

$$
\text { May 6, } 2022
$$

Last time We defined Riemann Surfaces \& coordinate charts.

Conversely

$$
\text { Let } x \text { be a topological space (Hausdorff, } 2^{\text {nd }} \text { countable) }
$$

$x=\bigcup_{\alpha} u_{\alpha}$ open cover. Assume wo are given

- $Y_{\alpha}: U_{\alpha} \longrightarrow G_{\alpha}$ homeomorphisms, $G_{\alpha} \leq \mathbb{C}$ suah that

$$
\text { - } \varphi_{\beta} \varphi_{\alpha}^{-1}: y_{\alpha}\left(u_{\alpha} \cap u_{\beta}\right) \longrightarrow \varphi_{p}\left(u_{\alpha} n u_{p}\right) \text { bibolomorphism }
$$

These an called compatible coordinate charts
Then X becomes a Riemann surface.

Issue Define the sheaf θ_{x}.
Note $\quad U$ open $\Leftrightarrow u n u_{\alpha}$ open $\Leftrightarrow \varphi_{\alpha}\left(u n u_{\alpha}\right)$ open in G_{α}.
Decare $f: u \longrightarrow \mathbb{C}$ to bo a section of \mathcal{O}_{x} provided.

$$
f \in \mathcal{O}_{x}(u) \Leftrightarrow f \cdot \varphi_{\alpha}^{-1} \text { holomorphic in } \varphi_{\alpha}\left(u \cap u_{\alpha}\right) . * \alpha .
$$

Check O_{x} is a she of $\&\left(x, O_{x}\right)$ is a Premann Surface.

Examples of Riemann surfaces

I not compact
(11) compact

Non - compact examples
a) $G \subseteq \mathbb{C}$ open subsot is a Riemann surface
(6) $x \subseteq \mathbb{c}^{2}, X=\left\{(x, y) \in \mathbb{\pi}^{2}: f(x, y)=0\right\} \leq \mathbb{C}^{2}$?

Assume $\forall p \in X$,

$$
f_{*}(p) \neq 0 \text { or } f_{y}(p) \neq 0 .
$$

Claim X is a Riemann surface

Proof We construct charts \& show they are compatible.
$\mathcal{Z}+p \in x$.

- if $f y(p) \neq 0 \Rightarrow$ by implicit function theorem,
$\exists p \in u \subseteq x$ open such that
$y=g(x)$ for $(x, y) \in u$ where $g: V \rightarrow \mathbb{C}$ is holomorphic.

Then $U \longrightarrow G,(x, y) \longrightarrow *$ has inverse
$x \longrightarrow(x, g(x)) . \Rightarrow u$ is a chart

- If $f_{*}(p) \neq 0$, we similarly have

$$
x=h(y) \text { for }(x, y) \in u, t: H \rightarrow \sigma \text { holomorphic }
$$

Then $U \longrightarrow H$ is a chart $(x, y) \rightarrow y$ with inverse

$$
y \rightarrow(h(y), y) \quad \Rightarrow u \text { is a ohart }
$$

Compatibility Charts of the first type are dearly compahble. Some for charts of $2^{n d}$ type.

We oheok compatibility between charts of different types.
$W \angle O G$ we may assume we are around a point p with

$$
f_{n}(p) \neq 0 \& f_{y}(p) \neq 0 .
$$

Then the change of coordinates is

Both T \& T^{-1} are holomorphic, as needed.

Compact Riemann Surfaces
(a) $X=\hat{\epsilon}=\propto \cup\{\infty\}$
W_{e} construct charts $u_{0}, u_{\infty}, x=u_{0} \cup u_{\infty}$

$$
\begin{aligned}
& u_{0}=\{z: z \neq \infty\} \xrightarrow{ } \in, \quad z \longrightarrow z \\
& u_{\infty}=\{z: z \neq 0\} \longrightarrow \phi_{\infty} \subset, z \longrightarrow \frac{1}{z}
\end{aligned}
$$

There two charts are compatible. The transition map is

$$
T=\phi_{\infty} \phi_{0}^{-1}: e^{x} \longrightarrow c^{x}, z \longrightarrow 1 / z \text { bihtomorphic }
$$

Projective curves

$$
\begin{gathered}
\mathcal{Z}_{0} \neq \mathbb{P}^{2}=\{[x: y: z],(x, y, z) \neq(0,0,0), x, y, z \in \mathbb{C}\} / \sim \\
(x, y, z) \sim(\lambda x, \lambda y, \lambda z) \text { if } \lambda \in \mathbb{C}^{x} . \\
u_{1}=\{x \neq 0\} \xrightarrow{\phi_{3}} \sigma^{2}[x: y: z] \rightarrow\left(\frac{y}{x}, \frac{z}{x}\right) . \\
u_{2}=\{y \neq 0\} \xrightarrow{\phi_{2}} ब^{2}[x: y: z] \rightarrow\left(\frac{x}{y}, \frac{z}{y}\right) . \\
u_{3}=\{z \neq 0\} \xrightarrow{\phi_{3}} \sigma^{2}[x: y: z] \rightarrow\left(\frac{x}{z}, \frac{y}{z}\right) .
\end{gathered}
$$

Let f homogeneous of degree d. in variables x, y, z.
$(*)$ if $p \in \mathbb{P}^{i}, f(p)=0$ then $f_{x}(p) \neq 0$ or $f_{y}(p) \neq 0$ or $f_{2}(p) \neq 0$.

Then

$$
x=\{[x: y: 2]: f(x, y, z)=0\} c \mathbb{B}^{2}
$$

is a Riemann Surface (check).

C torus: $\omega_{1}, \omega_{2} \neq 0, \omega_{1} / \omega_{2} d R$

$$
\text { Jet. } \Lambda=\left\{m \omega_{1}+n \omega_{2}: m_{1} n \in \mathbb{Z}\right\} \hookrightarrow \sigma
$$

Let $X=\sigma / \lambda$ where Λ ats on σ by translations

$$
\mathscr{L}_{\varepsilon} \neq \pi: \sigma \longrightarrow \times
$$

II x has the guohent topology, $u \leq x$:

$$
u \text { open } \Leftrightarrow \pi^{-\prime} u \text { open }
$$

[i] π continuous \& open

$$
u \text { open, } \pi(u) \text { open since } \pi^{-1} \pi u=\bigcup_{\lambda \in \lambda} u+\lambda=\text { open. }
$$

[(4]) coordinate charts. $\mathcal{L}_{z} t=\leqslant \frac{1}{2} \min _{x \in \cap, ~(x)}$.

$$
\begin{aligned}
& \mathcal{L}_{\varepsilon} f x \in X, \pi(z)=\lambda, z \in \mathbb{C} \\
& \mathcal{L}_{\varepsilon} f \pi: \Delta(2, \varepsilon) \longrightarrow D_{,, \varepsilon}^{-}=\pi(\Delta(z, \varepsilon)) .
\end{aligned}
$$

Claim $D_{z, \varepsilon}$ is a chart
π surgective, ingectire, continuous, open hence a
homeomorphism

$$
\begin{aligned}
& \text { Claim The charts } D_{2, \varepsilon} \text { are compatible } \\
& \psi_{1}: D_{z_{1, \varepsilon}} \longrightarrow \Delta(2, \varepsilon) \\
& \psi_{2}: D_{2_{2}, \varepsilon} \longrightarrow \Delta\left(2_{2}, \varepsilon\right) \\
& u=D_{2, \varepsilon} \cap D_{2, \varepsilon} \\
& T=\psi_{2} \psi_{1}^{-1} \text { is given by } z \longrightarrow \nrightarrow+\lambda \text {. on } \psi,(u) \text {. }
\end{aligned}
$$

Indeed $\pi T(2)=\pi \psi_{2} \psi_{1}^{-1}(2)=\pi \varphi_{2} \pi(2)=\pi(2)$

$$
\Rightarrow T(z)=z+\lambda \text {. bi holomorphic }
$$

Conclusion Give X the complex structure determined by
these charts. X is a Riemann surface.

