Problem 6. Let $f(z) = \sum_{n=0}^{\infty} c_n z^n$ be an entire function of order λ. Let

$$\mu = \limsup_{n \to \infty} \frac{n \log n}{-\log |c_n|} > 0.$$

Show that $\lambda = \mu$.

(i) First show that $\lambda \geq \mu$ by showing that for all $\epsilon > 0$ we have $\lambda > \mu - \epsilon$.

(ii) Conversely, show that $\lambda \leq \mu$ by showing that $\lambda < \mu + \epsilon$ for all $\epsilon > 0$.

(iii) Let $a > 0$. Show that the function

$$f(z) = \sum_{n} \frac{z^n}{n^{a_n}}$$

is entire and find its order.

Proof. (i) Let $0 < \epsilon < \mu$. By definition,

$$n \log n \geq -(\mu - \epsilon) \log |c_n|$$

for infinitely many n. Using Cauchy’s estimate, we have

$$|c_n| \leq \frac{M(R)}{R^n}$$

for all $R > 0$. So we have

$$- \log |c_n| \geq n \log R - \log M(R)$$

and hence,

$$\log M(R) \geq n \log R - \frac{n \log n}{\mu - \epsilon}$$

for infinitely many n, and for all $R > 0$. Putting $R_n = (en)^{\frac{1}{\mu - \epsilon}}$, we have

$$\log M(R_n) \geq \frac{n}{\mu - \epsilon} = \frac{R_n^{\mu - \epsilon}}{\mu - \epsilon}$$
Since $R_n \to \infty$, we have
\[
\lambda \geq \mu - \epsilon
\]
Since $0 < \epsilon < \mu$ was arbitrary, we have
\[
\lambda \geq \mu
\]
(ii) Fix $\epsilon > 0$. By definition, there exists $N \geq 1$ such that
\[
n \log n \leq - (\mu + \epsilon) \log |c_n|
\]
for all $n \geq N$, i.e.
\[
|c_n| \leq n^{- \frac{\mu}{\mu + \epsilon}}
\]
for all $n \geq N$. This shows that there exists $C \geq 1$ such that
\[
|c_n| \leq Cn^{- \frac{\mu}{\mu + \epsilon}}
\]
for all $n \geq 1$. Now, for $|z| = R$, we have
\[
\left| \sum_{n=0}^{k} c_n z^n \right| \leq \sum_{n=0}^{k} |c_n||z|^n \leq C \sum_{n=0}^{k} R^n n^{- \frac{n}{\mu + \epsilon}} \leq C \sum_{n=0}^{\infty} R^n n^{- \frac{n}{\mu + \epsilon}}
\]
Letting $k \to \infty$, we have
\[
|f(z)| \leq C \sum_{n=0}^{\infty} R^n n^{- \frac{n}{\mu + \epsilon}}
\]
for all $|z| = R$. So we have
\[
M(R) \leq C \sum_{n=0}^{\infty} R^n n^{- \frac{n}{\mu + \epsilon}}
\]
Now, let
\[
S_1 = \sum_{n \leq (2R)^{\mu + \epsilon}} R^n n^{- \frac{n}{\mu + \epsilon}} \quad \text{and} \quad S_2 = \sum_{n > (2R)^{\mu + \epsilon}} R^n n^{- \frac{n}{\mu + \epsilon}}
\]
We have
\[
S_1 = \sum_{n \leq (2R)^{\mu + \epsilon}} R^n n^{- \frac{n}{\mu + \epsilon}} \leq R^{(2R)^{\mu + \epsilon}} \sum_{n \leq (2R)^{\mu + \epsilon}} n^{- \frac{n}{\mu + \epsilon}} \leq R^{(2R)^{\mu + \epsilon}} \sum_{n=1}^{\infty} n^{- \frac{n}{n + \epsilon}} = AR^{(2R)^{\mu + \epsilon}}
\]
where $A = \sum_{n=1}^{\infty} n^{-\frac{m}{n+e}}$. Similarly, we have

$$S_2 = \sum_{n>(2R)^{\mu+\epsilon}} R^n n^{-\frac{n}{n+e}} \leq \sum_{n>(2R)^{\mu+\epsilon}} R^n (2R)^{n} \leq \sum_{n>(2R)^{\mu+\epsilon}} \left(\frac{1}{2}\right)^n \leq 1$$

Putting this together, we have

$$M(R) \leq C(S_1 + S_2) \leq C(AR^{(2R)^{\mu+\epsilon}} + 1)$$

for all $R > 0$. So we have

$$\lambda \leq \mu + \epsilon$$

Since $\epsilon > 0$ is arbitrary, we have $\lambda \leq \mu$, and hence, combining part (i), we have $\lambda = \mu$.

(iii) We have

$$\limsup_{n \to \infty} \left(\frac{1}{n^{an}}\right)^{\frac{1}{n}} = \limsup_{n \to \infty} \frac{1}{n^{an}} = 0$$

and hence, f is a power series with $R = \infty$, and is therefore entire. We have

$$\mu = \limsup_{n \to \infty} \frac{n \log n}{-\log n^{-an}} = \limsup_{n \to \infty} \frac{n \log n}{an \log n} = \frac{1}{\alpha} > 0$$

Thus the order of f is $\frac{1}{\alpha}$. \qed

8