$$
\text { Math 220B - Winter } 2024 \text { - Midterm Exam }
$$

Name: \qquad

Student ID: \qquad

Instructions:

There are 5 questions which are worth 50 points.
You may not use any books, notes or internet.
If you use a homework problem you will need to reprove it.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
Total		50

Problem 1. [10 points; 4, 6.]
(i) Write down an entire function with simple zeros only at $z=\sqrt[3]{n}$ for $n=1,2,3, \ldots$, and no other zeros.
(ii) Show that there exists an entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(\sqrt[3]{n})=\sqrt{n}$ for all $n=1,2,3, \ldots$.

Problem 2. [10 points; 5, 5.]
(i) Show that the infinite product

$$
f(z)=\prod_{n=2}^{\infty}\left(1-n z^{n}\right)
$$

defines a holomorphic function in the unit disc $\Delta=\Delta(0,1)$.
(ii) Give one example of a holomorphic function $g: \Delta \rightarrow \mathbb{C}$ with simple zeros at $\frac{1}{\sqrt[n]{n}}$ for $n=2,3, \ldots$, and such that $g(0)=g^{\prime}(0)=1$.

Problem 3. [10 points.]
Let $\Delta=\Delta(0,1)$ be the unit disc. Show that the family

$$
\mathcal{F}=\left\{f: \Delta \rightarrow \mathbb{C} \text { holomorphic, }\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)+|f(0)| \leq 1\right\}
$$

is normal.

Problem 4. [10 points.]
Let $\Delta=\Delta(0,1)$ be the unit disc. Let $f: \bar{\Delta} \rightarrow \mathbb{C}$ be continuous, f holomorphic in Δ, and such that
(i) f has zeros at $\frac{1}{2}$ and $\frac{1}{3}$ with multiplicity 2 , and no other zeros,
(ii) $|f(z)|=1$ for $|z|=1$.

Determine $|f(0)|$. Please justify your answer.

Problem 5. [10 points; 3, 7.]
(i) For $f: \mathbb{C} \rightarrow \mathbb{C}$ entire with a zero of order m at a, show that f^{\prime} / f has a simple pole at a with residue equal to m.
(ii) Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of distinct complex numbers with $a_{n} \rightarrow \infty$. Let $\left\{m_{n}\right\}_{n \geq 1}$ be a sequence of positive integers.

Let g be a meromorphic function in \mathbb{C} with simple poles only at a_{n}, and with residues equal to m_{n} at a_{n}.

Show that there exists an entire function $h: \mathbb{C} \rightarrow \mathbb{C}$ such that $h^{\prime} / h=g$.

