Part I: Weierstrass & Mittag-Leffler

Series & Products

Part II: Riemann & Schwarz

Mapping Theory

Part III: Runge < Conway VIII. 1

Approximation Theory
§1. Context for Runge

In real analysis (Math 140B), we learn the

Weierstrass Approximation Theorem

\[f : [a,b] \rightarrow \mathbb{R} \text{ continuous, } \exists P_n \text{ polynomials} \]

\[P_n \rightarrow f. \]

This was proven by Weierstrass at age 70 in 1885.

There are many applications of this theorem.

\(\text{e.g. in Fourier analysis, functional analysis etc.} \)

Remark This can be generalized in \(\mathbb{R}^n \).

If \(K \subseteq \mathbb{R}^n \) compact, \(f : K \rightarrow \mathbb{R} \text{ continuous}, \) then

\[\exists P_n \text{ polynomials, } P_n \rightarrow f \text{ in } K. \]
Runge (age 28, Ph.D. 1850, student of Weierstrass):

Question
What about f holomorphic? Can it be approximated by polynomials in z?

Answer
was given in 1855 as well.

Remark
This doesn’t follow from Weierstrass.

Weierstrass produces polynomials in x, y for $z = x + iy$.

E.g. polynomials in z and $ar{z}$.
Carl Runge (1856 - 1927)

- Runge - Kutta
- Runge's Approximation
- mathematics, astrophysics, spectroscopy.
2. Phrasing the Question more carefully

Beware A holomorphic function is defined over open sets. (see Math 220A).

Definition \(K \subseteq \mathbb{C} \) compact. A holomorphic function in \(K \) is a function \(f: K \rightarrow \mathbb{C} \) that extends holomorphically to a neighborhood \(U \ni K \).
Two versions of the question

Runge C (compact sets) \(K \subseteq \mathbb{C} \) compact

Given \(f \) holomorphic in \(K \), are there polynomials \(P_n \) such that \(P_n \to f \) in \(K \)?

Runge O (open sets) \(U \subseteq \mathbb{C} \) open

Given \(f \) holomorphic in \(U \), are there polynomials \(P_n \) such that \(P_n \to f \) in \(U \)?
Emphasis

Runge C: approximation on a single compact K

Runge O: approximation on all compacts K in the domain of a holomorphic function

Runge C is more basic.

Complex analysis

\xrightarrow{z}

Runge C $\quad \Rightarrow \quad$ Runge O

Point-set topology.

The two versions are very similar.
Example Runge C.

\[K = \{ 1 \leq |z| \leq 2 \} \text{, } f(z) = \frac{1}{z} \text{ holomorphic in } K. \]

Can we find \(P_n \rightarrow f \) in \(K \)?

No! Note \(f \) is holomorphic in \(u \supset K, \quad u = \left\{ \frac{1}{2} < |z| < \frac{5}{2} \right\} \)

so "holomorphic in \(K \)."

If \(P_n \rightarrow f \) in \(K \) then

\[\int_{|z|=\frac{3}{2}} P_n \, dz \rightarrow \int_{|z|=\frac{3}{2}} f \, dz. \]

Note \(\int_{|z|=\frac{3}{2}} P_n \, dz = 0 \) \& \(\int_{|z|=\frac{3}{2}} f \, dz = 2\pi i \) by the residue theorem. This is a contradiction.

The failure is due to the "hole" in \(K \).
What is a "hole"?

Definition \(K \subseteq \mathbb{C}, \text{ compact} \)

A hole is a bounded connected component of \(\mathbb{C} \setminus K \).

Example

\[K \quad \mathbb{C} - K = A \cup B \cup C \]

\(C \) unbounded

\(A, B \) bounded

\(A, B \) are holes for \(K \).

\[K = \bigcup \left\{ \{1/n \mid n \geq 1\} \cup \{0\} \right\} \]

\(K \) closed & bounded \(\Rightarrow \)

\(\Rightarrow K \) compact.

\(\infty \) - many holes

\[H_n = \left\{ \left. \frac{1}{n+1} < |z| < \frac{1}{n} \right\} \right. \]
3. **Runge's Theorem - Compact Sets**

We give three versions. The simplest version is:

Runge's Little Theorem (Case c)

If K has no holes ($\iff K \setminus c$ connected), then for every holomorphic function f in K, there exist polynomials P_n with

$$P_n \rightarrow f \text{ in } K.$$
Question: How about arbitrary K?

Answer: Polynomial approximation fails (Example)

Are we even asking the right question?

Better

Rational Approximation.

Question: Given f holomorphic in K,

\[\exists \text{ rational functions, } R_n \rightarrow f \text{ in } K \& \]

pole of R_n are outside K?

Question: Can we prescribe the location of the poles of R_n?
Runge's (Almost final) $K \subseteq \mathbb{C}$ compact.

Theorem Let S be a set of points, at least one from each hole of K.

Then $\exists f$ holomorphic in K.

Claim $\exists R_n \rightarrow f$ in K.

Remark R_n are rational functions whose poles are in S.

Remark The poles of R_n are contained in S, but it may happen that not all points of S are poles.

Remark If K has no holes then $S = \mathbb{C}$. Thus R_n has no poles $\Rightarrow R_n$ have no denominators $\Rightarrow R_n$ are polynomials. We recover Little Runge.
We replace C by $\hat{C} = C \cup \{\infty\}$.

Theorem: Let $K \subseteq \mathbb{C}$, compact. Let $S \subseteq \hat{C}$ be a set of points, at least one chosen from each component of $\hat{C} \setminus K$. Let f be holomorphic in K. Then

$$\exists R_n \rightarrow f \text{ in } K$$

in \hat{C}

R_n are rational with possible poles in S.
Remark: An interesting case allowed by the Final Version is to pick \(v \in S \) from the unbounded component. Thus, when \(S \) consists in

- \(\infty \) from the unbounded component of \(\mathbb{C} \setminus K \)
- a point from each bounded component of \(\mathbb{C} \setminus K \) (holes)

we recover the Almost Final Version.

The two versions are even equivalent in this case since the condition that a rational function \(R \) have at worst a pole at \(\infty \) is vacuous. Indeed,

\[
R(z) = \frac{\prod_{i=1}^{m} (z-a_i)}{\prod_{i=1}^{n} (z-b_i)} \Rightarrow R\left(\frac{1}{2}\right) = 2^{m-n} \frac{\prod_{i=1}^{m} (1-a_i \cdot 2)}{\prod_{i=1}^{n} (1-b_i \cdot 2)}
\]

has at worst a pole at 0.
Summary

Runge C (Final) \rightarrow Runge C (Almost Final)

Conway VIII.1.7

\[\square \]

- rational approximation
- version for \(\mathbb{C} \)

\[\square \]

- rational approximation
- poles in each hole

\[\square \]

Little Runge C

- polynomial approximation
- \(K \) has no holes
Example Review

\[f(z) = \frac{z^3}{(z-2)(z-7)} \]

\[K = \left\{ 3 \leq |z| \leq 4 \right\} \]

\[f \text{ is holomorphic in } K \text{ because it extends holomorphically to } \]

\[U = \left\{ \frac{5}{2} < |z| < \frac{9}{2} \right\} \supseteq K. \]

Can we approximate \(f \) uniformly on \(K \) by:

1. rational functions with poles at 1?

Yes Almost Final Version

2. rational functions with poles at 0, \(\infty \)

Yes Final Version

3. rational functions with poles at \(\infty \)?

No. Such rational functions would have to be
polynomials (if they had denominators, there would be poles). But if \(P_n \rightarrow f \) then

\[
\int P_n \, d\alpha \rightarrow \int f \, d\alpha = 2\pi i \cdot \text{Res}(f, 2)
\]

\[
|z| = \frac{\pi}{2} \quad |z| = \frac{\pi}{2}
\]

0

\[
= 2\pi i \cdot \left| \frac{2^3}{z^2 - 7} \right| \quad z = 2
\]

using the Residue theorem. Contradiction!