Math 220B, Problem Set 1. Due Tuesday, January 16.

1. (Partition Products.) Euler studied the products

$$
Q(z)=\prod_{n=1}^{\infty}\left(1+q^{n} z\right)
$$

in connection with the theory of partitions and pentagonal numbers $\frac{n(3 n-1)}{2}$. These products thus appear in combinatorics as well as number theory.

Remark: For fixed values of z, we can study the power series expansion of Q viewed as function of q. Two cases are of special interest. For $z=1$, one easily sees that

$$
Q(1)=\prod_{n=1}^{\infty}\left(1+q^{n}\right)=\sum_{n=0}^{\infty} p(n) q^{n}
$$

where $p(n)$ is the number of partitions into distinct parts. When $z=-1$, Euler's pentagonal number theorem states that

$$
Q(-1)=\prod_{n=1}^{\infty}\left(1-q^{n}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{\frac{3 n^{2}-n}{2}}
$$

We will not need/prove these statements here. Instead, our point of view will be to regard Q as a function of z, for fixed $|q|<1$.
(i) Show that Q is an entire function in z.
(ii) Show that $Q(z)=(1+q z) Q(q z)$.
(iii) Write

$$
Q(z)=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

Derive the recursion

$$
a_{n}=\frac{q^{n}}{1-q^{n}} a_{n-1}
$$

and derive the identity

$$
Q(z)=1+\sum_{n=1}^{\infty} \frac{q^{n(n+1) / 2}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)} z^{n}
$$

(iv) Write out the strange looking identities proved in (iii) for $z=1$ and $z=-1$.

Remark: Digressing further, in number theory, there are several similar looking (but harder) identities. An example is the Rogers-Ramanujan identity

$$
1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-1}\right)\left(1-q^{5 n-4}\right)}
$$

The combinatorial consequence is that the number of partitions of n whose parts differ by at least 2 (whose generating series can be shown to be the expression on the left) equals the number of partitions of n whose parts are congruent to $\pm 1 \bmod 5$ (whose generating series is the expression on the right).
2. (Towards the Γ-function.) Write Log for the principal branch of the logarithm.
(i) Possibly using Taylor expansion, show that if $|w| \leq \frac{1}{2}$,

$$
|\log (1+w)-w| \leq 2|w|^{2} .
$$

(ii) Let $a, b \in \mathbb{C}$ have positive real parts. Show that

$$
\log (a b)=\log (a)+\log (b) .
$$

(iii) Let $r>0$. Show that there exists N such that for all $n \geq N, 1+\frac{z}{n}$ and $e^{-\frac{z}{n}}$ have positive real parts for all $z \in \Delta(0, r)$.
(iv) (Taking Logs and arguing that the series of Log's coverges absolutely and locally uniformly), show that the product

$$
G(z)=\prod_{n=1}^{\infty}\left(\left(1+\frac{z}{n}\right) e^{-\frac{z}{n}}\right)
$$

converges to an entire function.
3. (Blaschke products.) This is a modified version of Conway VII.5, Problem 4. The point of this question is to characterize certain holomorphic functions on the unit disc.

For $\alpha \in \Delta(0,1) \backslash\{0\}$, define

$$
B_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z} \cdot \frac{|\alpha|}{\alpha} .
$$

(i) Let $\alpha \in \Delta(0,1) \backslash\{0\}$ and $z \in \bar{\Delta}(0, r)$ for $r<1$. Prove that

$$
\left|\frac{\alpha+|\alpha| z}{(1-\bar{\alpha} z) \alpha}\right| \leq \frac{1+r}{1-r} .
$$

Show that on $\bar{\Delta}(0, r)$, we have

$$
\left|1-B_{\alpha}(z)\right| \leq \frac{1+r}{1-r}(1-|\alpha|) .
$$

(ii) Let $\alpha_{n} \in \Delta(0,1) \backslash\{0\}$ be a sequence of nonzero numbers in the unit disc. Assume that

$$
\sum_{n}\left(1-\left|\alpha_{n}\right|\right)<\infty .
$$

Using (i), show that the Blaschke product

$$
B(z)=\prod_{n=1}^{\infty} B_{\alpha_{n}}(z)
$$

converges to a holomorphic function $B: \Delta(0,1) \rightarrow \mathbb{C}$ with zeroes only at α_{n}.
Remark: Conversely, it can be shown using material from Math 220C (Jensen's formula) that the zeroes of a bounded holomorphic function B on $\Delta(0,1)$ satisfy

$$
\sum_{n}\left(1-\left|\alpha_{n}\right|\right)<\infty .
$$

Parts (iii) and (iv) concern finite Blaschke products, and can be solved using only the material from Math 220A. Part (iv) can be viewed as a generalization of Question 6 on the Final Exam for Math 220A.
(iii) Show that for $\alpha \in \Delta(0,1) \backslash\{0\}$,

$$
B_{\alpha}: \bar{\Delta}(0,1) \rightarrow \bar{\Delta}(0,1)
$$

in such a fashion that

$$
\left|B_{\alpha}(z)\right|=1 \text { for }|z|=1
$$

(iv) Conversely, let $f: \Delta(0,1) \rightarrow \Delta(0,1)$ be a holomorphic function extending continuously to $\bar{\Delta}(0,1)$ such that

$$
|f(z)|=1 \text { for }|z|=1
$$

Show that f can be expressed as a finite Blaschke product:

$$
f(z)=c z^{m} \prod_{n=1}^{N} B_{\alpha_{n}}(z)
$$

Hint: Assume first that $f(0) \neq 0$. Show that f can have only finitely many zeroes $\alpha_{1}, \ldots, \alpha_{n} \in \Delta(0,1) \backslash\{0\}$. Construct the suitable Blaschke product $B(z)$ and work with the function $g(z)=f(z) / B(z)$. What properties does g have?

Finally, we give a few quick applications to questions from past Qualifying Exams.
(v) (Qualifying Exam, Spring 2018.) Give an example of a holomorphic function $f: \Delta(0,1) \rightarrow \mathbb{C}$ with simple zeros only at $\alpha_{n}=1-\frac{1}{n^{2}}$, for $n \geq 1$.
(vi) (Qualifying Exam, Fall 2021.) If $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function with $|f(z)|=1$ for all $|z|=1$, show that $f(z)=c z^{n}$ for some $c \in \mathbb{C}, n \geq 0$.

Remark: You should solve this question as an application of (iv). There are other ways of solving the question without (iv).
(vii) (Qualifying Exam, Fall 2020.) Find all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$ with $|f(z)|=2$ for $|z|=1$ and $f^{(3)}(0)=-12$.
4. (Functions with the same zeros. This only requires material from Math 220A.)
(i) Show that if $f, g: U \rightarrow \mathbb{C}$ are two holomorphic functions in a simply connected region that have the same zeros with the same multiplicity, then there exists a holomorphic function $h: U \rightarrow \mathbb{C}$ such that $f=e^{h} g$.

Hint: Construct a logarithm for f / g using Lecture 6, Math 220A.
(ii) Show that the conclusion of (i) is false without the assumption that U is simply connected.

