$$
\text { Math } 2203-\text { Zeoture } 3
$$

January 17,2024

1. r-function - probability, statistics, combinatorics,... h Conway VII. 7 .
"The product $1.2 \ldots . x$ is the function that must $b=$ introduced in analysis" (Gauss to Bessel, 1811)

$$
\pi x=1 " 2 \cdot 3 \ldots \cdot x^{\prime \prime}=r(x+1)
$$

" The theory of analytic factorials does not seem to have the importance some mathematicians used to attribute to it"

$$
\text { Woierothap } 1854
$$

D definition $\quad G(z)=\prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right) e^{-z / n}$

Remark The convergence (absolutely \& locally uniformly)
of the product is $71 w k 1, \# 2$. There, you show

$$
\sum_{n=1}^{\infty} / \log \left[\left(1+\frac{2}{n}\right) e^{-z / n}\right] /
$$

converges locally uniformly.

Properkes of the function G

느 $G(z) \in(-z)=\prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right)=z / n \prod_{n=1}^{\infty}\left(1-\frac{z}{n}\right) e^{-z / n}$

$$
\begin{aligned}
& =\prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right)\left(1-\frac{2}{n}\right) e^{2 / n} e^{-2 / n} \\
& =\prod_{n=1}^{\infty}\left(1-\frac{2^{2}}{n^{2}}\right)=\frac{\sin }{\pi 2} \frac{\pi z}{} \text { (sine factorization) }
\end{aligned}
$$

(6) $G(z-1)=z G(z) e^{\gamma}$ whore γ io constant.
$\quad \gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)$. see below

Definition

$$
r(z)=\frac{e^{-\gamma z}}{z z} \cdot \frac{1}{6(z)}
$$

Remark G has zeroes at $-1,-2, \ldots,-n, \ldots$
$\Rightarrow r$ meromorphic in σ with $z=r o e=$ at $-1,-2, \ldots,-n, \ldots$

Proof of $\sqrt{16}$

We inspect zeroes of both sides.

$$
\begin{aligned}
& \text { Zeroes } 6: \quad-1,-2, \ldots,-n, \ldots \\
& \left.\begin{array}{l}
z \in(z): 0,-1,-2, \ldots,-n, \ldots . \\
\in(z-1): 0,-1,-2, \ldots,-n
\end{array}\right\} \text { have the same zeroes } \\
& \Longrightarrow \quad G(z-1)=z^{\gamma(z)} e^{\gamma(z)} \text { for some function } \gamma(z) \text {. }
\end{aligned}
$$

We need $\gamma(z)=$ constant. We verify $\gamma^{\prime}=0$.

Take logarithmic denvatives

$$
\frac{G^{\prime}(z-1)}{G(z-1)}=\frac{1}{z}+\frac{G^{\prime}(z)}{G(z)}+\gamma^{\prime}(*)
$$

Recall that

$$
G(z)=\prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right) e^{-z / n}
$$

Since loganthmic denvative turns products into sums

$$
\begin{aligned}
\frac{G^{\prime}(z)}{\sigma(z)}= & \sum_{n=1}^{\infty}\left(\frac{\frac{1}{n}}{1+\frac{z}{n}}-\frac{1}{n}\right)=\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right) \\
\Rightarrow \frac{G^{\prime}(z-1)}{G(z-1)}= & \sum_{n=1}^{\infty}\left(\frac{1}{z-1+n}-\frac{1}{n}\right)=\left(\frac{1}{2}-1\right)+\sum_{n=1}^{\infty}\left(\frac{1}{2+n}-\frac{1}{n+1}\right) \\
& =\left(\frac{1}{z}-1\right)+\sum_{n=1}^{\infty}\left(\frac{1}{2+n}-\frac{1}{n}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\left(\frac{1}{2}-\gamma\right)+\sum_{n=1}^{\infty}\left(\frac{1}{2+n}-\frac{1}{n}\right)+\gamma \\
& =\frac{1}{z}+\frac{\sigma^{\prime}(z)}{G(z)} \begin{array}{l}
\text { (z) } \\
\Rightarrow
\end{array} \gamma^{\prime}(z)=0 \quad \gamma \quad \gamma(z)=\gamma .=\text { constant }
\end{aligned}
$$

(wu) The above constant is

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log (n+1)\right) \quad \text { (Euler constant) }
$$

Indeed, $G(0)=1$ by definition. of tho function a.
By $\bar{\pi} \Rightarrow 6(z-1)=z(z) e^{\gamma} \Rightarrow 6(0)=e^{-\gamma}$.

Using the definition

$$
\begin{aligned}
\in(1)= & \prod_{k=1}^{\infty}\left(1+\frac{1}{k}\right) e^{-1 / k}= \\
= & \lim _{n \rightarrow \infty} \frac{n}{\prod_{k=1}}\left(1+\frac{1}{k}\right) e^{-1 / k}= \\
= & \lim _{n \rightarrow \infty} \frac{n+1}{n} \cdot \frac{2}{n / 1} \cdot \cdots \frac{2}{1} \cdot e^{-1-1 / 2-\ldots-n / n} \\
= & \lim _{n \rightarrow \infty} e^{-\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log (n+\infty)\right.}=e^{-\gamma} \\
\Rightarrow \gamma= & \lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log (n+1)\right) \\
=\gamma & \lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)
\end{aligned}
$$

Definition

$$
r(z)=\frac{e^{-\gamma z}}{z} \cdot \frac{1}{6(z)}
$$

Properties of Γ

II $r(1)=\frac{e^{-\gamma}}{G(1)}=1$ using $c(1)=e^{-\gamma}$ foo above.
[10 $\Gamma(z+1)=z \Gamma(z) \leadsto$ "r behaves bike a factorial"

In particular. by induction

$$
r(n)=(n-1)!\quad \forall n>0, n \in \mathscr{V}
$$

This follow o by direct computation

$$
\begin{aligned}
& F(z+1)=\frac{e^{-\gamma z-\gamma}}{(z+1)} \cdot \frac{1}{\sigma(z+1)}=\frac{e^{-\gamma z}}{z} \cdot \frac{1}{\sigma(z)} \cdot z=z r(z) \\
& \Leftrightarrow G(z)=(z+1) \in(z+1) e^{\gamma} \text { which is tue. }
\end{aligned}
$$

(see above)
(ILL) $\quad(z) \quad(1-z)=\frac{\pi}{\sin \pi z}$. In particular $\sigma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

Compute $r(z) r(r-z)=r(z)(-z) r(-z)=$

$$
\begin{aligned}
d=\text { fruition } & =\frac{e^{-\gamma z}}{2 G(z)} \cdot(-z) \cdot \frac{e^{\gamma z}}{(-z) \in(-z)} \\
& =\frac{1}{2 G(z) \in(-z)}=\frac{\pi}{\sin \pi z} \text { (sec above) }
\end{aligned}
$$

IV $r(z)=\lim _{n \rightarrow \infty} \frac{n!}{z(2+1) \ldots(z+n)} n^{z} \quad$ (Gaurs' definition)

We use the definition

$$
\begin{aligned}
& r(z)=\frac{e^{-\gamma^{z}}}{z} \frac{1}{G(z)}= \\
& =\lim _{n \rightarrow \infty} \frac{e^{-\gamma^{2}}}{z} \prod_{k=1}^{n}\left(1+\frac{z}{k}\right)^{-1} e^{f / k} \\
& =\lim _{n \rightarrow \infty} \frac{e^{-\gamma z}}{2} \cdot \prod_{k=1}^{n} \frac{k}{z+k} \cdot e^{2\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{z^{(2+1) \ldots(z+n)}} \cdot \frac{z\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n-\gamma\right)}{Q_{0}} \cdot n^{2} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{z(2+1) \ldots(t+n)} \cdot n^{2} .
\end{aligned}
$$

Exercise (Conway VII.7.3)

Legendre duplication formula.
Use Gaurs' definition to check

$$
\sqrt{\pi} r(2 z)=2^{2 z-1} r(z) r\left(z+\frac{1}{2}\right)
$$

Residues Note that $r(z)=\frac{e^{-\gamma 2}}{t} \cdot \frac{1}{C(z)}$ is meromorphic with poles at $0,-1,-2, \ldots$ since 6 has zeroes at $-1,-2, \ldots$

What are the residues?

$$
\operatorname{Res}(r,-n)=\lim _{z \rightarrow-n}(z+n) r(z)=
$$

16

$$
\begin{aligned}
& =\lim _{z \rightarrow-n}(z+n) \frac{r(z+n+1)}{z(z+1) \ldots(z+n)} \\
& =\lim _{z \rightarrow-n} \frac{r(z+n+1)}{z(z+1) \ldots(z+n-1)} \\
& =\frac{r(1)}{(-n) \ldots(-1)}=\frac{1}{(-1)^{n} n!}=\frac{(-1)^{n}}{n!}
\end{aligned}
$$

Remark It can be shown $M=l l i n$ hans form of e^{-t}

$$
r(z)=\int_{0}^{\infty} e^{-t} t^{2-1} d t \text { for } R=z>0 \text {. }
$$

Step, Convergence of RHS. Fix $z, R_{z} \neq 0$.

$$
\begin{aligned}
\int_{0}^{1} e^{-t} t^{2-1} d t / & \leq \int_{0}^{1} 1 e^{-t} t^{2-1} / d t \quad \text { since } / e^{-t} / \leq 1 \\
& \leq \int_{0}^{1} t^{R_{0}+-1} d t \\
& =\left.\frac{t^{R_{02}}}{R_{02}}\right|_{t=0} ^{t=1}=\frac{1}{R_{e z}} \text { using } R_{e z}>0
\end{aligned}
$$

Pick A with $\left|t^{2-9}\right| \leq e^{t / 2}$ when $|t|>A$

$$
\begin{aligned}
/ \int_{A}^{\infty} e^{-t} t^{2-1} d t / & \leq \int_{A}^{\infty}\left|e^{-t} t^{2-1}\right| d t \leq \int_{A}^{\infty} e^{-t} e^{t / 2} d t \\
& =\int_{A}^{\infty} e^{-t / 2} d t \\
& =2 e^{-A / 2}<\infty .
\end{aligned}
$$

$$
\int_{1}^{4} e^{-t} t^{2-1} d t<\infty \text { by continuity, of } e^{-t} t^{2-1} \text { in } t
$$

Step 2 Using integration by parts, one early shows

$$
\int_{0}^{n} \frac{\left(1-\frac{t}{n}\right)^{n}}{u} \frac{t^{2-1} d t}{d v}=\frac{n^{2} n!}{2(2+1) \ldots(2+n)}
$$

Exercise - check the details.

Step 3 Make $n \rightarrow \infty$. From real analysis

$$
\left(1-\frac{t}{n}\right)^{n} \rightarrow e^{-t} \text { as } n \rightarrow \infty \text {. This wall also be }
$$

explained below. We will argue that
(1) $\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{z-1} d t \rightarrow \int_{0}^{n} e^{-t} t^{2-1} d t$

I/ Step [B]

$$
\frac{n^{2} n!}{2(2+1) \ldots(2+n)}
$$

$$
\text { This shows } r(z)=\int_{0}^{\infty} e^{-t} t^{2-1} d t
$$

Rigorous justification of convergence in (1)

$$
\text { Claim } 0 \leq e^{-t}-\left(1-\frac{t}{n}\right)^{n} \leq \frac{e^{-t} t^{2}}{n} \text {. if } 0 \leq t \leq n \text {. }
$$

Assuming the claim, we prove Step 3. Compute

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-t} t^{2-1} d t-\int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{2-1} d t= \\
= & \int_{0}^{n}\left(e^{-t}-\left(1-\frac{t}{n}\right)^{n}\right) t^{2-1} d t+\int_{n}^{\infty} e^{-t} t^{2-1} d t \rightarrow 0
\end{aligned}
$$

We claim the terms converge to 0 .
term I. $\quad \int_{n}^{\infty} e^{-t} t^{2-1} d t \rightarrow 0$ as $n \rightarrow \infty$ because $\int_{0}^{\infty} e^{-t} t^{2-1} d t$ converges by $\operatorname{sep} 1$.

$$
\begin{aligned}
& \operatorname{term}=/ \int_{0}^{n}\left(r^{-t}-\left(1-\frac{t}{n}\right)^{n}\right) t^{2-n} d t / \leq \int^{\text {claim }} \\
& \leq \quad \int_{0}^{n} \frac{1}{n} t^{2} e^{-t} \cdot t^{R_{E P-1}} d t<\int_{0}^{\infty} \frac{1}{n} \cdot t^{2} e^{-t} t^{R_{c} 2+1} d t \\
& =\frac{1}{n} \int_{\text {conranges by op } 1 .}^{\int_{0}^{\infty} e^{-t} t^{\operatorname{Rez}+1} d t} \longrightarrow 0 \text { as } n \rightarrow \infty \text {. }
\end{aligned}
$$

Proof of claim
(a) first inequality

Hor $1-y \leq e^{-y}$ for $y \geq 0$.

Take

$$
\begin{gathered}
y=\frac{t}{n} \Rightarrow 1-\frac{t}{n} \leq e^{-t / n} \Rightarrow\left(1-\frac{t}{n}\right)^{n} \leq e^{-t} \\
T_{0} \sec ,-y \leq e^{-y}, \quad l=t \quad f(y)=e^{-y}-(1-y), \\
f(0)=0, f^{\prime}=-e^{-y}+1>0 \Rightarrow f \quad \nearrow \Rightarrow f(y) \geq f(0)=0
\end{gathered}
$$

(b) second inequality.

The meguabity to prove is

$$
\begin{aligned}
& e^{-t}-\left(1-\frac{t}{n}\right)^{n} \leq \frac{t^{2} e^{-t}}{n} \Longleftrightarrow \\
& \Leftrightarrow 1-e^{t}\left(1-\frac{t}{n}\right)^{n} \leq \frac{t^{2}}{n} \quad(*)
\end{aligned}
$$

Use $e^{y} \geq 1+y$ for $y \geq 0$ proven just as above. Take $y=\frac{t}{n}$

Since $e^{t}=\left(e^{t / n}\right)^{n} \geq\left(1+\frac{t}{n}\right)^{n}>$ to show (*) we show

$$
\begin{gathered}
1-\left(1+\frac{t}{n}\right)^{n}\left(1-\frac{t}{n}\right)^{n} \leq \frac{t^{2}}{n} \Leftrightarrow \\
\Leftrightarrow\left(1-\frac{t^{2}}{n}\right) \leq\left(1-\frac{t^{2}}{n^{2}}\right)^{2} \text { This is tue. }
\end{gathered}
$$

Indeed, u se $(1-y)^{n} \geq 1-n y$ for $y=\frac{t^{2}}{n^{2}}$
The last inequality can be proved by induction on n.

