$$
\text { Math } 2203 \text { - Weoture } 6
$$

January29, 2024

Wast time - Mittag - Zeffler Problem in ब

Given

- $a_{n} \rightarrow \infty$ distinct and
- Laurent prosipal parts In
find f meromorphic with poles ot a_{n} \& principal ports g_{n} ot a_{n}
Construction

Step Expand In into Taylor series. at 0

Step 2 Pick I_{n} a Taylor polynomial \& oheck

$$
/ g_{n}-h_{n} /<c_{n} \text { in } \Delta\left(0, r_{n}\right) \text { with } \sum_{n} c_{n}<\infty \text {. }
$$

and $r_{n}<\left|a_{n}\right|, r_{n} \longrightarrow \infty$

Step 3 Solution
$f=\sum_{n=1}^{\infty}\left(g_{n}-h_{n}\right)+$ add Laurent principal part af 0.

$$
\text { Today - } 4 \text { historically important examples }
$$

- we group them in pairs of two

we covered this last time already
$\iint^{\text {poles }}$ principal parts
Example \quad 且 $\left(-n, \frac{1}{2+n}\right) \quad, n \in \mathbb{Z}$.

Step Taylor expand:

$$
\begin{aligned}
g_{n} & =\frac{1}{2+n}=\frac{1}{n} \cdot \frac{1}{1+\frac{2}{n}}=\frac{1}{n}\left(1-\frac{2}{n}+\frac{2^{2}}{n^{2}}-\cdots\right) \\
& =\frac{1}{n}-\frac{2}{n^{2}}+\frac{2^{2}}{n^{3}}-\cdots \\
h_{n} & =\frac{1}{n} \quad, n \neq 0
\end{aligned}
$$

Step $\left.2 \quad Z=t \quad r_{n}=\frac{1}{2}|n|^{1 / 2} \cdot|f| z \right\rvert\, \leq r_{n}$:

$$
\left|2_{n}-h_{n}\right|=\left|\frac{1}{z+n}-\frac{1}{n}\right|=\frac{|z|}{|n|(n+z \mid} \leq \frac{r_{n}}{\left(n \mid\left(\ln \mid-r_{n}\right)\right.}=c_{n}
$$

Since $\lim _{n \rightarrow \infty} \frac{c_{n}}{|n|^{3 / 2}}<\infty$ and $\sum_{n} \frac{1}{|n|^{3 / 2}}<\infty . \Rightarrow \sum_{n=1}^{\infty} c_{n}<\infty$.

Stop 3 Mittag - Zaffer solution

$$
f=\sum_{n \neq 0}\left(\frac{1}{2+n}-\frac{1}{n}\right)+\frac{1}{2}
$$

Collecting the terms for n \& -n we find

$$
\begin{aligned}
f & =\sum_{n>0}\left(\frac{1}{2+n}+\frac{1}{2-n}\right)+\frac{1}{2} \\
& =\sum_{n>0} \frac{22}{z^{2}-n^{2}}+\frac{1}{z}=\pi \cot \pi z
\end{aligned}
$$

LI Poles at $-n \in \mathbb{Z}$, principal parts $\frac{1}{(z+n)^{2}}$.

$$
\left(-n, \frac{1}{(2+n)^{2}}\right)
$$

Step 1

$$
\begin{aligned}
& g_{n}=\frac{1}{(2+n)^{2}} \\
& h_{n}=0
\end{aligned}
$$

Step 2 $\left.\quad r_{n}=\left.\frac{1}{2} \ln \right|^{1 / 2} \cdot \right\rvert\, 7121 \leq r_{n}$

$$
\begin{aligned}
& \left|g_{n}-h_{n}\right|=\left\lvert\, \frac{1}{(2+n)^{2}} / \underline{1} \frac{1}{\left(|n|-r_{n}\right)^{\alpha}}=c_{n} .\right. \\
& \lim _{n \rightarrow \infty} \frac{c_{n}}{|n|^{-2}}=1 \& \sum_{n \neq 0} \frac{1}{n^{2}}<\infty \Rightarrow \sum_{n \neq 0} c_{n}<\infty
\end{aligned}
$$

Step 3 Mittag - zeffler function

$$
f=\sum_{n=-\infty} \frac{1}{(2+n)^{a}} .
$$

We have gen $f=\frac{\pi^{2}}{\sin ^{4} \pi^{2}}$ in Math 220A, HWK6, \#7.
6. Let $a \in \mathbb{R} \backslash \mathbb{Z}$. Let γ_{n} be the boundary of the rectangle with corners $n+\frac{1}{2}+$ $n i,-n-\frac{1}{2}+n i,-n-\frac{1}{2}-n i, n+\frac{1}{2}-n i$. Evaluate

$$
\int_{\gamma_{n}} \frac{\pi \cot \pi z}{z^{2}-a^{2}} d z
$$

via the residue theorem. Making $n \rightarrow \infty$, show that

$$
\pi \cot \pi a=\frac{1}{a}+2 a \sum_{n=1}^{\infty} \frac{1}{a^{2}-n^{2}}
$$

7. Let $a \in \mathbb{R} \backslash \mathbb{Z}$. Let γ_{n} be the boundary of the rectangle with corners

$$
\pm\left(n+\frac{1}{2}\right) \pm n i
$$

Evaluate

$$
\int_{\gamma_{n}} \frac{\pi \cot \pi z}{(z+a)^{2}} d z
$$

via the residue theorem, and use this to show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi a)}
$$

$$
\text { J/wk6. Math } 220 \text { A }
$$

Remark Compare \square \&

$$
\begin{array}{ll}
\left(-n, \frac{1}{2+n}\right) & \longleftrightarrow\left(-n, \frac{1}{(z+n)^{2}}\right) \\
\pi \cot \pi z & \longleftrightarrow \frac{\pi^{2}}{\sin ^{2} \pi_{z}}
\end{array}
$$

These are related by differentiation (u pp to a sign).

For the next examples. we replace

by the lattice

$$
\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}, \quad \frac{\omega_{1}}{\omega_{2}} \nsubseteq \mathbb{R}
$$

Main Difference

$$
\begin{array}{r}
\sum_{n \neq 0} \frac{1}{|n|^{\alpha}} \text { converges if } \alpha=2 \\
\text { if } \quad \alpha>1
\end{array}
$$

For the lattice,

$$
\begin{array}{cc}
\sum_{\lambda \in \lambda}^{\lambda \neq 1} \frac{1}{\lambda \neq 0} & \text { converges if } \alpha=3 \quad(H W K 2) \\
\text { if } \alpha>2 .
\end{array}
$$

(17)

Poles at $\lambda \in \Lambda$, principal parts $\frac{1}{2^{2}-\lambda}$.

$$
\left(\lambda, \frac{1}{2-\lambda}\right)_{\lambda \in \Lambda} .
$$

Step 1 $\quad x \neq 0$

$$
\begin{aligned}
g_{\lambda}=\frac{1}{2^{2}-\lambda} & =\frac{1}{\lambda} \cdot \frac{-1}{1-\frac{2}{\lambda}} \\
& =\frac{-1}{\lambda}\left(1+\frac{2}{\lambda}+\frac{z^{2}}{\lambda^{2}}+\cdots\right) \\
& =-\frac{1}{\lambda}-\frac{2}{\lambda^{2}}-\frac{\partial^{2}}{\lambda^{3}}-\cdots \\
h_{\lambda}= & -\frac{1}{\lambda}-\frac{z^{2}}{\lambda^{2}}
\end{aligned}
$$

Step 2 $z_{z} t \quad r_{\lambda}=\min \left(\frac{1}{2}|\lambda|,|\lambda|^{1 / 4}\right)$.
|f $|z| \leq r_{\lambda}$ then

$$
\begin{aligned}
\left|g_{\lambda}-h_{\lambda}\right| & =\left|\sum_{k=2}^{\infty} \frac{2^{k}}{\lambda^{k+1}}\right| \\
& =\frac{|z|^{2}}{|\lambda|^{3}} \sum_{k=0}^{\infty}\left|\frac{z}{\lambda}\right|^{k} \leq \frac{r_{\lambda}^{2}}{|\lambda|^{3}} \cdot \sum_{k=0}^{\infty} \frac{1}{2^{k}}=
\end{aligned}
$$

$$
=2 \cdot \frac{r_{\lambda}^{2}}{|\lambda|^{3}} \leq 2 \cdot \frac{1}{|\lambda|^{\sigma / 2}}=c_{\lambda}
$$

Since $\sum_{\lambda \neq 0} \frac{1}{|\lambda|^{5 / 2}}<\infty$. we get $\sum_{\lambda \neq 0} c_{\lambda}<\infty$.

Step 3 Mittag- Zaffer solution

$$
\xi=\frac{1}{z}+\sum_{\lambda \neq 0}\left(\frac{1}{z-\lambda}+\frac{1}{\lambda}+\frac{z}{\lambda^{2}}\right)
$$

Weierstiap ξ - function (71 wK 2,\#4)

IV Poles at $\lambda \in A$, proscipal parto $\frac{1}{\left(2^{2}-\lambda\right)^{2}}$
$\left(\lambda, \frac{1}{(z-\lambda)^{2}}\right)_{\lambda \in \dot{\lambda}}$

Step, $\quad \lambda \neq 0$

$$
\begin{aligned}
2 \lambda=\frac{1}{(2-\lambda)^{2}} & =\frac{1}{\lambda^{2}} \cdot \frac{1}{\left(1-\frac{2}{\lambda}\right)^{2}}= \\
& =\frac{1}{\lambda^{2}}\left(1+\frac{2 z}{1}+\frac{3 z^{2}}{\lambda^{2}}+\cdots\right) \\
& =\frac{1}{\lambda^{2}}+\frac{2 z}{\lambda^{3}}+\frac{3 z^{2}}{\lambda^{2}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{(1-w)^{2}}=1+2 w+3 w^{2}+\cdots \\
& h_{\lambda}=\frac{1}{\lambda^{2}}
\end{aligned}
$$

$5 \operatorname{tep} 2 \quad r_{\lambda}=\min \left(\frac{|\lambda|}{2}, 1 \lambda 1^{1 / 4}\right)$

$$
\begin{aligned}
\left|h_{\lambda}-q_{\lambda}\right|= & \left|\frac{1}{(2-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right|=\left|\frac{z^{2}-2 z \lambda}{\lambda^{2}(z-\lambda)^{2}}\right| \\
& \leq \frac{\left.r_{\lambda}^{2}+2 r_{\lambda} / \lambda\right)}{(\lambda)^{2}\left((\lambda)-r_{\lambda}\right)^{2}} \leq 4 \cdot \frac{r_{\lambda}^{2}+2 r_{\lambda}|\lambda|}{\mid \lambda)^{2}} \cdot=C_{\lambda} .
\end{aligned}
$$

Note

$$
\lim _{\lambda \rightarrow \infty} \frac{c_{\lambda}}{|\lambda|^{-\sigma / 2}}<\infty \Rightarrow \sum c_{\lambda} \sim \sum \frac{1}{|\lambda| \sigma / 2}<\infty .
$$

Step 3 The mittag - deffer solution

$$
\begin{array}{r}
j s(z)=\frac{1}{z^{2}}+\sum_{\substack{\lambda \in \lambda \\
\lambda \neq 0}}\left(\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right)=\text { weionstao } \beta \\
j \text { function. }
\end{array}
$$

Flame work 2, \# σ

Not that $J s=-\xi^{\prime}$ ar it should C the Laurent tail are related by differentiation, up to sign)
2. Further remarks* S not needed for Qual
(1) A divisor is a formal sum

$$
D=\sum_{p \in \mathbb{}} n_{p}[p] \text { whore } n_{p} \in \mathbb{Z}
$$

We require that this sum be locally finite. ie.
$\left\{p: n_{p} \neq 0\right\}$ does not accumulate

Example $D=3[p]+5[q]$ is a divisor. (pi $\in \sigma)$

A divisor is mon-megative (effective) if $x_{p} \geq 0 \quad \forall p$.

Remark Divisors form a group under formal addition. (just add the coefferents) us group Q egg.

$$
\begin{aligned}
& D_{1}=[p]+2[2] \\
& D_{2}=3[2]
\end{aligned} \quad \Rightarrow \Delta_{1}+D_{2}=[p]+\sigma[2]
$$

(I) Any entire function gives rise to a divisor

Indeed,

$$
\operatorname{div}(f)=\sum_{p \text { zero for }} \text { and }(f, p)[p]
$$

Example

$$
f=(z-a)^{3}(z-b)^{\sigma} \Rightarrow \operatorname{div}(f)=3[a]+5[b]
$$

[4] Weiershap Problem can be rephrased

Every effective divisor is the divisor on an entire function

$$
\Delta \geq 0, \quad\rangle=\operatorname{div}(f) \text {. }
$$

(Iv) For a meromorphic function f

$$
\begin{aligned}
\operatorname{div}(f)= & \sum \text { and }(f, p)[p]^{\prime \prime} \text { "principal" } \\
& p \text { zero or } \\
& \text { pole }
\end{aligned}
$$

Remark $\operatorname{div}(f g)=\operatorname{div} f+\operatorname{div} g$

Principal divisors form a subgroup under addition.

$$
Z_{\text {group }} \mathscr{P}
$$

Question Is avery divisor the divisor of a meromorphic function?

Yes For a general divisor D we can separate

$$
\Delta=\Delta_{+}-\Delta_{-}, \Delta_{+}, \Delta_{-} \text {monngatire. }
$$

Writ $\Delta_{+}=\operatorname{div} f_{+}, \Delta_{-}=\operatorname{div} f-\&$ oust $f=f_{+} / f_{-}$

$$
\text { Then } \begin{aligned}
\operatorname{div}(f) & =\operatorname{div}\left(f_{+}\right)-\operatorname{div}\left(f_{-}\right) \text {(chook) } \\
& =D_{+}-D_{-}=0 .
\end{aligned}
$$

Define

$$
\begin{gathered}
\text { Divisor class group }=\text { Divisors/pincipal Divisors }=\infty / \rho \\
\mathcal{L s}^{\text {/hebraic geometry }}
\end{gathered}
$$

Weiorstrap can be rephrased as
Divisor claws Group of c is trivial.
IV) These questions naturally lead to sheaf cohomology.

$$
H^{\prime}\left(\sigma, \mathcal{O}^{*}\right)=0^{\prime \prime}
$$

Remark Both the Weiezstiap problem \& Mittog - Zeffler
problem can be solved for arbitang regions $u \subseteq \mathbb{C}$, and for sequences of Zeros/poles \{an\} ~ w i t h o u t ~ a c c u m u l a t i o n ~ p o i n t s ~ i n ~ a.

The arguments are more involved. (Conway VII. 5.15, VIII.3.2) Weierstap Mitfog Rifler

As a roult. the divisor class group of $u \leq \varepsilon$ is also trivial. In algebraic geometry, one encounters plenty of examples of nontrivial divisor alas groups.
3. Next Few Lectures - Normal Families Conway v ll. 1 \&2.

Why climb the mountain - Motivation

Sequences of complex numbers
$\left\{a_{n}\right\}$ bounded $\Rightarrow \nexists$ convergent subsequence

Indeed, if $\left|a_{n}\right| \leq M \Rightarrow a_{n} \in \bar{\Delta}(0, M)$. The clooed disc
$\bar{\Delta}(0, m)$ is compact.

We wish to make similar statements for sequences of
functions (continuous or holomorphic).

Dram statement

Given a "bounded" sequence of functions, there existo a "convergent" subsequence.

Question A what could "-" mean?

Question B ls this connected to compactrees?

Answer is "yes" but it has no consequences for the current leature.

Remark Dram stakment makes sense in
[a real analysis (continuous functions)

Arzola- Ascoli-
(u) complex analysis (holomorphic functions).

Mantel.

We will investigate both.

Question A fn:U "convergent" could mean
l pointwise I weak
(16) uniform stang
(III) local uniform \swarrow OK for us
π
IV uniform convergence on compact sots
"bounded" could mean
weak
II pointwise bounded

$$
\forall x \in u \quad \exists M(x) \text { with }\left|f_{n}(x)\right|<M(x) \forall n
$$

([i]) uniformly bounded

$$
\exists M \quad \forall x \in u \quad\left|f_{n}(z)\right|<M \quad \forall n
$$

(III) locally uniformly bounded. \& OK for as
$\forall * \exists \Delta_{*} \leq u$ neighborhood of $*$, such that the
restrictions f_{n} / Δ_{*} are uniformly bounded.
OK for us
IIV) Uniformly bounded on compact sets

$$
\forall K \nexists M(K), \quad\left|f_{n}(*)\right| \leq M(K) \quad \forall x \in K \quad \forall n
$$

Remark We have $(u) \Leftrightarrow \sqrt{N}$ that is, locally uniformly bounded \Leftrightarrow
uniformly bounded on each compact

$$
\begin{aligned}
& \text { Why } ? \Leftarrow \text { If } x \in u, \text { let } k=\bar{\Delta}_{*} \text { b. a compact } \\
& \text { neighborhood of } x .
\end{aligned}
$$

\Rightarrow For all $* \in u, \mathcal{F} \Delta_{*}$ whore f_{n} / Δ_{*} are bounded by M_{*}.

$$
\begin{gathered}
\text { Then } K \subseteq \bigcup_{* \in K} \Delta_{A_{i}} \Rightarrow K \subseteq \bigcup_{i} \Delta_{n_{i}} \text { and lot } \\
M=\max \left(M_{n_{1},}, \ldots, M_{x_{n}}\right)>0 .
\end{gathered}
$$

$$
\text { This is a bound for all } f_{n} \text { 's over N. }
$$

Dream Statement Revisited
$f_{n}: U \longrightarrow \subset$ locally uniformly bounded
$\Rightarrow f n$ admits a locally convergent subozguence

Question Gould this be true?

Example No.

$$
\begin{gathered}
z_{0} t u=\mathbb{R} \text {. The sequence } \\
f_{n}(x)=\sin n x
\end{gathered}
$$

is uniformly bounded, but we cant get a convergent subreguenci not even point wise.

Question ci Could this be tue in complex analysis inc. holomorphic functions? YES

Question ca What is the correct statement in real analyois iv. continuous functions?

Answer to al

$$
\text { Main Theorem }{ }^{-} \text {(Monte) }
$$

$f_{n}: u \longrightarrow c$ holomorphic \& locally uniformly bound
\Rightarrow fin admits a locally uniformly convergent subsequence.

