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7. TEST FUNCTIONS AND PARTITIONS OF UNITY

7.1. Convolution and Young’s Inequalities. Letting 6, denote the “delta—
function” at z, we wish to define a product (x) on functions on R™ such that
0y * 0y = 0z4y. Now formally any function f on R" is of the form

= f(@)d,dx
Rn
so we should have

frg= / F(2)9(y)8s * 8ydudy = / F(@)g(0)8s 4y dady
R xR™ R

"‘LXRTL

= / f(z —y)g(y)ddzdy
R” xR

= [ [ s~ vatias] 6.0
which suggests we make the following definition.

Definition 7.1. Let f,g: R™ — C be measurable functions. We define
frg(@) = A f@—y)g(y)dy

whenever the integral is defined, i.e. either f(z—-)g(-) € L'(R™, m) or f(z—-)g(-) >
0. Notice that the condition that f(x —-)g(-) € L*(R",m) is equivalent to writing

/] * 19l (z) < oc.

Notation 7.2. Given a multi-index a € Z7}, let |a| = aq + -+ + o,

% = Hl’j , and 0y = <%> = 1_[1 <a—%) .
j=

Remark 7.3 (The Significance of Convolution). Suppose that L = 37 |- a0 is a
constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = ¢ in the form

u(z) = Kg() :=/ k(z,y)g(y)dy

n

where k(z,y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since 7,L = L, for all z € R™, (this is another way to characterize
constant coefficient differential operators) and L=! = K we should have 7, K = K.
Writing out this equation then says

[ bl = 20)aw)dy = (Kg) (@ - 2) = 7. Kg(o) = (K.9) (2)

= /n k(z,y)g9(y — 2)dy = /n k(z,y + 2)g(y)dy.

Since g is arbitrary we conclude that k(z — z,y) = k(z,y + 2). Taking y = 0 then
gives
k(z,z) = k(z — 2,0) =: p(z — z).
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We thus find that Kg = p % g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals.

Proposition 7.4. Suppose q € [1,00], f € L' and g € L4, then f * g(z) exists for
almost every x, fxg € LY and

1 *gll, < 1£14 lgll, -
For z ¢ R™ and f:R" — C, let 7. f : R” — C be defined by 7, f(z) = f(z — 2).

Proposition 7.5. Suppose that p € [1,00), then 7, : LP — LP is an isometric
isomorphism and for f € LP, z € R™ — 1, f € LP is continuous.

Proof. The assertion that 7, : LP — LP is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that 7_, o 7, = id.
For the continuity assertion, observe that

I = 7l = 1y (7= f = 7 Dl = ey f — £

from which it follows that it is enough to show 7, f — f in LP as z — 0 € R™.
When f € C.(R"), 7.f — f uniformly and since the K := U, |<isupp(7. f) is

compact, it follows by the dominated convergence theorem that 7,f — f in L? as

z — 0 € R™. For general g € LP and f € C.(R"),

729 —gll, <llmeg — £, + 7= f = fIl, + 11 —gll, = 7= = fll, +21[f —gll,
and thus

lim sup [7-9 — gll, < lim sup Irf = fll, +20f—gll,=21f~4l,-
z— z—

Because C¢(R") is dense in LP, the term ||f — g||, may be made as small as we
please. m

Definition 7.6. Suppose that (X, 7) is a topological space and p is a measure on
Bx = o(7). For a measurable function f : X — C we define the essential support
of f by
(7.1)

supp,(f) ={z € U : p({y € V: f(y) # 0}}) > 0 for all neighborhoods V" of z}.

Lemma 7.7. Suppose (X, 7) is second countable and f : X — C is a measurable
function and p is a measure on Bx. Then X := U \ supp,(f) may be described
as the largest open set W such that fly (z) =0 for p — a.e. x. Equivalently put,
C:= suppu(f) is the smallest closed subset of X such that f = flc a.e.

Proof. To verify that the two descriptions of suppﬂ( f) are equivalent, suppose
supp,,(f) is defined as in Eq. (7.1) and W := X \ supp,,(f). Then

W={zeX:u({yeV: f(y) #0}}) =0 for some neighborhood V of z}
=U{V Co X : pu(fly #0) =0}
=U{V C, X: fly =0for p—ae}.
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So to finish the argument it suffices to show u (f1lyw # 0) = 0. To to this let U be
a countable base for 7 and set

U :={V elU: fly =0ae.}.
Then it is easily seen that W = Ul and since Uy is countable p (flw # 0) <
dveu, h(fly #0)=0. =
Lemma 7.8. Suppose f,g,h: R™ — C are measurable functions and assume that
x s a point in R™ such that |f| * |g| () < 0o and |f] * (|g| * |h]) (z) < oo, then

(1) frg(x) =gxf(z)
(2) fx(gxh)(x) = (f*g)*h(z)
(3) If z e R™ and 7. (|f| * |lg])(z) = |f| % |g| (x — 2) < o0, then

T.(f*xg)(x) =T f xg(x) = f*7.9(x)

(4) If x ¢ supp,,(f)+supp,,(g) then f+*g(z) =0 and in particular, supp,, (f *
g) C supp,,, (f) + supp,,,(g) where in defining supp,,,(f * g) we will use the
convention that “f x g(x) # 07 when |f] * |g| (x) = oo.

Proof. For item 1.,

|f] *|g] (=) =/Rn |f] (z —y)lgl (y)dy=/Rn |1 (W) 19l (y — x)dy = |g] * | f| ()

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y — x — y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.

Item 4. Since f* g(z) = f*g(z) if f = f and g = § ae. we may,
by replacing f by fleupp, (r) and g by glgupp (g if necessary, assume that
{f # 0} C supp,,(f) and {g # 0} C supp,,(g). So if x ¢ (supp,,(f) + supp,,(9))
then x ¢ ({f #0}+{g#0}) and for all y € R", either x —y ¢ {f #0} or
y ¢ {g #0}. That is to say either x —y € {f =0} or y € {g =0} and hence
f(x—y)g(y) =0 for all y and therefore f x g(x) = 0. This shows that f* g =0 on

R™\ (suppm(f) + supp,, (g)) and therefore

R™\ (Suppm(f) + supp,, (g)) C R™ \ supp,,(f * g),

i.e. supp,,(f * g) C supp,,(f) + supp,,,(g). m

Remark 7.9. Let A, B be closed sets of R™, it is not necessarily true that A + B is
still closed. For example, take

A={(z,y):x>0and y > 1/z} and B = {(z,y):x <0and y > 1/|z|},

then every point of A+ B has a positive y - component and hence is not zero. On
the other hand, for z > 0 we have (z,1/z) + (—z,1/x) = (0,2/x) € A+ B for all
x and hence 0 € A+ B showing A + B is not closed. Nevertheless if one of the
sets A or B is compact, then A + B is closed again. Indeed, if A is compact and
Ty = ap + b, € A+ B and x, — = € R"™, then by passing to a subsequence if
necessary we may assume lim,, ., a, = a € A exists. In this case

lim b, = lim (z, —a,)=2z—a€ B

n—oo n—o0

exists as well, showing t =a+b € A+ B.
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Proposition 7.10. Suppose that p,q € [1,00] and p and q are conjugate exponents,
feLPandge LY then f+g € BCR"), |If *gll, <IIfIl, lgll, and if p,q € (1,00)
then f x g € Co(R™).

Proof. The existence of f * g(z) and the estimate |f x g| (z) <[/ f]|,, [|gll, for all
x € R™ is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows || f = g[[, <[/f[,[l9]l, - By relabeling
p and ¢ if necessary we may assume that p € [1,00). Since

7= (fx9) = frglly = lIm=f g = Frgl, <lm=f—fll,lgl, = 0as z—0

it follows that f % g is uniformly continuous. Finally if p,q € (1,00), we learn
from Lemma 7.8 and what we have just proved that f,, * g,, € C.(R™) where
Jm = flif|<m and gm = gl|g/<m- Moreover,

<A = Fmllp gl + [ fmlly llg = gmll,
<F = Famlly lgllg + 1171, g = gmll; — 0 as m — oo

showing f * g € Ch(R™). m

Theorem 7.11 (Young’s Inequality). Let p,q,r € [1,00] satisfy

1 1 1
(7.2) SpS=14-,
P q r

If f € LP and g € L9 then |f| * |g| (x) < oo for m - a.e. x and

(7.3) 1 gll, < 1171, llglly -

In particular L' is closed under convolution. (The space (L', *) is an example of a
“Banach algebra” without unit.)

Remark 7.12. Before going to the formal proof, let us first understand Eq. (7.2)
by the following scaling argument. For A > 0, let fy(z) := f(\x), then after a few
simple change of variables we find

AN, = A"YP(If]l and (f % g)x = Afx  ga-

Therefore if Eq. (7.3) holds for some p,q,r € [1, 0], we would also have

1F * gll, = X7 * g)all < AXAAL Ngall, = ACH ==t 7)) gl
for all A > 0. This is only possible if Eq. (7.2) holds.

Proof. Let o, 3 € [0,1] and py,ps € [0,00] satisfy p;* +py ' + 7~ = 1. Then
by Holder’s inequality,

f*g(a)] = / fla— y)g(y)dy] < / @ =1 @) @ — )] o) dy

< </ @ =)0 Ig(y)l(l_’g)rdyy/r (/ f@—y)|*" dy)l/pl (/ l9(y)| " dy>1/p2

1/r
= ( / [z —y) 7" |g<y>|“ﬁ>’“dy) I£12, lgll5,, -
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Taking the r*"" power of this equation and integrating on x gives

I +all < [ ( JACE |g<y>|“—ﬁ”"dy) az - |I£1%,, 12,

l1—a)r 1-8)r ar T
(7.4) = UG gl =5 I, HgliG, -
Let us now suppose, (1 — a)r = ap; and (1 — 8)r = Bp2, in which case Eq. (7.4)
becomes,
T T T
1 gll. < [[fllap, N9l

which is Eq. (7.3) with
(7.5) p:=(1—a)r=ap; and q:= (1 — B)r = fpa.
So to finish the proof, it suffices to show p and ¢ are arbitrary indices in [1, o]
satisfying p~ ' 4+ ¢ ' =14r"L
If o, B, p1, p2 satisfy the relations above, then

a=— and 8 = !
T+ p1 T+ p2
and 1 1 1r+4 17+ 1 1 2 1
T T
- _:_—pl_|__—p2:_+_+_:1+_.
p q D1 r D2 T D1 D2 T r

Conversely, if p, g, r satisfy Eq. (7.2), then let o and g satisfy p = (1 — a)r and
qg=(1-=pB)r, ie.
= =1-Z<iandp=""2 =1
T T r

From Eq. (7.2), a = p(1 — %) >0and 8 =q(1-— %) > 0, so that «, 8 € [0,1]. We
then define p; := p/a and py := q/f3, then

1 1 1 1 1 1 1 1 1 1 1

—t—+-=f-Fa-t-=-—-F-——F-=1

pr p2 T q p T a T p T T
as desired. m

<1

LS

Theorem 7.13 (Approximate § — functions). Let p € [1,00], ¢ € LY(R"), a :=
fRn f(@)dx, and fort > 0 let ¢1(x) =t "¢d(x/t). Then
(1) If f € LP with p < oo then ¢y x f — af in LP ast | 0.
(2) If f € BC(R™) and f is uniformly continuous then ||¢y * f — f|| ., — 0 as
£10.
(3) If f € L™ and f is continuous on U C, R™ then ¢ * f — af uniformly on
compact subsets of U ast | 0.

See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.

Proof. Making the change of variables y = tz implies
os 5@ = [ ety = [ s
so that

b f(z) - af(z) = / (@ —t2) — f(2)] d(2)dz

n

(7.6 = [ e (@)~ f@)) o)
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Hence by Minkowski’s inequality for integrals, Proposition 7.5 and the dominated
convergence theorem,

6045 =afl, < [ lmed = £l 162 dz = 0as ¢ L.

Ttem 2. is proved similarly. Indeed, form Eq. (7.6)

6045 = ofluo < [ 1mes = fllc ()] d2

which again tends to zero by the dominated convergence theorem because
limy|o || 7. f — fl|., = 0 uniformly in z by the uniform continuity of f.
Item 3. Let Br = B(0, R) be a large ball in R” and K CC U, then

sup [¢¢ * f(z) —af(z)] < +
reEK

/ o —t2) — f(2)] $(2)dz
Br

/ o —t2) — f(2)] d(2)dz
B

c
R

< [ o@lds s ife—t2) - @1+ 20 | 161z

z€K,z€EBR <
<loll,- sup [f(z—tz) - f(2)] +2||f\|oo/ |¢(2)| dz
rz€K,z€BRr |z|>R
so that using the uniform continuity of f on compact subsets of U,

limsup sup |6 £(2) ~ af(0) 21fe [ Jol2)dz -0 as R ox,
t]0 zeK |z|>R

Remark 7.14 (Another Proof of part of Theorem 7.13). By definition of the convo-
lution and Holder’s or Jensen’s inequality we have

/n v ¢y ()|Pda < /Rn </Rn(v(1: —y))|¢t(y)|dy)pdq;

< / oz — y)IPée (y)dy d = [[0][Z,-
R™ xR™

Therefore ||v * ¢¢lpr < ||v||L» which implies v * ¢, € LP. If ¢, € C°(R™), by
differentiating under the integral (see Theorem 7.17 below) it is easily seen that
v* ¢y € C*. Finally for u € C. (R™),
lv=vseller < llv—wullr +[lu—u* ¢ellr + lux ¢r —v* dlLr
< lu—wx @ellr +2|lv —ul|ze

and hence
limsup [[v — v * ¢¢l|Le < 2[|v — ul|Lr
10

which may be made arbitrarily small since C, (R™) is dense in L? (R™,m).

eVt >0
f(t)_{ 0 if t<o0.

Exercise 7.1. Let

Show f € C*°(R, |0, 1]).

Lemma 7.15. There exists ¢ € C°(R™,[0,00)) such that $(0) > 0, supp(¢) C
B(0,1) and [, ¢(x)dz = 1.
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Proof. Define h(t) = f(1 —t)f(t + 1) where f is as in Exercise 7.1. Then
h € C(R,[0,1]), supp(h) C [—1,1] and h(0) = ™2 > 0. Define ¢ = [, h(|z|*)dz.
Then ¢(z) = ¢~ h(|z|*) is the desired function. m
Definition 7.16. Let X C R™ be an open set. A Radon measure on By is a
measure g which is finite on compact subsets of X. For a Radon measure p, we let
L}, (n) consists of those measurable functions f : X — C such that [, |f|du < oo
for all compact subsets K C X.

Theorem 7.17 (Differentiation under integral sign). Let Q C R™ and f : R™xQ —
R be given. Assume:

(1) = — f(x,y) is differentiable for all y € Q.
(2) % (:zr,y)) g(y) for some g such that f|g )dy < oo.

3) f\fxy|dy<oo
of

Then 811 ff x,y)dy = g{i (w,y)dy and moreover if x — 5= (x,y) is contin-

wous then so is x — f 5o (2, y)dy.
The reader asked to use Theorem 7.17 to verify the following proposition.

Proposition 7.18. Suppose that f € L}, (R",m) and ¢ € CL(R™), then fx ¢ €
CHR™) and 0;(f * ¢) = f * 0ip. Moreover if p € C(R™) then f* ¢ € C*°(R™).

Corollary 7.19 (C*° — Uryhson’s Lemma). Given K CC U C, R"™, there exists
f e Cx(R™,[0,1]) such that supp(f) CU and f =1 on K.

Proof. Let ¢ be as in Lemma 7.15, ¢:(z) =t "¢(x/t) be as in Theorem 7.13,
d be the standard metric on R™ and e = d(K,U°). Since K is compact and U° is
closed, € > 0. Let V5 = {z € R" : d(z, K) < 6} and f = ¢¢/3 * 1y, ,, then

supp(f) C supp(¢e/3) + Veys C Vaeyz C UL
Since Va3 is closed and bounded, f € C°(U) and for z € K,
flx) = /R Li(y,K)<e/3 * Gesa(x — y)dy = /R Pes3(x —y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 < f < 1. m
Here is an application of this corollary whose proof is left to the reader.

Lemma 7.20 (Integration by Parts). Suppose f and g are measurable functions on
R™ such thatt — f(1,...,Ti—1,t,Tit1,..,Tpn) andt — g(T1, ..., Ti1,t, Tit1y. .., Tn)
are continuously differentiable functz'ons on R for each fivred x = (x1,...,2,) € R™
Moreover assume f - g, % g and f - 5 are in LY(R™,m). Then

of dg

gdm=— [ f-

dm
R 8:61 R” axl

With this result we may give another proof of the Riemann Lebesgue Lemma.
Lemma 7.21. For f € L*(R",m) let

f& = (27T)_"/2 f(x)e_ig'”dm(w)

be the Fourier transform of f. Then f € CO(R" ) and Hf” 2m)~2||flly- (The

n/2

choice of the normalization factor, (2)~™/2, in f is for later convenience.)
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Proof. The fact that f is continuous is a simple application of the dominated
convergence theorem. Moreover,

o] < [ 1@l dm() < Cr) 211,
so it only remains to see that f(&) — 0 as |¢] — occ.

First suppose that f € C°(R") and let A = Z 7 be the Laplacian on R".

Notice that gje”g T = —i;e T and Ae T = |£|2 —i€2_ Using Lemma 7.20
repeatedly,

[ Ak s@e < am(@) = [ f@ake dnie) = - |5 [ e am(o)

—(2m)"/? ISIQ'c f©)

for any k£ € N. Hence (271)”/2)f(§)) < |£\_2k||Aka1 — 0 as [{] — oo and
f € Co(R™). Suppose that f € L'(m) and f;, € C°(R™) is a sequence such that
limp_oo || f = frll; = 0, then limy_ o Hf — ka = 0 and hence Hence f € Co(R™)
because Cp(R"™) is complete. m h

Corollary 7.22. Let X C R" be an open set and p be a Radon measure on Bx.

(1) Then C°(X) is dense in LP(p) for all 1 < p < 0.
(2) If h € L}, (1) satisfies

(7.7) /X fhdp =0 for all f € C°(X)

then h(xz) =0 for p — a.e. x.

Proof. Let f € C.(X), ¢ be as in Lemma 7.15, ¢; be as in Theorem 7.13 and
set ¥y := ¢¢ * (f1x). Then by Proposition 7.18 ¢, € C*°(X) and by Lemma 7.8
there exists a compact set K C X such that supp(¢;) C K for all ¢ sufficiently
small. By Theorem 7.13, ¢y — f uniformly on X as¢ | 0

(1) The dominated convergence theorem (with dominating function being
I fll 1x), shows ¥y — f in LP(u) as ¢t | 0. This proves Item 1. because of
the measure theoretic fact that C.(X) is dense in L?(u).

(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being || f||, |k| 1x) implies

0 =li hdp = [ limyhdp = hdp.
tllrg/xwtu /thfgwtu /Xfu

Since this is true for all f € C.(X), it follows by measure theoretic argu-
ments that h = 0 a.e.

| ]
7.2. Smooth Partitions of Unity.
Theorem 7.23. Let Vi,..., Vi Co R" and ¢ € C® (U§:1W)- Then there exists

k
¢j € C2(V;) such that ¢ =Y ¢;. If ¢ > 0 one can choose ¢; > 0.
i

Proof. The proof will be by a number of steps.
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(1) There exists K; CC V; such that supp ¢ C UK. Indeed, for all « € supp ¢
there exists an open neighborhood N, of x such that N, C V; for some
j and N, is compact. Now {Ngz}zesupp s covers K := supp ¢ and hence
there exists a finite set A CC K such that K C UyeaN,.. Let K :=
U{N,:z€Aand N, CV;}. Then each K; is compact, K; C V; and
k
suppp = K C |J Kj.
j=1
(2) By Corollary 7.19 there exists ¢; € C°(V}, [0, 1]) such that ¢, := 1 in the
neighborhood of K. Now define
1= o
P2 = (¢ — d1)h2 = $(1 — th1)1p2
b3 = (¢ — 1 — ¢2)ths = H{(L —h1) — (1 — Y1) }ibs
= (1 — Y1) (1 — 2)ts

oh=(0—1— 2 — - — dp—1)r = O(L — Y1) (L —2) ... (L — Yp—1)¥n

By the above computations one finds that (a) ¢; > 0 if ¢ > 0 and (b)
¢—¢1—d2— - = =(1 —P1)(1 —t2) ... (1 —¢) = 0.

since either ¢(z) =0 or z & supp ¢ = K and 1 — ¢;(z) = 0 for some i.
|

Corollary 7.24. Let Vi,...,Vi Co R™ and K be a compact subset of Uf:IVZ-.
Then there exists ¢; € C(V;,[0,1]) such Zle ¢ < 1 with Zle ¢; =1 ona
neighborhood of K.

Proof. By Corollary 7.19 there exists ¢ € C°(UX_,V;,[0,1]) such that ¢ = 1
on a neighborhood of K. Now let {¢;}*_; be the functions constructed in Theorem
7.23. m



