Math 220B - Winter 2024 - Midterm Exam

Name: _____

Student ID: _____

Instructions:

There are 5 questions which are worth 50 points.

You may not use any books, notes or internet.

If you use a homework problem you will need to reprove it.

Question	Score	Maximum
1		10
2		10
3		10
4		10
5		10
Total		50

Problem 1. [10 points; 4, 6.]

(i) Write down an entire function with simple zeros only at $z = \sqrt[3]{n}$ for n = 1, 2, 3, ..., and no other zeros.

(ii) Show that there exists an entire function $f : \mathbb{C} \to \mathbb{C}$ such that $f(\sqrt[3]{n}) = \sqrt{n}$ for all $n = 1, 2, 3, \ldots$

Problem 2. [10 points; 5, 5.]

(i) Show that the infinite product

$$f(z) = \prod_{n=2}^{\infty} \left(1 - nz^n\right)$$

defines a holomorphic function in the unit disc $\Delta = \Delta(0, 1)$.

(ii) Give one example of a holomorphic function $g : \Delta \to \mathbb{C}$ with simple zeros at $\frac{1}{\sqrt{n}}$ for $n = 2, 3, \ldots$, and such that g(0) = g'(0) = 1.

Problem 3. [10 points.]

Let $\Delta = \Delta(0, 1)$ be the unit disc. Show that the family

 $\mathcal{F} = \{ f : \Delta \to \mathbb{C} \text{ holomorphic, } |f'(z)|(1-|z|^2) + |f(0)| \le 1 \}$

is normal.

Problem 4. [10 points.]

Let $\Delta = \Delta(0,1)$ be the unit disc. Let $f: \overline{\Delta} \to \mathbb{C}$ be continuous, f holomorphic in Δ , and such that

- (i) f has zeros at $\frac{1}{2}$ and $\frac{1}{3}$ with multiplicity 2, and no other zeros, (ii) |f(z)| = 1 for |z| = 1.

Determine |f(0)|. Please justify your answer.

Problem 5. [10 points; 3, 7.]

(i) For $f : \mathbb{C} \to \mathbb{C}$ entire with a zero of order m at a, show that f'/f has a simple pole at a with residue equal to m.

(ii) Let $\{a_n\}_{n\geq 1}$ be a sequence of distinct complex numbers with $a_n \to \infty$. Let $\{m_n\}_{n\geq 1}$ be a sequence of positive integers.

Let g be a meromorphic function in \mathbb{C} with simple poles only at a_n , and with residues equal to m_n at a_n .

Show that there exists an entire function $h: \mathbb{C} \to \mathbb{C}$ such that h'/h = g.