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Exercise 2.16. Suppose that X is a set, J = (a,b) C R is an interval, and f :
J x X — C is a function satisfying:

1. For each z € X, the function t — f(¢,x) is differentiable on J,
2. There is a summable function g : X — [0, c0) such that

[Ft.2)] o= | % 70,2

3. There is a to € J such that >\ [f(to, )| < oo.
Show:

a) forallt € J that > _ [f(t,7)] < oo.
b) Let F(t) :=3 .y f(t,x), show F is differentiable on J and that

)= f(ta).

zeX

< g(x) for all x € X.

(Hint: Use the mean value theorem.)

Exercise 2.17. Let {a,} . _ be a summable sequence of complex numbers, i.e.
o0
Z lan| < c.
n=—oo

For t > 0 and = € R, define

D)= Y aeniein,

where as usual e = cos(x) + isin(z). Prove the following facts about f :
1. f(t,x) is continuous for (¢,z) € [0,00) x R.
2. Of(t,x)/0t, Of (t,x)/0x and 9% f(t,x)/0z? exist for t > 0 and x € R.
3. f satisfies the heat equation, namely

of (t,x) /ot = 8% f(t,x)/02” for t > 0 and = € R.
2.7.4. Inequalities.

Exercise 2.18. Generalize Proposition 2.25 as follows. Let a € [—00,0] and f : RN
[a,00) — [0,00) be a continuous strictly increasing function such that lim f(s) =

00, f(a) = 0if a > —oo or lim,_, o, f(s) = 0 if a = —o0. Also let g = f~1,
b=f(0) >0,

s t
F(s) = Nds' and G(t) = tdt .
(s) /Of(s)san (t) /0g<>
Then for all s,t > 0,
st < F(s) + G(t Vb) < F(s) + G(t)

and equality holds iff t = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating

st<e’+(tVv1)In(tVvl) —(tvl) <e’+tlnt—t.
Hint: Refer to the following pictures.
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F1GURE 3. Comparing areas when ¢t > b goes the same way as in
the text.

2 -1 0 % 2

FIGURE 4. When ¢ < b, notice that g(¢) < 0 but G(t) > 0. Also
notice that G(t) is no longer needed to estimate st.

3. METRIC AND BANACH SPACES 1
3.1. Basic metric space notions.

Definition 3.1. A function d : X x X — [0,00) is called a metric if
1. (Symmetry) d(z,y) = d(y,z) for all z,y € X
2. (Non-degenerate) d(z,y) =0 if and only if x =y € X
3. (Triangle inequality) d(z, z) < d(z,y) + d(y, 2) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) is & metric space with d(z,y) :=
||z — y||. Thus the space ¢*(y) is a metric space for all p € [1,00]. Also any subset
of a metric space is a metric space. For example a surface ¥ in R? is a metric space
with the distance between two points on ¥ being the usual distance in R3.

Definition 3.2. Let (X,d) be a metric space. The open ball B(z,§) C X cen-
tered at x € X with radius 6 > 0 is the set

B(z,6) :={y € X : d(z,y) < 6}.
We will often also write B(x,6) as B, (6). We also define the closed ball centered
at € X with radius 6 > 0 as the set C,,(6) = {y € X : d(z,y) < 6}.

Definition 3.3. A sequence {z,} -, in a metric space (X, d) is said to be conver-
gent if there exists a point € X such that lim,_ ., d(z,z,) = 0. In this case we
write lim,,—.oo T, = T.
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Exercise 3.1. Show that = in Definition 3.3 is necessarily unique.

Definition 3.4. A set F C X is closed iff every convergent sequence {z,}. .
which is contained in F' has its limit back in F. A set V C X is open iff V¢ is
closed. We will write F' X to indicate the F is a closed subset of X and V C, X
to indicate the V' is an open subset of X. We also let 74 denote the collection of
open subsets of X relative to the metric d.

Exercise 3.2. Let F be a collection of closed subsets of X, show NF := NpcrF
is closed. Also show that finite unions of closed sets are closed, i.e. if {F}},_, are
closed sets then U}_, F} is closed. (By taking compliments, this shows that the
collection of open sets, 74, is closed under finite intersections and arbitrary unions.)

Exercise 3.3. Show that V' C X is open iff for every x € V there is a § > 0 such
that B, (6) C V. In particular show B, (6) is open for all x € X and § > 0.

Definition 3.5. Given a set A contained a metric space X, let
A={zeX:3{z,} CA> x:nli_)r{.loxn}.
That is to say A contains all limit points of A.
Exercise 3.4. Given A C X, show A is a closed set and in fact
A=nN{F:ACFC X with F closed}.
That is to say A is the smallest closed set containing A.

3.2. Continuity. Suppose that (X,d) and (Y, p) are two metric spaces and f :
X — Y is a function.

Definition 3.6. A function f: X — Y is continuous at « € X if for all € > 0 there
is a 6 > 0 such that

d(f(z), f(2")) < € provided that p(z,z") < 6.
The function f is said to be continuous if f is continuous at all points x € X.
The following lemma gives three other ways to characterize continuous functions.

Lemma 3.7. Suppose that (X, p) and (Y,d) are two metric spaces and f: X =Y
s a function. Then following are equivalent:

1. f is continuous.
2. fYV) e, for alV € 1q, ice. f~H(V) is open in X if V is open in'Y.
3. fY(C) is closed in X if C is closed in'Y.
4. For all convergent sequences {x,} C X, {f(xn)} is convergent in' Y and
lim f(xz,)=f ( lim xn) .
Proof. 1. = 2. For all x+ € X and € > 0 there exists § > 0 such that
d(f(z), f(a") < eif p(z,z") < 6. ie.
B.(8) C fH(By(a)(e))
Soif V. Co Y and x € f~(V) we may choose € > 0 such that By(,)(e) € V then
By (8) € fH(Bywy(€) € FH(V)
showing that f~1(V) is open.
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2. <= 3. If C is closed in Y, then C¢ C, Y and hence f~1(C¢) C, X. Since
FHeCe) = (f*I(C’))C, this shows that f~1(C) is the complement of an open set
and hence closed. Similarly one shows that 3. = 2.

2. = 1. Let e > 0 and x € X, then, since f~(Bj(,(€)) Co X there exists § > 0
such that B, (6) C f~! (B (€)) ie. if p(z,2') < & then d(f(z'), f(z)) <.

1. = 4. If f is continuous and z,, — z in X, let ¢ > 0 and choose § > 0
such that d(f(z), f(2')) < e when p(x,2’) < §. There exists an N > 0 such that
p(z,z,) < 6 for all n > N and therefore d(f(x), f(x,)) < € for all n > N. That is
to say lim, o f(z,) = f(x) as n — oo.

4. = 1.We will show that not 1. = not 4. not 1 implies there exists € > 0,
a point € X and a sequence {z,} -, C X such that d(f(z), f(z,)) > € while
p(z,x,) < L. Clearly this sequence {z,} violates 4. m

The next lemma supplies some examples of continuous functions on metric
spaces.

Lemma 3.8. For any non empty subset A C X, let da(x) = inf{d(z,a)|a € A},
then

(3.1) lda(z) —da(y)| < d(z,y) Vao,y e X.

In particular, da is a continuous function on X. Moreover, by Lemma 3.7, for all
€ >0 the set F. ={x € X|da(z) > €} is closed in X. Further, if V is an open set
and A =V¢ then F. TV ase | 0.

Proof. Let a € A and =,y € X, then
d(z,a) < d(z,y) + d(y,a).
Take the inf over a in the above equation shows that
da(z) <d(z,y) +daly) Va,ye X.

Therefore, d4(x) —da(y) < d(z,y) and by interchanging = and y we also have that
da(y) — da(x) < d(z,y) which implies Eq. (3.1) from which it follows that d4 is
continuous on X.

Now suppose that A = V¢ with V € 7. It is clear that d4(z) = 0forx € A =V*
so that F, C V for each € > 0 and hence UcsoF. C V. Now suppose that x € V,
then there exists an € > 0 such that B, (¢) C V, thatisit y € X such that d(x,y) < €
then y € V. Therefore d(x,y) > e for all y € V¢ and hence x € F,i.e. V C UcsoFe.
Finally it is clear that F, C F.» whenever ¢ <e¢. m

Corollary 3.9. The function d satisfies,
|d(.7,‘, y) - d(xlv y/)‘ < d(yv y/) + d(%, $/)
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 3.8 for single point sets and the triangle inequality for the
absolute value of real numbers,

ld(z,y) —d(@',y)| < |d(z,y) — d(z,y")| + |d(z,y') — d(a’,y)|
< d(y,y') =+ d($’$/)'
|

Exercise 3.5. Show the closed ball C,(6) := {y € X : d(z,y) < 6} is a closed
subset of X.
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3.2.1. Word of Caution.
Example 3.10. Let (X, d) be a metric space. It is always true that B, (e) C Cy(¢)

since Cy(€) is a closed set containing B, (e). However, it is not always true that
B,(¢) = Cy(€). For example let X = {1,2} and d(1,2) = 1, then By(1) = {1},
By(1) = {1} while C;(1) = X. For another counter example, take
X={(z,y) eR*:x=0o0rz=1}
with the usually Euclidean metric coming from the plane. Then
Boo(1) ={(0,y) e R*: |y[ < 1},
Boo(1) = {(0,y) € R?: Jy| <1}, while

C0,0)(1) = B(o,0)(1) U{(0,1)}.

In spite of the above examples, Lemmas 3.11 and 3.47 below shows that for
certain metric spaces of interest it is true that By (e) = Cy(e).

Lemma 3.11. Suppose that (X, |-]) is a normed vector space and d is the metric
on X defined by d(z,y) = |x —y|. Then

B, (e) = Cy(e) and
0By (e) ={y € X : d(z,y) = €}.

Proof. We must show that C' := C,(e) C Bi(e) =: B. For y € C, let v =y — z,
then

[v| = |y — 2| =d(z,y) <e.

Let o, =1 —1/n so that oy, T 1 as n — oo. Let y, =  + oo, then d(z,y,) =
and(z,y) < ¢, so that y, € B,(e) and d(y,y,) = 1 —a, — 0 as n — oo. This shows

that y,, — vy as n — oo and hence that y € B. m

3.3. Basic Topological Notions. Using the metric space results above we will
axiomatize the notion of being an open set to more general settings.

Definition 3.12. A collection of subsets 7 of X is a topology if

1.0, Xer

2. 7 is closed under arbitrary unions, i.e. if V,, € 7, for a« € I then |J V,, € 7.
acl
3. 7 is closed under finite intersections, i.e. if Vq,...,V,, € 7 then V1N---NV,, € T.

Notation 3.13. The subsets V' C X which are in 7 are called open sets and we
will abbreviate this by writing V' C¢ X and the those sets F' C X such that F° et
are called closed sets. We will write F' C X if F' is a closed subset of X. Also if
A C X, we define the closure of A to be the smallest closed set A containing A4, i.e.

A::ﬂ{F:ACFIZX}.

Example 3.14. 1. Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 7, is a topology, see Exercise
3.2.

2. Let X be any set, then 7= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {#), X} . In this topology only the empty set and X are open
(closed).
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FIGURE 5. A topology

3. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does not
come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and the
sets X, {1}, {2,3},¢ are open and closed. The sets {1,2} and {1,3} are
neither open nor closed.

Definition 3.15. Let (X, 7) be a topological space, A C X and i4q : A — X be
the inclusion map, i.e. i4(a) = a for all a € A. Define

TAa=i (1) ={ANV:VerT},
the so called relative topology on A.

Exercise 3.6. Show the relative topology is a topology on A. Also show if (X, d)
is a metric space and 7 = 74 is the topology coming from d, then (74), is the
topology induced by making A into a metric space using the metric d|4x 4.

Definition 3.16. Let (X, 7) be a topological space and A C X. We say a subset
U C 7 is an open cover of A if A C UU. The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if i is an open cover of A there exists
Uy CC U such that Uy is a cover of A. (We will write A CC X to denote that
A C X and A is compact.) A subset A C X is precompact if A is compact.

Exercise 3.7. Let (X, 7) be a topological space. Show that A C X is compact iff
(A, 74) is a compact topological space.

Definition 3.17. Let (X, 7x) and (Y, 7y) be topological spaces. A function f :
X — Y is continuous if f~1(ry) C 7x. We will also say that f is 7x /7y —
continuous or (Tx, Ty ) — continuous.

Definition 3.18 (Support). Let f : X — Y be a function from a topological space
(X, 7x) to a vector space Y. Then we define the support of f by

supp(f) :={z € X : f(z) # 0},

a closed subset of X.

Notation 3.19. If X and Y are two topological spaces, let C(X,Y) denote the
continuous functions from X to Y. If Y is a Banach space, let

BO(X.Y) = {f € O(X.Y) : sup [ f(w)ly < oo}
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and
C.(X,Y):={f € C(X,Y) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.

3.4. Completeness.

Definition 3.20 (Cauchy sequences). A sequence {z,} ., in a metric space
(X,d) is Cauchy provided that

lim d(zy,,zm,) =0.
M, T— 00
Exercise 3.8. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let X = Q be the set of rational numbers
and d(z,y) = |z — y|. Choose a sequence {x,,}-, C Q which converges to v/2 € R,
then {z,} -, is (Q,d) — Cauchy but not (Q,d) — convergent. The sequence does
converge in R however.

Definition 3.21. A metric space (X,d) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.9. Let (X,d) be a complete metric space. Let A C X be a subset of
X viewed as a metric space using d| 4x 4. Show that (A,d|sx 4) is complete iff A is
a closed subset of X.

Definition 3.22. If (X,|-||) is a normed vector space, then we say {z,}, -, C X
is a Cauchy sequence if lim,, y,—.oc || Zm — @] = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {z,} -, C X which is Cauchy is
convergent where {z,},-, C X is convergent iff there exists © € X such that
lim,, o0 ||y, — || = 0. As usual we will abbreviate this last statement by writing
lim,, o 2, = .

Lemma 3.23. Suppose that X is a set then the bounded functions £>°(X) on X is
a Banach space with the norm

1= 1[flloe = sup [f(2)].
zeX
Moreover if X is a topological space the set BC(X) C {*°(X) is closed subspace of
£>°(X) and hence is also a Banach space.

Proof. Let {f,} ., C ¢>°(X) be a Cauchy sequence. Since for any z € X, we
have

(3-2) (@) = fin ()] <[ fr = Finll oo
which shows that {f,(z)},., C F is a Cauchy sequence of numbers. Because F

(F =R or C) is complete, f(x) := lim, o fr(z) exists for all x € X. Passing to
the limit n — oo in Eq. (3.2) implies

|f($) - fm(x)| S lim sup an - meoo
n—o0
and taking the supremum over x € X of this inequality implies
1f = fillo < lim sup [|fn = fimlloo — 0 as m — 00
n—oo

showing f, — f in £>°(X).
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For the second assertion, suppose that {f,} -, C BC(X) C (*°(X) and f, —
f € £>2(X). We must show that f € BC(X), i.e. that f is continuous. To this end
let x,y € X, then

[f(@) = F)| < [f(2) = fu(@)| + [ful2) = (@) + [ fuly) = F(Y)]
Thus if € > 0, we may choose n large so that 2||f — f,||., < €/2 and then for this
n there exists an open neighborhood V, of € X such that |f,(x) — fn(y)| < €/2
for y € V. Thus |f(z) — f(y)| < € for y € V, showing the limiting function f is
continuous. W

Remark 3.24. Let X be a set, Y be a Banach space and ¢*>°(X,Y) denote the
bounded functions f : X — Y equipped with the norm ||f|| = || f|l., =
sup,ex || f(x)|ly - If X is a topological space, let BC(X,Y) denote those f €
(>°(X,Y) which are continuous. The same proof used in Lemma 3.23 shows that
(>*(X,Y) is a Banach space and that BC(X,Y) is a closed subspace of {*°(X,Y).

Theorem 3.25 (Completeness of ((u)). Let X be a set and p: X — (0,00] be a
given function. Then for any p € [1,00], (¢P(n), |l|,) is @ Banach space.

Proof. We have already proved this for p = 0o in Lemma 3.23 so we now assume
that p € [1,00) and write ||-[| for ||-[|,,. Let {fu},=; C ¢’(n) be a Cauchy sequence.
Since for any = € X,

1
fnx)*fm(x < — fnffm HOasm,nHoo
[ fn( )| ) I [
it follows that {f,(z)},—; is a Cauchy sequence of numbers and f(z) :=
lim,, oo frn(x) exists for all € X. By Fatou’s Lemma,

X X
= lim inf||f, — finl[) — 0 as n — oo,

This then shows that f = (f — fn) + fn € €#(i) (being is the sum of two (¥ —
functions) and that f;, #, fom

Example 3.26. Here are a couple of examples of complete metric spaces.

X =R and d(z,y) = |z —y|.

X =R" and d(z,y) = ||z —yll, = X0, (wi — v:)*.

X = (P(p) for p € [1, 00] and any weight function pu.

X = C([0,1],R) — the space of continuous functions from [0,1] to R and

d(f,g) := maxcpo1) |f(t) — g(t)|. This is a special case of Lemma 3.23.

5. Here is a typical example of a non-complete metric space. Let X = C([0, 1], R)
and

e

1
dtr.) = [ 170 = glt)] .
0
3.5. Compactness in Metric Spaces. Let (X, p) be a metric space and let
Bi(€) = Bx(€e) \ {z}.

Definition 3.27. A point z € X is an accumulation point of a subset £ C X if
0 #EnV\{x} for all V C, X containing z.
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Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.28. Let E C X be a subset of a metric space (X, p). Then the following
are equivalent:

1. x € X is an accumulation point of E.

2. Bl(e)NE # for all e > 0.

3. Bi(e) N E is an infinite set for all € > 0.

4. There exists {xy} -, C E\{z} with lim,_o z,, = .

Definition 3.29. A metric space (X, p) is said to be e — bounded (¢ > 0) provided
there exists a finite cover of X by balls of radius €. The metric space is totally
bounded if it is € — bounded for all € > 0.

Theorem 3.30. Let X be a metric space. The following are equivalent.

(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
(c) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b = ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists E C X, such
that #(E) = oo and E has no accumulation points. Then for all © € X there exists
Ve € 7, such that (V, \ {z}) N E = (). Clearly V = {V,} .y is a cover of X, yet
V has no finite sub cover. Indeed, for each x € X, V, N E consists of at most one
point, therefore if A CC X, UgeaV, can only contain a finite number of points from
E, in particular X # Ugeca V.

(b = ¢) To show X is complete, let {z,} -, C X be a sequence and
E :={z,:neN}. If #(E) < oo, then {x,} -, has a subsequence {z,, } which
is constant and hence convergent. If E is an infinite set it has an accumulation
point by assumption and hence Lemma 3.28 implies that {x,} has a convergence
subsequence.

We now show that X is totally bounded. Let € > 0 be given and choose x; € X. If
possible choose o € X such that d(z2,21) > €, then if possible choose 23 € X such
that d(xs3,{z1,22}) > € and continue inductively choosing points {xj};l:l c X
such that d(x,,{z1,...,2,_1}) > €. This process must terminate, for otherwise
we could choose E = {z; }Joil and infinite number of distinct points such that
d(zj,{z1,...,zj_1}) > eforall j =2,3,4,.... Since for all € X the B,(¢/3)NE
can contain at most one point, no point x € X is an accumulation point of E.

(¢ = a) For sake of contradiction, assume there exists a cover an open cover
V = {Vataca of X with no finite subcover. Since X is totally bounded for each
n € N there exists A,, CC X such that

X = B:(1/n)= | J Cu(1/m).
zEA, z€EA,
Choose x1 € A; such that no finite subset of V covers K; := C, (1). Since K7 =
Uzen, K1 N C(1/2), there exists x5 € Ay such that K := K71 NC;,(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
K, =K, 1NCy, (1/n) with x,, € A,, such no K, can be covered by a finite subset
of V. Now choose y,, € K,, for each n. Since {Kn}zoz1 is a decreasing sequence of
closed sets such that diam(kK,,) < 2/n, it follows that {y,} is a Cauchy and hence
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convergent with
y= lim y, € N)y_1 K.
n—0o0
Since V is a cover of X, there exists V € V such that z € V. Since K,, | {y} and
diam(K,) — 0, it now follows that K,, C V for some n large. But this violates the
assertion that K, can not be covered by a finite subset of V. m

Corollary 3.31. Let X be a metric space then X is compact iff all sequences
{zn} C X have convergent subsequences.

Proof. If X is compact and {z,,} C X

1. I #({zn:n=1,2,...}) < oo then choose x € X such that z, = x i.0. let
{nk} C {n} such that z,, =z for all k. Then z,,, — =

2. If #({zp:n=1,2,...}) = co. We know E = {z,,} has an accumulation
point {x}, hence there exists z,, — .

Conversely if E is an infinite set let {z,}32; C E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume z,, — z € X as
n — 00. Now = € X is an accumulation point of E by Theorem 3.30 and hence X
is compact. m

Corollary 3.32. Compact subsets of R™ are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [—M, M|™ for some positive integer M.
For 6 > 0, let

As =6Z" N [-M,M]" :={bx:x € Z" and §|z;| < M for i =1,2,...,n}.
We will shows that by choosing 6 > 0 sufficiently small, that
(3.3) K C[-M,M]" C Ugen, B(z,€)

which shows that K is totally bounded. Hence by Theorem 64.8, K will be compact.

Suppose that y € [-M, M]™, then there exists x € As such that |y; — z;| < § for
i =1,2,...,n. Hence

Pa,y) =3 (i — i) < né?
i=1

which shows that d(z,y) < /né. Hence if choose § < €/y/n we have shows that
d(z,y) <€, ie. Eq. (3.3) holds. m

For Exercises 3.10 — 3.12, let (X, d) be a compact metric space.

Exercise 3.10 (Extreme value theorem). Let f : X — R be a continuous func-
tion. Show —oco < inf f < supf < oo and there exists a,b € X such that

f(a) =inf f and f(b) =sup f.

Exercise 3.11 (Uniform Continuity). Let f : X — R be a continuous function.
Show that f is uniformly continuous, i.e. if € > 0 there exists § > 0 such that
|f(y) — f(z)] <eif x,y € X with d(z,y) < 6.

Exercise 3.12 (Dini’s Theorem). Let f, : X — [0,00) be a sequence of continu-
ous functions such that f,(z) | 0 as n — oo for each € X. Show that in fact
fn | O uniformly in z, i.e. sup,cx fn(z) | 0 as n — oo. Hint: Given € > 0, consider
the open sets V,, := {z € X : f,,(z) < €}.
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Definition 3.33. Let L be a vector space. We say that two norms, |-| and [|-||, on
L are equivalent if there exists constants a, 8 € (0, 00) such that

I£ < alfl and [£] < B|f] for all f € L.

Lemma 3.34. Let L be a finite dimensional vector space. Then any two norms
|| and ||-|| on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {f;}' | be a basis for L and define a new norm on L by

n n
Zaifi EZ\aﬂ for a; € F.
i=1 i=1

By the triangle inequality of the norm ||, we find

S aifi| <Y lail lfil <MY Jas| = M
i=1 i=1 i=1
where M = max; | f;| . Thus we have

[fl < MJ|flly

for all f € L. This inequality shows that |-| is continuous relative to |[-||; . Now
let S:={feL:|f|, =1}, a compact subset of L relative to ||-||; . Therefore my
Exercise 3.10 there exists fy € S such that

m=inf {|f|: f €S} =]fo| >0.
Hence given 0 # f € L, then W € S so that

1

n
Zaifi
i1

1

f 1
m < = |/l

'|f||1 17114

or equivalently
1

I < =171,
This shows that |-| and ||-||; are equivalent norms. Similarly one shows that ||-|| and
||-||; are equivalent and hence so are |-| and ||-||. m

Definition 3.35. A subset D of a topological space X is dense if D = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 3.36. Let 1 : N — (0,00) be a function, then ¢P(u) is separable for all
1 < p < oo. For example, let I' C F be a countable dense set, then

D:={zxeclP(u):a; €T forall i and #{j : z; # 0} < oo}.
The set I" can be taken to be Qif F=Ror Q +:Q if F =C.
Lemma 3.37. Any compact metric space (X,d) is separable.

Proof. To each integer n, there exists A,, CC X such that X = Ugep, B(z,1/n).
Let D := U2, Ay, — a countable subset of X. Moreover, it is clear by construction
that D =X. m
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3.6. Bounded Linear Operators Basics.

Definition 3.38. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(z)|| < C||z||x for all z € X. We denote the best constant by ||T’||, i.e.

17 = sup 1Z@ up @) ] = 1.
S el

The number ||T|| is called the operator norm of T
Proposition 3.39. Suppose that X and Y are normed spaces and T : X — 'Y s
a linear map. The the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.

(c) T is bounded.

Proof. (a) = (b) trivial. (b) = (c) If T continuous at 0 then there exist § > 0
such that ||T(z)|| < 1if ||z|] < §. Therefore for any € X, |IT (6z/||z]]) || <1 which
implies that ||T'(z)|| < /=] and hence ||T]| < § < c0. (¢) = (a) Let z € X and
€ > 0 be given. Then

1T(y) = T(@)[| = 1T(y — )| < |IT| ly — =l| <€
provided |ly — z|| < €¢/[|T]| =6. =

Example 3.40. Suppose that K : [0,1] x [0,1] — C is a continuous function and
let (for now) L* ([0,1]) denote C([0,1]) with the norm

£l —/ ()] de.

Let T': L' ([0, 1],dm) — C([0,1]) be defined by

- /0 K (2, 9)f(v)dy

It is easily checked that this map is linear and maps to C([0,1]) as adver-
tised. (To prove this use the fact the K is uniformly continuous.) If M =
sup {|K(z,y)| : z,y € [0,1]}, then

(TF)()] < /0 K (2. 9) £ ()| dy < M | £,

which shows that ||Tf|| ., < M || f||; and hence,
||T||Ll—>C S max{\K(x,y)\ T,y S [Oa 1]} < 0Q.

We can in fact show that ||T|| = M as follows. Let (z9,v0) € [0,1]? such that
|K(x0,y0)] = M. Then given € > 0, there exists a neighborhood U = I x J of
(z0,70) such that |K(z,y) — K(xo,y0)| < € for all (z,y) € U. Let f € C.(I,]0,00))
such that fol f(z)dx = 1. Choose a € C such that || = 1 and aK(zg,y0) = M,
then

(Taf)(z0)] = ' / 1K(wo,y)af(y)dy‘ - \ [ Kovarway

> Re / oK (20,) f(y)dy > / (M — &) F(y)dy = (M — &) [[afll,.

I
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and hence
[Taflle > (M —e)llaf]
showing that ||T|| > M — e. Since € > 0 is arbitrary, we learn that ||T|| > M and

hence ||T|| = M.
Similarly one easily shows that T'|¢(jo,1) : C([0,1]) — C([0,1]) is bounded and

1
1T oo < sup {/ |K(z,y)|dy : z € [0, 1]} < 00.
0

One may also view T as a map from T : C([0,1]) — L*([0,1]) in which case it can
be seen that

1
Tl < [ max|K(ey)]de <o,

For the next three exercises, let X = R" andY = R™ and T : X — Y be a linear
transformation so that 7" is given by matrix multiplication by an m x n matrix. Let
us identify the linear transformation 7" with this matrix.

Exercise 3.13. Assume the norms on X and Y are the ¢! — norms, i.e. for x € R?,
|#]| = >=5_, |;] . Then the operator norm of T is given by

1<j<n

IT|| = max > [Tl
=1

Exercise 3.14. Assume the norms on X and Y are the ¢°° — norms, i.e. for z € R™,
|lz|]| = max;<;j<p |z;|. Then the operator norm of T is given by

IT|| = max > |T;l.
j=1

1<i<m

Exercise 3.15. Assume the norms on X and Y are the ¢? — norms, i.e. for x € R?,

]| = >y xF. Show |T||? is the largest eigenvalue of the matrix T T : R — R".

Exercise 3.16. If X is finite dimensional normed space then all linear maps are
bounded.

Notation 3.41. Let L(X,Y’) denote the bounded linear operators from X to Y.

Lemma 3.42. Let X,Y be normed spaces, then the operator norm ||-|| on L(X,Y)
is a norm. Moreover if Z is another normed space andT : X —Y and S:Y — Z

are linear maps, then ||ST|| < ||S|||T||, where ST :=SoT.

Proof. As usual, the main point in checking the operator norm is a norm is
to verify the triangle inequality, the other axioms being easy to check. If A, B €
L(X,Y) then the triangle inequality is verified as follows:

| Az + Ba|| __|As| + | Be]

||A+ BJ|| = sup <
0 (||| z#£0 (|||
Ax Bz
< sup 1A g BTy 4 4 .
240 ||zl z#0 ||z

For the second assertion, we have for x € X, that
[ST|| < [ISI[IIT=) < [ISIIT |-
From this inequality and the definition of ||ST||, it follows that ||.ST|| < ||S|/||T]]. =
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Proposition 3.43. Suppose that X is a normed vector space and Y is a Banach
space. Then (L(X,Y),| - |lop) is a Banach space.

We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.44. A normed space (X, ||-||) is a Banach space iff for every sequence
N

oo
{x, )02 such that Y ||z,|| < oo then imy_ oo > @, = S exists in X (that is to
n=1 n=1
say every absolutely convergent series is a convergent series in X ). As usual we
oo

will denote S by > xy,.

n=1

Proof. (=)If X is complete and Z |zn]| < oo then sequence Sy = Z x,, for
n=1
N € N is Cauchy because (for N > M)

N
ISy — Suml < Z |zpn]] — 0 as M, N — oo.
n=M+1

o] N
ThereforeS = > x,, :=limy_oc Y, @y exists in X.
n=1 n=1

(<=) Suppose that {z,} . be a Cauchy sequence and let {y, = z,,, }%2, be a
subsequence of {x,,} -, such that Z |yn+1 — Yn|| < co. By assumption

n=1

N
Z/N—H*yl:Z(?JnH n H5 Zyn_H EX&SN*)OO

n=1

This shows that limy_,~ yn exists and is equal to x := y; + S. Since {xn}zozl is
Cauchy,

[ = 2|l <[l = yill + lyx — 2zall — 0 as k;n — o0

showing that lim,,_., x,, exists and is equal to . m
Proof. (Proof of Proposition 3.43.) We must show (L(X,Y),||-||op) is complete.

o0
Suppose that T,, € L(X,Y) is a sequence of operators such that > [|T,] < oo.

n=1

Then

S Tzl <Y ATl ] < oo

n=1 n=1
and therefore by the completeness of Y, Sz := > T,z = limy_..c Sy exists in

n=1
N

Y, where Sy := > T,,. The reader should check that S : X — Y so defined in

n=1
linear. Since,

[Sz(] = lim {|Syaf| < lim ZIIT III<ZHT [l

n=1
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S is bounded and

(3.4) ISI < > NITll-
n=1
Similarly,
N oo
1Sz — Syal = Jim [|Syz—Syal < Jim S [Tzl = Y. (T o]
n=M+1 n=M+1

and therefore,

IS = Sarl < Y 1Tl = 0 as M — oo,
n=M

3.7. Appendix: Sums in Banach spaces.

Definition 3.45. Suppose that X is a Normed space and {v, € X : € A} is a
given collection of vectors in X. We say that s = Y v, € X if for all e > 0
there exists a finite set I'« C A such that Hs = aeA va“ < eforall A CcCc A
such that T'. C A. (Unlike the case of real valued sums, this does not imply that
Y aca llvall < 0o. See Proposition 18.16, from which one may manufacture counter-
examples to this false premise.)

Lemma 3.46. (1) When X is a Banach space, ) c 4 Vo exists in X iff for all
€ > 0 there exists I'. CC A such that ”ZaeAva” < € forall A cC A\ T
Also if Y, c 4 Va exists in X then {a € A:v, # 0} is at most countable. (2) If
8= neaVa € X exists and T : X —'Y is a bounded linear map between normed
spaces, then Y o, Tva exists in Y and

Ts:TZva = ZTUQ.
acA acA

Proof. (1) Suppose that s =",
Definition 3.45. Then for A CC A\ T,

v, exists and € > 0. Let I'. CC A be as in

E Vol < E vaJrE Vo — S|| + E Vg — §
aEA aEA acl'¢ acl'¢
= E Vo — S|| + € < 2e.
ael (UA

Conversely, suppose for all € > 0 there exists I'. CC A such that HZ
for all A CC A\ T.. Let v, := U_T'1;, C A and set s, :=

m>n,

aEN Ua” <€

aeyn Va- Then for

[$m — snll = Z V|| <1/n— 0 as m,n — oco.
a€ym \vn
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Therefore {sn}zozl is Cauchy and hence convergent in X. Let s := lim,, .o Sy, then
for A CC A such that ~,, C A, we have

sfgva

1
<lls=sall +]| D va <lls = sl +—.
a€cA

aEA\v,

Since the right member of this equation goes to zero as n — oo, it follows that
> acA Vo exists and is equal to s.

Let v := U2 ;7,, — a countable subset of A. Then for o ¢ v, {a} C A\ 7, for all
n and hence

llvell = Z vgl| <1/n — 0 asn — oo.
pe{a}

Therefore v, =0 for all c € A\ 7.
(2) Let I'c be as in Definition 3.45 and A CC A such that I'. C A. Then

TszTva S—Zva

acA aEA

< |7 <|Tlle

which shows that )\ T, exists and is equal to T's. m

3.8. Appendix on Riemannian Metrics. This subsection is not completely self
contained and may safely be skipped.

Lemma 3.47. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(z,y) =inf {{(0) : 0(0) = = and o(1) =y}

where U(c) is the length of the curve . We define £(c) = oo if o is not piecewise
smooth.
Then

B, (e) = Cy(e) and
0By (e) ={y € X : d(z,y) = €}.

 Proof. Let C := Cy(€) C By(e) =: B. We will show that C C B by showing
B¢ C C°. Suppose that y € B¢ and choose § > 0 such that B,(6) N B = (. In
particular this implies that

By (6) N By(e) = 0.
We will finish the proof by showing that d(x,y) > e+ 6 > € and hence that y € C°.
This will be accomplished by showing: if d(x,y) < € + § then B,(6) N B, (e) # 0.
If d(z,y) < max(e, §) then either « € B,(6) or y € B,(¢€). In either case B,(6) N

B.(€) # (). Hence we may assume that max(e, §) < d(z,y) < e+ 6. Let « >0 be a
number such that

max(€,6) < d(z,y) <a<e+6

and choose a curve ¢ from x to y such that ¢(c) < a. Also choose 0 < §' < § such
that 0 < o — 8’ < € which can be done since a — § < €. Let k(t) = d(y,0(t)) a
continuous function on [0,1] and therefore k([0,1]) C R is a connected set which
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FIGURE 6. An almost length minimizing curve joining z to y.

contains 0 and d(x,y). Therefore there exists ty € [0,1] such that d(y,o(tg)) =
k(tg) = &'. Let z = o(tg) € By(6) then

d(x,z) < U(0ljo,40)) = o) = (0|jge1]) < a—d(z,y) =a—§ <e
and therefore z € B, (€) N B,(6) #0. m

Remark 3.48. Suppose again that X is a Riemannian (or sub-Riemannian) mani-
fold and

d(z,y) =inf {{(c) : 0(0) = z and o(1) = y}.
Let o be a curve from x to y and let € = {(0) —d(z,y). Then for all 0 <u < v <1,
d(o(u),o(v)) < (0|[yw) + €

So if o is within € of a length minimizing curve from x to y that oy, ,) is within
e of a length minimizing curve from o(u) to o(v). In particular if d(z,y) = £(o)
then d(o(u),0(v)) = £(0|[u,v)) for all 0 <u < v < 1, ie. if 0 is a length minimizing
curve from x to y that ol . is a length minimizing curve from o(u) to o(v).

To prove these assertions notice that

d(x,y) +e= 6(0) = €(0|[0,u]) + é(ahu,v]) + é(ahv,l])
> d(z,0(u)) + (0] uw) +d(o(v),y)

and therefore

3.9. Exercises.
Exercise 3.17. Prove Lemma 3.28.

Exercise 3.18. Let X = C([0,1],R) and for f € X, let

£y = /0 )]t

Show that (X, ||-||;) is normed space and show by example that this space is not
complete.

Exercise 3.19. Let (X, d) be a metric space. Suppose that {z,}52,; C X is a
sequence and set €, := d(z,, Tp11). Show that for m > n that

m—1 00
AT, wm) <Y ek <D e
k=n k=n
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Conclude from this that if

Zek = Zd(xn,xn_H) < 00

then {x, }52; is Cauchy. Moreover, show that if {z,,}72, is a convergent sequence
and x = lim,,_, o x,, then

d(x,x,) E €.

Exercise 3.20. Show that (X,d) is a complete metric space iff every sequence
{x,}52, C X such that Y7 | d(zy, z,41) < 00 is a convergent sequence in X. You
may find it useful to prove the following statements in the course of the proof.

1. If {x,} is Cauchy sequence, then there is a subsequence y; = x,,, such that
i1 AYj41,95) < 0.

2. If {x, }52, is Cauchy and there exists a subsequence y; = x,; of {x,} such
that x = lim;_, o y; exists, then lim,,_,., ,, also exists and is equal to z.

Exercise 3.21. Suppose that f : [0,00) — [0,00) is a C? — function such that
f(0) =0, f/ >0 and f” <0 and (X, p) is a metric space. Show that d(z,y) =
f(p(z,y)) is a metric on X. In particular show that

p(z,y)
d(z,y) = ———~—
() =13 p(@,y)
is a metric on X. (Hint: use calculus to verify that f(a 4+ b) < f(a) + f(b) for all
a,b € [0,0).)

Exercise 3.22. Let d : C(R) x C(R) — [0,00) be defined by

n If=glln
9=
Z 1+f—glln’

where |[£]ln = sup{|f(z)| : [a] < n} = max{|£(2)] : |a] < n}.
1. Show that d is a metric on C(R).
2. Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — oo iff
fn converges to f uniformly on compact subsets of R.
3. Show that (C(R),d) is a complete metric space.

Exercise 3.23 (Contraction Mapping Principle). Suppose now that (X, d) is com-
plete, T': X — X is a map and there exists a € (0,1) such that d(T'(z),T(y)) <
ad(z,y) for all z,y € X. Prove that T has a fixed point, i.e. there is a unique
element © € X such that T'(x) = x. (Notice that this fixed point is unique since
if x = T(x) and y = T(y), then d(z,y) = d(T(x),T(y)) < ad(z,y) and there-
fore d(z,y)(1 — ) < 0. This shows that d(z,y) = 0., i.e. that x = y.) Hint:Let
xg € X be arbitrary and define x,, inductively by 2,41 = T(x,). Then show that
d(xpy1,T,) < Ca™ where C' is a finite constant. Use the above problems to con-
clude that z = lim,,_. - =, exists to show that

d(z,z,) < C’Zak =C Oi
k=n




REAL ANALYSIS LECTURE NOTES 35
Exercise 3.24. Let {(X,,,d,)},-, be a sequence of metric spaces, X := [[°_; X,
and for z = (z(n)),_, and y = (y(n)),;—, in X let

Cnmoon dn(z(n),y(n)
d(w)—;? 1+ dn(2(n), y(n))

Show: 1) (X,d) is a metric space, 2) a sequence {zy},., C X converges to z € X
iff zx(n) — z(n) € X,, as k — oo for every n = 1,2,..., and 3) X is complete if
X, is complete for all n.

Exercise 3.25 (Tychonoff’s Theorem). Let us continue the notation of the pre-
vious problem. Further assume that the spaces X,, are compact for all n. Show
(X,d) is compact. Hint: Either use Cantor’s method to show every sequence
{@m}oo_; C X has a convergent subsequence or alternatively show (X,d) is com-
plete and totally bounded.

3.9.1. Banach Space Problems.

Exercise 3.26. Show that all finite dimensional normed vector spaces (L, ||-||) are
necessarily complete. Also shows that closed and bounded sets (relative to the
given norm) are compact.

Exercise 3.27. Let p € [1,00] and X be an infinite set. Show the unit ball in
(?(X) is not compact.

Exercise 3.28. Let X = N and for p,q € [1,00) let [-||, denote the ¢7(N) — norm.
Show ||-||, and [|-[|, are inequivalent norms for p # ¢ by showing

[1£1l,
20 I £llq

=0 if p<gq.

Exercise 3.29. Folland Problem 5.5. Closure of subspaces are subspaces.
Exercise 3.30. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.
Exercise 3.31. Folland Problem 5.11. Showing Holder spaces are Banach spaces.



