Math 220 8 - Leoture 13

February 28, 2024

Last time

Riemann Mapping Theorem

21 = a simply connected => 21 is biholomorphic to s.

Exhosion to the boundary

Question Giren f: u -> 2 bito lemorphism, dess

it extend f: u - D bicontinuously?

Answer 10 yes if u bounded & du = simple closed

curve.

Caratheodory's theorem

151 We will not give the proof in this course.

Beyond the boundary

Question Can we extend beyond the boundary?

The easiest instance is provided by

Schwarz Reflection Principle Conway 1x. 1.

there are several versions but two stand out:

111 reflection across line segments (book)

[11] reflection a cross circular arcs (HWK5)

Applications

bi holomorphic mope between rectangles,

annul;

analytic continuation...

Reflection across segments

open $u \subseteq \sigma$ symmetric $2 \longrightarrow 2$. $\forall 2 \in u \Longrightarrow \overline{2} \in u$.

ut = ungt

u = u n 5-

u° = unR.

Define

$$F(x) = \begin{cases} f(x) & \text{if } x \in u^{+} \\ f(x) & \text{if } x \in u^{-} \\ \hline f(x) & \text{if } x \in u^{-} \end{cases}$$

Theorem The function F: U - 0

part of the boundary).

Remarks

11 Visualization

111/ The condition

 $f(u_{\circ}) \subseteq \mathbb{R}$

ensures we reflect across real axis on both sides.

More generally, we can reflect across. arbitrary lines

This can be deduced via rotations

[ac] Using the Cayley transform

c: \$ -- 5+

We can also reflect across arcs in the unit disc.

Proof of Schwarz

F continuous

F holomorphic mut

F holomorphic in u

F holomorphic at points of u.

Proof of 11 Zet 2. e U. => 2. = 2.

We show lim F(2) = lim F(2).

 $2 \rightarrow 2_{0}$ $2 \leftarrow U^{+}$ $2 \leftarrow U^{-}$

 $\lim_{n \to \infty} f(2) = \lim_{n \to \infty} f(\frac{\pi}{2})$ **⟨**⇒> 2 -> 20 2 - 2. 2 € u +

 $= f(\overline{2}_{\circ})$ f (2.) <⇒

which holds since 20 = 20 & f(20) = f(20)

Proof of [iii] W= show F holomorphic in 2.

Let c- eu. Let c+ = c- eut. Since f is he lemorphic

at c+ => 3 & (c+,r) & 21 . Taylor expand in & (c+,r):

 $f(2) = \sum_{k=0}^{\infty} a_k (2 - c^{+})^{\frac{1}{k}}, \text{ radius of convergence } 2r.$

 $Zef \ \ 2 \in \Delta (c^-,r) = \Delta (c^+,r)$. Then

 $F(2) = f(\overline{2}) = \sum_{k=0}^{\infty} a_k (\overline{2} - c^{\dagger})^k$

 $= \sum_{k=0}^{\infty} \frac{1}{\alpha_k} \left(2 - c^{\frac{1}{2}} \right)^{\frac{1}{2}}$

 $= \sum_{k=0}^{\infty} \overline{a_k} \left(\frac{1}{2} - c^{-} \right)^k, \quad \text{fadiue of convergence } 2r.$

=> F holomorphic in u.

We show F is holomorphic

2,+

in discs 2. E D = u for

or bitrary 2. E 2.

This will complete the proof.

= F holomorphic in A.

If R = ut or R = u this is olear (Goursaf / Couchy)

Assume R intersects the real exis. We assume that

We show 3 K >0 such that for all E>0,

$$\left| \int_{\partial R} F \, d2 \, \right| \leq K. \, \mathcal{E}. \implies \int_{\partial R} F \, d2 = 0.$$

F continuous m D = 1 F (2) / 3 M for all 2 e D. 127

Funiformly continuous in \$ = compact.

=> + E 78, /x-y/<8 => /F(x) -F y)/<E.

We may assume & < 8.

$$R^{\circ} = [\sim, \beta] \times [-\frac{s}{2}, \frac{s}{2}].$$

$$\int F d2 = 0 \quad \int F dz = 0 \quad by \quad Goursof.$$

$$\partial R^{\dagger}$$

Eshmaks:

$$\leq M. \frac{length S_2}{s} + M. \frac{length S_4}{s}$$

$$= 2MS < 2M E.$$

(2)
$$\int F dz + \int F dz$$
 $\leq \int \left| F \left(t - \frac{iS}{2} \right) - F \left(t + \frac{iS}{2} \right) \right| dt$
 $\leq \int \left| F \left(t - \frac{iS}{2} \right) - F \left(t + \frac{iS}{2} \right) \right| dt$

$$(i) + (2)$$

$$= \left| \int_{\partial R^{\circ}} F d^{2} \right| \leq \left| \int_{S_{2}} F d^{2} + \int_{S_{3}} F d^{2} \right| + \left| \int_{S_{4}} F d^{2} + \int_{S_{3}} F d^{2} \right|$$

$$\leq 2 M \varepsilon + \varepsilon \cdot diam (\Delta) = K \varepsilon.$$

This completes the proof.

Conformal maps of rectangles

Example

$$\frac{a'}{a} = \pm \frac{b'}{b} \quad \text{or} \quad aa' = \pm bb'.$$

Remark Condition 11 is automotic by Caratheodory.

while condition is nally necessary.

We first assume

$$f: S, \longrightarrow S,', o \longrightarrow o, a \longrightarrow a'.$$

$$f(o) = o, f(a) = a'$$

- · 54 is sent to a side containing f(0) = 0, hence sy
- . So is sent to a side containing f(a) = a', hence so
- · S3 is sent to the remaining side S3

The exknosion is still bijective. (as the picture shows).

and continue until we get two strips mapping to coch other & their boundaries are mapped to each other.

Now reflect the strips across their sides.

In the end, we obtain $f: C \longrightarrow C$ bijective & holomorphic.

We saw in Math 220A, PSets that $f(g) = \alpha 2 + \beta$.

Since $f(o) = 0 \implies \beta = 0 \implies f(2) = \alpha 2$. $f(a) = a' \implies \alpha a = a' \implies \frac{a'}{a} = \frac{b'}{b}$.

The remaining cases are similar.