Math 259 - Homework 2. Due February 3.

1. **Sheafification.** Check the details of the sheafification lemma stated and partially proved in class. Specifically, let $\mathcal{A} \to X$ be a presheaf on a topological space X. Show that

(i) There exists a sheaf \mathcal{A}^{sh} together with a morphism $\iota: \mathcal{A} \to \mathcal{A}^{\text{sh}}$ such that for all presheaf morphisms $f: \mathcal{A} \to \mathcal{B}$, where \mathcal{B} is a sheaf, there exists a unique sheaf morphism $f^{\text{sh}}: \mathcal{A}^{\text{sh}} \to \mathcal{B}$ such that $f^{\text{sh}} \circ \iota = f$.

(ii) Show that the stalks of \mathcal{A} and \mathcal{A}^{sh} coincide.

(iii) Show that if \mathcal{A} is a sheaf, then $\mathcal{A} = \mathcal{A}^{\text{sh}}$.

2. **Real and holomorphic Poincaré lemma.**

(i) Briefly sketch the proof of the real Poincaré lemma, and briefly explain that if X is a real manifold, then

$$0 \to \mathbb{R} \xrightarrow{i} \mathcal{A}^0 \xrightarrow{d} \mathcal{A}^1 \xrightarrow{d} \ldots \xrightarrow{d} \mathcal{A}^n \to 0$$

is an exact sequence of sheaves, where \mathcal{A}^k denotes the sheaf of smooth k-forms.

Hint: If $\omega = \sum_I \omega_I dx_I$ is a closed k-form defined over a star-shaped domain in \mathbb{R}^n, show that ω is exact, i.e. $\omega = d\eta$, by considering the $(k-1)$-form

$$\eta = \sum_I \sum_{j=1}^k \left(\int_0^1 t^{k-1} \omega_I(tx) \, dt \right) (-1)^{j-1} x_i^j dx_{i_1} \wedge \ldots \wedge \widehat{dx_{i_j}} \wedge \ldots \wedge dx_{i_k}.$$

(ii) Prove the holomorphic Poincaré lemma. That is, show that if $\Delta \subset \mathbb{C}^n$ is a polydisk and ω is a holomorphic differential k-form over Δ with $d\omega = 0$, then ω is an exact form $\omega = d\eta$, for some holomorphic $(k-1)$-form η over Δ.

(iii) Deduce that if X is a complex manifold of dimension n, then we have an exact sequence of sheaves

$$0 \to \mathbb{C} \xrightarrow{i} \Omega^0 \xrightarrow{d} \Omega^1 \xrightarrow{d} \ldots \xrightarrow{d} \Omega^n \to 0,$$

where Ω^k denotes the sheaf of holomorphic k-forms.