From the textbook solve the following:

1. Page 181, problem 2.3.4(b), 2.3.5(b), 2.3.6.

2.
 (i) Find two invertible matrices whose sum is not invertible.
 (ii) Give examples of matrices A and B such that
 \[\det(A + B) \neq \det A + \det B. \]
 (iii) Exhibit two matrices A and B for which \(\det(A + B) = \det A + \det B. \)

3. For what values of k is the matrix
 \[
 \begin{pmatrix}
 1 & 1 & 1 \\
 1 & 2 & k \\
 1 & 4 & k^2
 \end{pmatrix}
 \]
 invertible?

4. Calculate the determinant of the following matrices and find their inverses if they exist:
 (i) \[
 \begin{pmatrix}
 1 & 1 & 1 & 1 \\
 2 & 1 & 1 & 2 \\
 0 & 1 & 2 & 4 \\
 3 & 3 & 4 & 5
 \end{pmatrix}
 \]
 (ii) \[
 \begin{pmatrix}
 1 & 1 & 2 & 1 \\
 0 & 1 & 3 & 2 \\
 2 & -1 & 0 & 4 \\
 1 & 1 & 1 & 1
 \end{pmatrix}
 \]

5. I. Suppose that C and A are $n \times n$ matrices.
 (i) If $B = C^{-1}AC$ show that $CBC^{-1} = A$.
 (ii) Show that $C^{-1}A^mC = (C^{-1}AC)^m$ for all $m \geq 1$.

II. Consider
\[
A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}.
\]
Calculate CAC^{-1}, and using part I, find A^m for all values of m.

6. The trace of a square matrix is the sum of the elements on the main diagonal:
\[\text{Tr } A = \sum_{i=1}^{n} a_{ii}. \]

Prove
(i) For any 2×2 matrix, we have

$$A^2 - \text{Tr} (A)A + \det A \cdot I = 0.$$

(ii) For any $n \times n$ matrices A and B we have

$$\text{Tr} AB = \text{Tr} BA.$$

7.

(i) Suppose R is a quadrilateral with vertices $(0, 0)$, $(2, 1)$, $(3, -3)$ and $(4, -1)$. Find the area of R.

(ii) If T is a linear transformation with matrix

$$\begin{bmatrix}
-3 & 2 \\
-1 & 2
\end{bmatrix}$$

find the area of the region $T(R)$.
