REVIEW PROBLEMS FOR MIDTERM I

First, review all the homework problems. In addition, you may want to solve the following problems. Solutions for the textbook problems can be found in the solution manual.

A. Evaluate by changing the order of integration
\[
\int_0^1 \int_{\sqrt{y}}^1 e^{x^3} dx \, dy.
\]

B. Find the area of the region in the first quadrant bounded by the hyperbola \(xy = 1\) and the parabolas \(x = y^2\) and \(x = 8y^2\). Express the answer in the simplest possible form.

C. Find the volume of the solid bounded by the cylinders
\[z = 1 - y^2, \ z = y^2 - 1\]
and the planes \(x = 0\) and \(x + z = 1\).

D. Find the volume of the solid in \(\mathbb{R}^4\) given by
\[x^2 + y^2 + z^2 + w^4 \leq 1\]
using Cavalieri’s principle. The answer should be in terms of the beta function.

(2) Polar, cylindrical, spherical coordinates.

A. Using cylindrical coordinates, find the mass of the solid in the upper half space \(z \geq 0\) with density \(\rho = z\) bounded by the sphere \(x^2 + y^2 + z^2 = 2\) and the cone \(z^2 = x^2 + y^2\).

B. Using spherical coordinates, find the volume of the cap of the spherical cap that lies between the sphere
\[x^2 + y^2 + z^2 \leq 2\]
and above the plane \(z = 1\).

C. From the textbook, solve problem 4.10.9

(3) Arbitrary changes of variables.

A. Calculate the mass of a plate with density \(\delta(x, y) = xy\) contained between the ellipses \(x^2 + \frac{y^2}{4} = 2, \ x^2 + \frac{y^2}{4} = 4\) and the hyperbolas \(x^2 - y^2 = 1\) and \(x^2 - y^2 = 2\).

B. Consider the region \(D\) bounded by the curves
\[1 \leq x^{30} + y^{60} \leq 2, \ y^2 \leq x \leq 2y^2.\]
Integrate the function \(f(x, y) = \frac{x}{y^3}\) over \(D\).

C. From the textbook, solve problem 4.10.19.
(4) **Integrable functions. Measure theory.**

As usual, this topic is a bit more difficult than the rest.

A. Using the definition with Riemann sums, calculate the integral of the function \(f(x) = e^x \) over the interval \([0, 1]\).

Hint: To calculate the Riemann sums, you may need to remember the geometric series

\[
1 + q + q^2 + \ldots + q^m = \frac{1 - q^{m+1}}{1 - q}.
\]

B. Show that if \(f, g : [0, 1] \to [0, 1] \) are integrable functions, and if \(f \) is continuous, then \(f \circ g \) is integrable.

Hint: The integrability theorem. Where is \(f \circ g \) discontinuous?

C. Solve problem 4.3.2.

D. Show that if \(X_1, \ldots, X_n \ldots \) is an infinite sequence of sets, all of measure zero, then their union \(X_1 \cup X_2 \cup \ldots \cup X_n \cup \ldots \) also has measure zero.

Hint: Generalize the proof given in class showing that any infinite sequence of numbers has measure zero.