1

1. Introduction

Not written as of yet. Topics to mention.

- 1. A better and more general integral.
 - (a) Convergence Theorems
 - (b) Integration over diverse collection of sets. (See probability theory.)
 - (c) Integration relative to different weights or densities including singular weights.
 - (d) Characterization of dual spaces.
 - (e) Completeness.
- 2. Infinite dimensional Linear algebra.
- 3. ODE and PDE.
- 4. Harmonic and Fourier Analysis.
- 5. Probability Theory

2. Limits, sums, and other basics

2.1. **Set Operations.** Suppose that X is a set. Let $\mathcal{P}(X)$ or 2^X denote the power set of X, that is elements of $\mathcal{P}(X) = 2^X$. are subsets of A. For $A \in 2^X$ let

$$A^c = X \setminus A = \{x \in X : x \notin A\}$$

and more generally if $A, B \subset X$ let

$$B \setminus A = \{x \in B : x \notin A\}.$$

We also define the symmetric difference of A and B by

$$A \triangle B = (B \setminus A) \cup (A \setminus B)$$
.

As usual if $\{A_{\alpha}\}_{{\alpha}\in I}$ is an indexed collection of subsets of X we define the union and the intersection of this collection by

$$\cup_{\alpha \in I} A_{\alpha} := \{ x \in X : \exists \alpha \in I \ \ni x \in A_{\alpha} \} \text{ and }$$

$$\cap_{\alpha \in I} A_{\alpha} := \{ x \in X : x \in A_{\alpha} \ \forall \alpha \in I \}.$$

Notation 2.1. We will also write $\coprod_{\alpha \in I} A_{\alpha}$ for $\bigcup_{\alpha \in I} A_{\alpha}$ in the case that $\{A_{\alpha}\}_{\alpha \in I}$ are pairwise disjoint, i.e. $A_{\alpha} \cap A_{\beta} = \emptyset$ if $\alpha \neq \beta$.

Notice that \cup is closely related to \exists and \cap is closely related to \forall . For example let $\{A_n\}_{n=1}^{\infty}$ be a sequence of subsets from X and define

$${A_n \text{ i.o.}} := {x \in X : \# {n : x \in A_n} = \infty} \text{ and } {A_n \text{ a.a.}} := {x \in X : x \in A_n \text{ for all } n \text{ sufficiently large}}.$$

(One should read $\{A_n \text{ i.o.}\}\$ as A_n infinitely often and $\{A_n \text{ a.a.}\}\$ as A_n almost always.) Then $x \in \{A_n \text{ i.o.}\}\$ iff $\forall N \in \mathbb{N}\ \exists n \geq N \ni x \in A_n$ which may be written as

$${A_n \text{ i.o.}} = \bigcap_{N=1}^{\infty} \bigcup_{n>N} A_n.$$

Similarly, $x \in \{A_n \text{ a.a.}\}\ \text{iff } \exists N \in \mathbb{N} \ni \forall n \geq N, \ x \in A_n \text{ which may be written as}$

$${A_n \text{ a.a.}} = \bigcup_{N=1}^{\infty} \cap_{n>N} A_n.$$

2.2. Limits, Limsups, and Liminfs.

Notation 2.2. The Extended real numbers is the set $\mathbb{R} := \mathbb{R} \cup \{\pm \infty\}$, i.e. it is \mathbb{R} with two new points called ∞ and $-\infty$. We use the following conventions, $\pm \infty \cdot 0 = 0$, $\pm \infty + a = \pm \infty$ for any $a \in \mathbb{R}$, $\infty + \infty = \infty$ and $-\infty - \infty = -\infty$ while $\infty - \infty$ is not defined.

If $\Lambda \subset \overline{\mathbb{R}}$ we will let $\sup \Lambda$ and $\inf \Lambda$ denote the least upper bound and greatest lower bound of Λ respectively. We will also use the following convention, if $\Lambda = \emptyset$, then $\sup \emptyset = -\infty$ and $\inf \emptyset = +\infty$.

Notation 2.3. Suppose that $\{x_n\}_{n=1}^{\infty} \subset \overline{\mathbb{R}}$ is a sequence of numbers. Then

(2.1)
$$\lim \inf_{n \to \infty} x_n = \lim_{n \to \infty} \inf \{ x_k : k \ge n \} = \sup_n \inf \{ x_k : k \ge n \}$$

and

(2.2)
$$\lim \sup_{n \to \infty} x_n = \lim_{n \to \infty} \sup \{x_k : k \ge n\} = \inf_n \sup \{x_k : k \ge n\}.$$

We will also write $\underline{\lim}$ for \liminf and $\overline{\lim}$ for \limsup .

Remark 2.4. Notice that if $a_k := \inf\{x_k : k \ge n\}$ and $b_k := \sup\{x_k : k \ge n\}$, then $\{a_k\}$ is an increasing sequence while $\{b_k\}$ is a decreasing sequence. Therefore the limits in Eq. (2.1) and Eq. (2.2) always exist.

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.5. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of real numbers. Then

- 1. $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$ and the $\lim_{n\to\infty} a_n$ exists in \mathbb{R} iff $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n \in \mathbb{R}$.
- 2. There is a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ such that $\lim_{k\to\infty} a_{n_k} = \limsup_{n\to\infty} a_n$.
- 3. Suppose that $\limsup_{n\to\infty} a_n < \infty$ and $\limsup_{n\to\infty} b_n > -\infty$, then

(2.3)
$$\lim \sup_{n \to \infty} (a_n + b_n) \le \lim \sup_{n \to \infty} a_n + \lim \sup_{n \to \infty} b_n.$$

In other words, Eq. (2.3) holds provided the right side of the equation is well defined.

4. If $a_n \geq 0$ and $b_n \geq 0$ for all $n \in \mathbb{N}$, then

(2.4)
$$\lim \sup_{n \to \infty} (a_n b_n) \le \lim \sup_{n \to \infty} a_n \cdot \lim \sup_{n \to \infty} b_n,$$

provided the right hand side of (2.4) is not of the form $0 \cdot \infty$ or $\infty \cdot 0$.

Proof. We will only prove part 1. and leave the rest as an exercise to the reader. We begin by noticing that

$$\inf\{a_k : k \ge n\} \le \sup\{a_k : k \ge n\} \ \forall n$$

so that

$$\lim\inf_{n\to\infty}a_n\leq\lim\sup_{n\to\infty}a_n.$$

Now suppose that $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = a \in \mathbb{R}$. Then for all $\epsilon > 0$, there is an integer N such that

$$a - \epsilon \le \inf\{a_k : k \ge N\} \le \sup\{a_k : k \ge N\} \le a + \epsilon$$

i.e. we have

$$a - \epsilon \le a_k \le a + \epsilon$$
 for all $k \ge N$.

Hence by the definition of the limit, $\lim_{k\to\infty} a_k = a$.

If $\liminf_{n\to\infty}a_n=\infty$, then we know for all $M\in(0,\infty)$ there is an integer N such that

$$M < \inf\{a_k : k > N\}$$

and hence $\lim_{n\to\infty} a_n = \infty$. The case where $\limsup_{n\to\infty} a_n = -\infty$ is handled similarly.

Conversely, suppose that $\lim_{n\to\infty} a_n = A \in \mathbb{R}$ exists. If $A \in \mathbb{R}$, then for every $\epsilon > 0$ there exists $N(\epsilon) \in \mathbb{N}$ such that $|A - a_n| \leq \epsilon$ for all $n \geq N(\epsilon)$, i.e.

$$A - \epsilon \le a_n \le A + \epsilon$$
 for all $n \ge N(\epsilon)$.

From this we learn that

$$A - \epsilon \le \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n \le A + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, it follows that

$$A \le \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n \le A,$$

i.e. that $A = \liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n$.

If $A = \infty$, then for all M > 0 there exist N(M) such that $a_n \geq M$ for all $n \geq N(M)$. This show that

$$\lim\inf_{n\to\infty}a_n\geq M$$

and since M is arbitrary it follows that

$$\infty \le \lim \inf_{n \to \infty} a_n \le \lim \sup_{n \to \infty} a_n.$$

The proof is similar if $A = -\infty$ as well.

2.3. Sums of positive functions. In this and the next few sections, let X and Y be two sets. We will write $\alpha \subset \subset X$ to denote that α is a **finite** subset of X.

Definition 2.6. Suppose that $a: X \to [0, \infty]$ is a function and $F \subset X$ is a subset, then

$$\sum_{F} a = \sum_{x \in F} a(x) = \sup \left\{ \sum_{x \in \alpha} a(x) : \alpha \subset F \right\}.$$

Remark 2.7. Suppose that $X = \mathbb{N} = \{1, 2, 3, \dots\}$, then

$$\sum_{\mathbb{N}} a = \sum_{n=1}^{\infty} a(n) := \lim_{N \to \infty} \sum_{n=1}^{N} a(n).$$

Indeed for all N, $\sum_{n=1}^{N} a(n) \leq \sum_{\mathbb{N}} a$, and thus passing to the limit we learn that

$$\sum_{n=1}^{\infty} a(n) \le \sum_{\mathbb{N}} a.$$

Conversely, if $\alpha \subset\subset \mathbb{N}$, then for all N large enough so that $\alpha \subset \{1, 2, \dots, N\}$, we have $\sum_{\alpha} a \leq \sum_{n=1}^{N} a(n)$ which upon passing to the limit implies that

$$\sum_{\alpha} a \le \sum_{n=1}^{\infty} a(n)$$

and hence by taking the supremum over α we learn that

$$\sum_{\mathbb{N}} a \le \sum_{n=1}^{\infty} a(n).$$

Remark 2.8. Suppose that $\sum_X a < \infty$, then $\{x \in X : a(x) > 0\}$ is at most countable. To see this first notice that for any $\epsilon > 0$, the set $\{x : a(x) \ge \epsilon\}$ must be finite for otherwise $\sum_X a = \infty$. Thus

$${x \in X : a(x) > 0} = \bigcup_{k=1}^{\infty} {x : a(x) \ge 1/k}$$

which shows that $\{x \in X : a(x) > 0\}$ is a countable union of finite sets and thus countable.

Lemma 2.9. Suppose that $a, b: X \to [0, \infty]$ are two functions, then

$$\sum_{X} (a+b) = \sum_{X} a + \sum_{X} b \text{ and}$$
$$\sum_{Y} \lambda a = \lambda \sum_{Y} a$$

for all $\lambda \geq 0$.

I will only prove the first assertion, the second being easy. Let $\alpha \subset\subset X$ be a finite set, then

$$\sum_{\alpha} (a+b) = \sum_{\alpha} a + \sum_{\alpha} b \le \sum_{X} a + \sum_{X} b$$

which after taking sups over α shows that

$$\sum_{X} (a+b) \le \sum_{X} a + \sum_{X} b.$$

Similarly, if $\alpha, \beta \subset\subset X$, then

$$\sum_{\alpha} a + \sum_{\beta} b \le \sum_{\alpha \cup \beta} a + \sum_{\alpha \cup \beta} b = \sum_{\alpha \cup \beta} (a+b) \le \sum_{X} (a+b).$$

Taking sups over α and β then shows that

$$\sum_{X} a + \sum_{X} b \le \sum_{X} (a+b).$$

Lemma 2.10. Let X and Y be sets, $R \subset X \times Y$ and suppose that $a : R \to \overline{\mathbb{R}}$ is a function. Let $_xR := \{y \in Y : (x,y) \in R\}$ and $R_y := \{x \in X : (x,y) \in R\}$. Then

$$\sup_{(x,y)\in R} a(x,y) = \sup_{x\in X} \sup_{y\in x} a(x,y) = \sup_{y\in Y} \sup_{x\in R_y} a(x,y) \text{ and }$$

$$\inf_{(x,y)\in R} a(x,y) = \inf_{x\in X} \inf_{y\in x} a(x,y) = \inf_{y\in Y} \inf_{x\in R_y} a(x,y).$$

Proof. Let $M = \sup_{(x,y) \in R} a(x,y)$, $N_x := \sup_{y \in_x R} a(x,y)$. Then $a(x,y) \leq M$ for all $(x,y) \in R$ implies $N_x = \sup_{y \in_x R} a(x,y) \leq M$ and therefore that

(2.5)
$$\sup_{x \in X} \sup_{y \in R} a(x, y) = \sup_{x \in X} N_x \le M.$$

Similarly for any $(x, y) \in R$,

$$a(x,y) \le N_x \le \sup_{x \in X} N_x = \sup_{x \in X} \sup_{y \in x} a(x,y)$$

and therefore

(2.6)
$$\sup_{(x,y)\in R} a(x,y) \le \sup_{x\in X} \sup_{y\in xR} a(x,y) = M$$

Equations (2.5) and (2.6) show that

$$\sup_{(x,y)\in R} a(x,y) = \sup_{x\in X} \sup_{y\in xR} a(x,y).$$

The assertions involving infinums are proved analogously or follow from what we have just proved applied to the function -a.

FIGURE 1. The x and y – slices of a set $R \subset X \times Y$.

Theorem 2.11 (Monotone Convergence Theorem). Suppose that $f_n: X \to [0, \infty]$ is an increasing sequence of functions and

$$f(x) := \lim_{n \to \infty} f_n(x) = \sup_n f_n(x).$$

Then

$$\lim_{n \to \infty} \sum_{X} f_n = \sum_{X} f$$

Proof. We will give two proves. For the first proof, let $\mathcal{P}_f(X) = \{A \subset\subset X\}$. Then

$$\lim_{n \to \infty} \sum_{X} f_n = \sup_{n} \sum_{X} f_n = \sup_{n} \sup_{\alpha \in \mathcal{P}_f(X)} \sum_{\alpha} f_n = \sup_{\alpha \in \mathcal{P}_f(X)} \sup_{n} \sum_{\alpha} f_n$$

$$= \sup_{\alpha \in \mathcal{P}_f(X)} \lim_{n \to \infty} \sum_{\alpha} f_n = \sup_{\alpha \in \mathcal{P}_f(X)} \sum_{\alpha} \lim_{n \to \infty} f_n = \sup_{\alpha \in \mathcal{P}_f(X)} \sum_{\alpha} f = \sum_{X} f.$$

(Second Proof.) Let $S_n = \sum_X f_n$ and $S = \sum_X f$. Since $f_n \leq f$ for all $n \leq m$, it follows that

$$S_n \le S_m \le S$$

which shows that $\lim_{n\to\infty} S_n$ exists and is less that S, i.e.

(2.7)
$$A := \lim_{n \to \infty} \sum_{X} f_n \le \sum_{X} f.$$

Noting that $\sum_{\alpha} f_n \leq \sum_{X} f_n = S_n \leq A$ for all $\alpha \subset\subset X$ and in particular,

$$\sum_{\alpha} f_n \leq A \text{ for all } n \text{ and } \alpha \subset\subset X.$$

Letting n tend to infinity in this equation shows that

$$\sum_{\alpha} f \leq A \text{ for all } \alpha \subset\subset X$$

and then taking the sup over all $\alpha \subset\subset X$ gives

(2.8)
$$\sum_{X} f \le A = \lim_{n \to \infty} \sum_{X} f_n$$

which combined with Eq. (2.7) proves the theorem.

Lemma 2.12 (Fatou's Lemma). Suppose that $f_n: X \to [0, \infty]$ is a sequence of functions, then

$$\sum_{X} \lim \inf_{n \to \infty} f_n \le \lim \inf_{n \to \infty} \sum_{X} f_n.$$

Proof. Define $g_k \equiv \inf_{n \geq k} f_n$ so that $g_k \uparrow \liminf_{n \to \infty} f_n$ as $k \to \infty$. Since $g_k \leq f_n$ for all $k \leq n$ we have

$$\sum_{X} g_k \le \sum_{X} f_n \text{ for all } n \ge k$$

and therefore

$$\sum_{X} g_k \le \lim \inf_{n \to \infty} \sum_{X} f_n \text{ for all } k.$$

We may now use the monotone convergence theorem to let $k \to \infty$ to find

$$\sum_{X} \lim \inf_{n \to \infty} f_n = \sum_{X} \lim_{k \to \infty} g_k \stackrel{\text{MCT}}{=} \lim_{k \to \infty} \sum_{X} g_k \le \lim \inf_{n \to \infty} \sum_{X} f_n.$$

Remark 2.13. If $A = \sum_X a < \infty$, then for all $\epsilon > 0$ there exists $\alpha_{\epsilon} \subset\subset X$ such that

$$A \ge \sum_{\alpha} a \ge A - \epsilon$$

for all $\alpha \subset\subset X$ containing α_{ϵ} or equivalently,

$$\left| A - \sum_{\alpha} a \right| \le \epsilon$$

for all $\alpha \subset\subset X$ containing α_{ϵ} . Indeed, choose α_{ϵ} so that $\sum_{\alpha_{\epsilon}} a \geq A - \epsilon$.

2.4. Sums of complex functions.

Definition 2.14. Suppose that $a: X \to \mathbb{C}$ is a function, we say that

$$\sum_{X} a = \sum_{x \in X} a(x)$$

exists and is equal to $A \in \mathbb{C}$, if for all $\epsilon > 0$ there is a finite subset $\alpha_{\epsilon} \subset X$ such that for all $\alpha \subset\subset X$ containing α_{ϵ} we have

$$\left| A - \sum_{\alpha} a \right| \le \epsilon.$$

The following lemma is left as an exercise to the reader.

Lemma 2.15. Suppose that $a, b: X \to \mathbb{C}$ are two functions such that $\sum_X a$ and $\sum_X b$ exist, then $\sum_X (a + \lambda b)$ exists for all $\lambda \in \mathbb{C}$ and

$$\sum_{X} (a + \lambda b) = \sum_{X} a + \lambda \sum_{X} b.$$

Definition 2.16 (Summable). We call a function $a: X \to \mathbb{C}$ summable if

$$\sum_{X} |a| < \infty.$$

Proposition 2.17. Let $a: X \to \mathbb{C}$ be a function, then $\sum_X a$ exists iff $\sum_X |a| < \infty$, i.e. iff a is summable.

Proof. If $\sum_X |a| < \infty$, then $\sum_X (\operatorname{Re} a)^{\pm} < \infty$ and $\sum_X (\operatorname{Im} a)^{\pm} < \infty$ and hence by Remark 2.13 these sums exists in the sense of Definition 2.14. Therefore by Lemma 2.15, $\sum_X a$ exists and

$$\sum_{X} a = \sum_{X} (\operatorname{Re} a)^{+} - \sum_{X} (\operatorname{Re} a)^{-} + i \left(\sum_{X} (\operatorname{Im} a)^{+} - \sum_{X} (\operatorname{Im} a)^{-} \right).$$

Conversely, if $\sum_{X} |a| = \infty$ then, because $|a| \le |\operatorname{Re} a| + |\operatorname{Im} a|$, we must have

$$\sum_{X} |\operatorname{Re} a| = \infty \text{ or } \sum_{X} |\operatorname{Im} a| = \infty.$$

Thus it suffices to consider the case where $a:X\to\mathbb{R}$ is a real function. Write $a=a^+-a^-$ where

(2.10)
$$a^+(x) = \max(a(x), 0) \text{ and } a^-(x) = \max(-a(x), 0).$$

Then $|a| = a^+ + a^-$ and

$$\infty = \sum_{X} |a| = \sum_{X} a^{+} + \sum_{X} a^{-}$$

which shows that either $\sum_X a^+ = \infty$ or $\sum_X a^- = \infty$. Suppose with out loss of generality that $\sum_X a^+ = \infty$. Let $X' := \{x \in X : a(x) \geq 0\}$, then we know that $\sum_{X'} a = \infty$ which means there are finite subsets $\alpha_n \subset X' \subset X$ such that $\sum_{\alpha_n} a \geq n$ for all n. Thus if $\alpha \subset \subset X$ is any finite set, it follows that $\lim_{n \to \infty} \sum_{\alpha_n \cup \alpha} a = \infty$, and therefore $\sum_X a$ can not exist as a number in \mathbb{R} .

Remark 2.18. Suppose that $X=\mathbb{N}$ and $a:\mathbb{N}\to\mathbb{C}$ is a sequence, then it is not necessarily true that

(2.11)
$$\sum_{n=1}^{\infty} a(n) = \sum_{n \in \mathbb{N}} a(n).$$

This is because

$$\sum_{n=1}^{\infty} a(n) = \lim_{N \to \infty} \sum_{n=1}^{N} a(n)$$

depends on the ordering of the sequence a where as $\sum_{n\in\mathbb{N}}a(n)$ does not. For example, take $a(n)=(-1)^n/n$ then $\sum_{n\in\mathbb{N}}|a(n)|=\infty$ i.e. $\sum_{n\in\mathbb{N}}a(n)$ does not exist while $\sum_{n=1}^{\infty}a(n)$ does exist. On the other hand, if

$$\sum_{n\in\mathbb{N}}|a(n)|=\sum_{n=1}^{\infty}|a(n)|<\infty$$

then Eq. (2.11) is valid.

Theorem 2.19 (Dominated Convergence Theorem). Suppose that $f_n: X \to \mathbb{C}$ is a sequence of functions on X such that $f(x) = \lim_{n \to \infty} f_n(x) \in \mathbb{C}$ exists for all $x \in X$. Further assume there is a **dominating function** $g: X \to [0, \infty)$ such that

$$(2.12) |f_n(x)| \le g(x) for all x \in X and n \in \mathbb{N}$$

and that g is summable. Then

(2.13)
$$\lim_{n \to \infty} \sum_{x \in X} f_n(x) = \sum_{x \in X} f(x).$$

Proof. Notice that $|f| = \lim |f_n| \le g$ so that f is summable. By considering the real and imaginary parts of f separately, it suffices to prove the theorem in the case where f is real. By Fatou's Lemma,

$$\sum_{X} (g \pm f) = \sum_{X} \lim \inf_{n \to \infty} (g \pm f_n) \le \lim \inf_{n \to \infty} \sum_{X} (g \pm f_n)$$
$$= \sum_{X} g + \lim \inf_{n \to \infty} \left(\pm \sum_{X} f_n \right).$$

Since $\liminf_{n\to\infty} (-a_n) = -\limsup_{n\to\infty} a_n$, we have shown,

$$\sum_{X} g \pm \sum_{X} f \le \sum_{X} g + \begin{cases} \liminf_{n \to \infty} \sum_{X} f_{n} \\ -\lim \sup_{n \to \infty} \sum_{X} f_{n} \end{cases}$$

and therefore

$$\lim\sup_{n\to\infty}\sum_X f_n \leq \sum_X f \leq \lim\inf_{n\to\infty}\sum_X f_n.$$

This shows that $\lim_{n\to\infty} \sum_X f_n$ exists and is equal to $\sum_X f$.

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that $|f| \leq g$ and in particular that f is summable. Given $\epsilon > 0$, let $\alpha \subset\subset X$ such that

$$\sum_{Y \setminus \alpha} g \le \epsilon.$$

Then for $\beta \subset\subset X$ such that $\alpha\subset\beta$, we have

$$\left| \sum_{\beta} f - \sum_{\beta} f_n \right| \le \left| \sum_{\beta} (f - f_n) \right|$$

$$\le \sum_{\beta} |f - f_n| = \sum_{\alpha} |f - f_n| + \sum_{\beta \setminus \alpha} |f - f_n|$$

$$\le \sum_{\alpha} |f - f_n| + 2 \sum_{\beta \setminus \alpha} g$$

$$\le \sum_{\alpha} |f - f_n| + 2\epsilon.$$

and hence that

$$\left|\sum_{eta} f - \sum_{eta} f_n \right| \le \sum_{lpha} |f - f_n| + 2\epsilon.$$

Since this last equation is true for all such $\beta \subset\subset X$, we learn that

$$\left| \sum_{X} f - \sum_{X} f_n \right| \le \sum_{\alpha} |f - f_n| + 2\epsilon$$

which then implies that

$$\lim \sup_{n \to \infty} \left| \sum_{X} f - \sum_{X} f_n \right| \le \lim \sup_{n \to \infty} \sum_{\alpha} |f - f_n| + 2\epsilon$$

$$= 2\epsilon$$

Because $\epsilon > 0$ is arbitrary we conclude that

$$\lim \sup_{n \to \infty} \left| \sum_{X} f - \sum_{X} f_n \right| = 0.$$

which is the same as Eq. (2.13).

2.5. Iterated sums. Let X and Y be two sets. The proof of the following lemma is left to the reader.

Lemma 2.20. Suppose that $a: X \to \mathbb{C}$ is function and $F \subset X$ is a subset such that a(x) = 0 for all $x \notin F$. Show that $\sum_F a$ exists iff $\sum_X a$ exists, and if the sums exist then

$$\sum_{X} a = \sum_{F} a.$$

Theorem 2.21. Suppose that $a: X \times Y \to [0, \infty]$, then

$$\sum_{X \times Y} a = \sum_{X} \sum_{Y} a = \sum_{Y} \sum_{X} a.$$

Proof. It suffices to show, by symmetry, that

$$\sum_{X \times Y} a = \sum_{X} \sum_{Y} a$$

Let $\Lambda \subset\subset X\times Y$. The for any $\alpha\subset\subset X$ and $\beta\subset\subset Y$ such that $\Lambda\subset\alpha\times\beta$, we have

$$\sum_{\Lambda} a \le \sum_{\alpha \times \beta} a = \sum_{\alpha} \sum_{\beta} a \le \sum_{\alpha} \sum_{Y} a \le \sum_{X} \sum_{Y} a,$$

i.e. $\sum_{\Lambda} a \leq \sum_{X} \sum_{Y} a$. Taking the sup over Λ in this last equation shows

$$\sum_{X \times Y} a \le \sum_{X} \sum_{Y} a.$$

We must now show the opposite inequality. If $\sum_{X\times Y} a = \infty$ we are done so we now assume that a is summable. By Remark 2.8, there is a countable set $\{(x'_n, y'_n)\}_{n=1}^{\infty} \subset X \times Y$ off of which a is identically 0.

 $\{(x_n',y_n')\}_{n=1}^{\infty} \subset X \times Y \text{ off of which } a \text{ is identically 0.}$ Let $\{y_n\}_{n=1}^{\infty}$ be an enumeration of $\{y_n'\}_{n=1}^{\infty}$, then since a(x,y)=0 if $y \notin \{y_n\}_{n=1}^{\infty}$ we have $\sum_{y \in Y} a(x,y) = \sum_{n=1}^{\infty} a(x,y_n)$ for all $x \in X$. Hence

(2.14)
$$\sum_{x \in X} \sum_{y \in Y} a(x, y) = \sum_{x \in X} \sum_{n=1}^{\infty} a(x, y_n) = \sum_{x \in X} \lim_{N \to \infty} \sum_{n=1}^{N} a(x, y_n)$$
$$= \lim_{N \to \infty} \sum_{x \in X} \sum_{n=1}^{N} a(x, y_n),$$

wherein the last inequality we have used the monotone convergence Theorem with $F_N(x) := \sum_{n=1}^N a(x, y_n)$. If $\alpha \subset\subset X$, then

$$\sum_{x \in \alpha} \sum_{n=1}^{N} a(x, y_n) = \sum_{\alpha \times \{y_n\}_{n=1}^{N}} a \le \sum_{X \times Y} a$$

and therefore,

(2.15)
$$\lim_{N \to \infty} \sum_{x \in X} \sum_{n=1}^{N} a(x, y_n) \le \sum_{X \times Y} a.$$

Hence it follows from Eqs. (2.14) and (2.15) that

(2.16)
$$\sum_{x \in X} \sum_{y \in Y} a(x, y) \le \sum_{X \times Y} a$$

as desired.

Alternative proof of Eq. (2.16). Let $A = \{x'_n : n \in \mathbb{N}\}$ and let $\{x_n\}_{n=1}^{\infty}$ be an enumeration of A. Then for $x \notin A$, a(x,y) = 0 for all $y \in Y$.

Given $\epsilon > 0$, let $\delta : X \to [0, \infty)$ be the function such that $\sum_X \delta = \epsilon$ and $\delta(x) > 0$ for $x \in A$. (For example we may define δ by $\delta(x_n) = \epsilon/2^n$ for all n and $\delta(x) = 0$ if $x \notin A$.) For each $x \in X$, let $\beta_x \subset \subset X$ be a finite set such that

$$\sum_{y \in Y} a(x, y) \le \sum_{y \in \beta_x} a(x, y) + \delta(x).$$

Then we have

$$\sum_{X} \sum_{Y} a \leq \sum_{x \in X} \sum_{y \in \beta_{x}} a(x, y) + \sum_{x \in X} \delta(x)$$

$$= \sum_{x \in X} \sum_{y \in \beta_{x}} a(x, y) + \epsilon = \sup_{\alpha \subset \subset X} \sum_{x \in \alpha} \sum_{y \in \beta_{x}} a(x, y) + \epsilon$$

$$\leq \sum_{X \times Y} a + \epsilon,$$
(2.17)

wherein the last inequality we have used

$$\sum_{x \in \alpha} \sum_{y \in \beta_r} a(x, y) = \sum_{\Lambda_{\alpha}} a \le \sum_{X \times Y} a$$

with

$$\Lambda_{\alpha} := \{(x,y) \in X \times Y : x \in \alpha \text{ and } y \in \beta_x\} \subset X \times Y.$$

Since $\epsilon > 0$ is arbitrary in Eq. (2.17), the proof is complete.

Theorem 2.22. Now suppose that $a: X \times Y \to \mathbb{C}$ is a summable function, i.e. by Theorem 2.21 any one of the following equivalent conditions hold:

- $\begin{array}{l} 1. \ \sum_{X\times Y}|a|<\infty, \\ 2. \ \sum_{X}\sum_{Y}|a|<\infty \ or \\ 3. \ \sum_{Y}\sum_{X}|a|<\infty. \end{array}$

$$\sum_{X \times Y} a = \sum_{X} \sum_{Y} a = \sum_{Y} \sum_{X} a.$$

Proof. If $a: X \to \mathbb{R}$ is real valued the theorem follows by applying Theorem 2.21 to a^{\pm} – the positive and negative parts of a. The general result holds for complex valued functions a by applying the real version just proved to the real and imaginary parts of a.

2.6. ℓ^p – spaces, Minkowski and Holder Inequalities. In this subsection, let $\mu: X \to (0,\infty]$ be a given function. Let \mathbb{F} denote either \mathbb{C} or \mathbb{R} . For $p \in (0,\infty)$ and $f: X \to \mathbb{F}$, let

$$||f||_p \equiv (\sum_{x \in X} |f(x)|^p \mu(x))^{1/p}$$

and for $p = \infty$ let

$$||f||_{\infty} = \sup\{|f(x)| : x \in X\}.$$

Also, for p > 0, let

$$\ell^p(\mu) = \{ f : X \to \mathbb{F} : ||f||_p < \infty \}.$$

In the case where $\mu(x) = 1$ for all $x \in X$ we will simply write $\ell^p(X)$ for $\ell^p(\mu)$.

Definition 2.23. A norm on a vector space L is a function $\|\cdot\|: L \to [0, \infty)$ such that

- 1. (Homogeneity) $\|\lambda f\| = |\lambda| \|f\|$ for all $\lambda \in \mathbb{C}$ and $f \in L$.
- 2. (Triangle inequality) $||f + g|| \le ||f|| + ||g||$ for all $f, g \in L$.
- 3. (Positive definite) ||f|| = 0 implies f = 0.

A pair $(L, \|\cdot\|)$ where L is a vector space and $\|\cdot\|$ is a norm on L is called a normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 2.24. For $p \in [1, \infty]$, $(\ell^p(\mu), ||\cdot||_p)$ is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is the content of Minkowski's Inequality proved in Theorem 2.30 below. ■

2.6.1. Some inequalities.

Proposition 2.25. Let $f:[0,\infty)\to [0,\infty)$ be a continuous strictly increasing function such that f(0)=0 (for simplicity) and $\lim_{s\to\infty} f(s)=\infty$. Let $g=f^{-1}$ and for s,t>0 let

$$F(s) = \int_0^s f(s')ds' \text{ and } G(t) = \int_0^t g(t')dt'.$$

Then for all $s, t \geq 0$,

$$st \leq F(s) + G(t)$$

and equality holds iff t = f(s).

Proof. Let

$$A_s := \{(\sigma, \tau) : 0 \le \tau \le f(\sigma) \text{ for } 0 \le \sigma \le s\} \text{ and } B_t := \{(\sigma, \tau) : 0 \le \sigma \le g(\tau) \text{ for } 0 \le \tau \le t\}$$

then as one sees from Figure 2, $[0, s] \times [0, t] \subset A_s \cup B_t$. (In the figure: s = 3, t = 1, A_3 is the region under t = f(s) for $0 \le s \le 3$ and B_1 is the region to the left of the curve s = g(t) for $0 \le t \le 1$.) Hence if m denotes the area of a region in the plane we have

$$st = m([0, s] \times [0, t]) \le m(A_s) + m(B_t) = F(s) + G(t).$$

As it stands, this proof is a bit on the intuitive side. However, it will become rigorous if one takes m to be Lebesgue measure on the plane which will be introduced later.

We can also give a calculus proof of this theorem under the additional assumption that f is C^1 . (This restricted version of the theorem is all we need in this section.) To do this fix $t \geq 0$ and let

$$h(s) = st - F(s) = \int_0^s (t - f(\sigma))d\sigma.$$

If $\sigma > g(t) = f^{-1}(t)$, then $t - f(\sigma) < 0$ and hence if s > g(t), we have

$$h(s) = \int_0^s (t - f(\sigma))d\sigma = \int_0^{g(t)} (t - f(\sigma))d\sigma + \int_{g(t)}^s (t - f(\sigma))d\sigma$$
$$\leq \int_0^{g(t)} (t - f(\sigma))d\sigma = h(g(t)).$$

Combining this with h(0) = 0 we see that h(s) takes its maximum at some point $s \in (0, t]$ and hence at a point where 0 = h'(s) = t - f(s). The only solution to this equation is s = g(t) and we have thus shown

$$st - F(s) = h(s) \le \int_0^{g(t)} (t - f(\sigma)) d\sigma = h(g(t))$$

with equality when s = g(t). To finish the proof we must show $\int_0^{g(t)} (t - f(\sigma)) d\sigma = G(t)$. This is verified by making the change of variables $\sigma = g(\tau)$ and then integrating by parts as follows:

$$\int_0^{g(t)} (t - f(\sigma)) d\sigma = \int_0^t (t - f(g(\tau))) g'(\tau) d\tau = \int_0^t (t - \tau) g'(\tau) d\tau$$
$$= \int_0^t g(\tau) d\tau = G(t).$$

FIGURE 2. A picture proof of Proposition 2.25.

Definition 2.26. The conjugate exponent $q \in [1, \infty]$ to $p \in [1, \infty]$ is $q := \frac{p}{p-1}$ with the convention that $q = \infty$ if p = 1. Notice that q satisfies

(2.18)
$$\frac{1}{p} + \frac{1}{q} = 1, \ 1 + \frac{q}{p} = q, \ p - \frac{p}{q} = 1 \text{ and } q(p-1) = p.$$

Lemma 2.27. Let $p \in (1,\infty)$ is $q := \frac{p}{p-1} \in (1,\infty)$ be the conjugate exponent. Then

$$st \leq \frac{s^q}{q} + \frac{t^p}{p} \text{ for all } s, t \geq 0$$

with equality if and only if $s^q = t^p$.

Proof. Let $F(s) = \frac{s^p}{p}$ for p > 1,

$$f(s) = s^{p-1} = t$$

or

$$g(t) = t^{\frac{1}{p-1}} = t^{q-1}$$

because $q \equiv 1/\left(p-1\right)+1$ or $1/\left(p-1\right)=q-1$. Therefore $G(t)=t^{q}/q$ and hence

$$st \le \frac{s^p}{p} + \frac{t^q}{q}$$

with equality iff $t = s^{p-1}$.

Theorem 2.28 (Hölder's inequality). Let $p, q \in [1, \infty]$ be conjugate exponents. For all $f, g: X \to \mathbb{F}$,

$$(2.19) ||fg||_1 \le ||f||_p \cdot ||g||_q.$$

If $p \in (1, \infty)$, then equality holds in Eq. (2.19) iff

$$\left(\frac{|f|}{\|f\|_p}\right)^p = \left(\frac{|g|}{\|g\|_q}\right)^q.$$

Proof. The proof of Eq. (2.19) for $p \in \{1, \infty\}$ is easy and will be left to the reader. The cases where $||f||_q = 0$ or ∞ or $||g||_p = 0$ or ∞ are easy to deal with and are also left to the reader. So we will assume that $p \in (1, \infty)$ and $0 < ||f||_q, ||g||_p < \infty$. Letting $s = |f|/||f||_p$ and $t = |g|/||g||_q$ in Lemma 2.27 implies

$$\frac{|fg|}{\|f\|_p \|g\|_q} \leq \frac{1}{p} \ \frac{|f|^p}{\|f\|_p} + \frac{1}{q} \ \frac{|g|^q}{\|g\|^q}.$$

Multiplying this equation by μ and then summing gives

$$\frac{\|fg\|_1}{\|f\|_p \|g\|_q} \le \frac{1}{p} + \frac{1}{q} = 1$$

with equality iff

$$\frac{|g|}{\|g\|_q} = \frac{|f|^{p-1}}{\|f\|_p^{(p-1)}} \iff \frac{|g|}{\|g\|_q} = \frac{|f|^{p/q}}{\|f\|_p^{p/q}} \iff |g|^q \|f\|_p^p = \|g\|_q^q |f|^p.$$

Definition 2.29. For a complex number $\lambda \in \mathbb{C}$, let

$$\operatorname{sgn}(\lambda) = \begin{cases} \frac{\lambda}{|\lambda|} & \text{if} \quad \lambda \neq 0\\ 0 & \text{if} \quad \lambda = 0. \end{cases}$$

Theorem 2.30 (Minkowski's Inequality). If $1 \le p \le \infty$ and $f, g \in \ell^p(\mu)$ then

$$||f + g||_p \le ||f||_p + ||g||_p$$

with equality iff

$$\operatorname{sgn}(f) = \operatorname{sgn}(g) \text{ when } p = 1 \text{ and}$$

 $f = cq \text{ for some } c > 0 \text{ when } p \in (1, \infty).$

Proof. For p = 1,

$$\|f + g\|_1 = \sum_{X} |f + g| \mu \leq \sum_{X} \left(|f| \mu + |g| \mu \right) = \sum_{X} |f| \mu + \sum_{X} |g| \mu$$

with equality iff

$$|f| + |g| = |f + g| \iff \operatorname{sgn}(f) = \operatorname{sgn}(g).$$

For $p = \infty$,

$$||f + g||_{\infty} = \sup_{X} |f + g| \le \sup_{X} (|f| + |g|)$$

$$\le \sup_{X} |f| + \sup_{X} |g| = ||f||_{\infty} + ||g||_{\infty}.$$

Now assume that $p \in (1, \infty)$. Since

$$|f+q|^p < (2\max(|f|,|g|))^p = 2^p \max(|f|^p,|g|^p) < 2^p (|f|^p + |g|^p)$$

it follows that

$$||f+g||_p^p \le 2^p \left(||f||_p^p + ||g||_p^p\right) < \infty.$$

We may assume $||f+g||_p > 0$ since if $||f+g||_p = 0$ the theorem is easily verified. Now

$$(2.20) |f+g|^p = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}$$

with equality iff $\operatorname{sgn}(f) = \operatorname{sgn}(g)$. Multiplying Eq. (2.20) by μ and then summing and applying Holder's inequality gives

$$\sum_{X} |f + g|^{p} \mu \leq \sum_{X} |f| |f + g|^{p-1} \mu + \sum_{X} |g| |f + g|^{p-1} \mu$$

$$\leq (\|f\|_{p} + \|g\|_{p}) \||f + g|^{p-1} \|_{q}$$
(2.21)

with equality iff

$$\left(\frac{|f|}{\|f\|_p}\right)^p = \left(\frac{|f+g|^{p-1}}{\||f+g|^{p-1}\|_q}\right)^q = \left(\frac{|g|}{\|g\|_p}\right)^p$$

and $\operatorname{sgn}(f) = \operatorname{sgn}(g)$.

By Eq. (2.18) and the identity, q(p-1) = p, we have

(2.22)
$$|||f+g|^{p-1}||_q^q = \sum_X (|f+g|^{p-1})^q \mu = \sum_X |f+g|^p \mu$$

Combining Eqs. (2.21) and (2.22) implies

$$(2.23) ||f+g||_p^p \le ||f||_p ||f+g||_p^{p/q} + ||g||_p ||f+g||_p^{p/q}$$

with equality iff

(2.24)
$$\operatorname{sgn}(f) = \operatorname{sgn}(g) \text{ and }$$

$$\left(\frac{|f|}{\|f\|_p}\right)^p = \frac{|f+g|^p}{\|f+g\|_p^p} = \left(\frac{|g|}{\|g\|_p}\right)^p.$$

Solving for $||f+g||_p$ in Eq. (2.23) with the aid of Eq. (2.18) shows that $||f+g||_p \le ||f||_p + ||g||_p$ with equality iff Eq. (2.24) holds which happens iff f = cg with c > 0.

2.7. Exercises.

2.7.1. Set Theory. Let $f: X \to Y$ be a function and $\{A_i\}_{i \in I}$ be an indexed family of subsets of Y, verify the following assertions.

Exercise 2.1. $(\cap_{i\in I}A_i)^c = \cup_{i\in I}A_i^c$.

Exercise 2.2. Suppose that $B \subset Y$, show that $B \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (B \setminus A_i)$.

Exercise 2.3. $f^{-1}(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} f^{-1}(A_i)$.

Exercise 2.4. $f^{-1}(\cap_{i\in I}A_i) = \cap_{i\in I}f^{-1}(A_i)$.

Exercise 2.5. Find a counter example which shows that $f(C \cap D) = f(C) \cap f(D)$ need not hold.

Exercise 2.6. Now suppose for each $n \in \mathbb{N} \equiv \{1, 2, ...\}$ that $f_n : X \to \mathbb{R}$ is a function. Let

$$D \equiv \{x \in X : \lim_{n \to \infty} f_n(x) = +\infty\}$$

show that

(2.25)
$$D = \bigcap_{M=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n>N} \{ x \in X : f_n(x) \ge M \}.$$

Exercise 2.7. Let $f_n: X \to \mathbb{R}$ be as in the last problem. Let

$$C \equiv \{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists in } \mathbb{R}\}.$$

Find an expression for C similar to the expression for D in (2.25). (Hint: use the Cauchy criteria for convergence.)

2.7.2. Limit Problems.

Exercise 2.8. Prove Lemma 2.15.

Exercise 2.9. Prove Lemma 2.20.

Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of real numbers.

Exercise 2.10. Show $\liminf_{n\to\infty} (-a_n) = -\limsup_{n\to\infty} a_n$.

Exercise 2.11. Suppose that $\limsup_{n\to\infty} a_n = M \in \mathbb{R}$, show that there is a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ such that $\lim_{k\to\infty} a_{n_k} = M$.

Exercise 2.12. Show that

(2.26)
$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

provided that the right side of Eq. (2.26) is well defined, i.e. no $\infty - \infty$ or $-\infty + \infty$ type expressions. (It is OK to have $\infty + \infty = \infty$ or $-\infty - \infty = -\infty$, etc.)

Exercise 2.13. Suppose that $a_n \geq 0$ and $b_n \geq 0$ for all $n \in \mathbb{N}$. Show

(2.27)
$$\limsup_{n \to \infty} (a_n b_n) \le \limsup_{n \to \infty} a_n \cdot \limsup_{n \to \infty} b_n,$$

provided the right hand side of (2.27) is not of the form $0 \cdot \infty$ or $\infty \cdot 0$.

2.7.3. Dominated Convergence Theorem Problems.

Exercise 2.14. Suppose $V \subset \mathbb{R}^n$ is an open set, $t_0 \in V$, and $G: V \setminus \{t_0\} \to \mathbb{C}$ is a function on $V \setminus \{t_0\}$. Show that $\lim_{t \to t_0} G(t)$ exists and is equal to $A \in \mathbb{C}$, iff for all sequences $\{t_n\}_{n=1}^{\infty} \subset V \setminus \{t_0\}$ which converge to t_0 (i.e. $\lim_{n \to \infty} t_n = t_0$) we have

$$\lim_{n\to\infty} G(t_n) = A.$$

Exercise 2.15. Suppose that X is a set, $V \subset \mathbb{R}^n$ is an open set, and $f: V \times X \to \mathbb{C}$ is a function satisfying:

- 1. For each $x \in X$, the function $t \to f(t, x)$ is continuous on V.
- 2. There is a summable function $g: X \to [0, \infty)$ such that

$$|f(t,x)| \leq g(x)$$
 for all $x \in X$ and $t \in V$.

Show that

$$(2.28) F(t) := \sum_{x \in X} f(t, x)$$

is a continuous function for $t \in V$.

Exercise 2.16. Suppose that X is a set, $J=(a,b)\subset\mathbb{R}$ is an interval, and f: $J \times X \to \mathbb{C}$ is a function satisfying:

- 1. For each $x \in X$, the function $t \to f(t, x)$ is differentiable on J,
- 2. There is a summable function $g: X \to [0, \infty)$ such that

$$\left|\dot{f}(t,x)\right| := \left|\frac{d}{dt}f(t,x)\right| \le g(x) \text{ for all } x \in X.$$

- 3. There is a $t_0 \in J$ such that $\sum_{x \in X} |f(t_0, x)| < \infty$. Show:
- a) for all $t \in J$ that $\sum_{x \in X} |f(t,x)| < \infty$. b) Let $F(t) := \sum_{x \in X} f(t,x)$, show F is differentiable on J and that

$$\dot{F}(t) = \sum_{x \in X} \dot{f}(t, x).$$

(Hint: Use the mean value theorem.)

Exercise 2.17. Let $\{a_n\}_{n=-\infty}^{\infty}$ be a summable sequence of complex numbers, i.e.

$$\sum_{n=-\infty}^{\infty} |a_n| < \infty.$$

For $t \geq 0$ and $x \in \mathbb{R}$, define

$$f(t,x) = \sum_{n=-\infty}^{\infty} a_n e^{-tn^2} e^{inx},$$

where as usual $e^{ix} = \cos(x) + i\sin(x)$. Prove the following facts about f:

- 1. f(t,x) is continuous for $(t,x) \in [0,\infty) \times \mathbb{R}$.
- 2. $\partial f(t,x)/\partial t$, $\partial f(t,x)/\partial x$ and $\partial^2 f(t,x)/\partial x^2$ exist for t>0 and $x\in\mathbb{R}$.
- 3. f satisfies the heat equation, namely

$$\partial f(t,x)/\partial t = \partial^2 f(t,x)/\partial x^2$$
 for $t > 0$ and $x \in \mathbb{R}$.

2.7.4. Inequalities.

Exercise 2.18. Generalize Proposition 2.25 as follows. Let $a \in [-\infty, 0]$ and $f : \mathbb{R} \cap$ $[a,\infty) \to [0,\infty)$ be a continuous strictly increasing function such that $\lim_{x \to \infty} f(x) = 0$ ∞ , f(a) = 0 if $a > -\infty$ or $\lim_{s \to -\infty} f(s) = 0$ if $a = -\infty$. Also let $g = f^{-1}$, $b = f(0) \ge 0$,

$$F(s) = \int_0^s f(s')ds' \text{ and } G(t) = \int_0^t g(t')dt'.$$

Then for all $s, t \geq 0$,

$$st \le F(s) + G(t \lor b) \le F(s) + G(t)$$

and equality holds iff t = f(s). In particular, taking $f(s) = e^s$, prove Young's inequality stating

$$st < e^s + (t \lor 1) \ln(t \lor 1) - (t \lor 1) < e^s + t \ln t - t.$$

Hint: Refer to the following pictures.

FIGURE 3. Comparing areas when $t \ge b$ goes the same way as in the text.

FIGURE 4. When $t \leq b$, notice that $g(t) \leq 0$ but $G(t) \geq 0$. Also notice that G(t) is no longer needed to estimate st.

3. METRIC AND BANACH SPACES I

3.1. Basic metric space notions.

Definition 3.1. A function $d: X \times X \to [0, \infty)$ is called a metric if

- 1. (Symmetry) d(x,y) = d(y,x) for all $x, y \in X$
- 2. (Non-degenerate) d(x,y) = 0 if and only if $x = y \in X$
- 3. (Triangle inequality) $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

As primary examples, any normed space $(X, \|\cdot\|)$ is a metric space with $d(x, y) := \|x - y\|$. Thus the space $\ell^p(\mu)$ is a metric space for all $p \in [1, \infty]$. Also any subset of a metric space is a metric space. For example a surface Σ in \mathbb{R}^3 is a metric space with the distance between two points on Σ being the usual distance in \mathbb{R}^3 .

Definition 3.2. Let (X,d) be a metric space. The **open ball** $B(x,\delta) \subset X$ centered at $x \in X$ with radius $\delta > 0$ is the set

$$B(x,\delta) := \{ y \in X : d(x,y) < \delta \}.$$

We will often also write $B(x, \delta)$ as $B_x(\delta)$. We also define the **closed ball** centered at $x \in X$ with radius $\delta > 0$ as the set $C_x(\delta) := \{y \in X : d(x, y) \le \delta\}$.

Definition 3.3. A sequence $\{x_n\}_{n=1}^{\infty}$ in a metric space (X,d) is said to be convergent if there exists a point $x \in X$ such that $\lim_{n\to\infty} d(x,x_n) = 0$. In this case we write $\lim_{n\to\infty} x_n = x$.