Math 220, Problem Set 3.

- 1. (Qualifying Exam, Spring 2017.)
 - (i) Construct an entire function with simple zeroes only at $A = \left\{\sqrt{n} + \frac{1}{\sqrt{n}}, n = 1, 2, \ldots\right\}$ and no other zeroes. Please justify your answer.
- (ii) Write down a meromorphic function in \mathbb{C} only with simple poles at z = n and residues equal to \sqrt{n} for each $n = 1, 2, \ldots$ Please justify your answer.

2. Let f be an entire function and let \mathcal{F} denote the family of functions f(kz) for $k \in \mathbb{Z}_{>0}$ defined in the annulus $r_1 < |z| < r_2$ for $r_1, r_2 > 0$. Show that \mathcal{F} is normal iff f is constant.

3. (Qualifying Exam, Spring 2017. Also on Qualifying Exam, Spring 2020 and Qualifying Exam, Fall 2013 in slightly different formulations.)

Let \mathcal{F} be the family of holomorphic functions in $\Delta(0,1)$ with f(0) = 1 and Re f > 0. Show that \mathcal{F} is normal.

Hint: You may wish to remember the Cayley transform from Math 220A.

4. (*Vitali's theorem.*) Prove Vitali's theorem, Conway VII.2.4, page 154. The statement is as follows.

Let $\{f_n\}$ be a locally bounded sequence of holomorphic functions in $U \subset \mathbb{C}$, and let f be holomorphic in U. If

$$A = \{ z \in U : f_n(z) \to f(z) \}$$

has a limit point in U, then f_n converges locally uniformly to f in U.

5. (Normal families under composition.) Solve Conway VII.2.7, page 154.

Let $U, \Omega \subset \mathbb{C}$ be open connected. Let $g : \Omega \to \mathbb{C}$ be a holomorphic function which is bounded on bounded sets. Let \mathcal{F} be a normal family of holomorphic functions $f : U \to \Omega$. Show that the family $\{g \circ f : f \in \mathcal{F}\}$ is also normal.

6. (*Qualifying Exam, Spring 2012.*) Solve the following version of Conway VII.2.8, page 154. The statement is as follows.

Let \mathcal{F} be a family of holomorphic functions in $\Delta(0,1)$. Assume there exist $M_n > 0$ constants with

$$\limsup M_n^{\frac{1}{n}} \le 1$$

such that for all $f \in \mathcal{F}$,

$$\frac{f^{(n)}(0)|}{n!} \le M_n.$$

Show that ${\mathcal F}$ is normal. Show that the converse is also true.