Math 220 8 - Leoture 17

March 13, 2024

## Puthing the pieces together Conway VIII. 2.

We lie up loose ends from Moth 220A & B

Common theme : simply connected regions.

Topology Analysis

Review of Lecture 11, 220A 21 C @ connected

11 7 is simply connected iff to alosed path in u

y piece wise C'loop in u, y ~ 0 (null homologous) iff

 $\forall a \notin U$ ,  $n(\gamma, a) = \frac{1}{2\pi i} \int \frac{dx}{x-a} = 0$ 

Indeed, a du.





Recall  $u, v \subseteq C$  are homeomorphic if  $f : u \rightarrow v$   $g : V \longrightarrow u$  continuous & inverse to each other.

Proof

This is the statement & ~ 0 => 8 = 0.

Assume a vu = A VB

A, B & \$\overline{\Psi} \ \text{closed & disjoint. Assume & 6 B. =>

=> A is closed in \$\tilde{\varphi} \tau => A closed in \$\tilde{\varphi} => A compact.

Zet V = U U A = ê \ B. => V open subset of c., A = V.

In Lecture 15, we saw Cauchy's formula for compact sets.

A = compact, A & V. => 3 polygons Va... Vn in VIA = U.

 $f(a) = \frac{1}{2\pi i} \sum_{s=1}^{n} \int \frac{f(s)}{2-a} ds \quad \forall \quad a \in A, \quad f \quad holom. \quad in \quad \forall.$ 

Take  $f \equiv 1$  then  $1 = \sum_{j=1}^{n} \frac{1}{2\pi i} \int \frac{d^2}{2-a} = \sum_{j=1}^{n} n(\overline{y}, a)$ 

However, by assumption n (tj, a) = 0 +j since t. is a

poiece wise c' loop in 2 and a & A => a & u. This contradicts

 $\sum_{j=1}^{n} n(\tau_j, a) = 1.$ 

[ = ] This is dittle Runge O.

However pn admits a primitive pn = gn so by

decline 5, Math 220 A 
$$\int p_n d2 = \int g_n d2 = 0$$

$$\Rightarrow \int_{\gamma} f dy = 0.$$

Consider 
$$\frac{f}{f}$$
 holomorphic in  $u$ . Then  $\frac{f}{f} = g$  for some  $g$  by  $f$ 

$$=> (z^{-g}f)' = 0 \Rightarrow f = ce^g = e^{\widetilde{g}}, \ \widetilde{g} = g + leg c., \ c \neq 0.$$

$$9 \implies 1/1 \quad \text{White } f = c^g \text{ and let } h = e^{g/2}$$

The state of u f u f a, Riemann Mapping shows u and & are

biholomorphic hence home omorphic.

If  $u = \sigma$  then  $2 \longrightarrow \frac{2}{\sqrt{1+|z|^2}}$  is a homeomorphism

between a and s.

12) => 101 Let f, g be the how inverse homeomorphisms u fg.

Let y be a loop in u => for ~0 => gofor ~ g(o). => y~ g(o)

=> u simply connected.

Remark The implications a => b, c, d, e ... are very useful.

For the converse, c => a is important.

Remark

Topology: a, c,

Analysis: d, E, f, g, ...

| We can add e     | one more st             | falement   | to the li   | ist.        |             |
|------------------|-------------------------|------------|-------------|-------------|-------------|
|                  |                         |            |             |             |             |
| Proposition      | 2. 6.6                  |            |             |             |             |
| roposition       | <i>u</i> <u> </u>       | open       |             |             |             |
|                  |                         |            |             |             |             |
| <u>a</u> 21      | simply co               | nneckd     |             |             |             |
|                  | , ,                     |            |             | class C2    |             |
| 777              | ry harmon               | - 6        | []          | R admits    | - a         |
| 787              | d                       | e janonisi |             |             |             |
|                  |                         |            |             |             |             |
| harmonic co      | njugate v               | (i.e. u    | +iv hole    | morphic in  | 24).        |
|                  |                         |            |             |             |             |
| Proof 151 =      | 2/                      | 1 21 is    | 1-2-11      |             |             |
| 100f 161 =       | ve s                    |            | 2 / 94 / /  |             | <b>'</b>    |
|                  |                         |            |             |             |             |
| This imphes      | u simply                | conneckd   | by the      | theorem. a  | bove.       |
|                  |                         |            |             |             |             |
|                  |                         |            |             |             |             |
| Zet f:u-         | of be no                | where 2    | ero. We s   | show Jg:2   | u - c       |
|                  |                         |            |             |             |             |
| holomorphic      | anth f=                 | -9 41      | 4 0         | 121 7       | . م         |
| 70,0,0,0,0,0     | <b>3</b> 1, 11, 12      | αετ        | h = tog     | fl. Inen    | his         |
|                  |                         |            |             |             |             |
| harmonic.        | ( This can              | be checked | directly a  | ising Cauch | 4 - Riemonn |
|                  |                         |            | ď           | d           |             |
|                  | . 8                     | )          |             |             |             |
| equations ~      | A) C XALOISE            |            |             |             |             |
| ر ب              | 1 11 0                  |            |             | p p         |             |
| det 2            | r be the A              | armonic ce | njugak o    | of h.       |             |
|                  |                         |            |             |             |             |
| => g = h + iv is | holomorphic             | & /e 9/=   | /e h+iv/= 4 | = =   f/ => |             |
|                  |                         |            | , ,         |             |             |
|                  |                         |            |             |             |             |
| => /f = -3/==1   | => / e =                | constant   | by the of   | sen major   | ing theorem |
|                  |                         |            |             |             |             |
| Wrik fr = c      | $\Rightarrow f = c^{g}$ | as claim   | ed.         |             |             |

[a] => 16 Zet u harmonic. Zet F = ux - i 21y.

Claim F holomorphic

Indeed, Fis of class [ & satisfies CR equations.

$$(u_x)_x = (-u_y)_y \iff u_{xx} + u_{yy} = 0 + rue$$

$$(u_x)_y = -(-u_y)_x \iff u_{xy} = u_{yx}.$$
 frue

=> F holomorphic by Math 220, Lecture 2.

Since & is simply connected, Fadmite a primitive

=> F = f' for f holomorphic, f = a + iB.

f' = x + iBx = F = ux - iuz

=> 0( x = 21 x

=  $\alpha = \alpha + C$ .

 $= > \beta_{\times} = -u_{y} = -\alpha_{y} = > \alpha_{y} = u_{y}.$ 

Cauchy - Riemann

Replacing f by f-c, we obtain u = Ref & B = Imf is the

conjugate of u.

## Summary of Math 220 A - B



## Math 220B Final Exam Review

To review, we list below the *Main Topics* covered in this class (this is not a comprehensive list):

- (1) Products of holomorphic functions. Convergence, zeroes, logarithmic derivatives.
- (2) Weierstraß elementary factors. Weierstraß factorization. Weierstraß problem.
- (3) Mittag-Leffler problem in  $\mathbb{C}$ . Examples.
- (4) Factorization of the sine function. The Gamma function.
- (5) Normal families. Montel's theorem.
- (6) Schwarz's lemma. Automorphisms of the disc. Schwarz-Pick.
- (7) Riemann Mapping Theorem.
- (8) Schwarz Reflection Principle.
- (9) Runge's Theorem. Polynomial and rational approximation. Simple connectivity.

Final Exam

Monday, March 18, 11:30 - 2:30

Office Hour

Friday, March 15, 1-2:30

Final from 2021 & Solutions online

Additional Practice Problems