Math 220C - Zeoture II

April 20, 2022

S1. Applications of Jensen

$$
\begin{aligned}
f: \in & \longrightarrow \in \text { entire, } f(0)=1 . \\
\cdot M(R) & =\sup _{121=R}(f(2))=\text { growth of } f \\
\cdot N(R) & =\# z \text { eros of } f \text { in } \Delta(0, R) \text { with multiplicities }
\end{aligned}
$$

Apply Jensen in $\Delta(0,3 R)$:

$$
\begin{aligned}
& \underbrace{\log |f(0)|}_{0}+\sum_{\left|a_{k}\right|<3 R} \log \left|\frac{3 R}{a_{k}}\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(3 R e^{i t}\right)\right| d t \\
& \leq \log m(3 R) \\
& \begin{aligned}
& \Rightarrow \log m(B R) \geq \sum_{\left|a_{k}\right|<R} \log \left|\frac{3 R}{a_{k}}\right|+ \\
& \sum \log \left|\frac{3 R}{a_{k}}\right| \\
& R \leq\left|a_{k}\right|<3 R \\
& \geq \sum_{k=1}^{N(R)} \log 3+\sum_{R \leq\left|a_{k}\right|<3 R} \log 1=N(R) \log 3>N(R) .
\end{aligned}
\end{aligned}
$$

Conclusion $N(R)<\log M(3 R)$.

What do we learn from this? 7 correlation between

- growth of entire functions $M(R)$
- distribution of their zeroes $N(R)$

The higher the N, the higher the $M(a t R \& 3 R)$.

Prototypical Example f polynomial, $\operatorname{deg} f=d$

$$
\begin{aligned}
& \text { - } N(R)=d \text { if } R \gg 0 \text { by Fundamental ohm Algebra } \\
& \text { - } M(R) \sim R^{d} \text {. }
\end{aligned}
$$

Thus $\frac{\log n(R)}{\log R} \rightarrow d$ as $R \rightarrow \infty$

The converse is also tue. If $\lim _{R \rightarrow \infty} \frac{\log M(R)}{\log R}=d \Rightarrow$
$\Rightarrow \log m(R)<(d+1) \log R$ for $R \gg 0$
$\left.\Rightarrow|f(z)|\langle | z\right|^{d+1}$ for $|z| \gg 0 \Rightarrow f$ polynomial by
Generalized Liouville. (Math 220A, HWK 7, Problem IV. 3. 1.)

Main Question
$f: \sigma \longrightarrow \sigma$ entire function

Establish relatonotip between

$$
\text { \{Growth of } f \text { \} } \longleftrightarrow \text { \{Distributions of zeros\} }
$$

Sub question: How do we interpret the two sides mathematically?
§2. Weft hand side - Order of entire functions
$f: \propto \longrightarrow \sigma$ entire. We frat consider

$$
m(R)=\sup _{|2|=R}|f(2)| \text { \& growth off }
$$

Goal We want to measure growth of entire functions such as

II polynomials
(17) $e^{2}, e^{2^{2}}, e^{2^{3}}, \cdots$,
(iii) $e^{b^{2}}, 0^{e^{2}}, e^{e^{e^{2}}} \ldots$

Case I \quad We have seen $\frac{\log M(R)}{\log R} \rightarrow d$ a conversely.
This quantity is a good measure of growth but only in this case.

Case II The ex amples in [i" roughly speaking" grow like $e^{\text {polynomial" " For those, we need one log to get the exponent, }}$ and one additional log to use the measure in [1].

Case [iii There examples grow very fast, and we will have less to say about them.

Case [22) motivates the follow wing:

Definition (Conway $\times 1.2 .15$)

Jet $f: \sigma \longrightarrow \subset$ be entire. The order of f is

$$
\lambda=\lim _{R \rightarrow \infty} \frac{\sup p \log m(R)}{\log R} .
$$

This may be infrite.

$$
\text { Intuitively, "f(2) } \sim e^{(2)^{2} \text {." }}
$$

Question Flow to prove a function f has order λ ?
We need to show two statements:

$$
\text { III } \forall \varepsilon>0 \quad \exists z_{n} \rightarrow \infty \quad \text { with } \quad\left|f\left(z_{n}\right)\right|>e^{\left|p_{n}\right|^{\lambda-\varepsilon}}
$$

This shows

$$
\lambda(f)=\lim _{R \rightarrow \infty} \frac{\operatorname{sog} \log M(R)}{\log R} \geq \limsup _{n \rightarrow \infty} \frac{\log \log \left(f\left(z_{n}\right)\right)}{\log \left(2_{n} 1\right.} \geq \lambda-\varepsilon
$$

$\varepsilon \rightarrow 0$

$$
\stackrel{\lambda}{\Rightarrow} \quad \lambda(f) \geq \lambda .
$$

$$
\begin{aligned}
& \text { I] } \forall \varepsilon>0 \text { Fr such that }|f(z)|<e^{|z|^{\lambda+\varepsilon}} \forall|z|>r \\
& \text { This shows } n(R)<e^{R^{2+2}} \forall R>R \& \\
& \lambda(f)=\limsup _{R \rightarrow \infty} \frac{\log \log M(R)}{\log R} \leq \lambda+\varepsilon \quad \forall \varepsilon \cdot \stackrel{\varepsilon \rightarrow 0}{\Rightarrow} \lambda(f) \leq \lambda
\end{aligned}
$$

Examples

II $\lambda\left(Z^{m}\right)=0, M(R)=R^{m} \Rightarrow \lambda=0$.
[(i]) $f=e^{P}, \operatorname{deg} P=d \Rightarrow \operatorname{order}(f)=d=\operatorname{deg} P$
(exercise).
(102) $f(z)=e^{c^{2}} \Rightarrow \operatorname{order}(f)=\infty$ (exercise)

IVI $f(2)=\cos 2, \sin 2$ have onder,
(HWK 5)

$$
f(z)=\cos \sqrt{z} \text { has onder } \frac{1}{2}
$$

IT We have $\lambda(f g) \leq \max (\lambda(f), \lambda(g))$ (HWK 4)

$$
\lambda(f+g) \leq \max (\lambda(f), \lambda(g)) .
$$

S3. Right hand side 4 Distribution (growth) of zeroes

Assume f has zeroes at

$$
\left|a_{1}\right| \leq\left|a_{2}\right| \leq \ldots \leq\left|a_{n}\right| \leq \ldots, a_{n} \longrightarrow \infty, a_{n} \neq 0
$$

Several quantities attached to growth of zeroes:
[$\operatorname{rank}=p$
The smallest integer p scop that $\sum_{n=1}^{\infty} \frac{1}{\left(a_{n}\right)^{p+1}}<\infty$ If such a p doeon't exist, $p=\infty$.
(四 critical exponent (HWK $4, \# 5)$

$$
\alpha=\inf \left\{t>0: \sum \frac{1}{\left|a_{n}\right|^{t}}<\infty\right\} \text { may not be an integer. }
$$

By the homework

divergent series? convergent series

Thus by dofnition $p \leq \alpha \leq \rho+1$.
If $\alpha \notin \mathbb{Z}$ then a determines p uniquely.
["UT $N(R)=\#$ zeroes in $\Delta(0, Q)$ with multiplicity

Fact * (we will not use /prove)

$$
\begin{gathered}
\alpha=\limsup _{R \rightarrow \infty} \frac{\log N(R)}{\log R} \\
\text { Example* }^{\sim} \operatorname{Let} a_{n}=n^{3} n>0 . \text { then } \\
\\
N(R)=\#\left\{n: n^{3}\langle R\} \sim R^{1 / 3} \Rightarrow \frac{\log N(R)}{\log R} \rightarrow \frac{1}{3}\right.
\end{gathered}
$$

Not

$$
\sum \frac{1}{n^{3 t}}<\infty \Longleftrightarrow 3 t>1 \Leftrightarrow t>\frac{1}{3} \text { so } \alpha=\frac{1}{3} .
$$

harmonic

Upshot We have defined the following guartiteo
measuring growth I distribution of z zeroes
$N(R), \alpha, p$.
Not $N(R)$ determines α, α determines p if $\alpha \notin \mathbb{Z}$.

Best for $u s: p$ (or k to bo defined next).

