Math 220B — Lecture 8

January 22, 2021
Weierstrass Problem for arbitrary regions

Question Given $u \in \mathbb{C}$, $\{a_n\} \subseteq u$ without limit point in u, find f holomorphic in u with zeroes only at $\{a_n\}$.

The sequence $\{a_n\}$ may contain repetitions according to multiplicities of the zeroes.

Main Theorem The Weierstrass Problem can be solved in u.
Remark II. It is not true any two solutions f_1, f_2 satisfy

$$f_1 = e^{h} f_2$$

Counterexample

$U = \mathbb{C}^*$, $f_1 = 1$, $f_2 = 2$.

h would have to be a logarithm, which is undefined in \mathbb{C}^*.

Any meromorphic function in U is quotient of two holomorphic functions.

The same proof for $U = \mathbb{C}$ works for all U.
How to prove Weierstrass for u?

We could again try

$$f(x) = \prod_{n=1}^{\infty} p_n \left(\frac{x}{a_n} \right).$$

Convergence used $a_n \to \infty$.

Indeed, if we wish to have

$$\sum_{n=1}^{\infty} \left(\frac{x}{la_n} \right)^{p_n+1} < \infty \quad \text{we’d need} \quad \frac{x}{la_n} \to 0 \Rightarrow a_n \to \infty.$$

Since $a_n \in u$, this may not be the case, e.g. if u is bounded. How to deal with bounded regions for instance?
New ideas

1) Use biholomorphisms to change the region \(U \).

\[\text{e.g. via } z \rightarrow \frac{1}{z}. \]

If \(U \) were bounded, the new region would be unbounded.

2) Think of \(U \subseteq \mathbb{C} \) as \(\tilde{U} \subseteq \hat{\mathbb{C}} \) and prescribe values at \(\tilde{\infty} \) as well.

New idea

Even for unbounded regions, we can try new functions:

\[f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{a_n - b_n}{z - b_n} \right) \]

for good choices of \(b_n \).

This also has zeroes at \(z = a_n \) since \(E_n(1) = 0 \).
Weierstrass Problem in \(\mathbb{C} \)

Step (1) Assume \(\exists R > 0 \) in neighborhood of \(\infty \).

\[
\{ |z| \geq R \} \subset \mathbb{U}
\]

\[
|a_n| \leq R \quad \forall n.
\]

Construct \(f \) holomorphic in \(\mathbb{U} \) such that

\[
f \text{ has zeroes at } a_n
\]

\[
\lim_{z \to 0} f(z) = L.
\]

Step (2) General case. Use easy trick.

Use \(z \to \frac{1}{z} \) to reduce to Step 1.
Topological Fact used in the Proof (Rudin)

\[K \cap F = \emptyset, \ K \neq \emptyset \text{ compact, } F \neq \emptyset \text{ closed.} \]

\[d = \text{dist}(K, F) = \inf_{k \in K} \inf_{f \in F} |k - f| > 0 \]

Proof

Assume \(d = 0 \). Then \(\exists k_n \in K, f_n \in F \) with

\[|k_n - f_n| \to 0 \]

Passing to a subsequence, assume \(k_n \to k \in K \).

It follows that \(f_n \to k \) as well.

Since \(F \) closed, \(k \in F \). Thus \(k \in K \cap F = \emptyset \). Contradiction.
\textbf{Step 1:} \(\exists R > 0, \{ \lfloor R \rfloor \} \subseteq \mathbb{Z} \) & \(|a_n| \leq R \).

\(\text{Claim:} \) \(f \) zero at \(a_n \) only.

\(\lim_{z \to a} f(z) = 1 \)

Note \(K = \mathbb{C} \setminus \mathbb{U} \subseteq \{ |z| \leq R \} \Rightarrow K \) bounded & closed

\(\Rightarrow K \) compact.

Since \(|a_n - 2| \) is continuous, \(\exists b_n \in K \) with

\[|a_n - b_n| = \min_{z \in K} |a_n - z| . \]

Write \(S_n = |a_n - b_n| > 0 \) since \(a_n \in \mathbb{U} \), \(b_n \notin \mathbb{U} \).

\(\text{Claim:} \) \(S_n \to 0 \).

\textbf{Proof:} Assume otherwise. Then \(\exists \varepsilon > 0 \) \(\exists N \geq N \) with

\[|S_n| \geq \varepsilon . \]

Passing to a subsequence we may assume \(|S_n| \geq \varepsilon \) for.
Note $\{a_n\} \subseteq \overline{B}(0, R) = \text{compact}$. Passing to a subsequence we may assume $a_n \to a$. Since $\{a_n\}$ has no limit point in $U \implies a \in K$. Then by the definition of b_n:

$$|a_n - a| \geq |a_n - b_n| = \delta_n > \varepsilon.$$

This contradicts $a_n \to a$. Thus $S_n \to 0$.
Claim: \(f(z) = \prod_{n=1}^{\infty} E_n \left(\frac{a_n - b_n}{z - b_n} \right) \) converges absolutely and locally uniformly in \(U \) & vanishes only at \(a_n \).

Proof: It suffices to show

\[
\sum_{n=1}^{\infty} \left| E_n \left(\frac{a_n - b_n}{z - b_n} \right) - 1 \right| \text{ converges absolutely and locally uniformly in } U.
\]

To this end, let \(k' \subseteq U \) compact.

Let \(\delta = d(K, K') > 0 \) since \(K \cap K' = \emptyset \).

Let \(z \in K' \Rightarrow |z - b_n| \geq \delta \Rightarrow \)

\[
\left| \frac{a_n - b_n}{z - b_n} \right| \leq \frac{\delta}{\delta} \leq \frac{1}{\delta} \text{ if } n \not\in N \text{ since } \delta_n \to 0.
\]

Recall

\[
|1 - E_p(\omega)| \leq |\omega|^{r+1} + |\omega| \leq 1.
\]

Thus

\[
|1 - E_n \left(\frac{a_n - b_n}{z - b_n} \right)| \leq |a_n - b_n| \left(\frac{1}{\delta^n} \right)^{r+1} \forall \in K', n \geq N
\]

We conclude by Weierstrass M-test since \(\sum_{n}^{1} \frac{1}{\delta^n} < \infty \).
Proof of \[\lim_{x \to 0} f(x) = 1. \]

Equivocally \[\lim_{x \to 0} f\left(\frac{1}{x}\right) = 1. \]

We compute \[g(\zeta) = f\left(\frac{1}{\zeta}\right) = \prod_{n=1}^{\infty} E_n \left(\frac{a_n - b_n}{\sqrt{\zeta} - b_n} \right) = \prod_{n=1}^{\infty} E_n \left(\frac{2(a_n - b_n)}{1 - 2b_n} \right). \]

We show the product \((x)\) converges absolutely and locally uniformly in \(\Delta\left(0, \frac{1}{R}\right)\). The limit will be holomorphic at \(\zeta = 0\) hence continuous. Then

\[\lim_{\zeta \to 0} g(\zeta) = g(0) = 1 \Rightarrow \lim_{\frac{1}{x} \to 0} f\left(\frac{1}{x}\right) = 1. \]
To show convergence, let \(\Delta (0, \rho) \subseteq \Delta (0, \frac{1}{R}) \).

We have for \(z \in \Delta (0, \rho) \):

\[
\left| \frac{z (a_n - b_n)}{1 - 2b_n} \right| \leq \frac{\rho \delta_n}{1 - 2b_n} \leq \frac{\rho \delta_n}{1 - 21b_n} \leq \frac{\rho \delta_n}{1 - \rho R} \leq \frac{1}{2}.
\]

for \(n \geq N \) since \(\delta_n \to 0 \).

Then

\[
\left| 1 - E_n \left(\frac{2 (a_n - b_n)}{1 - 2b_n} \right) \right| \leq \left| \frac{2 (a_n - b_n)}{1 - 2b_n} \right| \to \frac{1}{2} \quad \Rightarrow
\]

\[\Rightarrow \text{Weierstrass M-test} \]

\[
\sum_{n=1}^{\infty} \left| 1 - E_n \left(\frac{2 (a_n - b_n)}{1 - 2b_n} \right) \right| \text{ converges absolutely and locally uniformly in } \Delta (0, \frac{1}{R}).
\]
Case (2) General case

WLOG \(o \in U \) \& \(a_n \neq 0 \)

Indeed we may take \(a \in U \), \(a \neq a_n \) \forall n. Let

\[U^{\text{new}} = \{ u - a, u \in U \}, \quad a_n^{\text{new}} = a_n - a, \]

\[\Rightarrow 0 \in U^{\text{new}}, \quad a_n^{\text{new}} \neq 0. \]

If \(f^{\text{new}} \) solves \(\text{Weierstrass} \) for \((U^{\text{new}}, \{a_n^{\text{new}}\}) \) let \(f(x) = f^{\text{new}}(x - a) \), solves \(\text{Weierstrass} \) for \((U, \{a_n\}) \).

Trick to reduce to Case 1

Define \(\tilde{U} = \{ \frac{1}{x}, x \in U \setminus \{0\} \} \). This is open by the open mapping theorem for \(U \setminus \{0\}, \ x \mapsto \frac{1}{x} \).
Let $\tilde{a}_n = \frac{1}{a_n} \in \tilde{\omega}$.

Claim $(\tilde{\omega}, \{\tilde{a}_n\})$ satisfies Step 1.

Let f be the solution to Weiersratch for $(\tilde{\omega}, \{\tilde{a}_n\})$.

Let \(f(1) = \tilde{f} \left(\frac{1}{2} \right) \) be holomorphic in $u \setminus \{o\}$.

Since $\lim_{2 \to 0} \tilde{f}(2) = 1 \Rightarrow \lim_{x \to 0} f(x) = 1$. Thus o is removable singularity and f extends to u. Its zeroes are only at a_n.

Proof of the claim

Since $0 \in \omega \Rightarrow \exists \varepsilon \text{ with } \Delta (0, \varepsilon) \subseteq \omega$.

$\Rightarrow \{ (z) \geq \frac{1}{\varepsilon} \} \subseteq \tilde{\omega}$.

Since $0 \in \omega \Rightarrow \{a_n\} \text{ do not have } 0 \text{ as limit point}$

$\Rightarrow \exists \varepsilon' \text{ with } |a_n| \geq \varepsilon' \Rightarrow |\tilde{a}_n| \leq \frac{1}{\varepsilon'}$.

Let \(R = \max \left(\frac{1}{2}, \frac{1}{\varepsilon'} \right) \Rightarrow |a_n| \leq R \& \{ 1 \leq R \} \subseteq \omega$.

Exercise

Follow the above proof for $u = e$. What function f does the proof produce?