1. Let $\mathbf{F}=y z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$ and $\mathbf{G}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$.

a. Compute curl \mathbf{F} and curl \mathbf{G}.

Ans curl $\mathbf{F}=\mathbf{i}+y \mathbf{j}+(1-z) \mathbf{k}$ and $\operatorname{curl} \mathbf{G}=0$.
b. Is \mathbf{F} conservative? If \mathbf{G} conservative? In your answer, did you make any assumptions about the domain of definition of either of these vector fields?
Ans \mathbf{F} is not conservative, \mathbf{G} is conservative. We needed to make sure that the domains of definition are simply connected. Both \mathbf{F} and \mathbf{G} are defined everywhere so this isn't a problem.
2. Let C be the circle defined by $y^{2}+z^{2}=1, x=0$.
a. Compute $\iint_{C} \mathbf{F} \cdot d \mathbf{R}$ for the \mathbf{F} in problem 1.

Ans $\pm \pi$. One could use Stokes' Theorem here to simplify the calculations.
b. Compute $\iint_{C} \mathbf{G} \cdot d \mathbf{R}$ for the \mathbf{G} in problem 1.

Ans 0.
3. Let S be the part of the plane $z=3-x-y$ which lies over $0 \leq x \leq \pi / 2,0 \leq y \leq$ $\pi / 3$.
a. Compute both $d \mathbf{S}$ and $d S$, with $d \mathbf{S}$ pointing upward (i.e. $\mathbf{k} \cdot d \mathbf{S}>0$).

Ans $d \mathbf{S}=\mathbf{i}+\mathbf{j}+\mathbf{k} d x d y, d S=\sqrt{3} d x d y$.
b. Let $\mathbf{F}=z^{2} \mathbf{i}+x^{2} \mathbf{j}+y^{2} \mathbf{k}$. Compute $\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$.

Ans π^{2}.
c. Why you wouldn't use Stokes' Theorem to evaluate the integral from part b?

Ans The boundary of S is really difficult to describe due to various factors of π appearing in the limits. In order to properly apply Stokes' Theorem, you need to integrate over the boundary of S (written as C below):

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{R}
$$

4. Now let V be the solid tetrahedron bounded by $z=3-x-y$ and the coordinate axes $x=0, y=0, z=0$.
a. Graph the shadow this tetrahedron makes in the $x y$-plane.

Ans You should have graphed the region between $y=3-x, y=0, x=3$, and $x=0$.
b. Write the limits of integration for the triple integral

$$
\iiint_{V} d z d y d x
$$

Ans

$$
\int_{0}^{3} \int_{0}^{3-x} \int_{0}^{3-y-x} d z d y d x
$$

c. Evaluate the integral above, i.e. find the volume of V.

Ans 9/2.
d. Now let S be the top face of V, i.e. the part where $z=3-x-y$. Set $\mathbf{F}=x \mathbf{i}$. Compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$. (Hint: Recall that you already computed $d \mathbf{S}$ in Problem 2.)
Ans 9/2.
e. What can you conclude about $\iint \mathbf{F} \cdot d \mathbf{S}$ over the rest of the faces of V ? (Hint: Use the Divergence Theorem.)
Ans Let T be the boundary of the tetrahedron. By the Divergence Theorem, $\iint_{T} \mathbf{F} \cdot d \mathbf{S}=$ $\iiint_{V}(\nabla \cdot \mathbf{F}) d V$. But $\nabla \cdot \mathbf{F}=1$, so this last quantity was computed to be $9 / 2$ in part c. On the left side, we saw that the integral over the top face gave us $9 / 2$. Thus, the other faces must contribute 0 . In other words, $\iint \mathbf{F} \cdot d \mathbf{S}=0$, when the integral is taken over the remaining faces.
5. Let V be the set $\{(x, y, z): 0 \leq 3 x+3 y+3 z \leq 9,0 \leq y+z \leq 3,0 \leq 2 z \leq 6$. We wish to compute

$$
\iiint_{V} z^{5} d x d y d z
$$

a. Give a suitable three-dimensional change of variables which would simplify the integral. Ans Take $u=x+y+z, v=y+z, w=z$. After computing the Jacobian, we see $d u d v d w=$ $6 d x d y d z$.
b. Compute the integral with your choice of change of variables.

Ans 9/2.
6. Let $f(x, y, z)=x^{2} y+4 x+y^{2} z-z$.
a. Find all critical points for f.

Ans When we set grad $f=0$, we get the points $(-2,1,-2)$ and $(2,-1,2)$.
b. Characterize each point found in part a as either a local maximum, a local minimum, or a saddle point.
Ans First, the Hessian is:

$$
H=\left(\begin{array}{ccc}
2 y & 2 x & 0 \\
2 x & 2 z & 2 y \\
0 & 2 y & 0
\end{array}\right)
$$

We see that both $(-2,1,-2)$ and $(2,-1,2)$ are saddle points from the second derivative test: $(+,-,-)$ and $(-,-,+)$ respectively.
7. Set

$$
\mathbf{F}=\ln \left(y^{2}+z^{2}\right) \mathbf{i}+\left(\frac{2 x y}{y^{2}+z^{2}}\right) \mathbf{j}+\left(\frac{2 x z}{y^{2}+z^{2}}\right) \mathbf{k} .
$$

a. What is the domain of definition of \mathbf{F} ? Is this domain simply connected?

Ans The domain is all (x, y, z) such that either y or z is non-zero. If both y and z are zero then $\ln \left(y^{2}+z^{2}\right)$ is undefined. This domain is not simply connected. We are missing the entire x-axis.
b. Is \mathbf{F} conservative? If so, find a potential function for \mathbf{F}.

Ans \mathbf{F} is conservative. In fact, we may use the technique on p. 206 of the text to obtain the potential function $\varphi=x \ln \left(y^{2}+z^{2}\right)$. You can check quickly that $\mathbf{F}=\operatorname{grad} \varphi$.
8. Let $\varphi=e^{x y z}$ and $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
a. Compute $\nabla \cdot \varphi \mathbf{F}$.

Ans $3 e^{x y z}+3 x y z e^{x y z}$
b. Compute $\nabla \times \varphi \mathbf{F}$.

Ans $\left(x\left(z^{2}-y^{2}\right) e^{x y z}\right) \mathbf{i}+\left(y\left(x^{2}-z^{2}\right) e^{x y z}\right) \mathbf{j}+\left(z\left(y^{2}-x^{2}\right) e^{x y z}\right) \mathbf{k}$.

