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Minicourse on Riemann Surfaces

First Goal
_ Introduction & basic properties

- So far , we have done complex analysis for domains

G E E & studied holomorphic functions

- Many results carry over if we replace a ≤ e by

Riemann surfaces .

- The subject merges ideas from complex Analysis with

Geometry & Topology

- Connections w/ many fields

arithmetic geometry
topology

number theory
differential geometry

dynamics
algebraic geometry

- t - \



Historically , Riemann surfaces arose from attempts to understand

analytic continuation of multi - valued functions

e.
g. log s algebraic functions

IISee Conway
_

.

Riemann Surfaces - first defined by Riemann in his

dissertation 1851

- the same dissertation considered the Riemann Mapping

Theorem (Math 220 B)
.



Bernhard Riemann 11826 - 1866)
.

Riemann surfaces were introduced by Riemann in his

dissertation at Go
"

ttrngen 1051) .

This transformed

complex analysis . merging it with topology &

algebraic geometry .



"

We restrict the variables ×,y to a finite domain by

considering as the locus of the point 0 no longer the

"

plane A but a surface T spread over the plane

"

we admit the possibility . . .

of covering
the same part

of the plane several times . However in such a case
,

we assume that thoseparts of the surface lying on

top of one another are not connected by a line
.
Thus a

fold or a splitting of parts of the surface cannot

1

Occur
.

"

Translation by .

R
.

Remmert
,

"

From Riemann surfaces to complex spaces
"

Soc
.

Math
.

France
, Cong - 3 1 1998)



- Klein :

"

Riemann 's methods were regarded

almost with distrust by other mathematicians
"

.

- Ah/fors :

"

Riemann 's writings are full of a /most

cryptic messages
to the future !



§ 1 .

Sheaves

Sheaves in agriculture - a collection of stalks

bundled together

Sheaves in mathematics

- We seek to formalize the concept of
"

function - like

objects
"

e. g. holomorphic functions on Riemann surfaces

- the most elegant way of doing so is via

sheaf theory



Definition Let × be a topological space .

A
pre -heat

of sets, abelian groups, rings . . .
is an assignment

-u → Flu )

of sets , abelian groups, rings . . . for all U ≤ × open .

& restriction
maps

guv
: f-(a) → Flu) when u ≤ u

which should be homomorphisms of . . . .

We
require

II fun : Tcu) - the) is the identity

II. t w ≤ ~ ≤ u we have

fun = pvwopw : F- (4) > F-(v ) → Ftw)
fur Pvw

puw

Terminology

elements s c- TCU) are called sections
.

F- restriction
maps purls) = s/✓ .



Definition ftp.resbeaf F- X is a sheaf provided

U = U Ui open cover
,
s; C- f- (U;) with

i

Si/
uinuj

= %/
uinuj

=> 7 ! s c- f-(a) such that s/u; = Si.

Examples

II. ✗ topological space , F- = To is
.

the sheaf :

U rn> f- (U ) = { f : u → a continuous}.

with the usual restriction
maps

Flu ) → Flu)
,
f - f/

✓
.

☒ × ≤ IR
"

open ,
I = 6ᵗʰ , 0 ≤ k ≤ is

,

k = w

u ~> Flu) = { f : U - e of class Tok]

is a sheaf.



G ≤ a open ,
I = 0g ,

U E G open

% (a) = {f : u → a holomorphic] is a sheaf.

El p c- × topological space . The skyscraper sheaf

① if peu

Ep (6)
= {

0 if p&U

☒ The constant fsresheaf over × = top . space

( U) ÷ { f : u - a constant} is not a sheaf.

Why ? Assume V.V EX

u v u nv = ∅

f
,
= 0 on U

✗
° 1

fry =-3 on V

⇒ f' /unv = for /unv _

Let W = U u V. Gluing fails .



However

≤
ˢʰ
: U - {f: u - a locally constant] is a sheaf.

IVI Restriction of sheaves to open
sets

I → × sheaf, U C- ✗ open

Define the a sheaf over U via

I/u (v ) = Flu) for Y ≤ u open .

Note that

V ≤ × is also open since u ≤ × is open ,
so the above makes sense

.



Sheaves were discovered by Leroy in the 40s as POW
.

His
papers

were sent to Hopf in Iii- ich for publication .



stalks & Germs

F- × pre sheaf. a- c- ✗

Consider pairs ( U
,
s)

. Consisting of a- E U ≤ ✗ open and

S E F-(a) a section
.

( U.s ) ~ (V
,
t ) provided 7 a- E W E UNV open with

✓ ˢ/w=t/w .

U

w
This is an equivalence relation

.

☆

2-

The stalk of Foa is the set of equivalence classes .

An equivalence class is called a
germ .

We have In
.

= /im
→

Flu)
2- C- 2h





Ringed spaces

A ringed space (×, ×
) is the datum of

II. × topological space

☒ sheaf Ox of e- algebras of complex

valued continuous functions .
(
"

regular functions
"

)

Morphisms
-

-

: (×
,
Gx ) - (Y, y

) is a morphism of ringed spaces

f continuous

F- H U EY
, p c- Gy ( U ) . thepullback y of: f-

'

(a)→ ①

is a section of ×
(f-

'

6)
.

Remark By II , f-
'

u is
open

which is needed for

to make sense
.



Example G. G
'

≤ a

f: (G. Gas ) _ (G ', % , ) is a morphism of ringed spaces

←→ f holomorphic .

Why .

⇐ If y holomorphic in u ≤ a
'
& f holomorphic

then
y of

is holomorphic in f-
'

Cu )
.

⇒ /f f morphism , let yC£ ) = 2- holomorphic in u = G
'

n

Then y of = f is holomorphic by condition I. .

Remark We have the notion of an isomorphism .

Remark IF × ringed space , (×, 0×7 .

U C- × open
=> ( U

,
Gx/~ ) is a ringed space .



Aside ( Point Set Topology) X Hausdorff

II X is 2ⁿᵈ countable if × admits a

countable base for its topology

X is paracompact if all open covers

admit a locally finite subcover

✗ = U us open cover . A partition of unity

F, : ✗ - IR continuous satisfies

•

supp fa ≤ U
,

& supp fin is locally finite

• I fa =L
,

◦ ≤ f-a ≤ 1 .

In general ☒ ⇔ ,

☐ ⇔ IT for manifolds .



Definition A Tok
- manifold ( k ≥o ,

k = is
,

k=w) of dim .
n

.

✗ Hausdorff
,

connected
,

2ⁿᵈ countable

II. F open
cover ✗ = Uua and

open
subsets

G
,
E IR

"

such that (Ua
,
Ox/~
,

) is isomorphic as a

ringed space to (Go , Tok ) .

Definition A Riemann surface (×, 0×3 is

DX Hausdorff
,

connected
,

2ⁿᵈ countable top space

④ F open
cover ✗ = Uua and

open
subsets

G
,
E e such that (Ua

,
Ox/~
,

) is isomorphic @.

as a

ringed space to (Go , %) .
a



710 /◦morphia functions

Let × be a Riemann surface. & U C- × open .

A holomorphic function on u is a section of Ox (u )
.

Holomorphic maps between Riemann surfaces

f:X → Y holomorphic iff f is a morphism of

ringed spaces .


