
1. From the textbook, solve 2.10.2, 2.10.5, 2.10.9, 2.10.12.

2. Problems 3.1.2, 3.1.5(a), 3.1.6, 3.1.7, 3.1.10, 3.1.11, 3.1.19(a).

3. Recall the Taylor expansion
 \[e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \ldots \]
 (i) Formally substitute \(z = iy \) and find the Taylor expansion of \(e^{iy} \).
 (ii) Find the Taylor expansions of \(\cos y \) and \(\sin y \).
 (iii) Prove that
 \[e^{iy} = \cos y + i \sin y \]
 and derive that \(e^z = e^x(\cos y + i \sin y) \) as stated in class.
 (iv) We showed in class that \(z \to w = e^z \) is locally invertible. Write down an inverse for the exponential valid in a neighborhood of \(w = \frac{\pi i}{7} \). Where is the local inverse (the logarithm) defined?