
From the textbook, solve the following questions:

1. (before Wednesday) For what values of a and b are the matrices

 \[
 A = \begin{bmatrix}
 0 & 0 & a \\
 1 & 0 & b \\
 0 & 1 & 0
 \end{bmatrix}
 \quad \text{and} \quad
 B = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & -2
 \end{bmatrix}
 \]

 similar?

2. (Wednesday, Nov 24) Find an orthonormal eigenbasis for the matrices

 (i) $A = \begin{bmatrix}
 1 & -2 \\
 -2 & 4
 \end{bmatrix}$

 (ii) $A = \begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 1
 \end{bmatrix}$

3. (Wednesday, Nov 24) Show that if A is a real symmetric matrix, $\det(A^2 + I) \neq 0$. (Diagonalize!)

4. (Wednesday, Nov 24) Find all symmetric matrices A such that $A^{2011} = I$. (Diagonalize! What are the eigenvalues of A?)

5. (Monday, Nov 29) Find the matrix of each quadratic form and determine the definiteness of the form:

 (i) $Q(x, y) = 3x^2 - 2xy + 2y^2$

 (ii) $Q(x, y, z, w) = x^2 + 4yz$

 (iii) $Q(x, y, z, w) = -x^2 - 2y^2 - z^2$

6. (Monday, Nov 29)

 (i) Show that if Q_1, Q_2 are quadratic forms with matrices A_1 and A_2, $Q_1 + Q_2$ is a quadratic form with matrix $A_1 + A_2$.

 (ii) Using (i), show that if A_1 and A_2 are symmetric matrices with only positive eigenvalues, $A_1 + A_2$ has only positive eigenvalues.

7. (Monday, Nov 29) Discuss the definiteness of the quadratic form with matrix

 $A = \begin{bmatrix}
 1 & 0 & 2 \\
 0 & 1 & 0 \\
 2 & 0 & 1
 \end{bmatrix}$.