$$
\frac{\text { Math } 2203-\text { Feature } 13}{\text { February } 28,2024}
$$

Last time

Riemann Mapping Theorem
$u \neq \sigma$ simply connected $\Rightarrow u$ is biholomorghic to Δ.

Extension to the boundary

Question Given $f: U \longrightarrow \Delta$ biholomorphism, does it $=x$ End $\bar{f}: \bar{u} \longrightarrow \bar{\Delta}$ bicontinuoualy?

Answer ID $y=0$ if u bounded \& $\partial U=$ simple dosed curve.

Caratheodony's theorem

LI F $W=$ wall not give the proof in this course.

Beyond the boundary

Question Gan we extend beyond the boundary?

The easiest instance is provided by

Schwartz Reflection Principle Conway $1 x .1$.

There are several versions but two stand out:

11 reflection across line segments (book)
([i] reflection across circular arcs (HWKS).

Applications
11 bi holomorphic maps between rectangles,
annuli
(11) analytic continuation...
$\underline{\text { Reflection across segments }}$
open $u \leq \sigma$ symmetric $z \longrightarrow \bar{z} . \quad \forall z \in u \quad \Rightarrow \bar{z} \in u$.

$$
\begin{aligned}
& u^{+}=u n \mathfrak{J}^{+} \\
& u^{-}=u n \mathfrak{J}^{-} \\
& u^{0}=u n \mathbb{R} .
\end{aligned}
$$

Given $f: u^{+} \longrightarrow \sigma$
[1 holomorphic in u^{+}
(II) extends continuously to 4°.
["II such that the values $f\left(u^{\circ}\right) \subseteq \mathbb{R}$.

Define

$$
F(z)= \begin{cases}f(z) & \text { if } z \in u^{+} \\ f(z) & \text { if } z \in u^{0} \\ \overline{f(\bar{z})} & \text { if } z \in u^{-}\end{cases}
$$

Theorm $T h=$ funation $F: U \rightarrow C$
is a holomorphic extension of f cbeyond u° which is
part of the boundary).

Pemarks

II Vismalizatron

(1) The condition

$$
f\left(u_{0}\right) \subseteq \mathbb{R}
$$

ensures we reflect across real axis on both sides.

More generally, we can reflect across. arbitrary lines

This can be deduced via rotators
(116) Using the Caylyy transform

$$
c: \Delta \quad \jmath^{+}
$$

We can also reflect across ares in the cisit disc.
(HWK 5).

c^{-9}

Proof of Schwarz

II E continuous
[i] F holomorphic in u^{+}
(III F holomorphic in u^{-}
IN F holomorphic at points of u° :

Proof of IC $z_{0}+z_{0} \in u_{0} \Rightarrow z_{0}=\bar{z}_{0}$

$$
\begin{gathered}
\text { We show } \lim _{z \rightarrow z_{0}} F(z)=\lim _{z \rightarrow z_{0}} F(z) . \\
z \in u^{+} \\
z \in u^{-}
\end{gathered}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \lim _{\substack{z \rightarrow z_{0} \\
z \in u^{+}}} f(2)=\lim _{\substack{z \rightarrow 2_{0} \\
z \in u^{-}}} \overline{f(\bar{z})} \\
& \Leftrightarrow \quad f\left(z_{0}\right) \quad=\overline{f\left(\bar{z}_{0}\right)}
\end{aligned}
$$

which holds since $z_{0}=\overline{z_{0}}$ \& $f\left(z_{0}\right)=\overline{f\left(z_{0}\right)}$

Proof of

$$
Z_{c} f c^{-} \in u^{-} z_{=}+c^{+}=\overline{c^{-}} \in u^{+} \text {. Since } f \text { is holomorphic }
$$

$$
\text { at } c^{+} \Rightarrow \exists \Delta\left(c_{t}^{+}, r\right) \leq u^{t} \text {. Taylor expand in } \Delta\left(c_{t}^{t} r\right) \text { : }
$$

$f(z)=\sum_{k=0}^{\infty} a_{k}\left(z-c^{t}\right)^{k}$, radius of convergence $\geq r$.

$$
\begin{aligned}
Z_{2} t \quad z & \in \Delta\left(c_{0}^{-}\right)=\overline{\Delta\left(c^{*}, r\right)} . \text { Then } \\
F(z) & =\overline{f(\bar{z})}=\overline{\sum_{k=0}^{\infty} a_{k}\left(\overline{z^{-}}-c^{+}\right)^{k}} \\
& =\sum_{k=0}^{\infty} \overline{a_{k}}\left(z^{2}-\overline{c^{*}}\right)^{k} \\
& =\sum_{k=0}^{\infty} \overline{a_{k}}\left(z-c^{-}\right)^{k}, \text { radius of convergence } \geq r .
\end{aligned}
$$

$\Rightarrow F$ holomorphic in u :-

Proof of IV

in discs ${ }^{2} \in \triangle \subseteq u$ for
arbitrary $z_{0} \in U_{0}$.

This will complete the proof.

$\Rightarrow \quad F$ holomorphic in Δ.
$17 \bar{R} \subseteq u^{+}$or $\bar{R} \subseteq u^{-}$this is oloar (Goursat/Cauchy).
Assume \bar{R} intersects the real axis. We assume that

the intersection is not a side of R. Otherwise. the argument is simpler.

We show $\exists k>0$ such that for all $\varepsilon>0$,

$$
/ \int_{\partial R} F d z / \leq K \cdot \varepsilon \cdot \Longrightarrow \int_{\partial R} F d z=0
$$

L F continuous in $\bar{\Delta} \Rightarrow \mid F(z) / \leq M$ for all $z \in \bar{\Delta}$.
(1) F uniformly continuous in $\bar{\Delta}=$ compact.

$$
\Rightarrow \quad \forall \varepsilon \quad \exists \delta, \quad|x-y| \leq \delta \quad \Rightarrow \quad|F(x)-F(y)|<\varepsilon .
$$

W_{e} may assume $\delta<\varepsilon$.

Il Construct R^{+}, R^{-}, R^{0} where $R^{+} \leqslant u^{+}, R^{-} s u^{-}$

$$
R^{0}=[\alpha, \beta] \times\left[-\frac{\delta}{2}, \frac{\delta}{2}\right] .
$$

(In) $\int_{\partial R^{+}} F d z=0, \quad \int_{\partial R^{-}} F d z=0$ by Goursat.

$$
\Rightarrow \int_{\partial R} F d z=\int_{\partial R^{\circ}} F d z .
$$

Estimates:

$$
s i d e s \text { of } R^{0}: s_{1}, s_{2}, s_{s}, s_{4}
$$

$$
\text { (1) } \begin{aligned}
\int_{s_{2}} F d z+\int_{s_{4}} F d z / & \leq / \int_{s_{2}} F d z /+/ \int_{s_{4}} F d z / \\
& \leq m \cdot \underbrace{\operatorname{length} s_{2}}_{\delta}+m \cdot \underbrace{\log t h s_{4}}_{\delta} \\
& =2 m \delta<2 m \varepsilon .
\end{aligned}
$$

\& parametize
(2)

$$
\begin{array}{r}
\int_{s_{1}} F d z+\int_{s_{3}} F d z / \leq \int_{\alpha}^{\beta} / F\left(t-\frac{i \delta}{2}\right)-F\left(t+\frac{i \delta}{2}\right), \\
<\varepsilon \text { cuniform } \\
\leq \varepsilon \cdot(\beta-\alpha) \leq \varepsilon \cdot \operatorname{diam}(\Delta)
\end{array}
$$

$(1)+(2)$

$$
\Rightarrow / \int_{\partial R^{0}} F d z^{2} \leq / \int_{s_{1}} F d z+\int_{s_{y}} F d z /+/ \int_{s_{1}} F d z+\int_{s_{3}} F d z /
$$

$$
\leq 2 m \varepsilon+\varepsilon \operatorname{diam}(\Delta)=K \varepsilon .
$$

This completeo the proof.
2. \qquad
Application
Conformal maps of rectangles
$6 ;$

Example

$$
\exists \text { biholomorphism } f: R_{0,6} \longrightarrow R_{a, 6 \text {, }} \text { such that }
$$

$\sqrt{1} f$ extends continuously \& bijeetivoly to the boundary.
(40) Sending corners to corners \& edges to edges.

IF AND ONLY IF

$$
\frac{a^{\prime}}{a}= \pm \frac{b^{\prime}}{b} \text { or } a a^{\prime}= \pm b b \text {. }
$$

Remark Condition \sqrt{l} is automatic by Caratheodory. while condition III is rally necessary.

Wo foot assume

$$
f: s_{0} \longrightarrow s_{1}^{\prime}, \quad 0 \longrightarrow 0, a \longrightarrow a^{\prime}
$$

$$
f(0)=0, \quad f(a)=a^{\prime}
$$

- s_{4} is sent to a side containing $f(0)=0$, hance s_{4}^{\prime}
- s_{2} is sent to a side containing $f(a)=a^{\prime}$, hence s_{2}^{\prime}
- s_{3} is cont to the remaining side s_{3}^{\prime}

We use Schwartz Reflection along S_{1} \& S_{1}.'

Note

$$
S_{4}^{r} \longrightarrow S_{4}^{\prime r}, S_{2}^{r} \longrightarrow S_{2}^{\prime r}, S_{3}^{r} \longrightarrow S_{3}^{\prime r}
$$

from the explict formula for the extension The extension is stull bijeative. (as the picture shows).

Reflect the new rectangle one more time, across J_{3}^{r} \& $J_{3}^{\prime \text {.r }}$.

and continue until we get two strips mapping to each other $\&$ their boundaries are mapped to each other.

Now reflect the strips across their sides.

In the end, we obtain $f: \subset \longrightarrow \sigma$ bijective \& holomorphic. We saw in Math 220A, PS et 5 that $f(z)=\alpha z+\beta$.

Since $f(0)=0 \Rightarrow \beta=0 \Rightarrow f(z)=\alpha z$.

$$
\begin{aligned}
& f(a)=a^{\prime} \Rightarrow \alpha a=a^{\prime} \\
& f(b)=b^{\prime} \Rightarrow \alpha b=b^{\prime} \quad \Rightarrow \frac{a^{\prime}}{a}=\frac{b^{\prime}}{b} .
\end{aligned}
$$

The remaining cases are similar.

