$$
\begin{gathered}
\text { Math } 220 B-\text { Feature } g \\
\text { February } 7,2024
\end{gathered}
$$

$$
220 \text { B Part II - Mapping Theory }
$$

The goal is to frame the discussion. \& formulate guiding questions.

$$
V \subseteq \mathscr{C}
$$

Given $u, v \subseteq \mathbb{G}$ we wish to study holomorphic

$$
f: u \longrightarrow v .
$$

This may be too general. We can ark
Il f ingeative
(17) f finite to one
[740) f bijective
IO f proper ... otc.

We will focus on bigective holomorphic maps.

In Math 220A, we showed

$$
f: u \rightarrow v \text { holomorphic \& byective } \Rightarrow f^{-1} \text { holomorphic }
$$

$$
\text { Bi holomorphism }=\text { holomorphic }+ \text { bijectre }
$$

We focus on biholomorphisms
Question A Given $u, v \subseteq \mathbb{G}$ are U, v biholomorphic?

Remark This has implications in topology \& differential geometry. In particular u, v are
homeomorphic, diffomorphic

Examples
[l $u=\sigma, v=\Delta(0,1), u \not \not \nsim v$. This follows by Ziouville's theorem.

【" $u=\mathcal{J}^{+}, v=\Delta, c: \mathcal{J}^{+} \longrightarrow \Delta \quad$ Math 220A
Cayley transform: $c(z)=\frac{z-i}{z+i}, \quad c^{-1}(w)=\therefore \frac{1+w}{1-w}$.

$$
\zeta^{+} \cong \Delta
$$

(Ii) $u=\sigma \backslash \mathbb{R}_{\leq 0}, v=\operatorname{strip}-\pi<\operatorname{lm} z<\pi$

This is Homework 2, Math 2204 .

Very Important Theorem (Riemann Mapping)

Given $u, v \neq \sigma, u, v$ simply connected $\Rightarrow u, v$ are biholomorphic.

In particular, if $V=\Delta(0,1)$, then any
$u \neq \sigma$ simply connected then u is biholomorphic to $\Delta(0,1)$.

- Riemann's dissertation (1851) sketched a proof.
- Rofored by Gauss
"The whole is a solid wort of high quality, not
merely fulfilling the requirements usually sot for doctoral thesis,
but far surpassing them."
- it took the -ffort of many great minds

Weirrstap, Carathoodory, Hilbert, Schwarz, Koobe. Fejer, Rived a others to finalize the proof.

Question B

Given $u, v \subseteq \mathbb{C}$ biholomorphic can we construct
II one biholomorphiom $u \rightarrow v$ explicitly?
[II all biko lomorphiom $u \longrightarrow v$ explicitly?

Special cases of IG

We saw some specific examples above e.g.
the Cayley transform for $g+$ and $\Delta(0,1)$.

When $u=V$, Question B becomes.

Question C

What are all bibolomorphioms $f: u \longrightarrow u$?

Remarks

IG Aux $(u)=\{f: u \longrightarrow u: f$ holomorphic \& bijective $\}$ is a group.

Indeed $f \in \operatorname{Aut}(u) \Rightarrow f^{-1} \in \operatorname{Aut}(u)$ using that f^{-1} is automatically holomorphic by the above remarks.
(6) Examples: We can consider this question
for $u=\Delta, \jmath^{+}, ब, \Delta^{x}, ब^{x}=t c \ldots$
["] If $f . g: u \longrightarrow v, f=$ known biholomorphism
then any other biholomorphism $g: u \longrightarrow V$ differs
from f by automorphisms:

In the same faction $g=f \cdot \psi$ where $\psi=f^{\prime \prime} \cdot g$ and $\psi \in \operatorname{Aut}(u)$.

Thus knowlodge of Question c holps with aspects of Question B.

Question Δ

Io the acton of But (u) on U transitive ire. $\forall a, b \in u \quad \exists f \in \operatorname{Aut}(u)$ with $f(a)=b$?

Example $u=\varnothing \cup\{\infty\}$. FLT are automorphisms of u
\& action is hansitive. (Math 220A)

Question E Given $a \in u$, describe $f: u \longrightarrow u$
biholomorphism, with $f(a)=a . \backsim$ fixed points.

Many other questions can be asked.
I. Schwartz Jemma - Conway <compat>ᄐ<compat>ᅳ<compat>. 2. $\Delta=\Delta(0,1)$

Theorem Given $f: \Delta \longrightarrow \Delta, f(0)=0$ then
[] $\left|f^{\prime}(0)\right| \leq 1$. and
[प] $|f(2)| \leq|z|$

If either $|f \prime(0)|=1$ or $f z_{0} \neq 0$ with $|f(20)|=\left|z_{0}\right|$ then f is a rotation i.e. $f(z)=e^{10} z$

Proof $Z_{0} g(2)=\left\{\begin{array}{l}\frac{f(2)}{2}, z^{2} \neq 0 \\ f^{\prime}(0), z^{2}=0\end{array}\right.$. By the removable
singularity theorem (Lecture 10, Math 220A), g is holomorphic.
This uses $f(0)=0$.

Let of $r<1$. Then for $|w|=r$,

$$
|g(w)|=\frac{|f(w)|}{|w|} \leq \frac{1}{r} \text { since } \operatorname{lm} f \subseteq \Delta \text {. }
$$

By maximum modulus principle,

$$
\sup |g(w)|=\sup \mid g(w)) \leq \frac{1}{r} .
$$

$$
|w| \leq r \quad(w)=r
$$

In particular, for all $1 \neq 1<r<1$, we have

$$
|g(z)| \leq \frac{1}{r}
$$

Make $r \rightarrow 1$ keeping \& fixed. Then $|g(z)| \leq 1$. In particular

$$
|g(0)|=\left|f^{\prime}(0)\right| \leq 1 \text { \& }|f(2)| \leq|z| .
$$

If $\left|f^{\prime}(0)\right|=1$ or $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$ for $z_{0} \neq 0$ then other

$$
|g(0)|=1 \text { or }\left|g\left(z_{0}\right)\right|=1 \text {. Since }|g(z)| \leq 1 \nexists z \text { then } \dot{g} \text { must bs }
$$

constant by MMP again. Thus $g(z)=e^{1 \theta} \Rightarrow f(z)=e^{1 \theta} z$.

Corollary $f: \Delta \rightarrow \Delta$ biholomorphism. $f(0)=0$ then f is a rotation.

Proof Not $f(0)=0 \Rightarrow f^{-9}(0)=0$. We apply Schwartz to both f, f^{-1} We obtain
$|f(2)| \leq 2$ and $/ f^{-1}(w) / \leq w$. $z_{0} t w=f(2)$ to get

$$
|z| \leq|f(z)| \text {. Therefore }|f(z)|=|z| \forall z \Rightarrow f \text { rotation. }
$$

II. Automorphisms of the unit disc $\quad \Delta=\Delta(0,1)$.

Question What can we do if we are given

$$
f: \Delta \longrightarrow \Delta \text { with } f(0)=a \neq 0,|a|<1
$$

Key Idea

$$
\exists \varphi_{a}: \Delta \longrightarrow \Delta \text { with } \varphi_{a}(a)=0 \text {. }
$$

Wo can then recenter f by considering $\tilde{f}=\varphi_{a} \cdot f$.

specifically

$$
\varphi_{q}(z)=\frac{z-a}{1-\bar{a} z}
$$

Important Properties
I五 $\varphi_{a}: \Delta \longrightarrow \Delta, \varphi_{a}: \partial \Delta \longrightarrow \partial \Delta$
(4) $\quad \varphi_{a}(0)=-a \quad, \quad \varphi_{a}(a)=0$
(11) $\varphi_{a}, \varphi_{-a}$ are inverses

Proof ["] -IN] follow by direct calculation.

II Not that $\varphi_{a}(\eta)=\frac{2-a}{1-\overline{a z}}$ has pole at $\frac{1}{\bar{a}}$ but this is not in $\bar{\Delta}$ since lal<1. Thus φ_{a} is holomorphic in Δ, continuous in $\bar{\triangle}$. If we show
(*) $\left|\varphi_{a}(z)\right|=1$ if $|z|=1$, by the maximum modulus, it follows $\left|\varphi_{a}(z)\right|<1+1 z \mid<1$ so $\varphi_{a}: \Delta \longrightarrow \Delta$. To see (*) we show $|z-a|=||-a ̄ z|$ if $| z \mid=1$.

Nok

$$
\begin{aligned}
11-\bar{a} z \mid & =11-a \bar{z} \mid \text { congugation } \\
& \left.=11-\frac{a}{z} \right\rvert\, \text { since } z \bar{z}=|z|^{2}=1 \\
& =\frac{|z-a|}{|z|}=|2-a| \text { as moeded. }
\end{aligned}
$$

Thzorm If $f: \Delta \longrightarrow \Delta$ is biholomorphic then

$$
f(z)=e^{1 \theta} \cdot \frac{z-a}{1-\bar{a} z} \text { for }|a|<1 \text {. }
$$

Proof

Zet a be such that $f(a)=0$. Jot

$$
\tilde{f}=f \cdot \varphi_{-a} \Rightarrow \tilde{f}(0)=0 .
$$

Nole \tilde{f} is a biholomopohism. Then \tilde{f} is a rotation

$$
\begin{aligned}
& \Rightarrow \tilde{f}(\nu)=e^{1 \theta} \omega \Rightarrow f \cdot \varphi_{-a}(w)=e^{1 \theta} \omega \Rightarrow f(\lambda)=e^{1 \theta} \varphi_{a}(z) . \\
& \text { sefting } \omega=\varphi_{a}(\lambda) .
\end{aligned}
$$

Remark We have seen φ_{a} 's in HWK 1.

Blaschke's products f hols in Δ, continuous in $\bar{\Delta}$,

$$
\begin{gathered}
f: \Delta \longrightarrow \Delta, \quad \partial \Delta \longrightarrow \partial \Delta \quad \text { then } \\
f(z)=c z^{m} \frac{N}{\prod} \varphi_{k} \quad,|c|=1 . \\
k=, \quad \imath \text { zeroes of } f .
\end{gathered}
$$

III. Understanding the action of Auf (Δ) on Δ

Important Remark the action of Nut (Δ) on Δ is
transitive $\quad \forall a, 6 \in \Delta \quad \exists f \in \operatorname{Aut} \Delta, f(a)=6$.

Note $f=\varphi_{-6} \cdot \varphi_{a}$ is an automorphism and

$$
f(a)=\varphi_{-b} \varphi_{a}(a)=\varphi_{-b}(0)=b .
$$

