
Math 220B, Problem Set 1. Due Tuesday, January 16.

1. (Partition Products.) Euler studied the products

Q(z) =

∞∏
n=1

(1 + qnz)

in connection with the theory of partitions and pentagonal numbers n(3n−1)
2 . These prod-

ucts thus appear in combinatorics as well as number theory.

Remark: For fixed values of z, we can study the power series expansion of Q viewed as

function of q. Two cases are of special interest. For z = 1, one easily sees that

Q(1) =
∞∏
n=1

(1 + qn) =

∞∑
n=0

p(n)qn

where p(n) is the number of partitions into distinct parts. When z = −1, Euler’s pentag-

onal number theorem states that

Q(−1) =
∞∏
n=1

(1− qn) =
∞∑

n=−∞
(−1)nq

3n2−n
2 .

We will not need/prove these statements here. Instead, our point of view will be to

regard Q as a function of z, for fixed |q| < 1.

(i) Show that Q is an entire function in z.

(ii) Show that Q(z) = (1 + qz)Q(qz).

(iii) Write

Q(z) =

∞∑
n=0

anz
n.

Derive the recursion

an =
qn

1− qn
an−1

and derive the identity

Q(z) = 1 +
∞∑
n=1

qn(n+1)/2

(1− q)(1− q2) . . . (1− qn)
zn.

(iv) Write out the strange looking identities proved in (iii) for z = 1 and z = −1.

Remark: Digressing further, in number theory, there are several similar looking (but

harder) identities. An example is the Rogers-Ramanujan identity

1 +
∞∑
n=1

qn
2

(1− q)(1− q2) . . . (1− qn)
=
∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
.

The combinatorial consequence is that the number of partitions of n whose parts differ by

at least 2 (whose generating series can be shown to be the expression on the left) equals

the number of partitions of n whose parts are congruent to ±1 mod 5 (whose generating

series is the expression on the right).
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2. (Towards the Γ-function.) Write Log for the principal branch of the logarithm.

(i) Possibly using Taylor expansion, show that if |w| ≤ 1
2 ,

|Log(1 + w)− w| ≤ 2|w|2.

(ii) Let a, b ∈ C have positive real parts. Show that

Log(ab) = Log(a) + Log(b).

(iii) Let r > 0. Show that there exists N such that for all n ≥ N , 1 + z
n and e−

z
n have

positive real parts for all z ∈ ∆(0, r).

(iv) (Taking Logs and arguing that the series of Log’s coverges absolutely and locally

uniformly), show that the product

G(z) =

∞∏
n=1

((
1 +

z

n

)
e−

z
n

)
converges to an entire function.

3. (Blaschke products.) This is a modified version of Conway VII.5, Problem 4. The

point of this question is to characterize certain holomorphic functions on the unit disc.

For α ∈ ∆(0, 1) \ {0}, define

Bα(z) =
α− z
1− ᾱz

· |α|
α
.

(i) Let α ∈ ∆(0, 1) \ {0} and z ∈ ∆(0, r) for r < 1. Prove that∣∣∣∣ α+ |α|z
(1− ᾱz)α

∣∣∣∣ ≤ 1 + r

1− r
.

Show that on ∆(0, r), we have

|1−Bα(z)| ≤ 1 + r

1− r
(1− |α|).

(ii) Let αn ∈ ∆(0, 1) \ {0} be a sequence of nonzero numbers in the unit disc. Assume

that ∑
n

(1− |αn|) <∞.

Using (i), show that the Blaschke product

B(z) =
∞∏
n=1

Bαn(z)

converges to a holomorphic function B : ∆(0, 1)→ C with zeroes only at αn.

Remark: Conversely, it can be shown using material from Math 220C (Jensen’s

formula) that the zeroes of a bounded holomorphic function B on ∆(0, 1) satisfy∑
n

(1− |αn|) <∞.
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Parts (iii) and (iv) concern finite Blaschke products, and can be solved using

only the material from Math 220A. Part (iv) can be viewed as a generalization of

Question 6 on the Final Exam for Math 220A.

(iii) Show that for α ∈ ∆(0, 1) \ {0},

Bα : ∆(0, 1)→ ∆(0, 1)

in such a fashion that

|Bα(z)| = 1 for |z| = 1.

(iv) Conversely, let f : ∆(0, 1)→ ∆(0, 1) be a holomorphic function extending contin-

uously to ∆(0, 1) such that

|f(z)| = 1 for |z| = 1.

Show that f can be expressed as a finite Blaschke product:

f(z) = czm
N∏
n=1

Bαn(z).

Hint: Assume first that f(0) 6= 0. Show that f can have only finitely many zeroes

α1, . . . , αn ∈ ∆(0, 1) \ {0}. Construct the suitable Blaschke product B(z) and work

with the function g(z) = f(z)/B(z). What properties does g have?

Finally, we give a few quick applications to questions from past Qualifying Exams.

(v) (Qualifying Exam, Spring 2018.) Give an example of a holomorphic function

f : ∆(0, 1)→ C with simple zeros only at αn = 1− 1
n2 , for n ≥ 1.

(vi) (Qualifying Exam, Fall 2021.) If f : C → C is an entire function with |f(z)| = 1

for all |z| = 1, show that f(z) = czn for some c ∈ C, n ≥ 0.

Remark: You should solve this question as an application of (iv). There are other

ways of solving the question without (iv).

(vii) (Qualifying Exam, Fall 2020.) Find all entire functions f : C→ C with |f(z)| = 2

for |z| = 1 and f (3)(0) = −12.

4. (Functions with the same zeros. This only requires material from Math 220A.)

(i) Show that if f, g : U → C are two holomorphic functions in a simply connected

region that have the same zeros with the same multiplicity, then there exists a

holomorphic function h : U → C such that f = ehg.

Hint: Construct a logarithm for f/g using Lecture 6, Math 220A.

(ii) Show that the conclusion of (i) is false without the assumption that U is simply

connected.


