$$
\frac{\text { Math } 220 \text { B }- \text { Zeoture } 17}{\text { Marah 13, } 2024}
$$

$$
\text { Puthing the pieces together Conwoy vill. } 2 \text {. }
$$

Wr tie up loove endo fom Math 220A \& B

Gommon theme: simply conneated regiono.

$$
\text { Topology } \longleftrightarrow \text { Analyois }
$$

$R=v i e w$ of $z e o t u r e ~ 11,220 A \quad U \subseteq \mathbb{C}$ connected

I U is simply conneoted iff $\forall \gamma$ olooed path in U

(14) γ piceewise C^{\prime} loop in $U, \gamma \approx 0$ (null homologous) iff

$$
\forall a \notin u, n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d t}{t^{2}-a}=0
$$

Recall

$$
\gamma \stackrel{u}{\sim} 0 \Rightarrow \gamma \stackrel{u}{\approx} 0
$$

Indeed, a \& u.
$n(\gamma, a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{\partial^{2}-a}=0$ by the homotopy form
of Cauchy applied to the holomorphic function

$$
z \longrightarrow \frac{1}{z-a} \text { in } u
$$

However the converse is faloe $U=\mathbb{C} \backslash\{a, b\}$

Theorem Jot $u \subseteq \sigma$ open, connected. TFAE
a U simply connected

Tb] $\forall \gamma$ piecewise c^{\prime} loop, $\gamma \approx 0$
\Downarrow
$\frac{\sqrt{c}}{11}$
Id polynomial approximation $* f$ holomorphic in u
$\|$ canbeappzoximated $p_{n} \rightrightarrows f$ in. u
Ie l $\forall \gamma$ piecewise c^{\prime} loop, f holomorphic in u $\| \quad \int_{\gamma} f d z=0$.
If primitives: any holomorphic $f: u \rightarrow e$ admits a \downarrow primitive.

Vg logarithms: $\forall f: U \longrightarrow \sigma$ holomorphic, nowhere zero $\sqrt{\|}$ can be written $f=\tau^{g}, g: u \rightarrow 0$ holomopibic.

Th] roots: $\forall f: U \longrightarrow \sigma$ holomorphic, nowhere zero $\|$ can be written $f=h^{2}, r: u \rightarrow \infty$ holomorphic. II U is tom=omorphic to $\Delta(0, J)$.

Recall $u, v \subseteq \mathbb{\sigma}$ are homeomorphic if $\nexists f: u \longrightarrow v$
$g: V \rightarrow u$ continuous \＆inverse to each other．

Proof
［a］\Rightarrow 直 This is the statement $\gamma \approx 0 \Rightarrow \gamma \approx 0$ ．
that we saw previously．

直 \Rightarrow 回 Arums 宁，$u=A \cup B$
$A, B \neq \Phi$ closed \＆digoint．Assume $\infty \in B \Rightarrow$
$\Rightarrow A$ is closed in $\begin{aligned} & \hat{\sigma} 1 u \\ & \text { closed in } \bar{\sigma}\end{aligned} \Rightarrow A$ closed in $\hat{\sigma} \Rightarrow A$ compact．

In Zeoture 15, we saw Cauchy's formula for compact sets.

$$
\begin{aligned}
& A=\text { compact, } A \subseteq V . \Rightarrow J \text { polygons } F_{1} \ldots \sigma_{n} \text { in } V i A=U . \\
& f(a)=\frac{1}{2 \pi i} \sum_{j=1}^{n} \int_{\Gamma_{j}} \frac{f(2)}{z^{2}-a} d z \quad \forall a \in \Delta, f \text { holom. in } V . \\
& \text { Take } f \equiv 1 \text { then } 1=\sum_{j=1}^{n} \frac{1}{2 \pi i} \int_{\Gamma_{j}} \frac{d s}{2-a}=\sum_{j=1}^{n} \underbrace{n\left(F_{j}, a\right) .}_{0}
\end{aligned}
$$

However, by assumption $n\left(\sigma_{j}, a\right)=0 \forall j$ since F_{j} is a piecewise c^{\prime} loop in u and $a \in A \Rightarrow a \notin U$. This contradicts

$$
\sum_{j=1}^{n} n\left(\sigma_{j}, a\right)=1
$$

$\sqrt{C} \Rightarrow$ Id $t h i s$ is Title Runge 0 .

Id \Rightarrow Ir If $p_{n} \xrightarrow{\text { lin. }} f$ in u then $\int_{\gamma} p_{n} d z \rightarrow \int_{\sigma} f d z$.
However p_{n} admits a primitive $p_{n}=q_{n}^{\prime}$ so by
Lecture 5 , Math 220A $\int_{\gamma} p_{n} d z=\int_{\gamma} 2_{n}^{\prime} d z=0$

$$
\Rightarrow \int_{\gamma} f d z=0 .
$$

旦 \Rightarrow ff this was done in Jecture 4, Math 220 A

If $\Rightarrow g$ Math 220 A . Homework y. Recall the argument.
Consider $\frac{f^{\prime}}{f}$ holomorphic in u. Than $\frac{f^{\prime}}{f}=g^{\prime}$ for someg by th

$$
\Rightarrow\left(e^{-g} f\right)^{\prime}=0 \Rightarrow f=c e^{g}=e^{\tilde{g}}, \tilde{\jmath}=g+\log c ., c \neq 0 .
$$

$$
g \Rightarrow \text { 但 Write } f=e^{g} \text { and lot } h=e^{g / 2} \text {. }
$$

$\underline{T h} \Rightarrow l / 1 f u \neq \sigma$, Riemann Mapping shows u and Δ are
biholomorphic hence home omorphic.
If $u=\sigma$ then $z \rightarrow \frac{2}{\sqrt{1+1+1^{2}}}$ is a homeomorphism
between σ and Δ.
$\overline{I z} \Rightarrow$ Ia l Jet fig be the two inverse homeomorphisms $u \underset{{ }_{g}}{\frac{f}{m}} \Delta$

$$
L_{0}+\gamma \text { be a lop in } u \Rightarrow f \cdot \gamma \sim \sim \sim \Rightarrow g \circ f \cdot \gamma \sim g(0) . \Rightarrow \gamma \sim(0)
$$

\Rightarrow u simply connected.

Remark The implications $a \Rightarrow b, c, d, e \ldots$ are very useful.
For the converse, $c \Rightarrow a$ is important.

Remark

Topology: $a, c, i \ldots$
Analysis: $\quad d, r, f, g, \cdots$

We can add one more statement to the list.

Proposition $u \subseteq \mathbb{C}$ open
(a) 4 simply connected
(6) every harmonic function $u: U^{\text {class }} c^{2}$ admits a
harmonic conjugate it (ie. utiv holomorphic in u).
Proof b \Rightarrow (a) We show u is a logarithm domain.
This implies u simply connected by the theorem. above.

Let $f: u \rightarrow c$ be now here zero. We show $\exists g: u \rightarrow c$
holomorphic with $f=e^{9}$. $\mathscr{L}_{\text {t }} t \quad h=\log (f \mid$. Then h is
harmonic. (this can be checked directly using Cauchy - Riemann
equations \leadsto Exorcise)
Let v be the harmonic conjugate of h.
$\Rightarrow g=h+i v$ is holomorphic \& $\left|e^{q}\right|=\left|e^{h+i v} /=e^{z}=|f| \Rightarrow\right.$
$\Rightarrow \mid f e^{-g} \%=1 \Rightarrow f e^{-v}=$ constant by the open mapping theorem
Write $f e^{-g}=e^{c} \Rightarrow f=e^{g-c}$ as claimed.
$\underline{a} \Rightarrow \sqrt{b}$ Let u harmonic. $Z=f \quad F=u_{x}-: u_{y}$.

Claim F holomorphic
Indeed, F is of class C^{\prime}. \& satisfies $C R$ equations.

$$
\begin{aligned}
& \left(u_{x}\right)_{x}=\left(-u_{y}\right)_{y} \Leftrightarrow u_{x x}+u_{y y}=0 \text { true } \\
& \left(u_{x}\right)_{y}=-\left(-u_{y}\right)_{x} \Leftrightarrow u_{x y}=u_{y x} \text {. flue }
\end{aligned}
$$

$\Rightarrow F$ holomorphic by Math 220, Lecture 2 .

Since G is simply connected. F admits a primitive
$\Rightarrow F=f^{\prime}$ for f holomorphic, $f=\alpha+i \beta$.

$$
\begin{aligned}
f^{\prime}= & \alpha_{x}+i \beta_{x}=F=u_{x}-i u_{y} \\
& \Rightarrow \alpha_{x}=u_{x} \\
& \Rightarrow \beta_{x}=-u_{y}=-\alpha_{y} \Rightarrow \alpha=u+c .
\end{aligned} \quad \underset{\text { Cauchy_ Riemann }}{ } \quad \Rightarrow \alpha_{J}=u_{y} .
$$

$R_{\text {placing }} f$ by $f-c$, we obtain $u=R_{e} f$ \& $\beta=\operatorname{lm} f$ is the conjugate of u.

Summary of Math 220A-B

Math 220B Final Exam Review

To review, we list below the Main Topics covered in this class (this is not a comprehensive list):
(1) Products of holomorphic functions. Convergence, zeroes, logarithmic derivatives.
(2) Weierstraß elementary factors. Weierstraß factorization. Weierstraß problem.
(3) Mittag-Leffler problem in \mathbb{C}. Examples.
(4) Factorization of the sine function. The Gamma function.
(5) Normal families. Montel's theorem.
(6) Schwarz's lemma. Automorphisms of the disc. Schwarz-Pick.
(7) Riemann Mapping Theorem.
(8) Schwarz Reflection Principle.
(9) Runge's Theorem. Polynomial and rational approximation. Simple connectivity.
Final Exam
Monday, March 18, II:30-2:30

Office Hour
Friday, March 15, 1-2:30

Final from 2021 \& Solutions on lune
Additional Practice Problems

