$$
\begin{gathered}
\text { Math } 220 C-\text { Lecture } 2 \\
\text { March } 30,2022
\end{gathered}
$$

Zast time

Mean value Property

$$
\forall a \in G, \bar{\Delta}(a, r) \subseteq G, u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r c^{i t}\right) d t .
$$

Maximum Prisciple
$n: G \longrightarrow R, u \in G^{0}(G)$ satiofes mVI. Assurose
$\exists a \in G, u(a) \geq u(z) \forall z \in G$. Then u is conotant.

Proof $z_{z} \Omega=\{z: u(z)=u(a)\} \subseteq G$.
(1) $\Omega \neq \phi$ because a $\in \Omega$.
(2) Ω is c/ooed, since u is continuous.
(3) Ω is open.

Then σ conneated $\Rightarrow \Omega=6 \Rightarrow u$ conotant.

Proof of (3)

$$
Z_{=} z_{0} \in \Omega . \quad Z_{0} \quad \bar{\Delta}\left(z_{0}, r\right) \subseteq G . \quad w_{=}=h_{0} \omega \quad \Delta\left(z_{0}, r\right) \subseteq \Omega
$$

$\mathcal{Z}_{z} t \quad w \in \Delta\left(z_{0}, r\right) \Rightarrow \rho=\left|w-z_{0}\right|$. Wrik MvP. for $\partial \Delta\left(z_{0}, p\right)$

$$
u(a)=u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+\rho e^{i t}\right) d t
$$

$$
\Longleftrightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(u\left(z_{0}+p_{0}^{i t}\right)-u(a)\right) d t=0 \Rightarrow
$$

$z_{0} t f(t)=u(a)-u\left(z_{0}+p^{i t}\right)$. By assumption, $f(t) \geq 0$
since a is a maximum for u.

Using the Zama, we have $f \equiv 0$. Since $|w-20|=p$, write

$$
w=z_{0}+\rho e^{i t_{0}} \Rightarrow f\left(t_{0}\right)=u(a)-u(w)=0 \Rightarrow u(a)=u(w)
$$

$\Rightarrow \omega \in \Omega \Rightarrow \Delta\left(z_{0}, r\right) \leq \Omega \Rightarrow \Omega$ open.

Lemma $f:[0,2 \pi] \rightarrow \mathbb{R}, f \geq 0$ and f continuous

$$
\int_{0}^{2 \pi} f(t) d t=0 \Rightarrow f \equiv 0
$$

Poof If $f\left(t_{0}\right)>0$. by continuity we can find $\delta>0$
such that $f(t)>\frac{f\left(t_{0}\right)}{2} \forall t \in\left(t_{0}-\delta, t_{0}+\delta\right) n[0,2 \pi]$.

Assume to $\neq 0,2 \pi$ since the proof is irmilar in those cases.
Then $f \geq 0$ gives

$$
0=\int_{0}^{2 \pi} f(t) d t \geq \int_{t_{0}-\delta}^{t_{0}+\delta} f(t) d t>\int_{t_{0}-\delta}^{t_{0}+\delta} \frac{f\left(t_{0}\right)}{2} d t=\delta f\left(t_{0}\right)>0 .
$$

contradiction. Thus $f \equiv 0$.

Notation $\partial_{\infty} G=$ extended boundary in $\hat{\sigma}=003 \infty 3$.

$$
\partial_{\infty} \sigma=/ \begin{aligned}
& \partial 6,6 \text { bounded } \\
& \partial G u\{\infty\}, 6 \text { unbounded }
\end{aligned}
$$

A stronger version (NP')
(1) $u: 6 \longrightarrow \mathbb{R}, u$ satisfos MVP in G, u continuous
(2) $\forall a \in \partial_{\infty} G: \quad \limsup u(z) \leq 0$.

Then either $u<0$ in σ or $u \equiv 0$ in G.

Proof $W=w$ shill show $u \leq 0$ in G. By the usual MP,
u cannot have a maximum in 0 unless $u=$ constant. This
give e the statement we seek. Indeed, if $\exists \alpha \in G$ with
$u(\alpha)=0 \Rightarrow \alpha$ maximum in $G \Rightarrow u \equiv 0$. Else $u(\alpha)<0, \forall \alpha \in \varepsilon$

Thus $u \equiv 0$ or $u<0$ in G.

To show $u \leq 0$, assume that $\exists \alpha \in G$ int $u(\alpha)>0$.

$$
z_{0} f \quad \varepsilon=u(\alpha)>0 .
$$

Lot $K=\{z \in G: u(z) \geq \varepsilon\}$. $\operatorname{Sin} 0=\alpha \in K \Rightarrow K \neq \Phi$.

Claim K is compact.

Assuming this, u cont., u wi ll aohive a maximum in k af
2. In particular $u(20) \geq \varepsilon$. Outside of k, $u<\varepsilon$. Thus zoo
will achieve a maximum for in u in 6 . This shows u constant

Condition (2) ensures $u=$ constant ≤ 0.

Proof of olairn $Z_{z} z_{n} \in K$. Wi show that passing to a rebseg.
z_{n} converges in K. Not $z_{n} \in \widehat{G} . \& \hat{\sigma}$ is compact. Thus wLos we may assume $z_{n} \rightarrow \mathcal{Z}^{\hat{G}} \hat{\bar{a}}$ after passing to a mubsegurnce. Not $u\left(z_{n}\right) \geq \varepsilon$. If $z \in G \Rightarrow u(z)=\lim u\left(z_{n}\right) \geq \varepsilon . \Rightarrow z^{2} \in K$. as needed. Else $\mathcal{A} \in \partial_{\infty} 6$. Then
$\limsup _{z_{n} \rightarrow z} u\left(z_{n}\right) \geq \varepsilon \quad$ which contradicts (2).

Thus K is compact.

Corollary G bounded, $u: \bar{R} \longrightarrow \mathbb{R}$ cont.. MVP,

$$
u \equiv 0 \text { on } \partial G \Rightarrow u \equiv 0 \text { in } G \text {. }
$$

Proof W_{2} use ME ${ }^{+}$. We mood to verify condition (2).

Thus $u<0$ in σ or $x \equiv 0$ in s.

Argue in the sam= aral for $-x . \Rightarrow$ either $-x<0$ in 6 or

$$
-u \equiv 0 \text { in } 6 \text {. Thus } u \equiv 0 \text { in } G \text {. }
$$

Remark $u, v: \bar{G} \longrightarrow R$ continuous \& harmonic in G.
\& G bounded. If

$$
u / \partial G=v / \partial \sigma \Rightarrow u=v \text {. in } G \text {. }
$$

Thus $u / \partial \sigma \leadsto u$ in G. uniquely.
$\int 2$. Poison Formula \& Dirichlet Problem

Question, $u: \bar{G} \longrightarrow \mathbb{R}$ continuous, harmonic in G, G bounded.

$$
u / \partial s \sim u \quad u n i g u=l y \text { in } G \text {. }
$$

Find a formula for u in 6 , from the valuer $u / 26$.

We well solve this for $G=\Delta(0,1)$. or $\Delta(a . R) . \leadsto$ Poisson Formula

Question 2 Given $f: 26 \longrightarrow \mathbb{R}$ continuous, is there
$u: \bar{G} \longrightarrow \mathbb{R}$ continuous and

$$
\left\{\begin{array}{l}
\Delta u=u_{x x}+u_{y y}=0 \\
u /_{\partial G}=f
\end{array}\right.
$$

Dirichlet Problem
(boundary value problem)

Harmonic Functions on the unit disc $\Delta=\Delta(0,1)$

Given $u: \bar{\Delta} \longrightarrow R$ continuous, harmonic in Δ.
find a formula for $u(a)$ in krmo of $u / a \Delta$.

Remark $a=0 \quad U s=M \cup E$ over the circle $(z)=r, r<1$.

This smaller circle is contained in \triangle. where u satisfies MVP.

Then

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i t}\right) d t
$$

Since u continuous over $\bar{\Delta}$, make $r \rightarrow 1$. This yields

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(0^{i t}\right) d t \text {. (To guatify the limit }
$$

use that $u\left(r e^{i t}\right) \rightarrow u\left(e^{1 t}\right)$ uniformly since u is uniformly cont.

- ven $\bar{\Delta}$).

Question: Flow about the case $a \neq 0$?

General Case

Idea: Recenter!

$$
\begin{aligned}
& \Phi: \Delta \longrightarrow \Delta, \partial \Delta \longrightarrow \partial \Delta \\
& \Phi(2)=\frac{z^{2}+a}{1+\bar{a} z}, \Phi \bar{P}(0)=a .
\end{aligned}
$$

Then $\tilde{u}=u \cdot \Phi: \bar{\Delta} \longrightarrow \mathbb{R}$ continuous. harmonic in Δ (Problem 1, HWKI)

Apply MVI to u^{2}

$$
u(a)=\tilde{u}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \tilde{u}\left(e^{i s}\right) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(\Phi\left(r^{i s}\right)\right) d s
$$

Since $\Phi\left(e^{i s}\right) \in \partial \Delta$ this aloe shows ufa) is given explicitly in terms of $u / \partial \Delta$.

Next time: We will work out a more explicit expression
\Rightarrow Poisson Integral Formula
Slogan
$M V P \rightarrow$ Put $\Delta \Rightarrow$ Poisson's formula

