$$
\frac{\text { Math 220B- Jeoture } 4}{\text { Januory } 22,2024}
$$

The Weierstap Problem Conway VII. 5

Given IT $\left\{a_{n}\right\}$ dishnat, $a_{n} \longrightarrow \infty$.
[药 $\left\{m_{n}\right\}$ positive integers
find entire functions f with zeroes only at a_{n} of order m_{n}.

Remark This also makes sense for arbitary regions $u \leq \sigma$

Main Theorem

The Weitrotiap problem is always solvable in σ.

Gorallany Every meromorphic function in A io quotient of two entire functions.
 of poles of h listed with multiplicity. 2 at g b the solution to the Weierstap problem for \mathcal{P}.
C The set E has no limit point in σ, so the hypothesis
of Weierstiap is satiofed.) Then $f=g h$ entire. \&
sec Remark 16

$$
h=\frac{f}{g}
$$

below

Remarks I] Any two solutions $f_{1} \& f_{2}$

$$
f_{1}=e^{\hbar} f_{2}, \quad t \text { entire. }
$$

["I) If $\left\{a_{n}\right\}$ has no hit point in σ then $a_{n} \longrightarrow \infty$.
Indeed, if not, $\exists r>0$ such that $\forall N \nexists n \geq N,\left|a_{n}\right| \leq r$.
This means \mathcal{F} subsequence of $\left\{a_{n}\right\}$ bounded by r. Since $\vec{\Delta}$ rory compact, this will have a convergent subo-guence. with limit $a \in \mathbb{C}$. us contradiction (J̌oture 8, 2204)
(ia) Repetitions \& zero tums.
W. well agree from now on that $\left\{a_{n}\right\}$ may contain repetitions. That is, by relabelling we can repeat each zero as many tomes as their multiplicity.

We assume $a_{n} \neq 0 \forall n$. If 0 is a zero for f we will add it via multiplication by z^{m}. at the end.

Solution to the Wererstiap Problem

Nave attempt $f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right)$

Issue: Convergence!

Idea: Try $f(z)=\prod_{n=1}^{\infty} f_{n}(z)$ where
f_{n} has zero at a_{n}. e.g. $f_{n}(z)=\left(1-\frac{z}{a_{n}}\right) e^{b_{n}}$

Hope $f(2)=\prod_{n=1}^{\infty}\left(1-\frac{2}{a_{n}}\right) \cdot a_{n}$ converges.

Gould this work? For ex ample.
$\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)$ does not converge

$$
\prod_{n=1}^{\infty}\left(1+\frac{2}{n}\right) e^{-2 / n}=G(z) \text { doe converge. }
$$

Weirershap elementary / primary factors

Define

$$
E_{p}(z)= \begin{cases}1-z & \text { if } p=0 \\ (1-2)=x p & \left(z+\frac{z^{2}}{2}+\cdots+\frac{p^{p}}{p}\right) \text { if } p>0 .\end{cases}
$$

$\Longrightarrow E_{p}$ is entire. with a simple zero at $z=1$.

Remark Ep $\left(\frac{z}{a}\right)$ has a simple zero at $z=a$.

We look for an answer of the form z zoos at a_{n}.
(*) $f(z)=\prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)^{\text {b }}$ for suitable $p_{n} \geq 0$

Issue: Can we pick p_{n} such that $(*)$ converges absolutely d locally uniformly.

Recall: $\sum_{n=1}^{\infty} \mid f_{n}$, converge: locally uniformly $\Rightarrow \prod_{n=1}^{\infty}\left(1+f_{n}\right)$. converges absolutly locally uniformly.

We wish to use this for $f_{n}=E_{p_{n}}\left(\frac{2}{a_{n}}\right)-1$.

Growth of the -tomentang factors

Lemma $11-E_{p}(2)\left|\leq|z|^{p+0}\right.$ if $| z \mid \leq 2$.

Proof laker.

Lemma Given $a_{n} \longrightarrow \infty, a_{n} \neq 0, \exists p_{n}$ natural numbers (not unique) such that

$$
\forall r>0 \Rightarrow \sum_{n=1}^{\infty}\left(\frac{n}{\left|a_{n}\right|}\right)^{p_{n}+1}<\infty .
$$

Proof
For instance, take $p_{n}-n-1$. Z ot $r>0$.

Since $a_{n} \rightarrow \infty, \exists N$ such that $a_{n} l \geq \frac{\sigma}{2}$ if $n \geq N$.

$$
\Rightarrow \frac{r}{\left|a_{n}\right|} \leq \frac{1}{2} \Rightarrow\left(\frac{r}{\left|a_{n}\right|}\right)^{n} \leq \frac{1}{2^{n}}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{2^{n}}<\infty \Rightarrow \sum_{n=0}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{n}<\infty$. by comparison test.

Theorem (Weierstiaß)
$J_{0} f a_{n} \rightarrow \infty, a_{n} \neq 0$. Pick p_{n} as in the previous Lemma:

$$
\forall r>0 \Rightarrow \sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}<\infty .
$$

Then $\prod_{n=1}^{\infty} E_{\rho n}\left(\frac{2}{a_{n}}\right)$ converges absolutely \& locally uniformly to on entire function w / z eros only at a_{n}.

Proof Lot $f_{n}=E_{\text {ph }}\left(\frac{2}{a_{n}}\right)-1$. Pick k complot, $k \leq \Delta(0, r)$.
for some. We wall argue that $\prod_{n=1}^{\infty}\left(1+f_{n}\right)$ converges locally uniformly. It suffices to show $\sum_{n=1}^{\infty} \mid f_{n} /$ converges uniformly on $\Delta(0, r)$.

Wok for $\Delta(0, r):$,ot Lemma

$$
\left|f_{n}(z)\right|=\left|E_{p_{n}}\left(\frac{z}{a_{n}}\right)-1 / \leq / \frac{z^{2}}{a_{n}}\right|^{p_{n+1}} \leq\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}
$$

This requires $\left|\frac{z}{a_{n}}\right| \leq \frac{\sigma}{\left|a_{n}\right|} \leq 1$ which io thu $=$ for $n \geq N$ since $a_{n} \rightarrow \infty$.
Since $\sum_{n=1}^{\infty}\left(\frac{r}{\left|a_{n}\right|}\right)^{p_{n}+1}<\infty \Rightarrow$ Werozstaps $M-t_{0} t \sum_{n=1}^{\infty}\left|f_{n}\right|$ converges
uniformly. in $\Delta(0, r)$. as needed
$\rightarrow \quad \prod_{n=1} E_{p_{n}}\left(\frac{2}{a_{n}}\right)$ converges absolubly \& focally uniformly

The statement about zeroes follows from Lecture 2 \& the fact that $E_{p_{n}}\left(\frac{2}{a_{n}}\right)$ vanishes only at $z=a_{n}$.

Corollary Any (no tidentically o) =entire function can be writtore as

$$
f(z)=z^{m} e^{\kappa} \prod_{n} E_{p_{n}}\left(\frac{z}{a_{n}}\right), t=\text { entire. }
$$

"The choices of $p_{n} \& h$ are not unique.
4.) Weierstap factorization

Remark For the same function f, several β_{n} 's may work. changing p_{n} into \tilde{p}_{n} can be absorbed in the exponential.

Proof WLOC we may assume $f(0) \neq 0$. Else if $\operatorname{ond}(f, 0)=$ $=m$ we add the factor 2^{m}.

Let $\left\{o_{n}\right\}$ be the zeroes of f listed wist multiplicity.
Both f and $\prod_{n} E_{p}\left(\frac{z}{a_{n}}\right)$ solve the Weierotiag problem.
Apply Remark I to conclude.

Remark Wererstiap' theorem allows us to define functions which were not even hank at before.

Poincare': "Weiorokap' most important contribution to the theory of complex variables is the discovery of primary factors.

Analogy with number theory
The factorization.

$$
f(z)=z^{m} e^{h} \prod_{n=1}^{\infty} E_{p_{n}}\left(\frac{z}{a_{n}}\right)
$$

is remmiocent of the factorization of integers into primes.
proves $\longleftrightarrow E_{p}$
units $\longrightarrow e^{\hbar}$

Differnce. Not canonical/ uniqueness of pr's.

We can however ask questions with arithmotic flavor.

$$
H W K 2, \# 2 .
$$

Example
[四 $Q(z)=\prod_{k=1}^{\infty}\left(1+2^{k} z\right)=\prod_{k=1}^{\infty} E_{0}\left(-2^{k} z\right),\left.\right|^{1} 1<1$.
Note $p_{k}=0$ \& $\sum_{k=1}^{\infty}\left(r q^{k}\right)^{p_{k}+1}<\infty$. So the hypothesis of Wererstap factorization holds.
(II) $G(z)=\prod_{z=1}^{\infty}\left(1+\frac{z}{k}\right) e^{-\frac{z}{k}}=\prod_{k=1}^{\infty} E_{1}\left(-\frac{z^{2}}{k}\right)$.

Not $p_{k}=1$ \& $\sum\left(\frac{r}{R}\right)^{P_{k}+1}<\infty$.
(cut) $\sin \pi z=\pi z \prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)$

$$
\begin{aligned}
& =\pi z \prod_{\substack{k=1}}^{\infty}\left(1-\frac{2}{k}\right)=e^{2 / k}\left(1+\frac{2}{k}\right) e^{-z / k} \\
& =\pi z \prod_{\substack{k=-\infty \\
k \neq 0}}^{\infty} E_{1}\left(\frac{z}{k}\right)
\end{aligned}
$$

IV) Do we get any new examples we didn't know?

Yes. See hawk for the Werezstiap 5 -function.

