$$
\text { Math 220B - Winter } 2021 \text { - Midterm Exam }
$$

Name: \qquad

Student ID: \qquad

Instructions:

There are 5 questions which are worth 50 points.
You may not use any books, notes or internet. If you use a homework problem you will need to reprove it.

There is a 15 minute buffer period to upload your exam in gradescope.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
Total		50

Problem 1. [10 points; 5, 5.]
(i) Give an example of an entire function with simple zeroes only at $z=\sqrt{n}$ for each $n \in \mathbb{Z}_{\geq 0}$, and no other zeroes.
(ii) Give an example of a meromorphic function function in \mathbb{C} with poles only at $z=-\sqrt{n}$ and principal parts $\frac{1}{z+\sqrt{n}}$, for $n \in \mathbb{Z}_{\geq 0}$.

Problem 2. [10 points.]

Consider $\left\{a_{n}\right\},\left\{b_{n}\right\}$ two sequences of complex numbers without common terms, such that

$$
\sum_{n=1}^{\infty}\left|a_{n}-b_{n}\right|<\infty
$$

and $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Show that the product

$$
f(z)=\prod_{n=1}^{\infty} \frac{z-a_{n}}{z-b_{n}}
$$

defines a holomorphic function in the open set $\mathbb{C} \backslash\left\{b_{1}, b_{2}, \ldots\right\}$, and determine its zeros.

Problem 3. [10 points.]
Let $f: \Delta(0,1) \backslash\{0\} \rightarrow \mathbb{C}$ be a holomorphic function on the punctured unit disc. Let

$$
f_{n}: \Delta(0,1) \backslash\{0\} \rightarrow \mathbb{C}, \quad f_{n}(z)=f\left(\frac{z}{n}\right) .
$$

Show that the family $\mathcal{F}=\left\{f_{n}: n \geq 1\right\}$ is normal iff f has a removable singularity at the origin.

Problem 4. [10 points; 4, 6.]
Recall the function

$$
G(z)=\prod_{n=1}^{\infty} E_{1}\left(-\frac{z}{n}\right)
$$

(i) Show that there exists an entire function h such that

$$
\left(z+\frac{1}{2}\right) G(z) G\left(z+\frac{1}{2}\right)=e^{h(z)} G(2 z) .
$$

(ii) Show furthermore that $h(z)=a z+b$.

Remark: The constants a, b can be found explicitly, by setting $z=0$ and $z=1 / 2$ and computing the relevant values of G from the values of the Γ-function. You can try it for yourself if you are interested. It's good practice with the Γ-function.

Problem 5. [10 points.]
Construct a holomorphic function $f: \Delta(1,3) \rightarrow \Delta(0,2)$ such that
(i) f extends to a continuous function $f: \bar{\Delta}(1,3) \rightarrow \bar{\Delta}(0,2)$ such that $|f(z)|=2$ if $|z-1|=3$
(ii) f has a zero at $z=2$ with order 2 and a simple zero at $z=3$, and no other zeros.

Please fully justify your answer.

