Math 220B - Winter 2024 - Final Exam

Name: \qquad

Student ID: \qquad

Instructions:

There are 7 questions which are worth 70 points.
You may not use any books, notes, internet. If you use a homework problem you will need to reprove it.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
6		10
7		70
Total		

Problem 1. [10 points.]

Construct a biholomorphism between the strip $S=\{z=x+i y: 0<x+y<\pi\}$ and the unit $\operatorname{disc} \Delta(0,1)$.

Problem 2. [10 points.]

Let $U \subset \mathbb{C}$ be an open connected set. Show that the following statements are equivalent:
(i) U is simply connected
(ii) for all holomorphic functions $f, g: U \rightarrow \mathbb{C}$ such that $f^{2}+g^{2}=1$, there exists a holomorphic function $h: U \rightarrow \mathbb{C}$ such that

$$
f=\cos h, \quad g=\sin h .
$$

Hint: You may wish to observe that $f^{2}+g^{2}=(f+i g)(f-i g)=1$.

Problem 3. [10 points; 3, 7.]
Let a_{1}, \ldots, a_{n} be n complex numbers with $\left|a_{k}\right|<1$ for all $1 \leq k \leq n$. Consider the product

$$
f(z)=\frac{z-a_{1}}{1-\bar{a}_{1} z} \cdots \frac{z-a_{n}}{1-\bar{a}_{n} z} .
$$

(i) Using results proven in class, briefly explain that $f: \Delta \rightarrow \Delta$ is holomorphic and $|f(z)|=1$ for all $|z|=1$.
(ii) Let $|\lambda|<1$. Show that there exist n complex numbers b_{1}, \ldots, b_{n} with $\left|b_{k}\right|<1$ for $1 \leq k \leq n$, and $|\mu|=1$ such that

$$
\frac{f(z)-\lambda}{1-\bar{\lambda} f(z)}=\mu \cdot \frac{z-b_{1}}{1-\bar{b}_{1} z} \cdots \frac{z-b_{n}}{1-\bar{b}_{n} z} .
$$

Problem 4. [10 points.]
Let $f: \Delta(0,1) \rightarrow \mathbb{C}$ be such that $\operatorname{Re} f(z)>0$ for all $z \in \Delta(0,1)$, and assume that $f(0)=1$. Show that for all $z \in \Delta(0,1)$ we have

$$
\frac{1-|z|}{1+|z|} \leq|f(z)| \leq \frac{1+|z|}{1-|z|} .
$$

Problem 5. [10 points; 3, 3, 4.]
Let $U \subset \mathbb{C}$ be a connected open set containing 0 . Let $f: U \rightarrow U$ be a holomorphic function such that $f(0)=0$.
(i) Let

$$
f_{n}=\underbrace{f \circ f \circ \ldots \circ f}_{n \text { times }}
$$

denote the iterates of f. Compute $f_{n}^{\prime}(0)$ in terms of $f^{\prime}(0)$.
(ii) Show that if $\left|f^{\prime}(0)\right|>1$ there exists no open subset $0 \in V \subset U$ such that the family

$$
\mathcal{F}=\left\{f_{n}: n \geq 1\right\} .
$$

is normal on V.
(iii) Show that if U is bounded, then $\left|f^{\prime}(0)\right| \leq 1$.

Problem 6. [10 points; 2, 4, 4.]
Let $f: \Delta \rightarrow Q$ be a biholomorphism between the unit disc and the square

$$
Q=\{z \in \mathbb{C}:-1<\operatorname{Re} z<1,-1<\operatorname{Im} z<1\},
$$

such that $f(0)=0$. Show that

$$
f(i z)=i f(z) .
$$

(i) Show that $g: \Delta \rightarrow Q, g(z)=i f(z)$ is also a biholomorphism between Δ and Q.
(ii) Show that there exists a rotation $R: \Delta \rightarrow \Delta$ such that

$$
g=f \circ R .
$$

(iii) Show that $R(z)=i z$ and conclude.

Problem 7. [10 points; 5, 5.]
(i) Construct compact (possibly disconnected) sets $K_{n} \subset \mathbb{C}, n \geq 1$, such that
(1) $\bigcup_{n=1}^{\infty} K_{n}=\mathbb{C} \backslash\{0\}$
(2) $K_{n} \subset K_{n+1}$
(3) $\mathbb{C} \backslash K_{n}$ is connected.
(ii) Show that there exist polynomials $p_{n}(z)$ such that
(1) $p_{n}(0)=1$
(2) $p_{n}(z) \rightarrow 0$ for all $z \in \mathbb{C} \backslash\{0\}$ (pointwise convergence).

Hint: $f(z)=1 / z$.

