Problem 1.

Find the limits below or explain why they do not exist:

(i) \(\lim_{x,y \to 0} \frac{(x^2+y^2)^2}{2x^2+3y^2} \)

We note that

\[
0 \leq \frac{(x^2+y^2)^2}{2x^2+3y^2} \leq \frac{(2x^2+3y^2)^2}{2x^2+3y^2} = 2x^2 + 3y^2 \to 0.
\]

Therefore, the original limit equals 0 as well.

(ii) \(\lim_{x,y \to 0} \frac{x^3y}{x^4+y^4} \)

The limit does not exist. Indeed, approaching 0 by keeping \(x = y \to 0 \), the fraction equals

\[
\frac{x^3 \cdot x}{x^4 + x^4} = \frac{1}{2}.
\]

On the other hand, approaching 0 by keeping \(x = 0, y \to 0 \), the fraction equals 0. Since the two answers are different, the limit does not exist.
Problem 2

Consider the function

\[f(x, y) = x^2 \sin(2y - 2x) \]

and the point \(P(1, \frac{\pi}{2} + 1) \).

(i) Find the gradient of \(f \) at the point \(P \).

We compute the derivatives

\[f_x = 2x \sin(2y - 2x) - 2x^2 \cos(2y - 2x) \]
\[f_y = 2x^2 \cos(2y - 2x) \]

\[\Rightarrow f_x(1, \frac{\pi}{2} + 1) = 2 \sin \pi - 2 \cos \pi = 2 \]
\[f_y(1, \frac{\pi}{2} + 1) = 2 \cos \pi = -2. \]

Then \(\nabla f(P) = (2, -2) \).

(ii) Calculate the directional derivative of \(f \) at \(P \) in the direction

\[\vec{u} = \frac{3i + 4j}{5}. \]

We have

\[f_{\vec{u}}(P) = \nabla f(P) \cdot \vec{u} = (2, -2) \cdot \left(\frac{3}{5}, \frac{4}{5} \right) = 2 \cdot \frac{3}{5} - 2 \cdot \frac{4}{5} = -\frac{2}{5}. \]

(iii) Find the (unit) direction of steepest decrease for the function \(f(x, y) \) at \(P \). What is the rate of decrease?

We have

\[\vec{u} = -\frac{\nabla f}{\|\nabla f\|} = \frac{(2, -2)}{\sqrt{2^2 + (-2)^2}} = \left(\frac{2}{\sqrt{8}}, -\frac{2}{\sqrt{8}} \right) = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right). \]

The rate of change equals

\[f_{\vec{u}}(P) = \nabla f(P) \cdot \vec{u} = -\nabla f(P) \cdot \frac{\nabla f(P)}{\|\nabla f(P)\|} = -\|\nabla f(P)\| = -\sqrt{8}. \]

(iv) Find a formula, valid near \(P \), which expresses the change \(\Delta f \) in \(f \) induced by a small change \(\Delta x \) in \(x \) and a small change \(\Delta y \) in \(y \).

We have

\[\Delta f = 2\Delta x - 2\Delta y. \]
(v) Find the equation to the tangent plane to the graph of f at the point $(P, f(P))$

Note that $f(P) = \sin \pi = 0$. Since $f_x(P) = 2$, $f_y(P) = -2$, we find

$$z = 2(x - 1) + 2(y - 1 - \frac{\pi}{2}) \implies z = 2x + 2y - 4 - \pi.$$
Problem 3.

Consider the function

\[f(x, y) = \begin{cases}
|y|, & \text{if } |x| \leq |y| \\
|x|, & \text{if } |y| < |x|
\end{cases} \]

(i) Draw the cross section to the graph of \(f \) corresponding to \(x = 1 \).

Assume \(x = 1 \). We have \(f(1, y) = |y| \) when \(|y| \geq 1 \) and \(f(1, y) = 1 \) if \(|y| < 1 \). The graph \(z = f(1, y) \) consists of three straight line segments:

- the first lies on the diagonal in the second quadrant,
- the horizontal line \(z = 1 \) when \(-1 < y < 1\)
- the third piece is contained in the diagonal of the first quadrant.

(ii) Draw the contour diagram of \(f \) showing at least the levels 1, 2 and 3.

To draw the curve of level \(z = 1 \), we solve for \(f(x, y) = 1 \). When \(|x| \leq |y| \), we have

\[f(x, y) = 1 \implies |y| = 1 \implies y = \pm 1 \text{ and } -1 \leq x \leq 1. \]

When \(|x| > |y| \), we have

\[f(x, y) = 1 \implies |x| = 1 \implies x = \pm 1 \text{ and } -1 < y < 1. \]

The level curve is a square of side 2 centered at the origin with vertices at \((\pm 1, \pm 1)\).

For the level 2, we get a square as well, this time of side 4 but still centered at the origin.

For level 3, we still get a square of side 6 centered at the origin.

(iii) Draw and describe the graph of \(f \).

The graph is an upside down infinite pyramid whose horizontal cross sections are squares, and whose vertex is at \((0, 0, 0)\).
Problem 4.

(i) Consider the function

\[F : \mathbb{R}^3 \to \mathbb{R}^2, \quad F(x, y, z) = (x + y^2, y + z^2). \]

Write down the total derivative \(Df \) at \((1, 1, 1)\).

Consider the first component \(f = x + y^2 \). Then the partial derivatives of \(f \) equal \(f_x = 1, f_y = 2y = 2, f_z = 0 \).

We similarly compute the other derivatives. The Jacobian matrix is

\[
Df(1, 1, 1) = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}
\]

(ii) Find the tangent plane to the surface \(xy^3 + yz^2 + x^2y = 3 \) at the point \((1, 1, 1)\). Estimate the value of \(z \) when \(x = 1.01 \) and \(y = 1.01 \).

Write \(f(x, y, z) = xy^3 + yz^2 + x^2y \). We find

\[
\begin{align*}
f_x &= y^3 + 2xy \quad \implies \quad f_x(1, 1, 1) = 3 \\
f_y &= 3xy^2 + z^2 + x^2 \quad \implies \quad f_y(1, 1, 1) = 5 \\
f_z &= 2yz \quad \implies \quad f_z(1, 1, 1) = 2.
\end{align*}
\]

The tangent plane equals

\[3(x - 1) + 5(y - 1) + 2(z - 1) = 0. \]

When \(x = 1.01 \) and \(y = 1.02 \) we find

\[3 \cdot .01 + 5 \cdot .01 + 2(z - 1) = 0 \quad \implies \quad z = .96. \]
Problem 5.

(i) Using greek letters, prove that the sequence
\[x_n = \frac{2n^2 - 1}{n^2 + 1} \]
converges and find its limit.

We claim that the limit equals 2. Fix \(\epsilon > 0 \). We need \(N \) such that if \(n \geq N \) we have
\[|x_n - 2| < \epsilon. \]

We calculate
\[|x_n - 2| = \left| \frac{2n^2 - 1}{{n^2 + 1} - 2} \right| = \frac{3}{n^2 + 1} < \epsilon \iff \frac{3}{\epsilon} < n^2 + 1 \iff \sqrt{\frac{3}{\epsilon} - 1} < n. \]

We can use any \(N > \sqrt{\frac{3}{\epsilon} - 1} \). The quantity under the square root may be negative if \(\epsilon > 3 \). If this is the case, any \(N \) works.

(ii) Complete the following sentence:
Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be a function. We say that \(\lim_{x \to a} f(x) = L \) if . . .

for all \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that if \(||x - a|| < \delta \), \(x \neq a \), then \(||f(x) - L|| < \epsilon \).
Problem 6.

Show that if $K \subset \mathbb{R}^n$ is compact and $F \subset K$ is closed, then F is compact as well.

Pick a sequence $\{x_n\}$ of elements of F. We show we can find a subsequence which converges to an element $x \in F$.

Since $F \subset K$, we have $x_n \in K$, for all n. Since K is compact, we can find a subsequence of $\{x_n\}$ which converges to some $x \in K$. However, since F is closed, the limit $x \in F$. Therefore, the subsequence is convergent in F, which is what we wanted.