Problem 1.

Show that for all \(x \geq 0 \), the following inequality holds
\[x - \ln(1 + x) \geq 0. \]

Solution: Consider the function
\[f(x) = x - \ln(1 + x). \]

We have
\[f'(x) = 1 - \frac{1}{1 + x} = \frac{x}{x + 1} \geq 0 \]
for \(x \geq 0 \). Thus, \(f \) is increasing over \([0, \infty) \) hence for \(x \geq 0 \) we have
\[f(x) \geq f(0). \]

But \(f(0) = 0 \) so \(f(x) \geq 0 \).
Problem 2.

(i) Calculate the following limit or show that it does not exist
\[
\lim_{(x,y,z) \to (0,0,0)} \frac{(x^2 + y^2 + z^2)^2}{2x^2 + 3y^2 + 4z^2}.
\]

(ii) Show that the following limit does not exist
\[
\lim_{(x,y) \to (0,0)} \frac{x^3y^5}{x^8 + y^8}
\]

(iii) Using greek letters, rigorously prove that the sequence
\[
x_n = \frac{3n^2 - 1}{n^2 + 1}
\]
converges and find its limit.

Solution:

(i) We claim that the limit is 0. Indeed,
\[
\frac{(x^2 + y^2 + z^2)^2}{2x^2 + 3y^2 + 4z^2} = \frac{(x^2 + y^2 + z^2)}{2x^2 + 3y^2 + 4z^2} \cdot (x^2 + y^2 + z^2).
\]
This is a product of a fraction which is bounded by \(\frac{1}{2}\) and a function \(x^2 + y^2 + z^2\) which goes to 0. By a theorem in class, the limit is 0. To see that the fraction involved is bounded by \(1/2\) we need to prove
\[
\frac{x^2 + y^2 + z^2}{2x^2 + 3y^2 + 4z^2} \leq \frac{1}{2} \iff 2(x^2 + y^2 + z^2) \leq 2x^2 + 3y^2 + 4z^2
\]
which is clearly true.

(ii) We evaluate the limit along the line \(x = my\), for a fixed slope \(m\), as \(y \to 0\) (so that \(x = my \to 0\)).

The fraction
\[
\frac{x^3y^5}{x^8 + y^8} = \frac{(my)^3 \cdot y^5}{(my)^8 + y^8} = \frac{m^3y^8}{(m^8 + 1)y^8} = \frac{m^3}{m^8 + 1}.
\]
This fraction depends on \(m\) so the limit does not exist.

(iii) We show \(\lim_{n \to \infty} x_n = 3\). Fix \(\epsilon > 0\). We need to exhibit \(N\) such that if \(n \geq N\) then
\[
|x_n - 3| < \epsilon
\]
for \(n \geq N\).

Now,
\[
|x_n - 3| = \left| \frac{3n^2 - 1}{n^2 + 1} - 3 \right| = \frac{4}{n^2 + 1} < \epsilon \iff n^2 + 1 > \frac{4}{\epsilon} \iff n^2 > \frac{4}{\epsilon} - 1.
\]
If \(4/\epsilon - 1 < 0\), any \(N > 0\) works. Otherwise, if \(4/\epsilon - 1 > 0\), pick any
\[
N > \sqrt{\frac{4}{\epsilon} - 1}.
\]
For \(n \geq N\), the above inequalities are satisfied, proving convergence.
Problem 3.

Consider the function \(f : \mathbb{R}^2 \to \mathbb{R} \) given by \(f(x, y) = e^{(x-1)^2+y^2} \).

(i) Draw the level diagram of the function \(f \), showing at least three different levels.
(ii) Draw the graph of the function \(f \).
(iii) Calculate the partial derivatives of \(f \) at the point \((0, 1)\). Write down the total derivative of \(f \) at \((2, 1)\).
(iv) Find the equation of the tangent graph of \(f \) at the point \((0, 1, e^2)\).
(v) Find the directional derivative of \(f \) at the point \((0, 1)\) in the direction \(u = 2i + 3j \).
(vi) For which unit vector \(u \) is the directional derivative of \(D_u f \) at \((0, 1)\) is maximal?

Solution:

(i) The level curve with level \(c \) is
\[
e^{(x-1)^2+y^2} = c \iff (x-1)^2 + y^2 = \ln c
\]
which is a circle of center \((1, 0)\) and radius \(\sqrt{\ln(c)} \) for \(c \geq 1 \) (the level curve is empty if \(c < 1 \) since the square root doesn’t make sense, as \(\ln(c) < 0 \)). Some possible level curves are obtained for \(c = e, e^4, e^9 \) which correspond to circles of center \((1, 0)\) and radii \(1, 2, 3\).

(ii) The graph has as level curves circles centered at \((1, 0)\) of radii \(\sqrt{\ln(c)} \) and placed at various heights \(c \). The graph resembles in shape the paraboloid except that the cross sections are exponentials as opposed to parabolas.

(iii) We have
\[
D_1 f = 2(x-1)e^{(x-1)^2+y^2} \Rightarrow D_1 f(0,1) = -2e^2,
\]
\[
D_2 f = 2ye^{(x-1)^2+y^2} \Rightarrow D_2 f(0,1) = 2e^2.
\]
The total derivative of \(f \) at \((1, 0)\) exists since the derivatives are continuous. It equals
\[
Df(0,1) = [-2e^2 \, 2e^2].
\]

(iv) The equation of the tangent plane is
\[
z - e^2 = -2e^2x + 2e^2(y - 1) \iff z = -2e^2x + 2e^2y - e^2.
\]

(v) The directional derivative is \(D_u f(0,1) = Df \cdot u = (-2e^2, 2e^2) \cdot (2, 3) = 2e^2 \).

(vi) The gradient is the direction of steepest increase so
\[
u = \frac{Df}{\|Df\|}(0,1) = \frac{1}{\sqrt{2}}(-1,1).
\]
Problem 4.

(i) Let U be the set of 3×3 matrices A such that $A^3 + A - I$ is invertible. Show that U is open.

Solution: Consider the function

$$f : \text{Mat}(3,3) \to \mathbb{R}, \quad f(A) = \det(A^3 + A - I).$$

Clearly, f is continuous being the composition of the determinant function which is continuous and of the function $A \to A^3 + A - I$ which is continuous as well (since it is given by polynomials in the entries of A). The set U is the preimage $U = f^{-1}((-\infty, 0) \cup (0, \infty))$ of an open set under a continuous map. Thus U must be open.

(ii) Indicate which of the following sets of 3×3 matrices are open, closed, compact or neither.

- The subset S of matrices A with $\|A - I\| = 1$.

Solution: Closed and compact. Indeed, the set is just the closed ball of radius 1 around the identity matrix, hence it is compact. The set is not open.

- The subset S of matrices with $\frac{1}{2} < \|A - I\| < 1$.

Solution: Open. This is just an open annulus of radii $\frac{1}{2}$ and 1 around the identity matrix. The set is not closed (the inequalities are strict hence the boundary is not in the set), and therefore also not compact.

- The subset S of matrices with trace 0.

Solution: Closed. The set S is the preimage of 0, which is closed in \mathbb{R}, under the continuous trace map $A \to \text{Tr}(A)$. The set is not bounded, hence not compact. The set is also not open.

(ii) Indicate which of the following subsets are open, closed, compact. No justification is necessary.

- The subset $S \subset \mathbb{R}^2$ equal to $[0, 1] \times (0, 1)$.

Solution: Not open, nor closed, nor compact.

- The subset $S \subset \mathbb{R}^2$ of pairs $(x, y) \in \mathbb{R}^2$ such that $xy + x^3 \sin(x) \leq 1$.

Solution: Closed. The set S is the preimage of the closed set $(-\infty, 1]$ under the continuous map $(x, y) \to xy + x^3 \sin(x)$. The set is not bounded from below hence it cannot be compact. It is also not open.

- The set $S = \{2 - \frac{1}{n} : n \text{ natural number}\} \cup \{1 + \frac{1}{n} : n \text{ natural number}\}$, viewed as a subset of \mathbb{R}.

Solution: Closed and compact. The set is clearly bounded. It is also closed since it contains its limit points. Indeed, the limit of $2 - \frac{1}{n}$ is 2 which belongs to the set (make $n = 1$ in $1 + 1/n$).
Likewise, the limit of $1 + \frac{1}{n}$ is 1 which belongs to the set (make $n = 1$ in $2 - \frac{1}{n}$). The set is not open.

- The set $S = \{2 + \frac{1}{n} : n \text{ natural number} \} \cup \{1 - \frac{1}{n} : n \text{ natural number} \}$, viewed as a subset of \mathbb{R}.

 Solution: Not closed, not open, not compact. Indeed, the set is not closed since the limit point of $2 + \frac{1}{n}$ is 2 and it does not belong to the set. Thus the set is also not compact. It cannot be open since no ball is contained in S.

- The subset $S \subset \mathbb{R}^2$ of pairs $(x, y) \in \mathbb{R}^2$ such that $x^2 + y^2$ is an integer.

 Solution: Closed. The complement of S is the union $n < x^2 + y^2 < n + 1$ for all possible natural numbers n. Each of these sets is open, so the complement of S is open as well. Thus S is closed. Clearly, S is unbounded so it cannot be compact. It is also not open.
Problem 5.

Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = -x^2 \cos(\pi x) + x^3 - \sin(\pi x)$.

(i) Calculate f' and show f' is continuous.

(ii) Explain why f' is bounded over the interval $[0, 1]$.

(iii) Show that f is uniformly continuous over the interval $[0, 1]$.

(iv) Show that there exists $c \in (0, 1)$ such that $f'(c) = 2$.

Solution:

(i) We have $f'(x) = -2x \cos(\pi x) + \pi x^2 \sin(\pi x) + 3x^2 - \pi \cos(\pi x)$. This is a sum of products of continuous functions hence it is continuous.

(ii) Since f' is continuous, it is bounded over any compact interval such as $[0, 1]$.

(iii) Since f' is bounded, it follows that f is Lipschitz by a homework problem, hence uniformly continuous, as proved in class.

(iv) We have $f(1) = 2$, $f(0) = 0$. By the mean value theorem, there exists $c \in (0, 1)$ such that $f'(c) = \frac{f(1) - f(0)}{1 - 0} = 2$.