M ath 2208 - Lecture 2

January ¹⁰ , ²⁰²⁴

1. Infinite Products of Holomorphic Functions

Recall \sum_{k} /and converges \iff $\overline{U}(1+a_{k})$ converges absolutely.
(+)

 ζ_{cf} f_{π} : $u \rightarrow c$ holomorphic., $u \in \mathbb{C}$

Assumption $\sum_{k=1}^{\infty}$ 1 f_k / converges ℓ ocally uniformly

Terminology = fx converges absolutely locally uniformly.

Define (*) $F(2) = 1/2$ $(1 + f_{k}(2))$

 $(*)$ converges absolutely for each fixed $2 \in U$
 $\frac{2}{3}$ we can rearrange. Remark

In practice, noted of Assumption we may shook Remark

 $\sum_{n=1}^{m}$ sup $|f_n| < \infty$ \forall $R \in \mathcal{U}$ compact
 $\sum_{n=1}^{m}$ R $\sum_{n=1}^{m}$ normal convergence."

Gonway VII 5.9. Proposition Assume $\sum_i f_k /$ converges locally uniformly.

11 the partial products of (*) converge locally

uniformly, to F

[1] F is Lolomorphic

 $\frac{1}{100}$ F (2) = 0 \iff J k w th 1 + fx (20) = 0

furthermore,

ord $(F, z_0) = \sum_{k=1}^{k} ord (1 + f_k, z_0).$

 $\frac{2}{k-1}$ ($1-\frac{2}{k^2}$) defines an entre function Example

with genes only at the integers. & nowhere olse.

Indeed, apply the Proposition to f_k (2) = $\frac{a^2}{k^2}$.

Proof Recall from last time

Important inequality: 3p < 1 such that

 $129(1+23) \leq 3/12$ if $12/2$

Proof of $\sqrt{2}$ \vec{d} \vec{c} + \vec{K} \in \mathcal{U} compact. Note that

 \sum/f_n / converges uniformly on $K \Rightarrow f_n \Rightarrow o$ on K

 \Rightarrow $\forall p$ \exists N with $|f_n| < p$ \forall $n \ge N$, on K.

=> by important inequality

 $\left| \frac{1}{d} \log (1 + \int_{R} (2)) \right| \leq \frac{3}{2}$ $\left| \int_{R} (2) \right|$ $\int_{R} - 2 \in K, \quad R \geq N.$

Since $\sum_{k=\omega}^{n} |f_{k}|$ converges uniformly by assumption,

 $20nk$ $S_n = \sum_{k=N}^{n} \frac{\lambda_{eg}}{s} (1 + f_k(x)) \Rightarrow S.$

Note that C_n is continuous since 20g (1+ w) is continuous

 $for 1 w/ < p.$

Since $G_n \implies G$, by the claim al bolow

 $rac{c^{G_n}}{\kappa}$ => $rac{n}{\kappa}$ (1+ f_k (2) = c^C .

 \Rightarrow π (1 + f_k(2) \Rightarrow e^{c} (1 + f, (2)) ... (1 + f_{w-1} (2). (+)

1 Uniform convergence a fler multiplication uses claim 161 below)

 $Thus$ $F = e^{c} (1+f) ... (1+f_{N-1})$ in K. & the convergence is

 $aniform, m R, complexing the proof.$

 $\sqrt{11}$ F holomorphic by I (local uniform convergence)

& Weieratas Convergence theorem.

 \sqrt{III} Recall form tast time that

 $F(2,)=0 \iff J \not k$ with $1+f_{k}(2,)=0$.

To prore the assertion about orders, consider (+)

 in $K = \Delta$, Δ reighb. of 2

Then, $F(z_0) = c^{G(z_0)} (1+f(z_0)) ... (1+f(z_0))$ => $\text{ord}(F, 2) = \sum_{\substack{x=1 \\ \vec{k}=1}}^{\infty} \text{ord}(1 + f_{\vec{k}}, 2)$ $=\sum_{k=1}^{\infty}$ or of (1+ f_k, $\frac{2}{5}$).

using that $i + f_k \neq 0$ for $k \geq N$ (because $|f_k| < p < 1$

 \sqrt{n} K.)

The following standard claims were used in the proof.

 $\frac{1}{k}$ $\frac{1}{k}$

 $\frac{1}{\sqrt{2}}$ /f $u_n = u$, $v_n = v$ (u_n, v_n continuous). Then

 $u_n v_n \Rightarrow uv$

Note u, v continuous (Math 140B) frence bounded on K

Proof $\frac{1}{12}$ Suffices to show sup $\frac{1}{12}$ o.

 $Compuk$ k
sup $|\epsilon^{u_n}-\epsilon^{u_n}|=sup_{k}\frac{|\epsilon^{u_k}|}{k}\cdot |\epsilon^{u_n-u_{n+1}}|$

 \leq Sup $\left| \frac{1}{2}a_{1}^{n} \right|$. Sup $\left| \frac{2^{n}-2i}{n-1} \right|$.

 $=\frac{M}{K}$. $\frac{2n-u}{l}/\frac{u}{K}$

By continuity, $3\delta>0$: $\sqrt{2^{w}-1/\kappa z}$ if $\sqrt{w/\kappa}\delta$. $w_{\frac{1}{2}}$?

Since $u_n \Rightarrow u$ => $\frac{1}{3}$ w with $|u_n - u| < \frac{1}{3}$ on K

 \Rightarrow / c $\frac{u_{n}-u}{-1}$ < 8

 $\frac{1}{\sqrt{1-\frac{1$ Indeed by triangle inequality $sup_{k}|2u_{n}v_{n}-u_{k}| \leq$ scip $|\frac{u_{n}-u_{k}}{u_{n}-u_{k}}|\frac{u_{k}-u_{k}}{u_{k}}| + \frac{u_{k}}{u_{k}}\frac{u_{k}-u_{k}}{u_{k}}|$ $+$ $\frac{1}{x}$ $\frac{1}{x$ $\frac{x^2}{x}$ $\frac{5up}{x}$ $\frac{1}{u_n}$ \rightarrow 0 since $\frac{sup}{K}|u_n - u| \rightarrow 0$ and $sup_{K}|v_n - v| \rightarrow 0$.

Logarithmic denvative

Taking derivatives of products is messy. It is easier to

take logarithmic denvatres

 κ holomorphic => $\frac{\kappa'}{\kappa}$ = loganthmic denvative

= Rolomorphic away from Zeroch)

Addition formula

 $f = fg$ => $\frac{f'}{f} = \frac{f'}{f} + \frac{g'}{g}$ $f' = f'g + fg' \implies \frac{f'}{f} = \frac{f'g + fg'}{fg} = \frac{f'}{f} + \frac{g'}{g}.$

 $\frac{10}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} = \frac{1}{s} \$

We prove the same for whoit products. Lot

 $\frac{1}{\sqrt{11}}$ $g_{\mathbf{k}}: u \longrightarrow a$ belomorphic, $f_{\mathbf{k}} = 1 + g_{\mathbf{k}}$. s, f .

 $\frac{1}{k}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ converges $\frac{1}{3}$ $\frac{1}{3}$

 $R = \frac{1}{1!}$ $\frac{1}{1!}$ $\frac{1}{1!}$. Away from 2010(2): Proposition $\frac{f_{h}}{f_{h}} = \sum_{k=1}^{\infty} \frac{f_{h}}{f_{k}}$ The RHS converges tocally uniformly on $u \mid Z$ orch). Proof Recall from (+) in the privious Proof that for $k = \overline{\triangle}$ \subseteq $u \setminus$ ζ cro(k), \triangle reighborhood of an arbitrary point \overline{m} us Zero (2), \overline{J} N $20 - 46$

 $F_n = \frac{1}{k} \times \frac{1}{k}$ $F = e^{\frac{1}{k}}$ on Δ

 $G = \sum_{k=N}^{n} \lambda_{og} (1 + g_k)$

Note $\kappa = f_1 ... f_{N-2}$ $\sum_{k=N}^{N} f_k = f_1 ... f_{N-2} e^C$ We need to show $\sum_{k=N}^{n} \frac{f_{k}}{f_{k}} = \frac{f_{k}'}{f_{k+1}} + \frac{f_{k-1}'}{f_{k-1}} + \frac{(\tau^{\epsilon})'}{\tau^{\epsilon}}$

We need to show $\sum_{k=N}^{n} \frac{f_{k}'}{f_{k}} = \frac{f_{k-1}'}{\tau^{\epsilon}}$ To see this, recall that by the important inequality & comparison kst: \sum $\{g_k\}$ converges unif on $\kappa = \sum_{k} \log (1 + g_k)$ converges (absolutely) uniformly. Fx Also Log $(1+g_k)$ is holomorphic $(1g_k/\langle\rho\rangle$ on $\kappa)$ By Weiershop convergence
 $\sum_{k=n}^{n} \frac{1}{k} = 0 \implies \sum_{k=n}^{n} (\frac{1}{k}e) = 0$
 $\sum_{k=n}^{n} \frac{f_{k}}{f_{k}} = 0$

Factorization of since (Euler , 1734/Conway VII.6)

)
|} "De Summis Serierum Reciprozarum

Theorem

Idea : Both sides have the same zeroes (with

 m ut k p \int icity)

HWK 1 , #4

 Z $HWKI, #4$
 $Zermma$ $Hf.g: c \rightarrow c$ entire have the same

zeros (w/ multiplicity) then $f = ge^{f_2}$ for some

 $\overline{\mathbf{z}}$

entire function h.

Proof of the sine factorization

(1) convergence:

Not that $\sum_{k=1}^{n} \left| \frac{2}{k^2} \right|$ converges locally uniformly \Rightarrow $\frac{n}{\sqrt{1}} \left(1 - \frac{2^2}{k^4}\right)$ converges.

12) location of genes:

Both sides sin π 2 $\frac{a}{k-1}$ $\left(1-\frac{a^{2}}{k^{2}}\right)$ have simple genes at the

integers & nowhere else.

(3) completing the proof

By the Lemma, I h entire

 $sin \pi \lambda = \frac{e^{2}}{\pi \lambda} \frac{\pi}{\lambda} \left(1 - \frac{e^{2}}{\lambda^{2}}\right)$

We show \hbar so. Compute logarithmic denvative

 M ath 220, Hwk 6: $Reca$

6. Let $a \in \mathbb{R} \setminus \mathbb{Z}$. Let γ_n be the boundary of the rectangle with corners $n + \frac{1}{2}$ + $ni, -n - \frac{1}{2} + ni, -n - \frac{1}{2} - ni, n + \frac{1}{2} - ni$. Evaluate

$$
\int_{\gamma_n} \frac{\pi \cot \pi z}{z^2 - a^2} \, dz
$$

via the residue theorem. Making $n \to \infty$, show that

$$
\pi \cot \pi a = \frac{1}{a} + 2a \sum_{n=1}^{\infty} \frac{1}{a^2 - n^2}.
$$

$$
\frac{s \cap \pi z}{\pi z} = e^{\frac{x}{h}} \frac{1}{1} \left(1 - \frac{z^{2}}{h^{2}}\right) \cdot , \quad \text{make } z \to 0
$$

$$
\frac{1}{1 - z} = e^{\frac{z}{h}(0)} \cdot 1 = e^{\frac{z}{h}(0)} = e^{\frac{z}{h}(0)} = 1
$$

This completes the proof.

 $cos \pi z = \frac{1}{\sqrt{1}} \left(1 - \frac{4z^2}{(2t-1)^2}\right)$