$$
\begin{gathered}
\text { Math } 220 \mathrm{C}-\text { Neote }^{\text {Mpril 22, } 2022}
\end{gathered}
$$

§ 1. Distribution (growth) of zeroes

Assume f has zeroes at

$$
\left|a_{1}\right| \leq\left|a_{2}\right| \leq \ldots \leq\left|a_{n}\right| \leq \ldots, a_{n} \longrightarrow \infty, a_{n} \neq 0
$$

Several quantities attached to growth of zeroes:
[$\operatorname{rank}=p$
Tho smallest integer p such that $\sum_{n=1}^{\infty} \frac{1}{\left(\left.a_{n}\right|^{p+1}\right.}<\infty$ If such a p doeon't exist, $p=\infty$.
[四 critical exponent (HWK 4, \#5)
$\alpha=\inf \left\{t>0: \sum \frac{1}{\left|a_{n}\right|^{t}}<\infty\right\}$ may not be an integer.

Thus by dofnition $p \leq \alpha \leq \rho+1$.
If $\alpha \notin \mathbb{Z}$ then a determines p uniquely.
["UT $N(R)=\#$ zeroes in $\Delta(0, Q)$ with multiplicity

Fact * (we will not use /prove)

$$
\begin{gathered}
\alpha=\limsup _{R \rightarrow \infty} \frac{\log N(R)}{\log R} \\
\text { Example* }^{\sim} \operatorname{Let} a_{n}=n^{3} n>0 . \text { then } \\
\\
N(R)=\#\left\{n: n^{3}\langle R\} \sim R^{1 / 3} \Rightarrow \frac{\log N(R)}{\log R} \rightarrow \frac{1}{3}\right.
\end{gathered}
$$

Not

$$
\sum \frac{1}{n^{3 t}}<\infty \Longleftrightarrow 3 t>1 \Leftrightarrow t>\frac{1}{3} \text { so } \alpha=\frac{1}{3} .
$$

harmonic

Upshot We have defined the following guartiteo
measuring growth I distribution of z zeroes
$N(R), \alpha, p$.
Not $N(R)$ determines α, α determines p if $\alpha \notin \mathbb{Z}$.

Best for $u s: p$ (or k to bo defined next).

Small variation - Genus of an entire function
let f has zeroes at $a_{1}, a_{2} \ldots, a_{n}, \ldots, a_{k} \neq 0$.
where $\left\{a_{n}\right\}$ has rank $p . \Rightarrow \sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|^{p+1}}<\infty$

Recall Weierstaß Factorization

$$
f(z)=z^{m} \varepsilon^{g(z)} \prod_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right) .
$$

Recall

$$
E_{p}(z)=\left\{\begin{array}{l}
1-z, p=0 \\
(1-z)=x p\left(z+\frac{z^{2}}{2}+\cdots+\frac{z^{p}}{p}\right), p>0
\end{array}\right.
$$

Define

$$
h=g \text { onus }(f)=\left\{\begin{array}{l}
\max (p, 2) \text { if } g \text { polynomial of degree } g \\
\infty \text { if } g \text { not polynomial or } p=\infty .
\end{array}\right.
$$

If the exponential e^{g} doen't appear then $h=p$. In general $p \leq h$.

Example (Math 220B)
$\sin z=z \prod_{n=1}^{\infty}\left(1-\frac{2^{2}}{n^{2} \pi^{2}}\right) \quad$ factorization of $\sin \varepsilon$.

Rewrite this as

$$
\begin{aligned}
\sin z & =2 \prod_{n=1}^{\infty}\left(1-\frac{2}{n \pi}\right) e^{2 / n \pi}\left(1+\frac{2}{n \pi}\right) e^{-z / n \pi} \\
& =2 \prod_{n=1}^{\infty} E_{1}\left(\frac{2}{n \pi}\right) E_{0}\left(-\frac{z^{2}}{n \pi}\right)
\end{aligned}
$$

$\Rightarrow g$ doeon't appear. Thus gences $h=p$.
The zeroes are at $n \pi, n \in \mathbb{V}$. We want

$$
\begin{aligned}
\sum_{n \neq 0} \frac{1}{\left.\ln \pi\right|^{p+1}}<\infty \Leftrightarrow p+1>1 \Leftrightarrow p>0 . ~ T h u s ~ t h e ~
\end{aligned}
$$

smallest p equals 1.
The genus of $2 \longrightarrow \sin ^{2}$ equals 1 .

S2. Revising the Main Question (now made praise)

Establish relationship between

$$
\{\text { Growth of } f\} \longleftrightarrow \text { Growth of zeroes? }
$$

measured by λ
measure by $h=$ genus.

Answer Theorem (Hadamard)

$$
h \leq \lambda \leq h+1
$$

Remarks II If $\lambda \notin \mathbb{Z}$ then λ determines \mathscr{L} uniquely.
(ii) If e^{9} doeen't appear then $h=p$ so in this case.

$$
p \leq \lambda \leq p+1
$$

(Iii) We have $p \leq h \leq \lambda$ so the order bounds the p in the Weiershap Factorization. Tho stakment that we can take $p \leq \lambda$ is called I/ad amend Factorization.

Remarks IV The theorem doesn't assume $h_{\text {, a fife. }}$
If one of them is infinite \Rightarrow so is the other.

II These ideas played an important rok in Hadamard's proof of Prime Number Theorem. (1896)

Conclusion 7 connections between

- $M(R)$ and λ by definition $\lambda=\limsup _{R \rightarrow \infty} \frac{\log \log M(R)}{\log R}$
- $N(R), \alpha, p$ as we saw above
- λ and $h=\max (\rho, 2)$ via Hadamard $h \leq \lambda \leq h \rightarrow 1$

GHwamara)
Jacques Hadamand (1865-1963)

Proved the Prime Number Theorem.

Advisor: Emile Picard.

Students: Maurice Fre'chet, Andre' Wail

Étule sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann (');

Par M. J. HADANARD.

1. La décomposition d'une fonction entière $\mathbf{F}(x)$ en facteurs primaires, d'après la méthode de M. Weierstrass,

$$
\begin{equation*}
\mathbf{F}(x)=e^{\boldsymbol{c}_{(x)}} \prod_{p=1}^{\infty}\left(\mathrm{I}-\frac{x}{\xi_{p}}\right) e^{e_{p}(x)} \tag{1}
\end{equation*}
$$

a conduit à la notion du genre de la fonction F.
On dit que F est du genre E si, dans le second membre de l'équation (1), tous les polynômes Q_{p} sont de degré E, et que la fonction entière $\mathrm{G}(x)$ se réduise également à un polynôme de degré E au plus.

Dans un article inséré au Bulletin de la Société mathématique de France (${ }^{2}$), M. Poincaré a démontré une propriété des fonctions de genre E. L'énoncé auquel il est parvenu est le suiv́ant :

Dans une fonction entière de genre \mathbf{E}, le coefficient de s^{m}, mul-
${ }^{(1)}$ Les principaux résultats contenus dans le présent Mémoire ont été présentés à l'Académie des Sciences dans un travail couronné en 1892 (grand prix des Sciences mathématiques).
$\left.{ }^{(2}\right)$ Année 1883, pages 136 et suiv.

$$
\text { Journal de Mathematigues Purs }=t \text { Appligucés }
$$

$\oint 3$ Applications - Picard's Theorems (weak versions)
To illustrate the power of this result we show:

Application A (Conway 3.6)
f entire \& not constant \& finite order
$\Rightarrow f$ omits at most one value.

Remark Little Picard removes the assumption the order is finite.

Poof A spume f omits $\alpha \neq \beta$. Define

$$
f^{n+\omega}=\frac{f-\alpha}{\beta-\alpha} \text { omits o \& } 1 \text {. }
$$

Since $f^{\text {now }}$ omits $0 \Rightarrow f^{\text {now }}=e^{2}$. \& f^{n+N} omits, $\Rightarrow g$ omits 0 Since order $\left(f^{n+w}\right)=\operatorname{order}(f)<\infty$ \Rightarrow genus of f^{n+w} is finite by Hadamard. $\Rightarrow g$ polynomial. \& g omits $0 . \rightarrow g=$ constant $\Rightarrow f$ constant. False!

Easy observations (used above)
(G) $\lambda \geq 0$
$W=$ have $\operatorname{seen}|f(z)| \leq e^{|z|^{\lambda+\varepsilon}}$ if $|z| \geq R_{E}$ last lecture.
If $\lambda<0$, let $\varepsilon>0$ with $\lambda+\varepsilon<0$. Then $|f(z)| \leq e^{121^{\circ}}==$
for $|z| \geq R$ and $|f(2)| \leq M$ for $|2| \leq R$ by continuity. Thus
f bounded $\Rightarrow f$ constant (order 0$)$. Thus $\lambda \geq 0$
[II) f \& αf have the same order $\forall \alpha \neq 0$

$$
\begin{aligned}
& \text { Indeed } \lambda(\alpha f) \stackrel{\leq}{1} \operatorname{mwK} \max (\lambda(\alpha), \lambda(f))=\max (0, \lambda(f)=\lambda(f) \text { by 且 } \\
& \text { Similarly } \lambda(f)=\lambda\left(\alpha f \cdot \frac{1}{\alpha}\right) \leq \lambda(\alpha f) \text {. Thus } \lambda(f)=\lambda(\alpha f) .
\end{aligned}
$$

[位) f \& $f-\alpha$ have the same order

Same proof as in using sums versus products
$\sqrt{10} f$ \& If have the same order $*$ I polynomial.

$$
\begin{aligned}
& \text { We have } f \leq \text { pf if }(\eta \mid \gg 0 \Rightarrow \lambda(f) \leq \lambda(p f) \text {. } \\
& \text { Also } \lambda(p f) \leq \max (\lambda(p), \lambda(f))=\max (0, \lambda(f \lambda)=\lambda(f) . \\
& \text { Thee } \lambda(p f)=\lambda(f)
\end{aligned}
$$

Application B
f entire of finite order $\& \lambda \notin \mathbb{Z} \Rightarrow f$ assumed each of its values infrifely many tomes.

Remark Great Picard strengthens this result.

Proof \quad Jot α be a value of f. Define $f^{n o w}=f-\alpha$. Wo show few has ∞ - many zeroes. Assume $f^{\text {now }}$ has finitely many zeroes $a_{n}, \ldots, a_{n} . Z_{z} t P=\prod_{k=0}^{n}\left(z-a_{k}\right)$. Then $f^{n e w} / 卫$ has no zeroes so it equals $e^{g} \Rightarrow$ $\Rightarrow f^{n o w}=P e^{2}$. Note by previous remarks we have or dor $f=$ order $f^{n=w}=$ order $e^{g}<\infty . \Rightarrow$ genus $<\infty$ $\Rightarrow g$ polynomial \& $\operatorname{\operatorname {order}(E^{g})}=\operatorname{deg} g \in \mathbb{Z} . \Rightarrow \operatorname{arder}(f) \in \mathbb{Z}$ contradiction.

