$$
\begin{gathered}
\text { Math } 220 \mathrm{C} \frac{\text { Feature } 25}{\text { Jun= } 3,2022}
\end{gathered}
$$

Coherent sheaved
$F \rightarrow X$ is coherent provided every point $x \in X$ admits a neighborhood $U \subseteq X$ and an exaot sequence

$$
O_{x / u} \|^{\oplus S} \longrightarrow \theta_{x}{ }_{u}^{\oplus r} \vec{f} / u \longrightarrow 0
$$

for some integers $r, s, \geq 0$.

In particular $\tilde{f}=\mathcal{O}_{x}(D)$ is coherent since it is locally free. (take $r=1, s=0$)

Remark If \mathcal{f} is a sheaf of \mathcal{O}_{x}-modules. then $\mathcal{F}(x)$ is a module over $\mathcal{O}_{x}(x)$. In particular, $H^{\circ}(x, \mathcal{F})=\mathcal{F}(x)$ is a σ - vector space

In fact $H^{P}(x, F)$ is a \mathbb{C}-Vector apace.

Theorem X compact Riemann surface, $F \rightarrow x$ coherent $O_{x}-$

- module. Then

$$
\operatorname{dim}_{\sigma} H^{p}(x, \mathcal{F})<\infty \text { for } p=0 \& 1
$$

Furthermore $H^{p}(x, \mathcal{F})=0$ for $p \neq 0,1$.

Example X compact Riemann surface. Defoe

$$
g=\operatorname{dim}_{\sigma} H^{\prime}\left(x, O_{x}\right)=\text { arithmetic genus }<\infty
$$

The theorem allow o wo to define

$$
\begin{aligned}
& x(x, \mathcal{F})=\operatorname{dim}_{\sigma} H^{\circ}(x, \mathcal{F})-\operatorname{dim}_{\sigma} H^{\prime}(x, \mathcal{F})<\infty . \\
& \frac{\text { Example } \underline{H} X\left(x, O_{x}\right)}{}=\operatorname{dim}_{\sigma} H^{\circ}\left(x, O_{x}\right)-\operatorname{dim}_{\sigma} H^{\prime}\left(x, O_{x}\right) \\
&=1-g .
\end{aligned}
$$

(II)

$$
\text { If } \begin{aligned}
\tilde{f} & =\text { sky scraper sheaf. } H^{\circ}(x, \mathcal{F})=\widetilde{\sigma}, H^{\prime}(x, \mathcal{F})=0 \\
& \Rightarrow x(x, \mathcal{F})=1
\end{aligned}
$$

Remark if $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ is an
exact sequence of vector spaces then

$$
\operatorname{dim} V=\operatorname{dim} u+\operatorname{dim} W
$$

More generally, if

$$
0 \longrightarrow V_{0} \longrightarrow v_{1} \longrightarrow \cdots \longrightarrow V_{n} \longrightarrow 0 \text { exact }
$$

then $\sum_{k=0}^{n}(-1)^{k} \operatorname{dim} V_{k}=0$.

Remark $k=\mathcal{F} \longrightarrow \mathcal{F} \longrightarrow \mathcal{H} \longrightarrow 0$ exact
then $0 \longrightarrow H^{\circ}(x, \mathcal{F}) \rightarrow H^{\circ}(x, y) \longrightarrow H^{0}(x, \mathcal{F})$

$$
\longleftarrow H^{\prime}(x, F) \rightarrow H^{\prime}(x, y) \longrightarrow H^{\prime}(x, \mathcal{F}) \ldots
$$

and the previous remark gives

$$
x\left(x, C_{y}\right)=x(x, \mathcal{F})+x(x, \mathcal{H})
$$

The Riemann-Roch Theorem

Question Given compact Riemann surface X

- $z_{1} \ldots z_{n} \in X, p_{1} \ldots p_{m} \in X$
- $\mu_{1} \ldots \mu_{n} \geq 0, v_{1}, \ldots v_{m} \geq 0$ integers

Want f meromorphic in X

- f has zeroes at 2: of order $\geq \mu$.
-f has poles at p_{i} of order $\leq \nu_{\nu}$.

Other zeroes are allowed, but no other poles.

$$
\mathscr{L}_{\text {E }}+\quad D=-\sum_{i} \mu_{i}\left[z_{i}\right]+\sum_{i} v_{i}\left[p_{i}\right]
$$

We thus want to understand $H^{\circ}\left(x, O_{x}(0)\right)$.

Theorem (Riemann - Rook)

$$
x\left(x, \sigma_{x}(0)\right)=1-g+\operatorname{deg} D
$$

Remark We obtain a lower bound

$$
\operatorname{dim} H^{\circ}\left(x, G_{x}(0)\right) \geq x\left(x, O_{x}(0)\right)=1-g+\operatorname{deg} 0 .
$$

Remark Serve duality can be uoed to conclude that we have an equality in certain cases e.g. oreg $0 \geq 2 g-1$.

14.

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemamn.)

$\mathbf{I n}_{\mathrm{n}}$ der folgenden Abhandlung habe ich die $\boldsymbol{A} \boldsymbol{b} \boldsymbol{e l}$ 'schen Functionen nach einer Methode behandelt, deren Principien in meiner Inauguraldissertation *) aufgestellt und in einer etwas verãnderten Form in den drei vorhergehenden Aufsätzen dargestellt worden sind. Zur Erleichterung der Uebersicht schicke ich eine kurze Inhaltsangabe vorauf.

Die erste Abtheilung enthält die Theorie eines Systems von gleichverzweigten algebraischen Functionen und ihren Integralen, soweit für dieselbe nicht die Betrachtung von ϑ-Reihen mafsgebend ist, und handelt im $\mathbb{\$. 1 - 5}$ von der Bestimmung dieser Functionen durch ihre Verzweigungsart und ihre Unstetigkeiten, im $\$.6-10$ von den rationalen Ausdrücken derselben in zwei durch eine algebraische Gleichung verknūpfte verānderliche Gröfsen, und im §. 11-13 von der Transformation dieser Ausdrücke durch rationale Substitutionen. Der bei dieser Untersuchung sich darbietende Begriff einer Klasse von algebraischen Gleichungen, welche sich durch rationale Substitutionen in einander transformiren lassen, dürfte auch für andere Untersuchungen wichtig und die Transformation einer solchen Gleichung in Gleichungen niedrigsten Grades ihrer Klasse ($\$.13$) auch bei anderen Gelegenheiten von Nutzen sein. Diese Abtheilung behandelt endlich im $\$$. 14-16 zur Vorbereitung der folgenden die Anwendung des Abel'schen Additionstheorems für ein beliebiges System allenthalben endlicher Integrale von gleichverzweigten algebraischen Functionen zur Integration eines Systems von Differentialgleichungen.

In der zweiten Abtheilung werden für ein beliebiges System von immer endlichen Integralen gleichverzweigter, algebraischer, $\overline{2 p+1}$ fach zusammenhangender Functionen die Jacobi'schen Umkehrungsfunctionen von p veränderlichen Gröfsen durch p fach unendliche ϑ-Reihen ausgedrūckt, d. h. durch Reihen von der Form
*) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Gröfse. Göttingen 1851.

Crelle's Journal 54 (1857)

Crelle's Journal 64(1864)

Ueber die Anzahl der willkürlichen Constanten in algebraischen Functionen.

(Von Herrn G. Roch in Halle.)

Ist s eine durch die Gleichung $F(s, z)=0$ definirte algebraische Function von z, so kann nach Riemann (s. dessen Abhandlung über Abelsche Functionen, Band 54. dieses Journals) jede wie s verzweigte algebraische Function s^{\prime} von z rational durch s und z ausgedrückt werden. Wird die Function s^{\prime} in m Punkten der Fläche T, welche die Verzweigungsart angiebt, unendlich erster Ordnung, so enthält dieselbe nach $\$.5$. der erwähnten Abhandlung $m-p+1$ willkürliche Constanten. Schon die a. a. 0 . untersuchte Bedingung der Existenz von Functionen, die in weniger als $p+1$ Punkten unendich werden, zeigt, dass die Anzahl der wirklich vorhandenen Constanten eine grössere sein kann. Dies kann aber auch Statt finden, wenn m grösser als p ist. Ist z. B. s^{\prime} der Quotient zweier Functionen φ, so wird s^{\prime} in den $2 p-2$ Punkten unendlich, in denen der Nenner gleich Null ist (s. §. 10. der citirten Abhandlung), und enthält so viele willkürliche Constanten, als die den Zähler bildende Function, nämlich p, während die Zahl $m-p+1$ im vorliegenden Falle gleich $p-1$ ist. Sind dagegen $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}$ solche Functionen φ, welche in $p-1$ Punkten unendlich klein zweiter Ordnung werden, deren Quadratwurzeln Riemann Abelsche Functionen nennt, so giebt es eine gewisse Anzahl von Ausdrücken $\sqrt{\frac{\psi_{1} \psi_{1}}{p_{2} \psi_{2}}}$, welche rationale Functionen von s und z sind; diese enthalten in der That $p-1$ Constanten in linearer Weise, ein Satz, der von Riemann herrührt und für welchen ein Beweis in der folgenden genauen Bestimmung der Constanten-Anzahl mit enthalten ist.

Der allgemeinste Ausdruck eines Integrals zweiter Gattung, welches in m Punkten ε unendich erster Ordnung wird, ist

$$
v=\beta_{1} t_{1}+\cdots+\beta_{m} t_{m}+\alpha_{1} v_{1}+\cdots+\alpha_{p} w_{p}+\text { const. }
$$

(Vergl. §. 5. der Riemannschen Abhandlung.) Hierbei sind unter $\boldsymbol{t}_{\mathbf{1}} \ldots \boldsymbol{t}_{\mathbf{m}}$ specielle Integrale zweiter Gattung zu verstehen, welche beziehlich in den Punkten $\varepsilon_{1} \ldots \varepsilon_{m}$ unendich werden wie $\frac{1}{\sigma_{1}} \cdots \frac{1}{\sigma_{m}}$, wenn σ_{k} eine Grősse be-

Quick proof when $\Delta \geq 0$

Recall from Lecture 21 that

$$
\begin{aligned}
& 0 \longrightarrow G_{x} \longrightarrow G_{x}(0) \longrightarrow \frac{\prod_{j} \mathbb{C}_{p_{j}}^{\oplus n_{j}} \rightarrow 0}{s k_{y} \text { scraper }} \\
& D=\sum n_{j}\left[p_{j}\right] .
\end{aligned}
$$

where $D=\sum n_{j}\left[\beta_{j}\right]$.

Then $\quad x\left(x, \mathcal{O}_{x}(0)\right)=x\left(x, \mathcal{O}_{x}\right)+x\left(x, \prod_{j} \sigma_{p_{j}}^{\oplus_{j}}\right)$

$$
\begin{aligned}
& =x\left(x, \sigma_{x}\right)+\sum n_{j} x\left(x, \sigma_{p_{j}}\right) \\
& =1-g+\sum n_{j} \cdot 1^{\swarrow} \text { previous } \\
& =x a m p l o s \\
& =1-g+d e g D
\end{aligned}
$$

General Proof is very oimilar.

Claim $\forall p \in X$, we have an exact sequence (*) $0 \longrightarrow \sigma_{x}(\Delta) \longrightarrow \sigma_{x}(\Delta+p) \longrightarrow \underbrace{\sigma_{p}}_{\text {skyscraper sheaf }}$

Assuming this, lot

$$
f(\Delta)=x\left(O_{x}(\Delta)\right)-(1-g+\log \Delta)
$$

II $f(0)=x\left(\theta_{x}\right)-(1-g)=0$
(a) $f(D)=f(\Delta+p)$ since the exact sequence gives

$$
\begin{aligned}
& x\left(O_{x}(D+p)\right)=x\left(\sigma_{x}(D)\right)+1 \text { and } \\
& \operatorname{deg}(D+p)=\operatorname{deg} D+1
\end{aligned}
$$

(III) $f(D)=f(D+E)$ for all divisors $E \geq 0$.

This follows for III.

This show o f must be constant．Indeed．declare

$$
D_{1} \geq D_{2} \text { if } D_{1}-D_{2} \geq 0 \text {. }
$$

If D_{1}, D_{2} are two divisors，we can find D_{3} with

$$
D_{3} \geq D_{1} \text { and } D_{3} \geq D_{2} \text {. }
$$

$$
\begin{aligned}
\text { By [GII, we have } f\left(D_{3}\right) & =f\left(0_{1}\right) \\
f\left(0_{3}\right) & =f\left(D_{2}\right) \Rightarrow f\left(0_{1}\right)=f\left(0_{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& f\left(D_{3}\right)=f\left(D_{2}\right) \\
& \Rightarrow f \text { constant } \stackrel{⿴ 囗 口}{\Rightarrow} f \equiv 0 \Rightarrow \text { Riemann - Rock. }
\end{aligned}
$$

Proof of the exact sequence (*)

$$
\begin{aligned}
& \text { Writ } D=E+n[p], p \notin \text { Supp } E . \text { We show } \\
& 0 \longrightarrow O_{x}(E+n[p]) \xrightarrow{\alpha} G_{x}(E+(n+1)[p]) \xrightarrow{\beta} \sigma_{p} \longrightarrow 0
\end{aligned}
$$

The map α is the natural inclusion.

To define β, take f with

$$
\operatorname{div} f+E+(n+1)[p] \geq 0 .
$$

In local coordinate near p, writs

$$
f(2)=\frac{a_{-n-1}}{(2-p)^{n+1}}+\cdots \quad \text { Laurent }=\times \text { panoion. }
$$

Define $\beta(f)=a_{-n-1}$.

Why exact If $\beta(f)=0$ then $a_{-n-1}=0 \Rightarrow f$ has pole of order $\leq n$ at p hence f is a scetion of $O_{x}(E+n[p])$

Where to go from here?
(1) sheaf co homology in more detail
(2) discussion of genus

- arithmetic genus $g=\operatorname{dim} H^{\prime}(x, \underset{x}{G})$
- topological genus $2 g=\operatorname{dim} H^{\prime}(x, a)$
- geometric genus via 1-formo $g=0 \lim H^{\circ}\left(x, \Omega_{x}^{\prime}\right)$
(3) Serve oluality

$$
H^{0}(x, \mathcal{F}) \cong H^{\prime}\left(x, \mathcal{F}^{v} \otimes \Omega_{x}^{\prime}\right)^{\nu}
$$

(4) line bundles \& the Jacobian
(5) projective embeddings, ample, very ample line bundles $X \longrightarrow \mathbb{P}$..
(6) moduli of curves Mg, Mg

Many directions are possible!

