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4. ALGEBRAS, 0 — ALGEBRAS AND MEASURABILITY

4.1. Introduction: What are measures and why “measurable” sets.

Definition 4.1 (Preliminary). Suppose that X is a set and P(X) denotes the col-
lection of all subsets of X. A measure p on X is a function p : P(X) — [0, oo] such
that

L pu(0)=0
2. If {Ai}fvzl is a finite (N < 00) or countable (N = 0o) collection of subsets of
X which are pair-wise disjoint (i.e. A;NA; =0 if ¢ # j) then

Uz IA ZIJ‘

Example 4.2. Suppose that X is any set and z € X is a point. For A C X, let

61,(14)—{1 if re A

0 otherwise.
Then p = 6, is a measure on X called the at z.

Example 4.3. Suppose that p is a measure on X and A > 0, then Ay is also a
measure on X. Moreover, if {, : a € J} are all measures on X, then 1 = > _ ; fla,
ie.

A) = ZMQ(A) forall AC X
acd

is a measure on X. (See Section 2 for the meaning of this sum.) We must show that
p is countably additive. Suppose that {4;};~, is a collection of pair-wise disjoint
subsets of X, then

Uz IA ZM ZZIJ‘G(A

=1 acd
= Z Z:ua(Ai) = Z fra (U2 1 Ad)
acJ i=1 acd

= M(U?;Ai)

where in the third equality we used Theorem 2.21 below and in the fourth we used
that fact that p, is a measure.

Example 4.4. Suppose that X is a set A : X — [0, o0] is a function. Then
W= Z Az)6
zeX
is a measure, explicitly
SR
z€EA

for all A C X.
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4.2. The problem with Lebesgue “measure”.

Question 1. Does there exist a measure u : P(R) —[0, 00 such that

1. p([a,b)) = (b—a) for all a < b and
2. w(A+z) = p(A) for all z € R?
The unfortunate answer is no which we now demonstrate. In fact the answer is

no even if we replace (1) by the condition that 0 < u((0,1]) < oco.

Let us identify [0,1) with the unit circle S := {z € C : |z| = 1} by the map
B(t) = e € S for t € [0,1). Using this identification we may use u to define a
function v on P(S) by v(¢p(A)) = u(A) for all A C [0,1). This new function is a
measure on S with the property that 0 < v((0,1]) < co. For z € S and N C S let

(4.1) zZN:={zmeS:nc N},

that is to say e’ N is N rotated counter clockwise by angle . We now claim that
v is invariant under these rotations, i.e.

(4.2) v(zN) = v(N)
for all z € S and N C S. To verify this, write N = ¢(A) and z = ¢(t) for some
t€]0,1) and A C [0,1). Then
H(B(A) = Bt + Amod 1)
where For N C [0,1) and « € [0,1), let
t+Amodl={a+tmodl € [0,1):a€ N}

=(a+An{fa<l—tHUu(t—-1)+An{a>1—-1t}).

Thus
V(B(t)6(A)) = plt + Amod 1)

(a+An{a<l—-tHhu(t-1)+An{a>1-1t}))
(a+An{a<l—t}))+pu((t—-1)+ANn{a>1-1t}))
Anfa<l—t}) +p(An{a>1-t})
=u((An{a<1-tHhuAn{a>1-t}))
= p(4) = v(p(A)).

Therefore it suffices to prove that no finite measure v on S such that Eq. (4.2)
holds. To do this we will “construct” a non-measurable set N = ¢(A) for some
AcClo,1).

To do this let R be the countable set

R:={z=¢?"":tc[0,1)NQ}.

(
(
(
(

As above R acts on S by rotations and divides S up into equivalence classes, where
z,w € S are equivalent if z = rw for some r € R. Choose (using the axiom of
choice) one representative point n from each of these equivalence classes and let
N C S be the set of these representative points. Then every point z € S may be
uniquely written as z = nr with n € N and r € R. That is to say

(4.3) s=T[ &nN)

rER
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where ][], Aq is used to denote the union of pair-wise disjoint sets {A,}. By Eqgs.
(4.2) and (4.3) we find that

v(8) =Y v(rN)=>_ v(N).

The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S) € (0,1). Thus we have reached the
desired contradiction.
Proof. (Second proof) For N C [0,1) and «a € [0,1), let
N*=N+amodl
={a+amodl €[0,1):a € N}
=(a+Nn{a<l-—a})U((a=1)+Nn{a>1-a}).

If p is a measure satisfying the properties of the Question we would have

p(N®)

pla+t Nnfa<l—al)+p((a=1)+Nn{a>1-a})
p(NNn{a<l—a})+pu(Nn{a>1-a})
o (
w

Nn{a<l—alU(Nn{a>1-a}))
(N).

(4.4)

We will now construct a bad set N which coupled with Eq. (4.4) will lead to a
contradiction.
Set

Qe={rx+reR:reQ} =z+Q.

Notice that Q, N Q, # 0 implies that Q, = Q,. Let O = {Q, : * € R} — the orbit
space of the Q action. For all A € O choose f(A) € [0,1/3)NA.” Define N = f(O).
Then observe:
1. f(A) = f(B) implies that AN B # () which implies that A = B so that f is
injective.
2. 0={Q,:ne N}
Let R be the countable set,

R=QnJ0,1).
We now claim that
(4.5) N'NN®*=0ifr# s and
(4.6) [0,1) = UperN".

Indeed, if z € N" N N® # () then x = r + nmod1 and z = s + n’ mod 1, then

n—nl € Q, ie Q= Q,. That is to say, n = f(Qn) _ f(Qn’) — 1/ and hence
that s = rmod 1, but s,r € [0,1) implies that s = r. Furthermore, if € [0,1) and
n:i= f(QJ;), thenz—n=r¢ (@ and = € Nrmodl

"We have used the Axiom of choice here, i.c. [J4cr(AN[0,1/3]) # 0
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Now that we have constructed N, we are ready for the contradiction. By Equa-
tions (4.4-4.6) we find

1=p([0,1)) = > p(N") = u(N)
TER reR

_{ oo if p(N)>0

=10 if N =0

which is certainly inconsistent. Incidentally we have just produced an example of
so called “non — measurable” set. m

Because of this example and our desire to have a measure p on R satisfying the
properties in Question 1, we need to modify our definition of a measure. We will
give up on trying to measure all subsets A C R, i.e. we will only try to define u
on a smaller collection of “measurable” sets. Such collections will be called o —
algebras which we now introduce.

4.3. Algebras and o — algebras.

Definition 4.5. A collection of subsets A of X is an Algebra if

1. 0, Xe A

2. A € A implies that A° € A

3. Ais closed under finite unions, i.e. if Ay,..., A, € Athen A1N---NA4, € A.
4. A is closed under finite intersections.

Definition 4.6. A collection of subsets M of X is a ¢ — algebra (o — field) if M
is an algebra which also closed under countable unions, i.e. if {4;};~; C M, then
U(i)ilAi e M.

Notice that since M is also closed under taking complements, M is also closed
under taking countable intersections.

The reader should compare these definitions with that of a topology, see Defini-
tion 3.16. Recall that the elements of a topology are called open sets. Analogously,
we will often refer to elements of and algebra A or a o — algebra M as measurable
sets.

Example 4.7. Here are a number of examples.
1. 7= M ="P(X) in which case all subsets of X are open, closed, and measur-
able.
2. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which is not an
algebra.
3.7 =A={{1},{2,3},0,X}. is a topology, an algebra, and a o — algebra on
X. The sets X, {1}, {2,3}, ¢ are open and closed. The sets {1,2} and {1,3}

are neither open nor closed and are not measurable.

Proposition 4.8. Let £ be any collection of subsets of X. Then there exists a
unique smallest topology 7(£), algebra A(E) and o-algebra M(E) which contains E.
I will also tend to write o(E) for M(E), i.e. o(E) = M(E). The notation M(E) is
used in Folland, but o(&) is the more standard notation.

Proof. Note P(X) is a topology and an algebra and a o-algebra and £ C P(X),
so that £ is always a subset of a topology, algebra, and o — algebra. One may now
easily check that

T(€) = ﬂ{T : 7 is a topology and £ C 7}
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is a topology which is clearly the smallest topology containing £. The analogous
construction works for the other cases as well. m
We may give explicit descriptions of 7(€) and A(E).

Proposition 4.9. Let X and £ C P(X). For simplicity of notation, assume that
X, € & (otherwise adjoin them to & if necessary) and let £¢ = {A°: A € £} and
E=EU{X, 0} UEC Then

(4.7) T(E) = {arbitrary unions of finite intersections of elements from E}
and

(4.8) A(E) = {finite unions of finite intersections of elements from E.}.

Proof. From the definition of a topology and an algebra, it is clear that 7(£) and
A(E) contain those sets in the right side of Eqgs. (4.7) and (4.8) respectively. Hence
it suffices to show that the right members of Eqgs. (4.7) and (4.8form a topology
and an algebra respectively. The proof of these assertions are routine except for
possibly showing that

A := {finite unions of finite intersections of element from &.}

is closed under complementation. To check this, we notice that the typical element
Z € A is of the form

N K
z=J M4y

i=1j=1

where A;; € &.. Therefore, writing B;; = Afj € &, we find that

N K K
ZC:mUBU: U (B1j, N Baj, N---N Bnjy) € A(€)
=1 j=1 J1ye-dn=1

wherein we have used the fact that By;, N Byj, N---N Byj, is a finite intersection
of sets from &£.. m

Remark 4.10. Let (X, d) be a metric space, then the associated topology 74 on X
may be described as the topology generated by & = {B,(8) : « € X and 6§ > 0} —
the collection of open balls in X.

In order to see directly that the open sets are those which may be written as the
union of open balls we must show that the finite intersection of open balls can be
expressed as a union of open balls. Suppose B(z,8) and B(y, €) are two open balls
in X and z € B(x,6) N B(y,¢€), then

(4.9) B(z,a) C B(x,6) N B(y,¢)

where a = min{6 — d(z, z),e —d(y, z) }, see Figure 10. This is a formal consequence
of the triangle inequality. For example let us show that B(z,«) C B(z,§). By the
definition of «, we have that a < § — d(x,z2) or that d(z,z) < § — a. Hence if
w € B(z,a), then

dz,w) <d(z,z) +d(z,w) <6 —a+dz,w) < —at+a=2F6

which shows that w € B(z, §). Similarly we show that w € B(y,€) as well.
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d(z,2)

%

FicUrE 10. Fitting balls in the intersection.

Proof. Equation (4.9) may be generalized to finite intersection of balls, namely
if x; € X, 6; >0 and z € N, B(x;, 6;), then
(4.10) B(z,«) C Ni—1 B(x, 6;)
where now « := min{é; — d(z;,2) : i =1,2,...,n}. By Eq. (4.10) it follows that

any finite intersection of open balls may be written as a union of open balls. m

Remark 4.11. One might think that in general M(E) may be described as the
countable unions of countable intersections of sets in £¢ However this is false,
since if

Z=JM A4

=1

-

s
Il

—
<

with Aij € &, then

oo oo
Ji1=Lg2=1,...jn=1,... \€=1

which is now an uncountable union. Thus the above description is not correct.

In general it is fairly complicated to explicitly describe M(E), see Proposition 1.23

on page 39 of Folland for details.

Exercise 4.1. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written as
finite union of sets of the form F NV where F is closed and V is open.

The following notion will be useful in the sequel.

Definition 4.12. A set £ C P(X) is said to be an elementary family or ele-
mentary class provided that

o )cé&

e & is closed under finite intersections

o if £ €&, then E° is a finite disjoint union of sets from &£.
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Proposition 4.13. Suppose & C P(X) is an elementary family, then A = A(E)
consists of sets which may be written as finite disjoint unions of sets from &.

Proof. (First Proof.) By Proposition 4.9
A(E) = {finite unions of finite intersections of elements from &.},
where £¢ = {A°: A e £} and & = E U{X,0} UE°. Using the definition of an
elementary family we see that A(£) may be described more simply as
A(E) = {finite unions of elements from £}.

Let A = U E; € A(E) with E; € £. To finish the proof we need to show that A
may be written disjoint union of elements from £. We prove this by induction on
n. For n =1 and A = E; there is nothing to prove. If n =2 and A = E; U Es, let
ES =]\, F; with F; € €. Then

k
E\E1 =ENEf =[[E2NF
=1

so that

k
A=FE U <HE2ﬂFi>

i=1
is the desired decomposition. Now for the induction step, suppose that
A=U,E;=BUE, =(B\E,)UE,

where B = Hj\;l E} where {E;} C & are pairwise disjoint. Write ES = ]_[le F;
with F; € £, then

k kE N
B\E, = BNE¢ = ]_[Bmﬂ :HHE;ﬂFi
i=1 i=1j=1
and hence

k N
A=(TII1EnF )] En
i=1j=1
is the desired decomposition.

(Second more direct proof.) Let A denote the collection of sets which may
be written as finite disjoint unions of sets from £. Clearly A C A(E) so it suffices to
show that A is an algebra. By the properties of £, we know that (), X € A. Further,
if A=TJ,, E; with E; € A, then

A¢ =N, E;.

Since &£ is an elementary class, for each ¢ there exists a collection of disjoint sets
{Fi;}; C € such that EY = []; F;;. Therefore,

A= (UiFy) = | By, nFy 0N Fy,)
J15J25e5dn

and this is a disjoint union. Hence A¢ € A, i.e. A is closed under complementation.
Now suppose that A; = ]_[j Fje Afori=1,2,...,n, then

N;A; = U (Fij, N Fyj,n---NEy, ;)

J15J255dn
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S

FIGURE 11. A collection of subsets.

which is again a disjoint unison of sets from &£ so that A is closed under finite
intersections. m

Exercise 4.2. Let A C P(X) and B C P(Y) be elementary families. Show the
collection

E=AxB={AxB: A€ Aand B € B}
is also an elementary family.
Proposition 4.14. If £ C P(X) is countable then T7(£) C M(E) = o(E). In par-
ticular o(7(€)) = o(&).

Proof. Let £; denote the collection of subsets of X which are finite intersection
of elements from &£ along with X and ). Notice that &; is still countable (you prove).

A set Z isin 7(€) iff Z is an arbitrary union of sets from £;. Therefore Z = (J A
AeF
for some subset F C & which is necessarily countable. Since £ C M(E) and

M(E) is closed under countable unions it follows that Z € M(E) and hence that
TE)CM(E). m

Example 4.15. Suppose that &€ = {0, X, {1,2},{1,3}},
Then

(&) = {0, X, {1},{1,2},{1,3}}
A(E) = M(€) =P(X).
Example 4.16. Let X be a set and &€ = {Ay,..., A, } U{X,0} where A;,..., A,
is a partition of X, i.e. X =UjJ_;A; and A; N A; =0 if i # j. In this case
AE) = M(E) =7(E) = {Uieadi : A C {1,2,...,n}}
where U;ep A; := ) when A = (). Notice that
#AE) =#(P({1,2,...,n})) =2".

Proposition 4.17. Suppose that M C P(X) is a 0 — algebra and M is at most a
countable set. Then there exists a unique finite partition F of X such that F C M
and every element A € M 1is of the form

(411) A= UaefaacAO[.

In particular M is actually a finite set.
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[ 1}

Proof. For each z € X let
Aw - (meAEAA) e A

That is, A, is the smallest set in A which contains . Suppose that C = A, N A, is
non-empty. If x ¢ C then z € A, \ C € A and hence A, C A, \ C which shows that
Az N C = () which is a contradiction. Hence x € C and similarly y € C, therefore
A, cC=4A,NA, and A, C C = A, N A, which shows that A, = A,. Therefore,
F ={A; : x € X} is a partition of X (which is necessarily countable) and Eq.
(4.11) holds for all A € M. Let F = {P,})_, where for the moment we allow
N = oc0. If N = 00, then M is one to one correspondence with {0, I}N. Indeed to
each a € {0,1}", let A, € M be defined by

Ay, =U{P, :a, =1}

This shows that M is uncountable since {0,1}" is uncountable, think of the base
two expansion of numbers in [0, 1] for example. Thus any countable o — algebra is
necessarily finite. This finishes the proof modulo the uniqueness assertion which is
left as an exercise to the reader. m

Unfortunately, as already mentioned the structure of general o — algebras is not
so simple.

Example 4.18. Let X = R and £ = {(a,00) : a € R} U{R,0} C P(R).
Notice that £ = & and that & is closed under unions, which shows that
T(€) = &, i.e. & is already a topology. Since (a,0)¢ = (—o0,a] we find that
& ={(a,0), (—00,a],—00 < a < oo} U{R,P}. Noting that
(a,00) N (—o0,b] = (a,b]
it is easy to verify that the algebra A(E) generated by £ may be described as being
those sets which are finite disjoint unions of sets from the following list
{(a,00), (—00,al,(a,b] : a,b € R} U{D,R}.

The o — algebra, o(&), generated by £ is very complicated. Here are some sets

in o(&).
) (a,0) = U (a,b— 3] €0 (E).

(a
(b) All of thne_sltandard open subsets of R are in o ().
(c) {z} = ﬂ (x—2+,2] €a(&)

(d) [a,b] = {a} U (a,1] € o(€)

(e) Any countable subset of R is in ¢(&).

Remark 4.19. In the above example, one may replace £ by &€ = {(a,0) : a €
Q} U{R, 0}, in which case A(£) may be described as being those sets which are
finite disjoint unions of sets from the following list

{(a,00), (—00,a], (a,b] : a,b € Q} U{D,R}.
This shows that A(E) is a countable set — a fact we will use later on.

Notation 4.20. For a general topological space (X, 7), the Borel o — algebra is
the o — algebra, Bx = o(7). We will use Br to denote the Borel ¢ - algebra on R.

Exercise 4.3. Verify the following identities
Br =0({(a,00):a € R} =c({(a,0) :a € Q} =o({[a,) : a € Q}).
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4.4. Continuous and Measurable Functions. Our notion of a “measurable”
function will be analogous to that for a continuous function. For motivational pur-
poses, suppose (X, M, u) is a measure space and f : X — R,;. Roughly speaking,
in the next section we are going to define [ fdu by

X

o0

/fdu = lim > aip(f~ (as, aipa]).
X O<a;<az<asz<...

For this to make sense we will need to require f~!((a,b]) € M for all a < b. Because
of Lemma 4.25 below, this last condition is equivalent to the condition

f_l(B]R) - M7
where we are using the following notation.
Notation 4.21. If f: X — Y is a function and £ C P(Y) let
fre=rtE={f1(plEece}
If G C P(X), let
LG={AeP)|f71(A) € g}
Exercise 4.4. Show f~'€ and f.G are o — algebras (topologies) provided £ and
G are o — algebras (topologies).

Definition 4.22. Let (X, M) and (Y, F) be measurable (topological) spaces. A
function f: X — Y is measurable (continuous) if f~1(F) C M. We will also
say that f is M/JF — measurable (continuous) or (M, F) — measurable (continuous).

Remark 4.23. Let f : X — Y be a function. Given a o — algebra (topology)
F C P(Y), the o — algebra (topology) M := f~(F) is the smallest o — algebra
(topology) on X such that f is (M, F) - measurable (continuous). Similarly, if M
is a 0 - algebra (topology) on X then F = f, M is the largest o — algebra (topology)
on Y such that f is (M, F) - measurable (continuous).

Lemma 4.24. Suppose that (X, M), (Y, F) and (Z,G) are measurable (topological)
spaces. If f : (X,M) = (Y, F) and g : (Y,F) — (Z,G) are measurable (continuous)
functions then go f: (X, M) — (Z,G) is measurable (continuous) as well.

Proof. This is easy since by assumption ¢g=!(G) C F and f~! (F) C M so that
(9o /)G =F1 g @) cfHF) M.

|

Lemma 4.25. Suppose that f : X — Y is a function and € C P(Y), then
(4.12) o (f71(&) = (e(&)) and

(4.13) (11E) = £ H(r(E)):

Moreover, if F = o(€) (or F = 7(€)) and M is a 0 — algebra (topology) on X,
then f is (M, F) — measurable (continuous) iff f~(£) C M.

Proof. We will prove Eq. (4.12), the proof of Eq. (4.13) being analogous.
If £ C F, then f=1(&) C f~'(0(€)) and therefore, (because f~!(c(£)) is a o -
algebra)

G:=o(f 1) CfHo(6)
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which proves half of Eq. (4.12). For the reverse inclusion notice that
fG={BCY:fB)egG}.
is a o — algebra which contains £ and thus () C f.G. Hence if B € ¢(&) we know
that f=%(B) € G, i.e.
Yo (&) CG.
The last assertion of the Lemma is an easy consequence of Eqs. (4.12) and (4.13).

Corollary 4.26. Suppose that (X, M) is a measurable space. Then f : X — R
is (M, Bgr) - measurable iff f~1((a,00)) € M for all a € R iff f~1((a,0)) € M
for all a € Q iff f~1((—o0,a]) € M for all a € R, ete. Similarly, if (X, M) is
a topological space, then f: X — R is (M,7r) - continuous iff f='((a,b)) € M
for all —0o < a < b < oo iff f71((a,0)) € M and f=1((—o0,b)) € M for all
a,b € Q. (We are using ™o to denote the standard topology on R induced by the
metric d(x,y) = |z — y|.)

Proof. An exercise in using Lemma 4.25. m

We will often deal with functions f: X — R = RU{®oco}. Let
(4.14) Bg =0 ({[a,0] : a € R}).
The following Corollary of Lemma 4.25 is a direct analogue of Corollary 4.26.
Corollary 4.27. f: X — R is (M, Bg) - measurable iff f~'((a,o0]) € M for all

a € R iff f~'((—o0,a]) € M for all a € R, etc.
Proposition 4.28. A subset A C R is in By iff ANR €Bg. In particular {+oo},
{0} and {—o0} are in Bg.

Proof. Leti: R — R be the inclusion map. Since i=*(([a, o0])) = [a, 00) "R €Bg
for all a € R, i is (Bg, Bg)— measurable. In particular if A € Bg, then i~1(A) =
ANR eBg.

For the converse, we begin with the observations:
{—oo}t = M3Ly[—00, —n) = ML [—n, 0] € B,
{oo} = [00, 0] € Bg and
R = R\ {0} € B;.
Using these facts you may easily show that

M={ACR:AecBg}

is a o — algebra on R which contains (a,c0) for all a € R. Hence Bg C M, i.e.
Br C Bg. Using these observations, if A C R and A NR €Bg, then

A=(ANR)U(AN{£oo}) € Bz.
u

Proposition 4.29 (Closure under sups, infs and limits). Suppose that (X, M) is
a measurable space and f; : (X, M) — R is a sequence of M/Bg — measurable
functions. Then

sup, fj, inf;fj, ]ll)rgo sup f; and ]ll)rgo inf f;
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are all M/Bg — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in the
statement. )

Proof. Define g (x) :=sup;f;(x), then
{z:94(x) <a}={z: fij(z) <aVj}
=Nj{z: fj(z) <a} e M

so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then

s 9-(2) > a} = Ny{as f(x) > a} € M.
Since

limsup f; = igf sup{f;:j>n} and
lim f; =supinf{f; : j > n}

we are done by what we have alread; proved. m

Lemma 4.30. Suppose that (X, M) is a measurable space, (Y,T) be a topological
space and f; : X — Y is (M,By) — measurable for all j. Also assume that for
each v € X, f(x) = limy oo fr(x) exzists. Then f : X — Y is also (M,By) -
measurable.
Proof. Suppose that V' C Y is an open set, then
FHV) ={z: f(x) €V} = {z: fu(z) € V for almost all n}
= URo Moy f (V) e M

since f, 1(V) € M because each f, is measurable. Therefore f~!(r) C M and
thus

f7By)=f"(o(r) = (7)) c M.

Definition 4.31. A function f : X — Y between to topological spaces is Borel
measurable if f~1(By) C Bx.

Proposition 4.32. Let X and Y be two topological spaces and f : X — Y be a
continuous function. Then f is Borel measurable.

Proof. Using Lemma 4.25 and By = o(1y),
fHBy) = fHo(ry)) = o(f~(7v)) C a(rx) = Bx.

|

4.5. Relative Topologies and ¢ — Algebras.

Definition 4.33. Let £ C P(X) be a collection of sets, A C X, i4 : A — X be
the inclusion map (i4(z) = z) for all z € A, and

Ea=i,"()={ANE:E€&}.

Proposition 4.34. Suppose that A C X, M C P(X) is a o — algebra and 7 C
P(X) is a topology, then M4 C P(A) is a o — algebra and 74 C P(A) is a topology.

(The topology T4 is called the relative topology on A.) Moreover if € C P(X) is such
that M =o0(E) (1 =7(E)) then Ma =0(Ea) (Ta =T7(E4)).



REAL ANALYSIS LECTURE NOTES 59

Proof. The first assertion is easy to check as remarked after Notation 4.21. The
second assertion is a consequence of Lemma 4.25. Indeed,

Ma=ix (M) =i} (0(€)) = o(ix' (€)) = o(Ea)
and similarly
Ta =iy (1) =ix (7(€)) = 7(i3'(€)) = T(Ea).
L]
Definition 4.35. Let A C X, f: A — C be a function, M C P(X) be a o — alge-

bra and 7 C P(X) be a topology, then we say that f|4 is measurable (continuous)
if f|a is M4 — measurable (74 continuous).

Proposition 4.36. Let A C X, f : X — C be a function, M C P(X) be a o -
algebra and T C P(X) be a topology. If f is M — measurable (T continuous) then
fla is My measurable (T4 continuous). Moreover if A, € M (A4, € T) such that
X = U2 A, and flA, is Ma, measurable (Ta, continuous) for all n, then f is
M — measurable (T continuous).

Proof. Notice that i4 is (Ma, M) — measurable (74,7) — continuous) hence
fla = foiais M4 measurable (74 — continuous). Let B C C be a Borel set and
consider

FTHB) = Uy (FH(B) N An) = Uity fla, (B).
If Ae M (A € 1), then it is easy to check that
My={BeM:BcC A} C M and
Ta={Ber:BCA}CT.

The second assertion is now an easy consequence of the previous three equations.
L]

Definition 4.37. Let X and A be sets, and suppose for o € A we are give a
measurable (topological) space (Y, F,) and a function f, : X — Y,,. We will write
0(fa:a € A) (7(fo : @ € A)) for the smallest o-algebra (topology) on X such that
each f, is measurable (continuous), i.e.

0(fo:acA)=oc(Usf, (Fa)) and
T(fara € A) = 7(Uafs ! (Fa))-

Proposition 4.38. Assuming the notation in Definition 4.37 and additionally let
(Z, M) be a measurable (topological) space and g : Z — X be a function. Then g
is (M,0(fo: o € A)) — measurable (M, T(fo: o € A)) — continuous) iff fo 0 g is
(M, Fo)-measurable (continuous) for all o € A.

Proof. (=) If gis (M,0(fa : @ € A)) — measurable, then the composition f,0g
is (M, F,) — measurable by Lemma 4.24.
(<) Let

G=0(fa:ae€ A :U(UaeAf(:l(fa)) .
If fo,0gis (M,F,) — measurable for all o, then
g i (Fa) SMYVae A
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and therefore

g_l (UaeAfa_l(Fa)) - UaeAg_lfa_l(Fa) g M

Hence

919) =g (0 (Vacafa ' (Fa))) = 09" (Vacafs ' (Fa)) S M

which shows that g is (M, G) — measurable.
The topological case is proved in the same way. ®

4.6. Product Spaces. In this section we consider product topologies and o —
algebras. We will start with a finite number of factors first and then later mention
what happens for an infinite number of factors.

4.6.1. Products with a Finite Number of Factors. Let {X;}._, be a collection of sets,
X =X xXox---xX,, and m; : X — X be the projection map m(x1,z2,...,2,) =
x; for each 1 < ¢ < n. Let us also suppose that 7; is a topology on X; and M; is a
o — algebra on X; for each .

Definition 4.39. The product topology on X, denoted by 71 ® 7 ® - -+ ® 7, is
the smallest topology on X so that each map 7; : X — X is continuous. Similarly,
the product ¢ — algebra on X, denoted by M; ® My ® ---® M,,, is the smallest
o — algebra on X so that each map 7; : X — X is measurable.

Remark 4.40. The product topology may also be described as the smallest topology
containing sets of the form, V3 x Vo x--- xV,, with V; € 7; fori = 1,2,...,n. Indeed,
Tl@TQ@"'@Tn :T(Trl,ﬂ'Q,-..,Trn)
=7({nm (V) 1 Vier fori=1,2,...,n})
=17({(VixVox---xV,:V;erfori=1,2...,n}.
Similarly, M; ® My ® --- ® M,,, is the smallest o — algebra on X containing sets
of the form, A} x Ay X -+ x A, with A; e M; fori=1,2,...,n.

Remark 4.41. If (X;,d;) for i = 1,...,n be metric spaces, X := X; x --- x X, and
for x = (x1,29,...,2,) and y = (y1,¥2, ..., Yn) in X let

n

(4.15) d(w,y) = di(wi, yi).

i=1
Then the topology, 74, associated to the metric d is the product topology on X, i.e.
Td = Tdy W Tg, XX Tq,.
This is a consequence of Remark 4.40 and the following statement and : if € > 0
and x € X then
B(z1,¢/n) X -+ X B(xp,€/n) C B((x1,22,...,2n),€) C B(z1,€) X -+ X B(xy,¢).

Remark 4.42. Let (Z, M) be a measurable (topological) space, then by Proposition
4.38, afunction f : Z — X is measurable (continuous) iff mof : Z — X, is (M, M,)

— measurable ((7,7;) — continuous) for i = 1,2,...,n. So if we write

f(Z) = (fl(Z),fg(Z), .. ,fn(Z)) S X1 X X2 X -+ X Xn,

then f: Z — X is measurable (continuous) iff f; : Z — X; is measurable (continu-
ous) for all 4.
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Theorem 4.43. Fori=1,2,...,n, let & C P(X;) be a collection of subsets of X;
such that X; € & and M; = o(&;) (or 7, = 7(&)) fori=1,2,...,n, then
Ml(X)MQ(X)"'QOMn:(T(El XEQ X Xgn) or
T 0T @ QT =76 X & x -+ X &).

In short we have

- xo(&,)) and

(4.16) (&1 xE x -+ x &) =0a(a(&) x 7(&)
T X T(ER)).

(4.17) T(E1 x E x -- x &) =7(1(&1) x T(E2)
Let us further assume that each &; is countable for i = 1,2,...,n, 7, = 7(&;) and
M; = o(r;) is the Borel o — algebra on i. Then

1. M; =o(r) =0(&) for alli and
2.

X
X

(M RT® Q7)) =0(E1 X Ea X+ XE) =M QMo ® -+ QR M,.

That is the Borel o — algebra on X1 x Xg X - -+ X X,, with the product topology
is the product of the Borel o — algebras on X;.

Proof. We will prove Eq. (4.16). The proof of Eq. (4.17) is completely analo-
gous. Since

S xE x--xE Co(&r) xa(&) x---xa(&p)
it follows that
oc(Eg xEx--x&) Co(o(&r) xa(€2) x -+ xa(&)).
To prove the reverse inequality we have

o(&1) x Xg x -+ x X, = 71'1_1(0(51)) = (7(71'1_1(51))
=0(&y X Xgx -+ X Xp) Co(& xE x -+ X&)

wherein the last containment we have used the fact that X; € &; for each ¢. Similarly
one shows for each 7 that

X1 X Xox X Xi 1 X&) X Xjgq1- X Xy Co(E1 xE x -+ x &)

for each 7 and therefore. Since o(€1 xE X+ - - x &) is closed under finite intersections,
we learn that

Ay X Ag X - X Ay =N (X1 x Xo X X X; 1 X Ay X Xjgq - X Xp) €0(E1 x Ea X - X &)
when A; € 0(&;). This shows that
o(&1) xo(E) X -+ x (&) Co(€y x E x -+ X &)
and therefore that
o(0(&1) x (&) x - x0(E)) Co(E1 xE x -+ x&E).

Let us now assume that each &; is countable. Then it has already been proved
in Proposition 4.14 that M; = o(r;) = o(&;). Moreover, & X & X -+ X &, is
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also countable, another application of Proposition 4.14 along with the first two
assertions of the theorems gives

C(MR®T® - ®T) =0(T(T1 X T2 X -+ XTy))
=0o(7(1(&1) x 7(E2) X -+ X T(En)))
o(T(Ey xE x -+ x &)

Remark 4.44. One can not relax the assumption that X; € &; in Theorem 4.43.
For example, if X1 = Xo = {1,2} and & = & = {{1}}, then o(& x &) =
{0, X1 x X2,{(1,1)}} while o(c(&1) x 0(E2)) = P(X1 x Xa).

Proposition 4.45. If (X;,d;) fori=1,...,n be metric spaces such that for each
i there a countable dense subset D; C X;, then

Q) Bx: = B(x, xxx,)

where Bx, is the Borel 0 — algebra on X; and B(x, x...xx,,) is the Borel 0 — algebra
on X1 X --- x X,, equipped with the product topology.

Proof. This follows directly from Theorem 4.43 with
& ={B%(e) C X;:z € D; and e € QN(0,00)} fori=1,2,...,n.
L]

Because all norms on finite dimensional spaces are equivalent, the usual Eu-
clidean norm on R™ x R" is equivalent to the norm “product” norm defined by

1@ ) llgm xren = l2llgm + [[Yllgn -
Hence by Remark 4.41, the Euclidean topology on R™*" is the same as the product
topology on R™t" =~ R™ x R™ Here we are identifying R™ x R™ with R™*" by the
map
(,y) ER™ X R™ = (21, ..., Ton, Y1, - - -, Yn) € R,
Proposition 4.45 and these comments leads to the following corollaries.

Corollary 4.46. After identifying R™ x R™ with R as above, Brmin = Bgn ®

n-times

—NN—
Bgrm, where Brn is the Borel o —algebra on R™. Similarly, Bgn = Br ® --- ® Bg

n times
——
where we identify R™ with R X --- X R in the usual way.
Corollary 4.47. If (X, M) is a measurable space, then

f:(flaf27"'7fn):X*>Rn

is (M, Brn) — measurable iff f; + X — R is (M, Br) — measurable for each i. In
particular, a function f : X — C is (M, Bg) — measurable iff Re f and Im f are
(M, Bgr) — measurable.
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Corollary 4.48. Let (X, M) be a measurable space and f,g: X — C be (M, Bc)
— measurable functions. Then f +g and f - g are also (M, Bc) — measurable.

Proof. Define F: X - CxC, AL :CxC - Cand M : Cx C — C by
F(z) = (f(z),9(x)), Ax(w,2) = w =+ z and M(w,z) = wz. Then AL and M are
continuous and hence (Bgz, Be) — measurable. Also F'is (M, Bc ® Be) = (M, Bez2)
— measurable since T o F' = f and myo F' = g are (M, Bc) — measurable measurable.
Therefore AL o F = f+¢gand M o F = f - g being the composition of measurable
functions are also measurable. m

Lemma 4.49. Let o € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

1
— T(=) if f(.%‘) 76 0
Fla): { o i f@)=0
is measurable.
Proof. Definei: C — C by
. % if 2#£0
Z(Z)_{ a if z=0.

For any open set V' C C we have
N V) =i (VA {oh itV n{o})

Because i is continuous except at z = 0, i=*(V \ {0}) is an open set and hence
in Bc. Moreover, i~ 1(V N {0}) € B¢ since i ~1(V N {0}) is either the empty set or
the one point set {a} . Therefore i~ *(7¢) C Bc and hence i *(Bc) =i (o(c)) =
o(i~1(r¢)) € Bc which shows that i is Borel measurable. Since F' = io f is the
composition of measurable functions, F' is also measurable. m

4.7. Appendix: General Product spaces .

Definition 4.50. Suppose(XaMa),¢ 4 is a collection of measurable spaces and let
X be the product space
X =1] Xa

acA

and 7, : X — X, be the canonical projection maps. Then the product o — algebra,
QR My, is defined by

®MQ =o(mg:a€A)=0c (UW?(M@) :

acA
Similarly if (XoMa )¢ 4 is a collection of topological, the product topology & M.,

is defined by
®/\/la =7(mq:a€A) =1 (Uﬂgl(/\/la)> :
acA «

Remark 4.51. Let (Z, M) be a measurable (topological) space and

(X =[] X ®Ma>

acA acA
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be as in Definition 4.50. By Proposition 4.38, a function f : Z — X is measurable
(continuous) iff 7, o f is (M, M) — measurable (continuous) for all o € A.

Proposition 4.52. Suppose that (XoMa),ca i a collection of measurable (topo-
logical) spaces and E, C M, generates M, for each o € A, then

(4.18) RacaMao =0 (UaeAwgl(é’Q)) (T (UaeAﬂgl(f)a)))
Moreover, suppose that A is either finite or countably infinite, X, € &, for each

a € A, and My = 0(Ey) is a o — algebra for all « € A. Then the product o —
algebra satisfies

(4.19) ®Ma:(f ({H E,: E, €&, for allaEA}) )

acA acA
Similarly if A is finite and Mo = 7(Ea), then the product topology satisfies

(4.20) QR Mo =7 ({H E,: E, €&, for allaeA}).

acA acA

Proof. We will prove Eq. (4.18) in the measure theoretic case since a similar
proof works in the topological category. Since |J7, ! (En) C Uam; ! (Ma), it follows

«
that

F:i=0 (U?T;l(ga)> Co (Uw;l(/\/la)) = ®Ma.
Conversely,
Foo(ngl(a)) = 3t (0(Ea) = 75 (Ma)
holds for all o implies that
Uﬂ';l(/\/la) CcF

and hence that Q M, C F.

«
We now prove Eq. (4.19). Since we are assuming that X, € &, for each a € A,
we see that

Uﬂ'(:l(é'a) C {H E,:E, €&, for allaeA}

acA
and therefore by Eq. (4.18)

®Ma =0 (Uﬂal(é’a)> Co ({ H E,:E,€é&, foral ac A}) .

acA « acA

This last statement is true independent as to whether A is countable or not. For
the reverse inclusion it suffices to notice that since A is countable,

I Bo = Nacarat(Ea) € (R) Ma

acA acA
and hence

0<{HEazEa€Eaforalla€A}>C®Ma.

acA acA
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Here is a generalization of Theorem 4.43 to the case of countable number of factors.
[

Proposition 4.53. Let {X.}, 4 be a sequence of sets where A is at most count-
able. Suppose for each o € A we are given a countable set £, C P(Xy). Let
Ta = T(Ea) be the topology on X, generated by E, and X be the product space
[loca Xo with equipped with the product topology T := ®aecAT(Ea). Then the Borel
o — algebra Bx = (1) 1is the same as the product o — algebra:

Bx = ®acaBx
where Bx, = 0(7(€)) = 0(Ea) for all o € A.

)

Proof. By Proposition 4.52, the topology 7 may be described as the smallest
topology containing €& = Uae a7, 1(£,). Now £ is the countable union of countable
sets so is still countable. Therefore by Proposition 4.14 and Proposition 4.52 we
have

Bx =o(7) = 0(7(£)) = 0(€) = ®aca0(€a) = Waca0(Ta) = VacaBx,-
]

4.8. Exercises.

Definition 4.54. Let X be a set. We say that a family of sets 7 C P(X) is a
partition of X if X is the disjoint union of the sets in F.

Exercise 4.5 (Structure of countable ¢ — algebras.). Suppose that M C P(X) is
a o — algebra of sets and that M is countable (i.e. countable or finite). Show that
there is a unique partition F C M C P(X) such that for each A € M,

A= U a.

a€EF:aCA
Use this result to show that M must in fact be finite.

Hints: 1. For each x € X let
Ay =([A:AeM:zecA}

i.e. Ag is the smallest element in M which contains z. Show that if A, N A, # ()
then A, = A,. Then show that F = {4, € M : 2 € X} C M is the desired
partition.

2. It F = {Pn}fj:l , (allowing N = oo for the moment), show that M is in one
to one correspondence with the set of sequences {a, }~_, with a,, € {0,1} for all n.
The latter set is uncountable if N = oo.

Exercise 4.6. Let (X, M) be a measurable space and f : X — R be a function.
Show f is M — Br measurable iff any one of the following conditions holds:

1. f((a,0)) € M for all a € R.
2. fY((a,00)) € M for all a € Q.
3. f7([a,00)) € M for all a € Q.

Hint: See Exercise 4.3.
Exercise 4.7. Folland, Problem 1.5 on p.24. If M is the o — algebra generated by

£ C P(X), then M is the union of the o — algebras generated by countable subsets
FCE.
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Exercise 4.8. Let (X, M) be a measure space and f, : X — F be a sequence of
measurable functions on X. Show that {z : lim,,—c fn(z) exists} € M.

Exercise 4.9. Show that every monotone function f : R — R is (Bg, Br) — mea-
surable.

Exercise 4.10. Folland problem 2.6 on p. 48.
4.9. Solutions.



