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7. Test Functions and Partitions of Unity

7.1. Convolution and Young’s Inequalities. Letting δx denote the “delta—
function” at x, we wish to define a product (∗) on functions on Rn such that
δx ∗ δy = δx+y. Now formally any function f on Rn is of the form

f =

Z
Rn

f(x)δxdx

so we should have

f ∗ g =
Z
Rn×Rn

f(x)g(y)δx ∗ δydxdy =
Z
Rn×Rn

f(x)g(y)δx+ydxdy

=

Z
Rn×Rn

f(x− y)g(y)δxdxdy

=

Z
Rn

·Z
Rn

f(x− y)g(y)dy

¸
δxdx

which suggests we make the following definition.

Definition 7.1. Let f, g : Rn → C be measurable functions. We define

f ∗ g(x) =
Z
Rn

f(x− y)g(y)dy

whenever the integral is defined, i.e. either f(x−·)g(·) ∈ L1(Rn,m) or f(x−·)g(·) ≥
0. Notice that the condition that f(x− ·)g(·) ∈ L1(Rn,m) is equivalent to writing
|f | ∗ |g| (x) <∞.

Notation 7.2. Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn,

xα :=
nY

j=1

x
αj
j , and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.

Remark 7.3 (The Significance of Convolution). Suppose that L =
P
|α|≤k aα∂

α is a
constant coefficient differential operator and suppose that we can solve (uniquely)
the equation Lu = g in the form

u(x) = Kg(x) :=

Z
Rn

k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
differentiation.) Since τzL = Lτz for all z ∈ Rn, (this is another way to characterize
constant coefficient differential operators) and L−1 = K we should have τzK = Kτz.
Writing out this equation then saysZ

Rn
k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=

Z
Rn

k(x, y)g(y − z)dy =

Z
Rn

k(x, y + z)g(y)dy.

Since g is arbitrary we conclude that k(x− z, y) = k(x, y + z). Taking y = 0 then
gives

k(x, z) = k(x− z, 0) =: ρ(x− z).
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We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals.

Proposition 7.4. Suppose q ∈ [1,∞], f ∈ L1 and g ∈ Lq, then f ∗ g(x) exists for
almost every x, f ∗ g ∈ Lq and

kf ∗ gkp ≤ kfk1 kgkp .
For z ∈ Rn and f : Rn → C, let τzf : Rn → C be defined by τzf(x) = f(x− z).

Proposition 7.5. Suppose that p ∈ [1,∞), then τz : L
p → Lp is an isometric

isomorphism and for f ∈ Lp, z ∈ Rn → τzf ∈ Lp is continuous.

Proof. The assertion that τz : Lp → Lp is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that τ−z ◦ τz = id.
For the continuity assertion, observe that

kτzf − τyfkp = kτ−y (τzf − τyf)kp = kτz−yf − fkp
from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rn.
When f ∈ Cc(Rn), τzf → f uniformly and since the K := ∪|z|≤1supp(τzf) is

compact, it follows by the dominated convergence theorem that τzf → f in Lp as
z → 0 ∈ Rn. For general g ∈ Lp and f ∈ Cc(Rn),

kτzg − gkp ≤ kτzg − τzfkp + kτzf − fkp + kf − gkp = kτzf − fkp + 2 kf − gkp
and thus

lim sup
z→0

kτzg − gkp ≤ lim sup
z→0

kτzf − fkp + 2 kf − gkp = 2 kf − gkp .

Because Cc(Rn) is dense in Lp, the term kf − gkp may be made as small as we
please.

Definition 7.6. Suppose that (X, τ) is a topological space and µ is a measure on
BX = σ(τ). For a measurable function f : X → C we define the essential support
of f by
(7.1)
suppµ(f) = {x ∈ U : µ({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}.
Lemma 7.7. Suppose (X, τ) is second countable and f : X → C is a measurable
function and µ is a measure on BX . Then X := U \ suppµ(f) may be described
as the largest open set W such that f1W (x) = 0 for µ — a.e. x. Equivalently put,
C := suppµ(f) is the smallest closed subset of X such that f = f1C a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent, suppose
suppµ(f) is defined as in Eq. (7.1) and W := X \ suppµ(f). Then

W = {x ∈ X : µ({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪ {V ⊂o X : µ (f1V 6= 0) = 0}
= ∪ {V ⊂o X : f1V = 0 for µ — a.e.} .
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So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let U be
a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.
Then it is easily seen that W = ∪Uf and since Uf is countable µ (f1W 6= 0) ≤P

V ∈Uf µ (f1V 6= 0) = 0.
Lemma 7.8. Suppose f, g, h : Rn → C are measurable functions and assume that
x is a point in Rn such that |f | ∗ |g| (x) <∞ and |f | ∗ (|g| ∗ |h|) (x) <∞, then

(1) f ∗ g(x) = g ∗ f(x)
(2) f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
(3) If z ∈ Rn and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)
(4) If x /∈ suppm(f)+suppm(g) then f ∗g(x) = 0 and in particular, suppm(f ∗

g) ⊂ suppm(f) + suppm(g) where in defining suppm(f ∗ g) we will use the
convention that “f ∗ g(x) 6= 0” when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =
Z
Rn
|f | (x− y) |g| (y)dy =

Z
Rn
|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation y → x− y. Similar computations prove all of the
remaining assertions of the first three items of the lemma.
Item 4. Since f ∗ g(x) = f̃ ∗ g̃(x) if f = f̃ and g = g̃ a.e. we may,

by replacing f by f1suppm(f) and g by g1suppm(g) if necessary, assume that{f 6= 0} ⊂ suppm(f) and {g 6= 0} ⊂ suppm(g). So if x /∈ (suppm(f) + suppm(g))
then x /∈ ({f 6= 0}+ {g 6= 0}) and for all y ∈ Rn, either x − y /∈ {f 6= 0} or
y /∈ {g 6= 0} . That is to say either x − y ∈ {f = 0} or y ∈ {g = 0} and hence
f(x− y)g(y) = 0 for all y and therefore f ∗ g(x) = 0. This shows that f ∗ g = 0 on
Rn \

³
suppm(f) + suppm(g)

´
and therefore

Rn \
³
suppm(f) + suppm(g)

´
⊂ Rn \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).
Remark 7.9. Let A,B be closed sets of Rn, it is not necessarily true that A+B is
still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/|x|} ,
then every point of A+B has a positive y - component and hence is not zero. On
the other hand, for x > 0 we have (x, 1/x) + (−x, 1/x) = (0, 2/x) ∈ A + B for all
x and hence 0 ∈ A+B showing A + B is not closed. Nevertheless if one of the
sets A or B is compact, then A + B is closed again. Indeed, if A is compact and
xn = an + bn ∈ A + B and xn → x ∈ Rn, then by passing to a subsequence if
necessary we may assume limn→∞ an = a ∈ A exists. In this case

lim
n→∞ bn = lim

n→∞ (xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.
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Proposition 7.10. Suppose that p, q ∈ [1,∞] and p and q are conjugate exponents,
f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rn), kf ∗ gku ≤ kfkp kgkq and if p, q ∈ (1,∞)
then f ∗ g ∈ C0(Rn).

Proof. The existence of f ∗ g(x) and the estimate |f ∗ g| (x) ≤ kfkp kgkq for all
x ∈ Rn is a simple consequence of Holders inequality and the translation invariance
of Lebesgue measure. In particular this shows kf ∗ gku ≤ kfkp kgkq . By relabeling
p and q if necessary we may assume that p ∈ [1,∞). Since

kτz (f ∗ g)− f ∗ gku = kτzf ∗ g − f ∗ gku ≤ kτzf − fkp kgkq → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 7.8 and what we have just proved that fm ∗ gm ∈ Cc(Rn) where
fm = f1|f |≤m and gm = g1|g|≤m. Moreover,

kf ∗ g − fm ∗ gmku ≤ kf ∗ g − fm ∗ gku + kfm ∗ g − fm ∗ gmku
≤ kf − fmkp kgkq + kfmkp kg − gmkq
≤ kf − fmkp kgkq + kfkp kg − gmkq → 0 as m→∞

showing f ∗ g ∈ C0(Rn).

Theorem 7.11 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy

(7.2)
1

p
+
1

q
= 1 +

1

r
.

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m — a.e. x and

(7.3) kf ∗ gkr ≤ kfkp kgkq .
In particular L1 is closed under convolution. (The space (L1, ∗) is an example of a
“Banach algebra” without unit.)

Remark 7.12. Before going to the formal proof, let us first understand Eq. (7.2)
by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then after a few
simple change of variables we find

kfλkp = λ−1/p kfk and (f ∗ g)λ = λfλ ∗ gλ.
Therefore if Eq. (7.3) holds for some p, q, r ∈ [1,∞], we would also have
kf ∗ gkr = λ1/r k(f ∗ g)λkr ≤ λ1/rλ kfλkp kgλkq = λ(1+1/r−1/p−1/q) kfkp kgkq

for all λ > 0. This is only possible if Eq. (7.2) holds.

Proof. Let α, β ∈ [0, 1] and p1, p2 ∈ [0,∞] satisfy p−11 + p−12 + r−1 = 1. Then
by Hölder’s inequality,

|f ∗ g(x)| =
¯̄̄̄Z

f(x− y)g(y)dy

¯̄̄̄
≤
Z
|f(x− y)|(1−α) |g(y)|(1−β) |f(x− y)|α |g(y)|β dy

≤
µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶1/r µZ

|f(x− y)|αp1 dy
¶1/p1 µZ

|g(y)|βp2 dy
¶1/p2

=

µZ
|f(x− y)|(1−α)r |g(y)|(1−β)r dy

¶1/r
kfkααp1 kgk

β
βp2

.



PDE LECTURE NOTES, MATH 237A-B 87

Taking the rth power of this equation and integrating on x gives

kf ∗ gkrr ≤
Z µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶
dx · kfkααp1 kgk

β
βp2

= kfk(1−α)r(1−α)r kgk(1−β)r(1−β)r kfkαrαp1 kgk
βr
βp2

.(7.4)

Let us now suppose, (1 − α)r = αp1 and (1 − β)r = βp2, in which case Eq. (7.4)
becomes,

kf ∗ gkrr ≤ kfkrαp1 kgk
r
βp2

which is Eq. (7.3) with

(7.5) p := (1− α)r = αp1 and q := (1− β)r = βp2.

So to finish the proof, it suffices to show p and q are arbitrary indices in [1,∞]
satisfying p−1 + q−1 = 1 + r−1.
If α, β, p1, p2 satisfy the relations above, then

α =
r

r + p1
and β =

r

r + p2

and
1

p
+
1

q
=
1

p1

r + p1
r

+
1

p2

r + p2
r

=
1

p1
+
1

p2
+
2

r
= 1 +

1

r
.

Conversely, if p, q, r satisfy Eq. (7.2), then let α and β satisfy p = (1 − α)r and
q = (1− β)r, i.e.

α :=
r − p

r
= 1− p

r
≤ 1 and β =

r − q

r
= 1− q

r
≤ 1.

From Eq. (7.2), α = p(1 − 1
q ) ≥ 0 and β = q(1− 1

p) ≥ 0, so that α, β ∈ [0, 1]. We
then define p1 := p/α and p2 := q/β, then

1

p1
+
1

p2
+
1

r
= β

1

q
+ α

1

p
+
1

r
=
1

q
− 1

r
+
1

p
− 1

r
+
1

r
= 1

as desired.

Theorem 7.13 (Approximate δ — functions). Let p ∈ [1,∞], φ ∈ L1(Rn), a :=R
Rn f(x)dx, and for t > 0 let φt(x) = t−nφ(x/t). Then
(1) If f ∈ Lp with p <∞ then φt ∗ f → af in Lp as t ↓ 0.
(2) If f ∈ BC(Rn) and f is uniformly continuous then kφt ∗ f − fk∞ → 0 as

t ↓ 0.
(3) If f ∈ L∞ and f is continuous on U ⊂o Rn then φt ∗ f → af uniformly on

compact subsets of U as t ↓ 0.
See Theorem 8.15 if Folland for a statement about almost everywhere conver-

gence.

Proof. Making the change of variables y = tz implies

φt ∗ f(x) =
Z
Rn

f(x− y)φt(y)dy =

Z
Rn

f(x− tz)φ(z)dz

so that

φt ∗ f(x)− af(x) =

Z
Rn
[f(x− tz)− f(x)]φ(z)dz

=

Z
Rn
[τtzf(x)− f(x)]φ(z)dz.(7.6)
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Hence by Minkowski’s inequality for integrals, Proposition 7.5 and the dominated
convergence theorem,

kφt ∗ f − afkp ≤
Z
Rn
kτtzf − fkp |φ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (7.6)

kφt ∗ f − afk∞ ≤
Z
Rn
kτtzf − fk∞ |φ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 kτtzf − fk∞ = 0 uniformly in z by the uniform continuity of f.
Item 3. Let BR = B(0, R) be a large ball in Rn and K @@ U, then

sup
x∈K

|φt ∗ f(x)− af(x)| ≤
¯̄̄̄Z

BR

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
+

¯̄̄̄
¯
Z
Bc
R

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
¯

≤
Z
BR

|φ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
Bc
R

|φ(z)| dz

≤ kφk1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
|z|>R

|φ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K

|φt ∗ f(x)− af(x)| ≤ 2 kfk∞
Z
|z|>R

|φ(z)| dz → 0 as R→∞.

Remark 7.14 (Another Proof of part of Theorem 7.13). By definition of the convo-
lution and Hölder’s or Jensen’s inequality we haveZ

Rn
|v ∗ φt(x)|pdx ≤

Z
Rn

µZ
Rn
(v(x− y))|φt(y)|dy

¶p
dx

≤
Z
Rn×Rn

|v(x− y)|pφt(y)dy dx = kvkpLp .

Therefore kv ∗ φtkLp ≤ kvkLp which implies v ∗ φt ∈ Lp. If φt ∈ C∞c (Rn), by
differentiating under the integral (see Theorem 7.17 below) it is easily seen that
v ∗ φt ∈ C∞. Finally for u ∈ Cc (Rn) ,

kv − v ∗ φtkLp ≤ kv − ukLp + ku− u ∗ φtkLp + ku ∗ φt − v ∗ φtkLp
≤ ku− u ∗ φtkLp + 2kv − ukLp

and hence
lim sup

t↓0
kv − v ∗ φtkLp ≤ 2kv − ukLp

which may be made arbitrarily small since Cc (Rn) is dense in Lp (Rn,m) .

Exercise 7.1. Let

f(t) =

½
e−1/t if t > 0
0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).

Lemma 7.15. There exists φ ∈ C∞c (Rn, [0,∞)) such that φ(0) > 0, supp(φ) ⊂
B̄(0, 1) and

R
Rn φ(x)dx = 1.
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Proof. Define h(t) = f(1 − t)f(t + 1) where f is as in Exercise 7.1. Then
h ∈ C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =

R
Rn h(|x|2)dx.

Then φ(x) = c−1h(|x|2) is the desired function.
Definition 7.16. Let X ⊂ Rn be an open set. A Radon measure on BX is a
measure µ which is finite on compact subsets of X. For a Radon measure µ, we let
L1loc(µ) consists of those measurable functions f : X → C such that

R
K
|f | dµ <∞

for all compact subsets K ⊂ X.

Theorem 7.17 (Differentiation under integral sign). Let Ω ⊂ Rn and f : Rm×Ω→
R be given. Assume:

(1) x→ f(x, y) is differentiable for all y ∈ Ω.
(2)

¯̄̄
∂f
∂xi (x, y)

¯̄̄
≤ g(y) for some g such that

R
Ω

|g(y)|dy <∞.

(3)
R |f(x, y)|dy <∞.

Then ∂
∂xi

R
Ω

f(x, y)dy =
R
Ω

∂f
∂xi (x, y)dy and moreover if x→ ∂f

∂xi (x, y) is contin-

uous then so is x→ R
∂f
∂xi (x, y)dy.

The reader asked to use Theorem 7.17 to verify the following proposition.

Proposition 7.18. Suppose that f ∈ L1loc(Rn,m) and φ ∈ C1c (Rn), then f ∗ φ ∈
C1(Rn) and ∂i(f ∗ φ) = f ∗ ∂iφ. Moreover if φ ∈ C∞c (Rn) then f ∗ φ ∈ C∞(Rn).
Corollary 7.19 (C∞ — Uryhson’s Lemma). Given K @@ U ⊂o Rn, there exists
f ∈ C∞c (Rn, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.

Proof. Let φ be as in Lemma 7.15, φt(x) = t−nφ(x/t) be as in Theorem 7.13,
d be the standard metric on Rn and � = d(K,Uc). Since K is compact and Uc is
closed, � > 0. Let Vδ = {x ∈ Rn : d(x,K) < δ} and f = φ�/3 ∗ 1V�/3 , then

supp(f) ⊂ supp(φ�/3) + V�/3 ⊂ V̄2�/3 ⊂ U.

Since V̄2�/3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =

Z
Rn
1d(y,K)<�/3 · φ�/3(x− y)dy =

Z
Rn

φ�/3(x− y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader.

Lemma 7.20 (Integration by Parts). Suppose f and g are measurable functions on
Rn such that t→ f(x1, . . . , xi−1, t, xi+1, . . . , xn) and t→ g(x1, . . . , xi−1, t, xi+1, . . . , xn)
are continuously differentiable functions on R for each fixed x = (x1, . . . , xn) ∈ Rn.
Moreover assume f · g, ∂f

∂xi
· g and f · ∂g

∂xi
are in L1(Rn,m). ThenZ

Rn

∂f

∂xi
· gdm = −

Z
Rn

f · ∂g
∂xi

dm.

With this result we may give another proof of the Riemann Lebesgue Lemma.

Lemma 7.21. For f ∈ L1(Rn,m) let

f̂(ξ) := (2π)−n/2
Z
Rn

f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ (2π)−n/2 kfk1 . (The

choice of the normalization factor, (2π)−n/2, in f̂ is for later convenience.)
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Proof. The fact that f̂ is continuous is a simple application of the dominated
convergence theorem. Moreover,¯̄̄

f̂(ξ)
¯̄̄
≤
Z
|f(x)| dm(x) ≤ (2π)−n/2 kfk1

so it only remains to see that f̂(ξ)→ 0 as |ξ|→∞.

First suppose that f ∈ C∞c (Rn) and let ∆ =
Pn

j=1
∂2

∂x2j
be the Laplacian on Rn.

Notice that ∂
∂xj

e−iξ·x = −iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using Lemma 7.20
repeatedly,Z

∆kf(x)e−iξ·xdm(x) =
Z

f(x)∆k
xe
−iξ·xdm(x) = − |ξ|2k

Z
f(x)e−iξ·xdm(x)

= −(2π)n/2 |ξ|2k f̂(ξ)
for any k ∈ N. Hence (2π)n/2

¯̄̄
f̂(ξ)

¯̄̄
≤ |ξ|−2k °°∆kf

°°
1
→ 0 as |ξ| → ∞ and

f̂ ∈ C0(Rn). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rn) is a sequence such that
limk→∞ kf − fkk1 = 0, then limk→∞

°°°f̂ − f̂k

°°°
u
= 0 and hence Hence f̂ ∈ C0(Rn)

because C0(Rn) is complete.

Corollary 7.22. Let X ⊂ Rn be an open set and µ be a Radon measure on BX .
(1) Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
(2) If h ∈ L1loc(µ) satisfies

(7.7)
Z
X

fhdµ = 0 for all f ∈ C∞c (X)

then h(x) = 0 for µ — a.e. x.

Proof. Let f ∈ Cc(X), φ be as in Lemma 7.15, φt be as in Theorem 7.13 and
set ψt := φt ∗ (f1X) . Then by Proposition 7.18 ψt ∈ C∞(X) and by Lemma 7.8
there exists a compact set K ⊂ X such that supp(ψt) ⊂ K for all t sufficiently
small. By Theorem 7.13, ψt → f uniformly on X as t ↓ 0

(1) The dominated convergence theorem (with dominating function being
kfk∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1. because of
the measure theoretic fact that Cc(X) is dense in Lp(µ).

(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being kfk∞ |h| 1K) implies

0 = lim
t↓0

Z
X

ψthdµ =

Z
X

lim
t↓0

ψthdµ =

Z
X

fhdµ.

Since this is true for all f ∈ Cc(X), it follows by measure theoretic argu-
ments that h = 0 a.e.

7.2. Smooth Partitions of Unity.

Theorem 7.23. Let V1, . . . , Vk ⊂0 Rn and φ ∈ C∞c
¡∪ki=1Vi¢ . Then there exists

φj ∈ C∞c (Vj) such that φ =
kP
i
φj . If φ ≥ 0 one can choose φj ≥ 0.

Proof. The proof will be by a number of steps.
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(1) There exists Kj @@ Vj such that suppφ ⊂ ∪Kj . Indeed, for all x ∈ suppφ
there exists an open neighborhood Nx of x such that Nx ⊂ Vj for some
j and Nx is compact. Now {Nx}x∈suppφ covers K := suppφ and hence
there exists a finite set Λ ⊂⊂ K such that K ⊂ ∪x∈ΛNx.. Let Kj :=

∪©Nx : x ∈ Λ and Nx ⊂ Vj
ª
. Then each Kj is compact, Kj ⊂ Vj and

suppφ = K ⊂
kS

j=1
Kj .

(2) By Corollary 7.19 there exists ψj ∈ C∞c (Vj , [0, 1]) such that ψj := 1 in the
neighborhood of Kj . Now define

φ1 = φψ1

φ2 = (φ− φ1)ψ2 = φ(1− ψ1)ψ2

φ3 = (φ− φ1 − φ2)ψ3 = φ{(1− ψ1)− (1− ψ1)ψ2}ψ3
= φ(1− ψ1)(1− ψ2)ψ3

...

φk = (φ− φ1 − φ2 − · · ·− φk−1)ψk = φ(1− ψ1)(1− ψ2) . . . (1− ψk−1)ψk

By the above computations one finds that (a) φi ≥ 0 if φ ≥ 0 and (b)
φ− φ1 − φ2 − · · ·− φk = φ(1− ψ1)(1− ψ2) . . . (1− ψk) = 0.

since either φ(x) = 0 or x 6∈ suppφ = K and 1− ψi(x) = 0 for some i.

Corollary 7.24. Let V1, . . . , Vk ⊂0 Rn and K be a compact subset of ∪ki=1Vi.
Then there exists φi ∈ C∞c (Vi, [0, 1]) such

Pk
i=1 φi ≤ 1 with

Pk
i=1 φi = 1 on a

neighborhood of K.

Proof. By Corollary 7.19 there exists φ ∈ C∞c (∪ki=1Vi, [0, 1]) such that φ = 1
on a neighborhood of K. Now let {φi}ki=1 be the functions constructed in Theorem
7.23.


