$$
\text { Math } 220 \mathrm{C} \text { - Zeoture } 13
$$

$$
\text { April 25, } 2022
$$

So. Jot time Conway $\times 1.3$.
$f: \sigma \longrightarrow \sigma$ entire of order $\lambda, f \neq 0$.

$$
f(z)=z^{m} e^{g(z)} \prod_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right), p=\operatorname{rank}(f) \text {. }
$$

genus $h=\max (p, \operatorname{deg} g)$ if g polynomial or ∞ otherwise.

Hadamard's theorem (1893)

$$
h \leq \lambda \leq h+1
$$

Plan for the Proof of Hadamand $h \leq \lambda \leq h+1$

II $\lambda \leq h+1 \quad$ (today).
([i] $h \leq \lambda \quad$ - $p \leq \lambda$ (today). $\quad \begin{aligned} & \operatorname{deg} g \leq \lambda \text { (next time) }\end{aligned}$

Étule sur les propriétés des fonctions entières et en particulier d'une fonction consiléréé par Riemann (');

Par M. J. hadnilard.

1. La décomposition d'une fonction entière $\mathrm{F}(x)$ en facteurs primaires, d'aprés la méthode de M. Weierstrass,

$$
\begin{equation*}
\mathrm{F}(x)=e^{\epsilon_{(x)}} \prod_{p=1}^{\ddot{ }}\left(\mathrm{I}-\frac{x}{\xi_{p}}\right) e^{\theta_{p}(x)} \tag{1}
\end{equation*}
$$

a conduit à la notion du genre de la fonction \mathbf{F}.
On dit que \mathbf{F} est du genre E si, dans le second membre de l'équation (1), tous les polynômes Q_{p} sont de degré E , et que la fonction entière $\mathrm{G}(x)$ se réduise également à un polynôme de degré E au plus.
Dans un article inséréau Bulletin de la Société mathématique de France (${ }^{2}$), M. Poincaré a démontré une propriété des fonctions de genre E. L'énoncé auquel il est parvenu est le suivant :

Dans une fonction entière de genre \mathbf{E}, le coefficient de x^{m}, mul-
${ }^{(1)}$ Les principaux résultats contenus dans le présent Mémoire ont été présentés à l'Académie des Sciences dans un travail couronné en 1892 (grand prix des Sciences mathématiques).
$\left.{ }^{(2}\right)$ Année 1883, pages 136 et suiv.

Journal de Mathematigues Pures et Appligucés
§ 1. First half of Hadamard
aTs $\quad \lambda \leq h+1 \quad(x)$
WLO6 $\quad L$ finite, floe we're done.

Key Lemma $\log / E_{p}(w) / \leq C_{p}|w|^{p+1}$ for som $=C_{p}>0$.

Proof of (x) wis $\lambda \leq h+1$.

Recall $f(z)=z^{m} e^{g} \prod_{n} E_{p}\left(\frac{2}{a_{n}}\right)$
Recall order $(u v) \leq \max (\operatorname{rder} u$, order $v)$.

Recall order $\left(2^{m}\right)=0 \leq h+1$
order $\left(e^{g}\right)=\operatorname{deg} g \leq h<h+1$.

We show order $\prod_{n} E_{p}\left(\frac{2}{a_{n}}\right) . \leq p+1 \leq h+1$.

Not

$$
\begin{aligned}
& \log / \prod_{n} E_{p}\left(\frac{z}{a_{n}}\right) /=\sum_{n} \log \left|E_{p}\left(\frac{z}{a_{n}}\right)\right| \\
& \text { Lemma } \leq \\
& \leq c_{p} \sum_{n}\left|\frac{z}{a_{n}}\right|^{p+1}=K|z|^{p+1}
\end{aligned}
$$

where $k=c_{p} \sum \frac{1}{\left|a_{n}\right|^{p+1}}<\infty$.

Thus order $\leq p+1$, as needed.

Remark (will not prove/use)
order $\prod_{n} E_{p}\left(\frac{2}{a_{n}}\right) .=\alpha$ (exercise in Conway).

Proof of Zama

Recall $E_{p}(w)=(1-w) \exp \left(w+\frac{w^{2}}{2^{2}}+\cdots+\frac{w^{p}}{p}\right)$.
We induct on p.
When $p=0$,

$$
\log |1-w| \leq \log (1+|w|) \leq|w| \text { so take } c_{0}=2 \text {. }
$$

Inductive stop
(1) When $|w| \geq \frac{1}{2}$: Note

$$
\begin{aligned}
E_{p}(w) & =E_{p-1}(w) \exp \left(\frac{w^{p}}{p}\right) \\
\Rightarrow \log \left|E_{p}(w)\right| & =\log \left|E_{p-1}(w)\right|+\log \left\lvert\, \exp \left(\frac{w^{p}}{p}| |\right.\right. \\
& \leq c_{p-1}|w|^{p}+\log \exp \operatorname{Re}\left(\frac{w^{p}}{p}\right) \\
& =c_{p-1}|w|^{p}+\operatorname{Re}\left(\frac{w^{p}}{p}\right) \\
& \leq c_{p-1}|w|^{p}+\left|\frac{w^{p}}{p}\right|=\left(c_{p-1}+\frac{1}{p}\right)|w|^{p} \\
& \leq 2\left(c_{p-1}+\frac{1}{p}\right)|w|^{p+1} \text { since }|w| \geq \frac{1}{2} .
\end{aligned}
$$

GI When $|w| \leq \frac{1}{2}$. Note

$$
\begin{aligned}
E_{p}(w) & =(1-w) \exp \left(w+\frac{w^{2}}{2}+\cdots+\frac{w^{p}}{p}\right) \\
& =\exp \left(-\frac{w^{p+1}}{p+1}-\frac{w^{p+2}}{p+2}-\cdots\right)
\end{aligned}
$$

using Taylor expansion

$$
\log (1-w)=-w-\frac{w^{2}}{2}-\ldots-\frac{w^{k}}{k}-\cdots \text { for }|w|<1 \text {. }
$$

Then

$$
\begin{aligned}
\log \left|E_{p}(w)\right| & =\log / \exp \left(-\frac{w^{p+1}}{p+1}-\frac{w^{p+2}}{p+2}-\cdots\right) / \\
& =R_{c}\left(-\frac{w^{p+1}}{p+1}-\frac{w^{p+2}}{p+2}-\cdots\right) \\
& \leq /-\frac{w^{p+1}}{p+1}-\frac{w^{p+2}}{p+2}-\cdots / \\
& \leq \sum_{k \geq p+1} /\left.\frac{w^{k}}{k}\right|^{p}=|w|^{p+1} \sum_{k \geq 0} \frac{|w|^{k}}{p+k+1} \\
& \leq|w|^{p+1} \sum_{k \geq 0}|w|^{k} \leq \\
& \leq|w|^{p+1} \sum_{k \geq 0}\left(\frac{1}{2}\right)^{k}=2|w|^{p+1}
\end{aligned}
$$

$$
\text { Take } c_{p}=\max \left(2,2\left(c_{p-1}+\frac{1}{p}\right)\right) \text {. We obtain in both }
$$

cases

$$
\log \left|E_{p}(w)\right| \leq c_{p}|w|^{p+1} \text { as needed. }
$$

§2. Second half of Hadamard
W show $h \leq \lambda$.
$W \angle O G \quad \lambda$ finite \& $f(0)=1$

Indeed, write $f(z)=c z^{m} \tilde{f}(z)$ with $\tilde{f}^{2}(0)=1$. Note order $\tilde{f}^{2}=$ order f \& genus $\tilde{f}=$ genus f.

WTS If a is finite, then
$11 \quad p \leq \lambda$
[1] g polynomial of olegree $\leq \lambda$.
where $f(z)=e^{g(z)} \prod_{n=1}^{\infty} E_{p}\left(\frac{z}{a_{n}}\right)$.

Proof of 目 By HWK 4, Problem 5:

$$
\alpha \leq \lambda \text { and by Lecture 10, } p \leq \alpha \text {. Thus } p \leq \lambda \text {. }
$$

Preparations for the proof of In

$$
\mathscr{L}=t m \leq \lambda<m+1
$$

Write $\quad f(z)=e^{g(2)} \mathbb{P}(2) \quad$ where $p(2)=\prod_{n} E_{p}\left(\frac{z}{a_{n}}\right)$
We will prove

$$
\Delta^{m+1} g=0 \text { in } \sigma,\left\{a_{1}, a_{2} \ldots a_{n} \cdots\right\} .
$$

This will show $\Delta^{m+1} g=0$ in \mathbb{C}, say by identity
principe. $\Rightarrow g$ polynomial of degree $\leq m$.

$$
\text { Here } \Delta=\text { derivative }=\frac{\partial}{\partial z}
$$

Aside - Zogarithmic derivatuve
1ssue: Taking denivative of products is messy. If is easier to
take logarithmic denvatures

L holomorphic $\Rightarrow \frac{h^{\prime}}{h^{\prime}}=$ loganthmic denvative
=holomorghic away fom Zero (h)
Addition formula

$$
\begin{aligned}
& h=f g \Rightarrow \frac{h^{\prime}}{h}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g} \\
& h^{\prime}=f^{\prime} g+f g^{\prime} \Rightarrow \frac{h^{\prime}}{\hbar}=\frac{f^{\prime} g+f g^{\prime}}{f g}=\frac{f^{\prime}}{f}+\frac{g^{\prime}}{g} \\
& \text { Inductrely } \quad h=f_{1} \ldots f_{s} \Rightarrow \frac{h^{\prime}}{h}=\frac{f_{3}^{\prime}}{f_{1}}+\ldots+\frac{f_{s}^{\prime}}{f_{s}}
\end{aligned}
$$

We pore the same for infinite products.
Proposition Zit $f_{k}: \subset \longrightarrow \sigma$ holomorphic \& assume

$$
h=\prod_{k=.}^{\infty} f_{E} \text { converges aboolufoly \& locally uniformly. }
$$

Away from 2 fro (h), we have

$$
\frac{h^{\prime}}{h}=\sum_{k=1}^{\infty} \frac{f_{k}^{\prime}}{f_{k}}
$$

The RHJ converges locally uniformly, on $u \backslash$ Zoroct).

This follows from applying the finite case to the partial products.

Key: $u_{n} \stackrel{\text { eu. }}{\Rightarrow} u$ then $\frac{u_{n}^{\prime}}{u_{n}} \xlongequal{\Rightarrow} \frac{u^{\prime}}{m}$ away for Zero (u).

Indeed, by Weiezstiap convergence tho $\Rightarrow u_{n}^{\prime} \xlongequal{\prime}=x^{\prime}$.
This gives $\frac{u_{n}^{\prime}}{u_{n}} \xlongequal{\mathrm{Lu} .} \frac{u^{\prime}}{u}$ awayfom zero (u) using two basic results:
(1) $u_{n} \xlongequal{\text { lu }} u$ then $\frac{1}{u_{n}} \stackrel{\text { eu. }}{\Rightarrow} \frac{1}{w}$ away from Zero (u)
(1.1) $u_{n} \stackrel{\text { eu. }}{\Rightarrow} u$ and $v_{n} \stackrel{\text { eu. }}{\Rightarrow} v$ then $u_{n} v_{n} \stackrel{\text { eu. }}{\Rightarrow} u v$

Back to Hadamard - Take logarithmic derivatives

$$
f=e^{g} p \quad \Rightarrow \quad \frac{f^{\prime}}{f}=g^{\prime}+\frac{p^{\prime}}{P}
$$

Take m usual derivatives next to get

$$
\Delta^{m} \frac{f^{\prime}}{f}=\Delta^{m+1} g+\Delta^{m} \frac{P^{\prime}}{I}
$$

$W=$ will show $D^{m} \frac{f^{\prime}}{f}=D^{m} \frac{p^{\prime}}{\mathcal{P}} \Rightarrow D^{m+1} g=0$ as needed.

