Math 220, Problem Set 4.

1. (Qualifying Exam, Fall 2017.) Let \mathcal{F} be the family of holomorphic functions f : $\mathfrak{h}^{+} \rightarrow \mathbb{C}$ such that $f(i)=0$ and $|f(z)|<1$ for all $z \in \mathfrak{h}^{+}$. Find the maximum value of $|f(2 i)|$ for $f \in \mathcal{F}$.
2. (Generalized Schwarz Lemma.) Assume $f: \Delta \rightarrow \Delta$ is holomorphic with a zero of order n at the origin. Show that

$$
|f(z)| \leq|z|^{n} \quad \forall z \in \Delta, \quad \text { and } \quad\left|f^{(n)}(0)\right| \leq n!.
$$

Hint: This is very similar to the proof of Schwarz lemma given in class.
3. (Holomorphic maps between punctured discs. Qualifying Exam, Spring 2020.) Let $a, b \neq 0$ and $a, b \in \Delta(0,1)$. Consider the twice punctured discs

$$
D_{1}=\Delta(0,1) \backslash\{0, a\}, \quad D_{2}=\Delta(0,1) \backslash\{0, b\} .
$$

Find a necessary and sufficient condition for D_{1}, D_{2} to be biholomorphic, and determine all biholomorphic maps

$$
f: D_{1} \rightarrow D_{2}
$$

Hint: This is very similar to the proof given in class for the automorphisms of the punctured unit disc $\Delta \backslash\{0\}$.

Remark: When $a=b, a \neq 0$, your answer will imply that the automorphism group of $\Delta \backslash\{0, a\}$ has 2 elements, hence it is $\mathbb{Z} / 2 \mathbb{Z}$.
4. (Schwarz-Pick for the unit disc and a bit of hyperbolic geometry.) The pseudohyperbolic distance on the unit disc $\Delta=\Delta(0,1)$ is given by

$$
d(z, w)=\left|\frac{z-w}{1-\bar{z} w}\right|, \quad z, w \in \Delta .
$$

(i) Show, by direct calculation, that if f is an automorphism of Δ then

$$
d(z, w)=d(f(z), f(w)) .
$$

In other words, automorphisms of Δ preserve the pseudo-hyperbolic distance i.e. they are isometries.

Hint: You may wish to recall that f is a composition of a rotation with the fractional linear transformation ϕ_{a}. It thus suffices to check the above equality for f a rotation and for $f=\phi_{a}$ separately. The last case requires an explicit calculation.
(ii) Let $f: \Delta \rightarrow \Delta$ be holomorphic. Using (i) to reduce to a familiar case, show that

$$
d(f(z), f(w)) \leq d(z, w)
$$

Thus holomorphic maps contract the pseudo-hyperbolic distance.
Hint: Recentering (i.e. considering $\Phi \circ f \circ \Psi$ for suitable automorphisms Φ, Ψ of the disc) you may assume $f(w)=0$ and $w=0$. This case should be familiar.
(iii) Show that if there exist $z, w \in \Delta$ and $f: \Delta \rightarrow \Delta$ holomorphic with

$$
d(f(z), f(w))=d(z, w)
$$

then f is an automorphism of Δ. Consequently, by (i), the equality

$$
d(f(z), f(w))=d(z, w)
$$

holds for all $z, w \in \Delta$.
Remark: As a corollary, automorphisms of Δ are exactly the holomorphic maps that are isometries with respect to d.
(iv) Optional: show that d is indeed a distance. That is, show that

$$
d(z, s) \leq d(w, s)+d(z, w) .
$$

You may wish to reduce to the case $s=0$ using part (i).
Hint: When $s=0$, you may first rotate z to make it positive real. Using polar coordinates $z=r_{1}, w=r_{2} e^{i t}$ you need to establish a linear inequality in $\cos t$ which only needs to be checked at the endpoints $\cos t= \pm 1$ (why?)
(v) As an application to (ii), assume $f: \Delta \rightarrow \Delta$ satisfies $f\left(\frac{1}{2}\right)=\frac{1}{4}$. Show that

$$
\frac{1}{21} \leq\left|f\left(\frac{1}{3}\right)\right| \leq \frac{9}{19}
$$

Remark (only if you have seen some differential geometry): The hyperbolic distance is given by $2 \tanh ^{-1} d(z, w)$. It comes from the metric

$$
d s^{2}=\frac{4|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}
$$

on the unit disc Δ, whose Gaussian curvature equals -1 . The Schwarz-Pick lemma can be further generalized with this observation as the starting point, for holomorphic maps between domains/Riemann surfaces with appropriate curvature.
5. (Qualifying Exam, Spring 2021.) Let $f_{n}: \Delta \rightarrow \Delta$ be a family of automorphisms of Δ converging locally uniformly to a nonconstant function f. Show that f is an automorphism of Δ.

Hint: Problem 4 (i) (iii). You can also solve this as an application of Montel, but the solution is more difficult.
6. (Schwarz-Pick for the upper half plane.) On the upper half plane, define

$$
d(z, w)=\left|\frac{z-w}{z-\bar{w}}\right|, \quad z, w \in \mathfrak{h}^{+} .
$$

Formulate and briefly justify the analogues of Problem 4 (i) and (ii) for \mathfrak{h}^{+}.
Hint: You won't have to redo the proofs in Problem 4 - the shortcut is to check that the Cayley transform exchanges the two distances defined in Problem 4 and Problem 6.

