Last time:

\[f_k : u \rightarrow \mathbb{C} \text{ holomorphic} \]

\[\sum_{k=1}^{\infty} |f_k| \text{ converges locally uniformly} \]

(1) \[h(z) = \frac{1}{\prod_{k=1}^{\infty} (1 + f_k(z))} \text{ holomorphic} \]

(2) \[\frac{h'}{h} = \sum_{k=1}^{\infty} \frac{f_k'}{1 + f_k} \]

The series on RHS converges absolutely locally uniformly on \(u \setminus \text{Zero}(h) \).

Remark:

If \(\sum_{k=1}^{\infty} |\text{Log}(1 + f_k)| \text{ converges locally uniformly} \)

the same conclusions hold.
Today [1] factorization of sinc

Euler, 1734

These two topics are naturally connected
Factorization of sine \(\text{ (Euler, 1734) } \)

Theorem

\[
\sin \pi x = \pi x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2} \right)
\]

Idea: Both sides have the same zeroes (with multiplicity)

Question When do two entire functions have exactly the same zeroes?

Lemma If \(f, g : \mathbb{C} \to \mathbb{C} \) entire, with the same zeroes and multiplicities, then \(f = g e^h \) for some \(h : \mathbb{C} \to \mathbb{C} \) entire.
Proof. Let \(H = \frac{f}{g} \). \(H \) entire without zeroes by hypothesis. We show \(H = e^h \).

The function \(\frac{H'}{H} \) is entire so it admits primitive \(k \).

\[\Rightarrow \frac{H'}{H} = h' \text{. Then} \]

\[(He^{-h})' = H' e^{-h} - H e^{-h} h' = e^{-h}(H' - H h') = 0 \]

\[\Rightarrow H e^{-h} = c \neq 0 \Rightarrow H = c e^h = e^{\log c + h} \]

Remark. The same holds for \(f, g \) as \(u \to c \), \(u \) simply connected.
Proof of the sine factorization

(1) Convergence:

Note that \[\sum_{k=1}^{\infty} \frac{2^2}{2^2} \] converges locally uniformly \(\Rightarrow \sum_{k=1}^{\infty} \frac{1}{1} \left(1 - \frac{2^2}{2^2} \right) \) converges.

(2) Location of zeroes:

Both sides \(\sin \pi x \) & \(\prod_{k=1}^{\infty} \left(1 - \frac{2^2}{2^2} \right) \) have simple zeroes at the integers & nowhere else.

(3) Completing the proof:

By the Lemma, \(f(x) \) entire

\[\sin \pi x = \pi x \prod_{k=1}^{\infty} \left(1 - \frac{2^2}{2^2} \right) \]

We show \(\beta = 0 \). Compute logarithmic derivative

\[\frac{\pi \cos \pi x}{\sin \pi x} = \frac{\left(e^\beta \right)'}{e^\beta} + \frac{\pi}{\pi x} + \sum_{k=1}^{\infty} \frac{-2^2}{1 - \frac{2^2}{2^2}} \]

\[\pi \cot \pi x = \pi' + \frac{1}{\pi x} + \sum_{k=1}^{\infty} \frac{2^2}{x^2 - \frac{2^2}{2^2}} \]
Recall Math 220, HWK 6:

6. Let $a \in \mathbb{R} \setminus \mathbb{Z}$. Let γ_n be the boundary of the rectangle with corners $n + \frac{1}{2} + ni, -n - \frac{1}{2} + ni, -n - \frac{1}{2} - ni, n + \frac{1}{2} - ni$. Evaluate

$$
\int_{\gamma_n} \frac{\pi \cot \pi z}{z^2 - a^2} \, dz
$$

via the residue theorem. Making $n \to \infty$, show that

$$
\pi \cot \pi a = \frac{1}{a} + 2a \sum_{n=1}^{\infty} \frac{1}{a^2 - n^2}.
$$

Thus $h' \equiv 0 \Rightarrow h$ constant. We show $h \equiv 0$.

From

$$
\frac{\sin \pi z}{\pi z} = e^{\frac{1}{z}} \prod_{k=1}^{\infty} \left(1 - \frac{2^2}{k^2}\right), \quad \text{make } z \to 0
$$

$$
1 = e^{h(0)} \cdot 1 \Rightarrow h(0) = 0 \Rightarrow h \equiv 0.
$$

This completes the proof.
Remark
\[\sin \pi \frac{2}{2} = \frac{\pi}{2} \left(1 - \frac{2^2}{k^2} \right) \]

[1] \[\frac{\pi}{2} = \frac{1}{2} \]

\[1 = \frac{\pi}{2} \prod_{k=1}^{\infty} \left(1 - \frac{1}{4k^2} \right) = \frac{\pi}{2} \prod_{k=1}^{\infty} \frac{(2k^2)}{(2k-2)(2k+2)} \]

\[\Rightarrow \frac{\pi}{2} = \prod_{k=1}^{\infty} \frac{(2k^2)}{(2k)(2k+1)} \]

\[\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \ldots \]

Wallis, 1655

[11] \[\frac{\pi}{2} = \pi \]

\[\prod_{k=1}^{\infty} \left(1 + \frac{1}{k^2} \right) = \frac{\sin \pi \frac{2}{2}}{\pi \frac{2}{2}} = e^{\pi} - e^{-\pi} \]

[111] \[\cos \pi \frac{2}{2} = \frac{\sin \pi \frac{2}{2}}{2 \sin \pi \frac{2}{2}} = \frac{2 \pi}{2} \prod_{k=1}^{\infty} \left(1 - \frac{4 \frac{2^2}{k^2}}{2 \pi^2} \right) \]

Splitting into even and odd:

\[\cos \pi \frac{2}{2} = \prod_{k=1}^{\infty} \left(1 - \frac{4 \frac{2^2}{k^2}}{(2k-1)^2} \right) \]
2. **Γ**: function — probability, statistics, combinatorics, ...

"The product 1.2. ... \(x \) is the function that must be introduced in analysis." (Gauss to Bessel, 1811)

\[
\prod_{n=1}^{x} n = "1 \cdot 2 \cdot 3 \ldots \cdot x" = \Gamma(x + 1)
\]

"The theory of analytic factorials does not seem to have the importance some mathematicians used to attribute to it".

Worsthoff 1854

Definition

\[
G(2) = \frac{1}{\Pi} \left(1 + \frac{2}{n} \right)^n e^{-2/n}
\]

Remark

The convergence (absolutely & locally uniformly) of the product is HWK 1, #4. There, you show

\[
\sum_{n=1}^{\infty} \left| \log \left(1 + \frac{2}{n} \right) e^{-2/n} \right| \text{ converges locally uniformly.}
\]
Properties of the function G

Theorem:

\[
G(z) \cdot G(-z) = \prod_{n=1}^{\infty} \left(1 + \frac{2}{n^2}\right) = e^{\gamma^2} \cdot \frac{1}{\zeta(2)}
\]

where γ is Euler constant.

\[
\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} - \log n\right).
\]

We will prove this next time.

Definition:

\[
\Gamma(z) = \frac{e^{\gamma^2} \cdot \frac{1}{\zeta(2)}}{2 \cdot \pi^2 \cdot G(z)}
\]

Remark:

G has zeroes at $-1, -2, \ldots, -n, \ldots$

$\Rightarrow \Gamma$ meromorphic in \mathbb{C} with zeroes at $-1, -2, \ldots, -n, \ldots$