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3. METRIC AND BANACH SPACES I

3.1. Basic metric space notions.

Definition 3.1. A function d : X x X — [0,00) is called a metric if

1. (Symmetry) d(z,y) = d(y,z) for all z,y € X

2. (Non-degenerate) d(z,y) =0 if and only if x =y € X

3. (Triangle inequality) d(x, z) < d(z,y) + d(y, z) for all z,y,z € X.

As primary examples, any normed space (X, ||-||) is & metric space with d(z,y) :=
||z — y|| . Thus the space £P() is a metric space for all p € [1, 00]. Also any subset

of a metric space is a metric space. For example a surface ¥ in R? is a metric space
with the distance between two points on ¥ being the usual distance in R3.

Definition 3.2. Let (X,d) be a metric space. The open ball B(z,§) C X cen-
tered at x € X with radius 6 > 0 is the set

B(z,6) :={y € X : d(z,y) < 6}.

We will often also write B(x,6) as B, (). We also define the closed ball centered
at € X with radius 6§ > 0 as the set C,(6) := {y € X : d(z,y) < 6}.

Definition 3.3. A sequence {z,},. | in a metric space (X, d) is said to be conver-
gent if there exists a point € X such that lim,,_, o, d(z, z,) = 0. In this case we
write lim,,—oo T, = T.

Exercise 3.1. Show that = in Definition 3.3 is necessarily unique.

Definition 3.4. A set F C X is closed iff every convergent sequence {z,}. .
which is contained in F' has its limit back in F. A set V C X is open iff V¢ is
closed. We will write F' X to indicate the F is a closed subset of X and V C, X
to indicate the V is an open subset of X. We also let 74 denote the collection of
open subsets of X relative to the metric d.

Exercise 3.2. Let F be a collection of closed subsets of X, show NF := NpcrF
is closed. Also show that finite unions of closed sets are closed, i.e. if {Fy}}_, are
closed sets then U?_, Fy is closed. (By taking complements, this shows that the
collection of open sets, 74, is closed under finite intersections and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in the
remainder of this book.

Lemma 3.5. For any non empty subset A C X, let da(x) = inf{d(x,a)|a € A},
then

(3.1) |da(@) —da(y)| < d(z,y) Va,y € X.
Moreover the set F, = {x € X|da(x) > €} is closed in X.
Proof. Let a € A and z,y € X, then
d(z,a) < d(z,y) +d(y,a).
Take the inf over a in the above equation shows that

da(z) <d(z,y) +daly) Veo,ye X.
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Therefore, d4(x) —da(y) < d(z,y) and by interchanging = and y we also have that
da(y) —da(z) < d(z,y) which implies Eq. (3.1). Now suppose that {z,},., C F.
is a convergent sequence and z = lim,,_,, z, € X. By Eq. (3.1),

€—da(x) <da(zy) —da(z) < d(z,z,) — 0 asn— oo,
so that € < da(z). This shows that « € F, and hence F, is closed. m
Corollary 3.6. The function d satisfies,
|d(z,y) —d(2’,y")| < d(y,y’) + d(z,2")
and in particular d : X x X — [0,00) is continuous.

Proof. By Lemma 3.5 for single point sets and the triangle inequality for the
absolute value of real numbers,

ld(z,y) —d(@,y')| < |d(z,y) — d(z,y)| + |d(z,y') — d(=",y/)]
<d(y,y') +d(z,2).
L]

Exercise 3.3. Show that V' C X is open iff for every x € V there is a § > 0 such
that B;(6) C V. In particular show B, (6) is open for all z € X and ¢ > 0.

Lemma 3.7. Let A be a closed subset of X and F, C X be as defined as in Lemma
3.5. Then F. T A¢ ase | 0.

Proof. It is clear that d4(x) =0 for € A so that F. C A° for each € > 0 and
hence UesoF. C A°. Now suppose that z € A¢ C, X. By Exercise 3.3 there exists
an € > 0 such that B,(e) C A° ie. d(z,y) > € for all y € A. Hence x € F, and we
have shown that A¢ C UesoFe. Finally it is clear that F, C F. whenever ¢ <e. m

Definition 3.8. Given a set A contained a metric space X, let
A={zeX:3{z,} CA> x:nllngoxn}.

That is to say A contains all limit points of A.

Exercise 3.4. Given A C X, show A is a closed set and in fact

(3.2) A=n{F:ACFC X with F closed}.

That is to say A is the smallest closed set containing A.

3.2. Continuity. Suppose that (X,d) and (Y, p) are two metric spaces and f :
X — Y is a function.

Definition 3.9. A function f: X — Y is continuous at « € X if for all € > 0 there
is a 6 > 0 such that

d(f(z), f(2")) < € provided that p(z,z") < 6.
The function f is said to be continuous if f is continuous at all points x € X.
The following lemma gives three other ways to characterize continuous functions.

Lemma 3.10 (Continuity Lemma). Suppose that (X, p) and (Y, d) are two metric
spaces and f: X —Y is a function. Then following are equivalent:

1. f is continuous.

2. fHV) e, for allV € 14, ice. f7H(V) is open in X if V is open in Y.
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3. f~YC) is closed in X if C is closed in Y.
4. For all convergent sequences {z,} C X, {f(x,)} is convergent in Y and

lim f(z,)=1f ( lim xn) )
Proof. 1. = 2. For all x € X and € > 0 there exists 6 > 0 such that
d(f(x), f(2") < eif p(z,z") < §. ie.

B,(6) C f~H (B (e))

Soif V. Co Y and x € f~(V) we may choose € > 0 such that By(,)(e) € V then

By (8) C fH( By (e)) € fHV)

showing that f=1(V) is open.

2. = 1. Let e > 0 and = € X, then, since f~(By(,)(€)) Co X there exists § > 0
such that B, (6) C f1(By()(€)) ie. if p(z,z') < § then d(f(2'), f(x)) <.

2. <= 3. If C is closed in Y, then C° C, Y and hence f~'(C¢) C, X. Since
7o) = (f_l(C))c, this shows that f=!(C) is the complement of an open set
and hence closed. Similarly one shows that 3. = 2.

1. = 4. If f is continuous and z,, — x in X, let ¢ > 0 and choose § > 0
such that d(f(z), f(2')) < e when p(x,2’) < §. There exists an N > 0 such that
p(z,z,) < 6 for all n > N and therefore d(f(x), f(x,)) < € for all n > N. That is
to say lim, o f(z,) = f(x) as n — oo.

4. = 1.We will show that not 1. = not 4. not 1 implies there exists € > 0,
a point € X and a sequence {z,},., C X such that d(f(z), f(z,)) > € while
p(z,x,) < . Clearly this sequence {z,,} violates 4. m

There is of course a local version of this lemma. To state this lemma, we will
use the following terminology.

Definition 3.11. Let X be metric space and = € X. A subset A C X is a neigh-
borhood of z if there exists an open set V' C, X such that x € V C A. We will
say that A C X is an open neighborhood of z if A is open and = € A.

Lemma 3.12 (Local Continuity Lemma). Suppose that (X, p) and (Y,d) are two
metric spaces and f: X — Y is a function. Then following are equivalent:

1. f is continuous as x € X.
2. For all neighborhoods A C'Y of f(z), f~*(A) is a neighborhood of x € X.
3. For all sequences {xn} C X such that v = limy_ 00 Tn, {f(Tn)} is convergent

mY and
lim f(z,)=f ( lim xn) )

n—oo n—00

The proof of this lemma is similar to Lemma 3.10 and so will be omitted.

Example 3.13. The function d4 defined in Lemma 3.5 is continuous for each
A C X. In particular, if A = {x}, it follows that y € X — d(y,«) is continuous for
each r € X.

Exercise 3.5. Show the closed ball C,(6) := {y € X : d(z,y) < 6} is a closed
subset of X.
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3.2.1. Word of Caution.

Example 3.14. Let (X, d) be a metric space. It is always true that B, (e) C Cy(¢)
since Cy(€) is a closed set containing B, (e). However, it is not always true that
B,(¢) = Cy(€). For example let X = {1,2} and d(1,2) = 1, then By(1) = {1},
By(1) = {1} while C;(1) = X. For another counter example, take
X:{(Jc,y)eRZ:x:Oorle}

with the usually Euclidean metric coming from the plane. Then

Bo,g)(1) = {(0,y) e R?: [y <1},

Bo,)(1) = {(0,y) € R?: [y| <1}, while

C0,0)(1) = B(o,0)(1) U{(0,1)}.

In spite of the above examples, Lemmas 3.15 and 3.63 below shows that for
certain metric spaces of interest it is true that By (e) = Cy(e).

Lemma 3.15. Suppose that (X, |-]) is a normed vector space and d is the metric
on X defined by d(z,y) = |x —y|. Then

B, (e) = Cy(e) and
0By (e) ={y € X : d(z,y) = €}.

Proof. We must show that C' := C,(e) C Bi(e) =: B. For y € C, let v =y — z,
then

[v| = |y — 2| =d(z,y) <e.

Let o, =1 —1/n so that oy, T 1 as n — oo. Let y, =  + oo, then d(z,y,) =
and(z,y) < ¢, so that y, € B,(e) and d(y,y,) = 1 —a, — 0 as n — oo. This shows

that y,, — vy as n — oo and hence that y € B. m

3.3. Basic Topological Notions. Using the metric space results above as moti-
vation we will axiomatize the notion of being an open set to more general settings.

Definition 3.16. A collection of subsets 7 of X is a topology if

.0, Xer

2. 7 is closed under arbitrary unions, i.e. if V,, € 7, for a« € I then |J V,, € 7.
acl
3. 7 is closed under finite intersections, i.e. if Vq,...,V,, € 7 then V1N---NV,, € T.

Notation 3.17. The subsets V' C X which are in 7 are called open sets and we
will abbreviate this by writing V' C¢ X and the those sets F' C X such that F° et
are called closed sets. We will write F' C X if F' is a closed subset of X. Also if
A C X, we define the closure of A to be the smallest closed set A containing A4, i.e.

A::ﬂ{F:ACFIZX}.

Example 3.18. 1. Let (X,d) be a metric space, we write 74 for the collection
of d — open sets in X. We have already seen that 7, is a topology, see Exercise
3.2.

2. Let X be any set, then 7= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the trivial
topology, 7 = {#), X} . In this topology only the empty set and X are open
(closed).
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FIGURE 5. A topology

3. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which does not
come from a metric.

4. Again let X = {1,2,3}. Then 7 = {{1},{2,3},0, X}. is a topology, and the
sets X, {1}, {2,3},¢ are open and closed. The sets {1,2} and {1,3} are
neither open nor closed.

Definition 3.19. Let (X, 7) be a topological space, A C X and i4 : A — X be
the inclusion map, i.e. i4(a) = a for all a € A. Define

Ta=1i, (1) ={ANV:Ver},
the so called relative topology on A.

Notation 3.20 (Neighborhoods of x). Let 7, = {V € 7: 2 € V}. So 7, consists
of all the open neighborhoods of z. (Note: this notation should not be confused
with

Tay =i (1) = {z}nV:V ert = {0,{z}} )

Exercise 3.6. Show the relative topology is a topology on A. Also show if (X, d)
is a metric space and 7 = 74 is the topology coming from d, then (74), is the
topology induced by making A into a metric space using the metric d| 4x 4.

Definition 3.21. Let (X, 7) be a topological space and A C X. We say a subset
U C 7 is an open cover of A if A C UU. The set A is said to be compact if every
open cover of A has finite a sub-cover, i.e. if i is an open cover of A there exists
Uy CC U such that Uy is a cover of A. (We will write A CC X to denote that
A C X and A is compact.) A subset A C X is precompact if A is compact.

Proposition 3.22. Suppose that K C X is a compact set F' C K is a closed subset.
Then F is compact.

Proof. Let U C 7 is an open cover of F, then YU {F*°} is an open cover of K.
The cover UU{F*°} of K has a finite subcover which we denote by UpU { F°} where
Uy CC U. Since F N F¢ = (), it follows that U is the desired subcover of F. m

Definition 3.23. We say a collection F of closed subsets of a topological space
(X,7) has the finite intersection property if NFy # () for all Fy CC F.

The notion of compactness may be expressed in terms of closed sets as follows.
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Proposition 3.24. A topological space X is compact iff every family of closed sets
F C P(X) with the finite intersection property satisfies (| F # 0.

Proof. (=) Suppose that X is compact and F C P(X) is a collection of closed
sets such that (| F = 0. Let

U=r:={C*:CeF}cCr,

then U is a cover of X and hence has a finite subcover, Uy. Let Fo = U5 CC F,
then NFy = ) so that F does not have the finite intersection property.

(<) If X is not compact, there exists an open cover U of X with no finite sub-
cover. Let F = U®, then F is a collection of closed sets with the finite intersection
property while F =(. m

Exercise 3.7. Let (X, 7) be a topological space. Show that A C X is compact iff
(A, 74) is a compact topological space.

Definition 3.25. Let (X, 7x) and (Y, 7y) be topological spaces. A function f :
X — Y is continuous if f~1(ry) C 7x. We will also say that f is 7x /7y —
continuous or (7x,Ty) — continuous. We also say that f is continuous at a point
x € X if for every V' € 1y such that f(z) € V, there exists U € 7x such that x € U
and U C f~1(V).

Exercise 3.8. Show f : X — Y is continuous iff f is continuous at all points
r e X.

Definition 3.26 (Support). Let f : X — Y be a function from a topological space
(X, 7x) to a vector space Y. Then we define the support of f by

supp(f) :={x € X : f(z) # 0},

a closed subset of X.

Notation 3.27. If X and Y are two topological spaces, let C(X,Y") denote the
continuous functions from X to Y. If Y is a Banach space, let

BO(X.Y) = (f € C(X.Y): sup | () y < oc)

and
Co(X,Y):={f € C(X,Y) : supp(f) is compact}.
If Y = R or C we will simply write C(X), BC(X) and C.(X) for C(X,Y),
BC(X,Y) and C.(X,Y) respectively.
3.4. Completeness.

Definition 3.28 (Cauchy sequences). A sequence {z,},., in a metric space
(X,d) is Cauchy provided that
lim d(zp,zm)=0.
m,n— o0

Exercise 3.9. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let X = Q be the set of rational numbers
and d(z,y) = |z — y|. Choose a sequence {z,},. ; C Q which converges to V2 €R,
then {zy} -, is (Q,d) — Cauchy but not (Q,d) — convergent. The sequence does
converge in R however.
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Definition 3.29. A metric space (X,d) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.10. Let (X, d) be a complete metric space. Let A C X be a subset of
X viewed as a metric space using d|4x 4. Show that (A4, d|4x4) is complete iff A is
a closed subset of X.

Definition 3.30. If (X, ||-||) is a normed vector space, then we say {z,} ., C X
is a Cauchy sequence if lim,, p—oo ||Tm — @n|| = 0. The normed vector space is a
Banach space if it is complete, i.e. if every {z,} -, C X which is Cauchy is
convergent where {z,},-, C X is convergent iff there exists © € X such that
limy,, o0 ||zn, — || = 0. As usual we will abbreviate this last statement by writing
lim,,—oo T, = T.

Lemma 3.31. Suppose that X is a set then the bounded functions £>°(X) on X is
a Banach space with the norm

11l = Ifllee = sup [f(2)]-
zeX

Moreover if X is a topological space the set BC(X) C {*°(X) is closed subspace of
£°(X) and hence is also a Banach space.

Proof. Let {f,} ., C ¢{>°(X) be a Cauchy sequence. Since for any z € X, we
have

(3.3) [fu(@) = fn(@)] <[ fn = finlloo

which shows that {f,(z)} -, C F is a Cauchy sequence of numbers. Because F

(F =R or C) is complete, f(x) := limy_.o0 frn(x) exists for all € X. Passing to
the limit n — oo in Eq. (3.3) implies

|f(@) = fm(2)] <Lm sup [[fn = finllo
n—oo
and taking the supremum over x € X of this inequality implies

1f = finlloe < lim sup [ fr = finllo — 0 as m — oo
n—o0

showing f,, — f in £°°(X).

For the second assertion, suppose that {f,} -, C BC(X) C (*°(X) and f,, —
f € °°(X). We must show that f € BC(X), i.e. that f is continuous. To this end
let x,y € X, then

[f(@) = F)| < [f(2) = fu(@)| + [ful2) = fu(y)] + [ fuly) = F(y)]
<2|[f = falloo + [fn(2) = Fu(y)] -

Thus if € > 0, we may choose n large so that 2|/ f — f,||., < €/2 and then for this
n there exists an open neighborhood V, of € X such that |f,(x) — fn(y)| < €/2
for y € V. Thus |f(z) — f(y)| < € for y € V, showing the limiting function f is
continuous. ®

Remark 3.32. Let X be a set, Y be a Banach space and ¢*°(X,Y) denote the
bounded functions f : X — Y equipped with the norm |f|| = || f|l., =
sup,ex || f(x)|ly - If X is a topological space, let BC(X,Y) denote those f €
(°(X,Y) which are continuous. The same proof used in Lemma 3.31 shows that
(*°(X,Y) is a Banach space and that BC(X,Y) is a closed subspace of £{°(X,Y).
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Theorem 3.33 (Completeness of ¢ (u)). Let X be a set and p: X — (0,00] be a
given function. Then for any p € [1,00], (¢P(n), |l|,) is @ Banach space.

Proof. We have already proved this for p = 0o in Lemma 3.31 so we now assume
that p € [1,00) and write ||-[| for ||-[|,,. Let {fn},=; C ¢’(n) be a Cauchy sequence.
Since for any = € X,

Ful®) — fu()] < ﬁx) 1o = Fnll, — 0 a5 m,m — 00

it follows that {f,(z)},—, is a Cauchy sequence of numbers and f(z) :=
lim,, oo frn(x) exists for all € X. By Fatou’s Lemma,

o= fllp = p- lim inf|fy — fnl? < Tim infy g |fo— finl?
X X
= lim inf | f, — fm|/5 — 0 as n — oo.

This then shows that f = (f— f,)+ fn € (1) (being the sum of two P — functions)
e
and that f, — f. m

Example 3.34. Here are a couple of examples of complete metric spaces.

X =R and d(z,y) = |z — y|.

X =R" and d(z,y) = ||z —ylly = Yo, (i — y:)*.

X = (P(p) for p € [1,00] and any weight function .

X = C([0,1],R) — the space of continuous functions from [0,1] to R and

d(f,g) := maxc(o,1) |f(t) — g(t)|. This is a special case of Lemma 3.31.

5. Here is a typical example of a non-complete metric space. Let X = C([0, 1], R)
and

Ll

d(f,9) ::/0 () — g(t)| dt.

3.5. Compactness in Metric Spaces. Let (X, p) be a metric space and let
B (€) = Ba(e) \ {x}.

Definition 3.35. A point z € X is an accumulation point of a subset £ C X if
0#ENV\{z} for all V C, X containing z.

Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.36. Let E C X be a subset of a metric space (X, p). Then the following
are equivalent:

1. z € X s an accumulation point of E.

2. Bl(e)NE # for all e > 0.

3. Bi(e) N E is an infinite set for all € > 0.

4. There exists {xp},- , C E\{z} with lim,_ o z,, = .

Definition 3.37. A metric space (X, p) is said to be e — bounded (¢ > 0) provided
there exists a finite cover of X by balls of radius €. The metric space is totally
bounded if it is € — bounded for all € > 0.

Theorem 3.38. Let X be a metric space. The following are equivalent.

(a) X is compact.
(b) Every infinite subset of X has an accumulation point.
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(¢) X is totally bounded and complete.

Proof. The proof will consist of showing that a = b = ¢ = a.

(a = b) We will show that not b = not a. Suppose there exists E C X, such
that #(E) = co and E has no accumulation points. Then for all z € X there §, > 0
such that V, := B, (6,) satisfies (V; \ {z}) N E = (). Clearly V = {V, } . y is a cover
of X, yet V has no finite sub cover. Indeed, for each x € X, V, N E consists of at
most one point, therefore if A CC X, Ugca V. can only contain a finite number of
points from F, in particular X # U,ecaV,. (See Figure 6.)

FIGURE 6. The construction of an open cover with no finite sub-cover.

(b = ¢) To show X is complete, let {z,} -, C X be a sequence and
E :={z,:neN}. If #(E) < oo, then {x,} -, has a subsequence {z,, } which
is constant and hence convergent. If E is an infinite set it has an accumulation
point by assumption and hence Lemma 3.36 implies that {x,} has a convergence
subsequence.

We now show that X is totally bounded. Let € > 0 be given and choose x; € X. If
possible choose o € X such that d(z2,21) > €, then if possible choose 23 € X such
that d(xs,{z1,22}) > € and continue inductively choosing points {aﬁj}?:l c X
such that d(x,,{z1,...,2,_1}) > €. This process must terminate, for otherwise
we could choose E = {z; };11 and infinite number of distinct points such that
d(zj,{z1,...,zj_1}) > eforall j =2,3,4,.... Since for all € X the B,(¢/3)NE
can contain at most one point, no point € X is an accumulation point of E. (See
Figure 7.)

(¢ = a) For sake of contradiction, assume there exists a cover an open cover
V = {Vataca of X with no finite subcover. Since X is totally bounded for each
n € N there exists A,, CC X such that

X=J B:(1/n)c |J Cu(1/m).
zEA, zE€EA,
Choose x1 € A; such that no finite subset of V covers K; := C, (1). Since K7 =
Uzea, K1 NCy(1/2), there exists zo € Ay such that Ky := K73 NCy,,(1/2) can not be
covered by a finite subset of V. Continuing this way inductively, we construct sets
K, =K,_1NCy, (1/n) with x,, € A, such no K, can be covered by a finite subset
of V. Now choose y,, € K,, for each n. Since {Kn}fzo:1 is a decreasing sequence of
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F1GURE 7. Constructing a set with out an accumulation point.

closed sets such that diam(k,,) < 2/n, it follows that {y,} is a Cauchy and hence
convergent with

y= lim y, € N5 _1 K.
n—oo
Since V is a cover of X, there exists V € V such that z € V. Since K,, | {y} and

diam(K,,) — 0, it now follows that K,, C V for some n large. But this violates the
assertion that K,, can not be covered by a finite subset of V.(See Figure 8.) m

A

4

FI1cURE 8. Nested Sequence of cubes.

Corollary 3.39. Let X be a metric space then X is compact iff all sequences
{z} € X have convergent subsequences.

Proof. If X is compact and {z,,} C X

1. ¥ #({x,:n=1,2,...}) < oo then choose x € X such that z,, = x i.0. let
{nr} C {n} such that z,, =« for all k. Then z,,, — «

2 If #({zn:n=1,2,...}) = co. We know E = {z,,} has an accumulation
point {x}, hence there exists z,, — .
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Conversely if F is an infinite set let {z,}2°, C E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume z,, — z € X as
n — 00. Now z € X is an accumulation point of £ by Theorem 3.38 and hence X
is compact. m

Corollary 3.40. Compact subsets of R™ are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed subset
of a complete space) and K is contained in [—M, M]™ for some positive integer M.
For 6 > 0, let

As =0Z" N [-M,M|" :={éx:x € Z" and §|z;| < M for i = 1,2,...,n}.
We will shows that by choosing 6 > 0 sufficiently small, that
(3.4) K C[-M,M]" C Ugzen, B(z,€)

which shows that K is totally bounded. Hence by Theorem 59.8, K will be compact.
Suppose that y € [—M, M]™, then there exists x € As such that |y; — z;| < § for
i1 =1,2,...,n. Hence
Py = (i — 2:)” < ne?
i=1
which shows that d(z,y) < y/né. Hence if choose § < ¢//n we have shows that
d(z,y) <€, ie. Eq. (3.4) holds. m

Example 3.41. Let X = (P(N) with p € [1,00) and p € X such that p(k) > 0 for
all k € N. The set

K :={zeX:|zk)| <p(k) for all k € N}

is compact. For example, let {z,, }70;1 C K be a sequence, then by compactness of
closed bounded sets in C, for each k € N there is a subsequence of {zy(k)} -, C C
which is convergent. By Cantor’s diagonalization trick, we may choose a subse-
quence {y, }oo, of {z,, },-, such that y(k) := lim,,—cc yn (k) exists for all k € N.3
Since |y, (k)| < p(k) for all n it follows that |y(k)| < p(k), i.e. y € K. Finally

i [y~ yal2 = tim > (k) g = 3 tim [y(k) — pa () =0
k=1 k=1

where we have used the Dominated convergence theorem. (Note |y(k) — y,, (k)" <

2PpP (k) and pP is summable.) Therefore y,, — y and we are done.

Alternatively, we can prove K is compact by showing that K is closed and totally
bounded. It is simple to show K is closed, for if {z,} ., C K is a convergent
sequence in X, z := lim,,—,co &y, then |z(k)| < lim, o |2, (k)| < p(k) for all k € N.
This shows that € K and hence K is closed. To see that K is totally bounded, let

3The argument is as follows. Let {njl £, be a subsequence of N ={n}?

limj_ oo Tyl (1) exists. Now choose a subsequence {n?}}”;l of {n]l}?il such that limj_ oo T2 (2)

~, such that
cxists and similalry {n?};‘;l of {n?};‘;l such that lim;_, o Ty (3) exists. Continue on this way
inductively to get
1 2 3
{n}ol; D {nj}521 D {nj}52: D {nj}52: D ...

such that limj_, e Tk (k) exists for all k& € N. Let my = n; so that eventually {m;}52, is a

subsequnce of {nj };";1 for all k. Thercfore, we may take y; = &m,.
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e > 0 and choose N such that (322 4 \p(k)|p)1/p < e. Since Hszl Cory(0) c CN
is closed and bounded, it is compact. Therefore there exists a finite subset A C
1, Cp(k)(0) such that

N
1 Cor)(0) € UzeaBY (e)
k=1

where BY (€) is the open ball centered at z € CV relative to the (7({1,2,3,...,N})
norm. For each z € A, let Z € X be defined by 2(k) = z(k) if k < N and 2(k) =0
for k > N + 1. I now claim that

(3.5) K C UseaB:(2e)

which, when verified, shows K is totally bounced. To verify Eq. (3.5), let z € K
and write © = u 4+ v where u(k) = z(k) for Kk < N and u(k) = 0 for k¥ < N. Then
by construction u € Bz(¢) for some Z € A and

oo 1/p
||v|p<< S n(k) ) <e

k=N+1

So we have
[ = 2], = llu+v = 2[|,, < [lu— 2], +[v]l, < 2e.
For Exercises 3.11 — 3.13, let (X, d) be a compact metric space.

Exercise 3.11 (Extreme value theorem). Let f : X — R be a continuous func-
tion. Show —oo < inf f < supf < oo and there exists a,b € X such that

f(a) =inf f and f(b) =sup f.

Exercise 3.12 (Uniform Continuity). Let f : X — R be a continuous function.
Show that f is uniformly continuous, i.e. if € > 0 there exists § > 0 such that
[f(y) — f(z)] <eif z,y € X with d(z,y) < 6.

Exercise 3.13 (Dini’s Theorem). Let f,, : X — [0, 00) be a sequence of continu-
ous functions such that f,(z) | 0 as n — oo for each € X. Show that in fact
fn | 0 uniformly in z, i.e. sup,cx fn(z) | 0 as n — oco. Hint: Given € > 0, consider
the open sets V,, := {z € X : f,(z) < €}.

Definition 3.42. Let L be a vector space. We say that two norms, |-| and [|-||, on
L are equivalent if there exists constants a, 8 € (0, 00) such that

£l < elf] and |f| < B[[f]| for all f € L.

Lemma 3.43. Let L be a finite dimensional vector space. Then any two norms
|| and ||-|| on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {f;}!", be a basis for L and define a new norm on L by

n
Zaifi
i1

By the triangle inequality of the norm ||, we find

Zaifi < ZW\ |fi] < MZM\ =M
im1 im1 im1

= Z la;| for a; € F.

1 =1

"
> aifi
i=1

1
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where M = max; | f;| . Thus we have

|FIL < MI|fIly

for all f € L. This inequality shows that |-| is continuous relative to |[-||; . Now
let S:={feL:|f]l, =1}, a compact subset of L relative to [-||; . Therefore by
Exercise 3.11 there exists fy € S such that

m=inf {|f|: f €S} =]fo| >0.
Hence given 0 # f € L, then — € S so that

IFiR
f 1
m < = |/l
'|f||1 £y
or equivalently
1
171 < - 1.
This shows that |-| and ||-||; are equivalent norms. Similarly one shows that ||-|| and
||-||; are equivalent and hence so are |-| and ||-||. =

Definition 3.44. A subset D of a topological space X is dense if D = X. A
topological space is said to be separable if it contains a countable dense subset,
D.

Example 3.45. Let o : N — (0,00) be a function, then ¢P (1) is separable for all
1 < p < 0. For example, let I' C F be a countable dense set, then

D:={x e P(un):x; €T for all i and #{j : x; # 0} < oo}.
The set T" can be taken to be Q if F=R or Q +iQ if F = C.
Lemma 3.46. Any compact metric space (X,d) is separable.

Proof. To each integer n, there exists A, CC X such that X = Uzen, B(z,1/n).
Let D := Uy, A, — a countable subset of X. Moreover, it is clear by construction
that D =X. m

3.6. Compactness in Function spaces. In this section, let (X, 7) be a topolog-
ical space.

Definition 3.47. Let F C C(X).

1. F is equicontinuous at = € X iff for all € > 0 there exists U € 7, such that
lf(y) — f(z)| <eforally e U and f € F.

2. F is equicontinuous if F is equicontinuous at all points z € X.

3. F is pointwise bounded if sup{f(z) € C: |f € F} < oo for all z € X.

Theorem 3.48 (Ascoli-Arzela Theorem). Let (X, T) be a compact topological space
and F C C(X). Then F is precompact in C(X) iff F is equicontinuous and point-
wise bounded.

Proof. (<) Since B(X) is a complete metric space, we must show F is totally
bounded. Let ¢ > 0 be given. By equicontinuity there exists V,, € 7, for all
x € X such that |f(y) — f(z)] < €/2if y € V; and f € F. Since X is compact
we may choose A CC X such that X = UgzepV,. We have now decomposed X
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into “blocks” {V,} ., such that each f € F is constant to within € on V. Since
sup{f(z):z € Aand f € F} < oo, it is now evident that

M=sup{f(z):ze€ X and f € F} <sup{f(z):x € Aand f € F} +¢ < 0.

Let D = {ke/2: k€ Z}N[-M,M]. If f € Fand ¢ € D* (ie. p: A — Disa
function) is chosen so that |¢(z) — f(x)| < €/2 for all x € A, then

[f(y) = ¢@) < |f(y) = f@)[ +|f(z) = p(x)| <eVaweAandy € V.
From this it follows that F = (J{Fy : ¢ € DA} where, for ¢ € DA,
Fo={feF:|fly)—¢(z)| <eforyeV, and x € A}.

Let T := {¢ € D* : Fy # 0} and for each ¢ € T choose f, € FyNF. For f € Fy,

x € A and y € V,, we have
1F(y) = fo)] < 1f(y) = o(@)| +|o(x) = fo(y)] < 2e.
So ||f — fsll < 2¢ for all f € Fy showing that Fy C By, (2¢). Therefore,
F = UserFy C Uper By, (2¢)

and because € > 0 was arbitrary we have shown that F is totally bounded.

(=) Since ||| : C(X) — [0, 00) is a continuous function on C'(X) it is bounded
on any compact subset F C C'(X). This shows that sup{||f| : f € F} < co which
clearly implies that F is pointwise bounded.* Suppose F were not equicontinuous

at some point x € X that is to say there exists € > 0 such that for all V €

Te,sup sup |f(y) — f(x)| > €.’ Equivalently put, to each V € 7, we may choose
yeV feF

(3.6) fv € F and zy € V such that |fy(z) — fy(zv)| > €.

Set Cy ={fw : W e€mand W C V}H.”oo C F and notice for any V CC 7, that

NyevCy 2 Chy # 0,

so that {Cv },, € 7. C F has the finite intersection property.5 Since F is compact,
it follows that there exists some

fe ) cv#0.

VET:

40ne could also prove that F is pointwise bounded by considering the continuous evaluation
maps ez : C(X) — R given by ez (f) = f(x) for all z € X.

5If X is first countable we could finish the proof with the following argument. Let {Va}s2
be a neighborhood base at x such that V3 D Vo D V3 D .... By the assumption that F is not
cquicontinuous at , there exist fp € F and zn € Vi, such that |frn(z) — fu(zn)| > € V n. Since
F is a compact metric space by passing to a subsequence if necessary we may assume that fp,
converges uniformly to some f € F. Because £, — & as n — oo we learn that

<2fn = fll+ |f(z) — f(zn)] = 0as n — oo
which is a contradiction.

SIf we are willing to use Net’s described in the appendix below we could finish the proof as
follows. Since F is compact, the net {fy }yver, C F has a cluster point f € F C C(X). Choosc a
subnet {gataca of {fv}very such that go — f uniformly. Then, since zy — x implies zv,, — z,
we may conclude from Eq. (3.6) that

€ < |ga(®) — ga(@v, )| — lg(z) — g(z)| =0

which is a contradiction.
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Since f is continuous, there exists V' € 7, such that |f(x) — f(y)| < €¢/3 for all

y € V. Because f € Cy, there exists W C V such that ||f — fw]| < €/3. We now

arrive at a contradiction since

€ <|fw(@) = fw(@w)| < |fw(z) = (@) +|f(2) = flaw)| +[flaw) = fw(zw)|
<€/3+¢€/3+¢€/3=c¢

which is a contradiction. ®

3.7. Bounded Linear Operators Basics.

Definition 3.49. Let X and Y be normed spaces and T : X — Y be a linear
map. Then T is said to be bounded provided there exists C' < oo such that
IT(z)|| < Cl|z||x for all x € X. We denote the best constant by |||, i.e.

IT(a
17 = sup PG _ o fim@) )+l = 13-
x#0 HxH x#0

The number ||T|| is called the operator norm of T

Proposition 3.50. Suppose that X and Y are normed spaces and T : X — 'Y s
a linear map. The the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.
(¢) T is bounded.

Proof. (a) = (b) trivial. (b) = (c¢) If T continuous at 0 then there exist § > 0
such that || T'(x)|| < 1if ||z|| < 8. Therefore for any x € X, ||T" (6z/||x||) || < 1 which
implies that ||T'(z)| < #||lz|| and hence ||T|| < } < oo. (¢) = (a) Let € X and
€ > 0 be given. Then

1T(y) = T@)[| = 1Ty — )| < |IT| ly — =l| <€
provided |ly — || < €¢/[|T]| =6. =

Example 3.51. Suppose that K : [0,1] x [0,1] — C is a continuous function. For
feC([0,1]), let

7@ = | K () F)dy.
Since
T16) - 71 < [ 1K) - Kl 76)]dy
(37) < 1l m [ ) — K (2,3)

and the latter expression tends to 0 as x — z by uniform continuity of K, it follows
that T'f € C([0,1]). So T : C([0,1]) — C([0,1]) is a linear map. Moreover,

ITf(z)] < / K (2, 9)| £ ()] dy < / K@)y [ flo < Alfll

where

1
(3.8) A:= sup / |K (z,y)] dy < oo.
z€[0,1] JO
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This shows ||T|| < A < oo and therefore T is bounded. We may in fact
show [|T|| = A. To do this let 29 € [0,1] such that sup,cp 1 fol |K(z,y)|dy =

fol | K (z0,y)| dy. Such an z¢ can be found since z — fol |K(x,y)|dy is continuous
using a similar argument to that in Eq. (3.7). Given € > 0, let

K(x9,y)

fe(y) =
e+ |K(zo,y)?

and notice that lim, o || fe||, = 1 and

‘K Zo,Y

\/6+|K o, Y

IT Sl > ITS.(x0)] = T (o) = /

Therefore,
K(
|| > lim / | K0,y
€l0 ||f€|| /€+ ‘K zo,y
1
zlirg K (w0, )| dy = A
IO Je+ K (o, )l
since
K(zo, 2 K(zo,
0 < |K0.9)| - Al — IOt 1o, ) 5 o)

Vet |K@oy) et |K(zo.v)P
€+ | K (x0,y)[* — |K (z0,y)|

and the latter expression tends to zero uniformly in y as € | 0.
We may also consider other norms on C([0,1]). Let (for now) L ([0, 1]) denote

C([0,1]) with the norm
1
= d
£l /0 ()] d,

then T : L' ([0,1],dm) — C([0,1]) is bounded as well. Indeed, let M =
sup {|K(z,y)|: z,y € [0,1]}, then

(Tf)(=) < /0 (K (z,y)f(y)| dy < M|},

which shows that ||Tf|| ., < M || f||; and hence,
IT)| L1~ < max{|K(z,y)| : z,y € [0,1]} < o0.

We can in fact show that ||T|| = M as follows. Let (zg,v0) € [0,1]? such that
|K(x0,y0)] = M. Then given € > 0, there exists a neighborhood U = I x J of
(z0,90) such that |K(z,y) — K(x0,y0)| < € for all (z,y) € U. Let f € C.(,]0,00))
such that fo z)dz = 1. Choose a € C such that |a| = 1 and oK (zg,y0) = M,
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then

(Taf)(zo) = j / IK(xo,y)af(y)dy‘ - \ [ Komarway
> Re [ oK (o) W)y = [ (O =€) Sy = (M =)o .

I
and hence

[Taflle = (M =€) llefllL

showing that ||T|| > M — e. Since € > 0 is arbitrary, we learn that ||T|| > M and
hence ||T|| = M.

One may also view T as a map from T : C([0,1]) — L*([0,1]) in which case one
may show

1
Tl < [ max| K)o < o

For the next three exercises, let X = R”andY = R™ and T : X — Y be a linear
transformation so that 7" is given by matrix multiplication by an m X n matrix. Let
us identify the linear transformation 7" with this matrix.

Exercise 3.14. Assume the norms on X and Y are the ¢! — norms, i.e. for € R”,
|«[] = 27—, |;] . Then the operator norm of T is given by

m

IT| = max > |Ty|.
1<j<n P}

Exercise 3.15. Assume the norms on X and Y are the £°° — norms, i.e. for x € R",
|z = maxi<j<p |zj|. Then the operator norm of T is given by

IT|| = max > |Tyl.
j=1

1<i<m

Exercise 3.16. Assume the norms on X and Y are the ¢? — norms, i.e. for x € R?,

]| = >y xF. Show |T||? is the largest eigenvalue of the matrix T T : R — R".

Exercise 3.17. If X is finite dimensional normed space then all linear maps are
bounded.

Notation 3.52. Let L(X,Y’) denote the bounded linear operators from X to Y.

Lemma 3.53. Let X,Y be normed spaces, then the operator norm ||-|| on L(X,Y)
is a norm. Moreover if Z is another normed space andT : X —Y and S:Y — Z
are linear maps, then ||ST|| < ||S||||T||, where ST :=SoT.

Proof. As usual, the main point in checking the operator norm is a norm is
to verify the triangle inequality, the other axioms being easy to check. If A, B €
L(X,Y) then the triangle inequality is verified as follows:

A B A B
Ao+ Bel| _ - |lAs + |Bal

||A+ BJ|| = sup <
z£0 ||| #£0 ll|l
| Az|] || Bz||

+ su
240 ||zl z#0 ||z

= (1Al +[1BI]-
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For the second assertion, we have for x € X, that
[1STx[| < IS[[[[T=] < [[SIIT =]l
From this inequality and the definition of ||ST||, it follows that ||.ST|| < ||S||||T]]. =

Proposition 3.54. Suppose that X is a normed vector space and Y is a Banach
space. Then (L(X,Y),| - |lop) is a Banach space.

We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.55. A normed space (X, |- ||) is a Banach space iff for every sequence
N

{@n}o, such that Z |zn]| < 0o then imy_oo D @, = S exists in X (that is to

n=1
say every absolutely convergent series is a convergent series in X ). As usual we

will denote S by > .

n=1

Proof. (=)If X is complete and Z |z, ]| < oo then sequence Sy = Z x,, for
n=1
N € N is Cauchy because (for N > M)

N
|Sn — Su|| < Z |lzn]| — 0 as M, N — oo.
n=M+1

o] N
ThereforeS = > x, :=limy_o0 Y, @y exists in X.
= n=1

n=1
(<=) Suppose that {z,}, ., be a Cauchy sequence and let {y; = x,,, }7°, be a
o0
subsequence of {x,} ., such that Y ||ynt1 — yn|| < co. By assumption

n=1
N oo
YN+1 — Y1 = Z(yn+1 —yYn) = S = Z(yn+1 —yn) € X as N — oo.

n=1 n=1

This shows that limy_.~ yn exists and is equal to x := y; + S. Since {:1:”} _, is
Cauchy,

[ — |l <lz = yill + lyx — zall — 0 as k;n — oo

showing that lim,, ., x,, exists and is equal to . m
Proof. (Proof of Proposition 3.54.) We must show (L(X,Y), ||-||op) is complete.

o0

Suppose that T;, € L(X,Y) is a sequence of operators such that > [|T,] < oo.
n=1

Then

oo oo
S Tzl <Y NTall ]l < oo
n=1 n=1

oo
and therefore by the completeness of Y, Sz := > T,z = limy_ Sy exists in
n=1

N
Y, where Sy := > T,,. The reader should check that S : X — Y so defined in

n=1
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linear. Since,

N o'}
8] = im, S| < Jim 2Tl < 3 1.
n=

n=1

S is bounded and

o0

(3.9) IS <> 1Tl
n=1
Similarly,
N oo
12— Sarell = Jm Sz~ Syal < Jim 3" [Talllel = Y I o]
n=M+1 n=M+1

and therefore,

IS — Smll < Z IT.) — 0 as M — oo.
n=M
[
Of course we did not actually need to use Theorem 3.55 in the proof. Here is
another proof. Let {T},} -, be a Cauchy sequence in L(X,Y). Then for each z € X,

Tz — Tonz|| < ||Tn — Tl ||2]] — 0 as m,n — oo

showing {T,,z},-, is Cauchy in Y. Using the completeness of Y, there exists an
element Tz € Y such that

lim ||T,x —Tz|| =0.
It is a simple matter to show that T': X — Y is a linear map. Moreover,
|Tx — Thz|| < [Tz — Tzl + || T — Tnz|] < || T2 — Topa|| + ([ Ton — Tl |||
and therefore

[Tz — Toe| <Tim sup (T2 — Tzl + ([T — Toll l2]]) = [l - im sup [T, — Tl| -

Hence

IT —T,|| <lim sup ||T}, —Tp|| — 0 as n — oo.
m—00

Thus we have shown that T,, — T in L(X,Y") as desired.
3.8. Inverting Elements in L(X) and Linear ODE.

Definition 3.56. A linear map T': X — Y is an isometry if |Tz||y = ||z|x for
all x € X. T is said to be invertible if T is a bijection and T—! is bounded.

Notation 3.57. We will write L*(X,Y") for those T' € L(X,Y) which are invert-
ible. If X =Y we simply write L(X) and L*(X) for L(X,X) and L*(X,X)
respectively.

Proposition 3.58. Suppose X is a Banach space and A € L(X) = L(X,X) sat-
isfies > ||A™|] < co. Then I — A is invertible and
n=0

1 oo oo
(I-A)"'= = > A and |[(T—=A)H <D A"
n=0 n=0
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In particular if ||A|| < 1 then the above formula holds and
1
1Al

(7= <

Proof. Since L(X) is a Banach space and > ||A"|| < oo, it follows from Theo-
n=0
rem 3.55 that

N
S:= lim Sy:= lim ZA”

N—oo N—oo —

exists in L(X). Moreover, by Exercise 3.35,

(I=A)S=(I—A) lim Sy= lim (I—A)Sy= lim (I—A) A”: lim (I — AN =T

N—oo N—>OO N—>OO

and similarly S (I — A) = I. This shows that (I — A)~! exists and is equal to S.
Moreover, (I — A)~! is bounded because

1T =2 =S < > A
n=0

If we further assume ||A[| < 1, then ||[A"|| < HA||" and

Z A" < Z [IA[" IAII

Corollary 3.59. Then L*(X,Y) is an open (possibly empty) subset of L(X,Y).
More specifically, if A€ L*(X,Y) and B € L(X,Y) satisfies

(3.10) 1B — Al < [[A7H7
then B € L*(X,Y)

o0

(3.11) B™' =Y "[Ix—A7'B]" A7 € L(Y, X)
n=0
and
1
B~ < 1474

1—[lA=H|[]A = B|
Proof. Let A and B be as above, then
B=A-(A-B) :A[IX —A_l(A—B))] =A(Ix — A)
where
A=AYA-B)=Ix-A'B: X X
Now
Al = |[A7H (A= B)|| < AT 1A = Bl < [[ATHIATYI7! = 1.
Therefore T — A is invertible and hence so is B (being the product of invertible
elements) with

Bl=(I-AN'Al'=[Ix—AY4-B)""

AL
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For the last assertion we have,

1
— A=A = Bl

-1 A1 -1 -1 1 -1
[B7H < [[(Ix =)~ 1A7HI < 1A ||71_HAHSIIA I3

L]

3.8.1. An Application to Linear Ordinary Differential Equations. Consider the lin-
ear differential equation

(3.12) #(t) = A(t)z(t) where z(0) = zo € R™.

Here A € C(R — L(R")) and z € C*(R — R"). As usual this equation may be
written in its equivalent integral form, i.e. we are looking for z € C(R,R"™) such
that

t
(3.13) 2(t) = 20 + / A(F)a(7)dr.

0
In what follows, we will let ||-|| denote some norm on R™ — for example the sup-
norm. By abuse of notation, also let ||-|| denote the corresponding operator norm

on L(R™). We will also fix T € (0,00) and let |||, := maxo<i<7 [|p(t)| for
¢ € C([0,T],R™) or C([0,T], L (R™)).

Theorem 3.60. Let ¢ € C([0,T],R"™), then the integral equation
¢
(3.14) x(t) = 3(t) + / A(r)a(r)dr
0

has a unique solution given by

2(t) = o(t) + Z/A Al A,

where

Moreover,
lz(®)]] < @]l efo 1A@Iar

Proof. Define A : C([0,T],R™) — C([0,T],R™) by

(Az)(t) = /0 A(F)a(r)dr.

Then x solves Eq. (3.13) iff + = ¢ + Az or equivalently iff (I — A)z = ¢. The
theorem will be proved by showing (I — A)~! exists via Proposition 3.58. To

o0

apply this proposition it suffices to show >_ [|A™|,, < 0o, where |[[-[|,,,, denotes the
=0

operator norm on L (C([0,T],R™)).
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An induction argument shows

(Am)(t) = / dr, A(T) (A1) (72)

_1AZh?A“dﬂhpuﬂgA@ﬁJMA”4¢xu-n

_ / A1) .. A(r)p(ry)dr ... dr,

0T <=7 <t

- / A(m) ... A(m)p(m)dr . dre.
Ay, (t)

Hence
I(A") (@) < { AT - | A(T)||dry - ..dTn} 16| oo

0<m << <t

Therefore
[A™[[op < VAT - I AGR)||dr . . . d7
< <. <7, <T
1
:H./”M%W~ﬂMﬁWh”dM
[0, 77"

(3.15) _%</0 ||A(T)||d7) .

Alternatively, one can prove this last equality by induction on n. Namely let

t
P = [ lA@)ar
then by induction one shows that

1 n
I,(t) := / AT - WA(T)||dr ... dry = EF (t).
0<7 <+ <7, <T
Indeed,
. 1 d 1

In_H(t):/O %F”(T)F(T)dT:/O md—TF"H(T)dT: RSN

Fn—l—l (t)
proving Eq. (3.15) again. Using this estimate we then have

A" op < e AN < o,

n=0

Therefore (I — A)~! exists and (I — A)~! = > A" and

n=0

1= A)7Y,, < efs 1Amlar,
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3.9. Appendix: Sums in Banach spaces.

Definition 3.61. Suppose that X is a Normed space and {v, € X : o€ A} is a
given collection of vectors in X. We say that s =} v, € X if for all € > 0
there exists a finite set I'. C A such that Hs = aeA va” < eforall A cCc A
such that T'. C A. (Unlike the case of real valued sums, this does not imply that
> aea llVall < 0. See Proposition 15.16, from which one may manufacture counter-
examples to this false premise.)

Lemma 3.62. (1) When X is a Banach space, 4 Va exists in X iff for all
€ > 0 there exists I'. CC A such that ||Za€Av(¥|| < € forall A cC A\ T
Also if 3 c 4 Va exists in X then {a € A:vg # 0} is at most countable. (2) If
8= neaVa € X exists and T : X —'Y is a bounded linear map between normed
spaces, then Y o, Tva exists in' Y and

Ts:TZva:ZTva.
acA acA

Proof. (1) Suppose that s =3,
Definition 3.61. Then for A CC A\ T,

v, exists and € > 0. Let I'. CC A be as in

E Vol < E va—f—g Vo — S|| + g Vo — 8
acA aEA acl', ael’,
= E Vo — S|| + € < 2e.
acel’ (UA

Conversely, suppose for all € > 0 there exists I'. CC A such that ||Z
for all A cC A\T.. Let v, := Up_;T'1 ), C A and set s, :=
m > n,

ach Vaf| < €

acy, Va- Then for

[$m — snll = Z V|| <1/n— 0 as m,n — oco.
a€Ym \Vn

Therefore {sn}zozl is Cauchy and hence convergent in X. Let s := lim,,_, o Sy, then
for A CC A such that v,, C A, we have

sfgva

1
<lls=sall +|| D va <lls = sl + .
a€cA

OAGA\'Yn

Since the right member of this equation goes to zero as n — oo, it follows that
> acA Vo exists and is equal to s.

Let v := U2 ;7,, — a countable subset of A. Then for o ¢ v, {a} C A\ 7, for all
n and hence

|lva]l = Z vgl| <1/n — 0 asn — oo.
pefa}
Therefore v, =0 for all @ € A\ 7.
(2) Let T'c be as in Definition 3.61 and A CC A such that I' C A. Then

Ts—ZTva S—Zva

aEA acA

<7 <|Tlle
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FIGURE 9. An almost length minimizing curve joining z to y.

which shows that »°  _\ T, exists and is equal to T's. m

3.10. Appendix on Riemannian Metrics. This subsection is not completely
self contained and may safely be skipped.

Lemma 3.63. Suppose that X is a Riemannian (or sub-Riemannian) manifold
and d is the metric on X defined by

d(z,y) =inf {{(0) : 0(0) = = and o(1) =y}

where ((c) is the length of the curve 0. We define £(c) = oo if o is not piecewise
smooth.
Then

Ba(€) = Cu(e) and
0By (e) ={y € X : d(z,y) = €}.

_ Proof. Let C := Cy(€) C By(e) =: B. We will show that C C B by showing
B¢ C C°. Suppose that y € B° and choose § > 0 such that B,(6) N B = . In
particular this implies that

By (6) N By(€) = 0.
We will finish the proof by showing that d(x,y) > €+ > € and hence that y € C°.
This will be accomplished by showing: if d(x,y) < € + § then B, (6) N By (e) # 0.
If d(z,y) < max(e, 6) then either x € B, (6) or y € B;(€). In either case B, () N
<

B, (€) # (). Hence we may assume that max(e, §) < d(x,y) < e+ 6. Let « > 0 be a
number such that

max(e,§) < d(z,y) <a<e+6
and choose a curve ¢ from x to y such that ¢(c) < a. Also choose 0 < §’' < § such
that 0 < o — 8’ < € which can be done since a — § < €. Let k(t) = d(y,0(t)) a
continuous function on [0,1] and therefore £([0,1]) C R is a connected set which
contains 0 and d(z,y). Therefore there exists t9 € [0,1] such that d(y,o(t)) =
k(to) = ¢'. Let z = o(to) € By(6) then
d(z,2) <L(o]jp,4,) = €0) = (aligy1) <a—d(z,y) =a—§ <e

and therefore z € B, (€) N B, (6) #0. m

Remark 3.64. Suppose again that X is a Riemannian (or sub-Riemannian) mani-
fold and

d(z,y) =1inf {{(c) : 0(0) =z and o(1) = y}.
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Let ¢ be a curve from = to y and let € = {(0) —d(z,y). Then for all 0 < u < v <1,
d(o(u),0(v)) <0 |ju0) + €

So if o is within € of a length minimizing curve from x to y that o}, ,) is within
€ of a length minimizing curve from o(u) to o(v). In particular if d(z,y) = (o)
then d(o(u),0(v)) = £(0|[u,v)) for all 0 <u < v <1, ie. if 0 is a length minimizing
curve from x to y that ol . is a length minimizing curve from o(u) to o(v).

To prove these assertions notice that

d(x,y) +e= 6(0) = E(a|[0,u]) + E(ahu,v]) + E(ahv,l])
> d(z,0(u)) + (0| uw) +d(o(v),y)

and therefore

3.11. Exercises.
Exercise 3.18. Prove Lemma 3.36.

Exercise 3.19. Let X = C([0,1],R) and for f € X, let

I £1ly ::/0 |f(t)| dt.

Show that (X, |[-||;) is normed space and show by example that this space is not
complete.

Exercise 3.20. Let (X, d) be a metric space. Suppose that {z,}02; C X is a
sequence and set €, := d(zy, Tn41). Show that for m > n that

d(Tn, Tm) < Z € < Zek
k=n k=n
Conclude from this that if
Zek = Zd(xn,an) < 00
k=1 n=1

then {x,}2; is Cauchy. Moreover, show that if {z, }72, is a convergent sequence
and x = lim,,_, o x,, then

d(z,x,) < Z €L.
k=n

Exercise 3.21. Show that (X,d) is a complete metric space iff every sequence
{z,}52, C X such that Y7 | d(2y, Tpq1) < 00 is a convergent sequence in X. You
may find it useful to prove the following statements in the course of the proof.
1. If {x,} is Cauchy sequence, then there is a subsequence y; = x,, such that
oo
Zj:l d(yj+1,y;) < oo
2. If {z, }52, is Cauchy and there exists a subsequence y; = x,,; of {x,} such
that x = lim;_,o y; exists, then lim, . 2, also exists and is equal to .
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Exercise 3.22. Suppose that f : [0,00) — [0,00) is a C? — function such that
f(0) =0, f/ >0 and f” <0 and (X, p) is a metric space. Show that d(z,y) =
f(p(z,y)) is a metric on X. In particular show that

p(z,y)
d(z,y) = ——2—~>—
() =13 p(z,y)
is a metric on X. (Hint: use calculus to verify that f(a +b) < f(a) + f(b) for all
a,b € [0,00).)

Exercise 3.23. Let d: C(R) x C(R ) — [0, 00) be defined by

n If=glln
9=
Z 1+f—glln’

where || f[l, = sup{[f(2)| : [z] <n} = maX{lf(ﬂﬁ)\ el <.
1. Show that d is a metric on C(R).
2. Show that a sequence {f,}52; C C(R) converges to f € C(R) as n — oo iff
fn converges to f uniformly on compact subsets of R.
3. Show that (C(R),d) is a complete metric space.

Exercise 3.24 (Contraction Mapping Principle). Suppose now that (X, d) is com-
plete, T : X — X is a map and there exists o € (0,1) such that d(T'(z),T(y)) <
ad(z,y) for all z,y € X. Prove that T has a fixed point, i.e. there is a unique
element x € X such that T'(z) = x. (Notice that this fixed point is unique since
if x = T(xz) and y = T(y), then d(z,y) = d(T(x),T(y)) < ad(z,y) and there-
fore d(z,y)(1 — ) < 0. This shows that d(z,y) = 0., i.e. that x = y.) Hint:Let
xog € X be arbitrary and define x,, inductively by x,,+1 = T(z,). Then show that
d(xpy1,Tn) < Ca™ where C' is a finite constant. Use the above problems to con-
clude that z = lim,,_. - =, exists to show that

d(z,z,) < C’Za’c =C Oi
k=n

Exercise 3.25. Let {(X,,dy,)}, -, be a sequence of metric spaces, X := [[°; X,
and for z = (z(n)),—, and y = (y(n)),—, in X let

= —n dn(xz(n),y(n
)= S et
= +dn(z(n), y(n))
Show: 1) (X,d) is a metric space, 2) a sequence {zy},., C X converges to z € X

iff xx(n) — z(n) € X,, as k — oo for every n = 1,2,..., and 3) X is complete if
X, is complete for all n.

Exercise 3.26 (Tychonoff’s Theorem). Let us continue the notation of the pre-
vious problem. Further assume that the spaces X,, are compact for all n. Show
(X,d) is compact. Hint: Either use Cantor’s method to show every sequence
{@}°_, C X has a convergent subsequence or alternatively show (X, d) is com-
plete and totally bounded.

Exercise 3.27. Let (X;,d;) for i =1,...,n be a finite collection of metric spaces
and for 1 <p < oo and x = (x1,%2,...,2,) and y = (y1,...,y») in X := [, X;,
let

po(,y) —{ (S0 (s, y))? i p oo

max; di(x, ;) if p=o0



REAL ANALYSIS LECTURE NOTES 45

1. Show (X, p,) is a metric space for p € [1, cc]. Hint: Minkowski’s inequality.
2. Show that all of the metric {p,:1 <p < oo} are equivalent, i.e. for any
p,q € [1,00] there exists constants ¢, C' < oo such that
pp(x,y) < Cpg(,y) and pg(z,y) < cpp(z,y) for all z,y € X.

Hint: This can be done with explicit estimates or more simply using Lemma
3.43.

3. Show that the topologies associated to the metrics p, are the same for all
p € [1,00].

3.11.1. Banach Space Problems.

Exercise 3.28. Show that all finite dimensional normed vector spaces (L, ||-||) are
necessarily complete. Also show that closed and bounded sets (relative to the given
norm) are compact.

Exercise 3.29. Let (X, ||-||) be a normed space over F (R or C). Show the map
MNz,y) e KX X xX —oax+lyeX

is continuous relative to the topology on K x X x X defined by the norm
12 Dl = X+ el +

(See Exercise 3.27 for more on the metric associated to this norm.) Also show that
II|| : X — [0, 00) is continuous.

Exercise 3.30. Let p € [1,00] and X be an infinite set. Show the closed unit ball
in P(X) is not compact.

Exercise 3.31. Let X = N and for p,q € [1,00) let [-||, denote the ¢7(N) — norm.
Show ||-||, and [|-[|, are inequivalent norms for p # ¢ by showing

sup £,
20 I fll,

Exercise 3.32. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 3.33. Folland Problem 5.9. Showing C*([0,1]) is a Banach space.

=0 if p<yq.

Exercise 3.34. Folland Problem 5.11. Showing Holder spaces are Banach spaces.

Exercise 3.35. Let X, Y and Z be normed spaces. Prove the maps
(S,2) e L(X,) Y)x X — Sz €Y
and
(8,7)e L(X,Y)x L(Y,Z) — ST € L(X, Z)
are continuous.

3.11.2. Ascoli-Arzela Theorem Problems.

Exercise 3.36. Let T € (0,00) and F C C([0,T]) be a family of functions such
that:

1. f(t) exists for all t € (0,T) and f € F.

2. supsez |f(0)] < oo and

3. M := SupjcF SUPse(o,1) )f(t)) < 00.
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Show F is precompact in the Banach space C([0,T]) equipped with the norm
[flloe = suPieio,ry £ ()]
Exercise 3.37. Folland Problem 4.63.
Exercise 3.38. Folland Problem 4.64.
3.11.3. General Topological Space Problems.

Exercise 3.39. Suppose that (X, 7x) and (Y, 7y) are topological spaces, f: X —
Y is a continuous map, and K C X is a compact set. Show f(K) C Y is compact as
well, i.e. the continuous image of a compact set is compact. Show by example that
the inverse image of a compact set by a continuous function need not be compact.

Exercise 3.40 (Extreme value theorem (again)). Let (X, 7x) be a compact topo-
logical space and f : X — R be a continuous map. Use Exercise 3.39 along with
Corollary 3.39 to prove the extreme value theorem, i.e. prove —oo < inf f < sup f <
oo and there exists a,b € X such that f(a) = inf f and f(b) = sup f.

3.12. Solutions.



