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4. ALGEBRAS, 0 — ALGEBRAS AND MEASURABILITY

4.1. Introduction: What are measures and why “measurable” sets.

Definition 4.1 (Preliminary). Suppose that X is a set and P(X) denotes the col-
lection of all subsets of X. A measure p on X is a function p : P(X) — [0, oo] such
that

L pu(0)=0
2. If {Ai}fvzl is a finite (N < 00) or countable (N = 0o) collection of subsets of
X which are pair-wise disjoint (i.e. A;NA; =0 if ¢ # j) then

Uz IA ZIJ‘

Example 4.2. Suppose that X is any set and z € X is a point. For A C X, let

61,(14)—{1 if re A

0 otherwise.
Then p = 6, is a measure on X called the at z.

Example 4.3. Suppose that p is a measure on X and A > 0, then Ay is also a
measure on X. Moreover, if {, : a € J} are all measures on X, then 1 = > _ ; fla,
ie.

A) = ZMQ(A) forall AC X
acd

is a measure on X. (See Section 2 for the meaning of this sum.) We must show that
p is countably additive. Suppose that {4;};~, is a collection of pair-wise disjoint
subsets of X, then

Uz IA ZM ZZIJ‘G(A

=1 acd
= Z Z:ua(Ai) = Z fra (U2 1 Ad)
acJ i=1 acd

= M(U?;Ai)

where in the third equality we used Theorem 2.21 below and in the fourth we used
that fact that p, is a measure.

Example 4.4. Suppose that X is a set A : X — [0, o0] is a function. Then
W= Z Az)6
zeX
is a measure, explicitly
SR
z€EA

for all A C X.
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4.2. The problem with Lebesgue “measure”.

Question 1. Does there exist a measure u : P(R) —[0, 00 such that

1. p([a,b)) = (b—a) for all a < b and
2. w(A+z) = p(A) for all z € R?
The unfortunate answer is no which we now demonstrate. In fact the answer is

no even if we replace (1) by the condition that 0 < u((0,1]) < oco.

Let us identify [0,1) with the unit circle S := {z € C : |z| = 1} by the map
B(t) = e € S for t € [0,1). Using this identification we may use u to define a
function v on P(S) by v(¢p(A)) = u(A) for all A C [0,1). This new function is a
measure on S with the property that 0 < v((0,1]) < co. For z € S and N C S let

(4.1) zZN:={zmeS:nc N},

that is to say e’ N is N rotated counter clockwise by angle . We now claim that
v is invariant under these rotations, i.e.

(4.2) v(zN) = v(N)
for all z € S and N C S. To verify this, write N = ¢(A) and z = ¢(t) for some
t€]0,1) and A C [0,1). Then
H(B(A) = Bt + Amod 1)
where For N C [0,1) and « € [0,1), let
t+Amodl={a+tmodl € [0,1):a€ N}

=(a+An{fa<l—tHUu(t—-1)+An{a>1—-1t}).

Thus
V(B(t)6(A)) = plt + Amod 1)

(a+An{a<l—-tHhu(t-1)+An{a>1-1t}))
(a+An{a<l—t}))+pu((t—-1)+ANn{a>1-1t}))
Anfa<l—t}) +p(An{a>1-t})
=u((An{a<1-tHhuAn{a>1-t}))
= p(4) = v(p(A)).

Therefore it suffices to prove that no finite measure v on S such that Eq. (4.2)
holds. To do this we will “construct” a non-measurable set N = ¢(A) for some
AcClo,1).

To do this let R be the countable set

R:={z=¢?"":tc[0,1)NQ}.

(
(
(
(

As above R acts on S by rotations and divides S up into equivalence classes, where
z,w € S are equivalent if z = rw for some r € R. Choose (using the axiom of
choice) one representative point n from each of these equivalence classes and let
N C S be the set of these representative points. Then every point z € S may be
uniquely written as z = nr with n € N and r € R. That is to say

(4.3) s=T[ &nN)

rER
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where ][], Aq is used to denote the union of pair-wise disjoint sets {A,}. By Eqgs.
(4.2) and (4.3) we find that

v(8) =Y v(rN)=>_ v(N).

The right member from this equation is either 0 or oo, 0 if ¥(N) = 0 and oo if
v(N) > 0. In either case it is not equal v(S) € (0,1). Thus we have reached the
desired contradiction.
Proof. (Second proof) For N C [0,1) and «a € [0,1), let
N*=N+amodl
={a+amodl €[0,1):a € N}
=(a+Nn{a<l-—a})U((a=1)+Nn{a>1-a}).

If p is a measure satisfying the properties of the Question we would have

p(N®)

pla+t Nnfa<l—al)+p((a=1)+Nn{a>1-a})
p(NNn{a<l—a})+pu(Nn{a>1-a})
o (
w

Nn{a<l—alU(Nn{a>1-a}))
(N).

(4.4)

We will now construct a bad set N which coupled with Eq. (4.4) will lead to a
contradiction.
Set

Qe={rx+reR:reQ} =z+Q.

Notice that Q, N Q, # 0 implies that Q, = Q,. Let O = {Q, : * € R} — the orbit
space of the Q action. For all A € O choose f(A) € [0,1/3)NA.” Define N = f(O).
Then observe:
1. f(A) = f(B) implies that AN B # () which implies that A = B so that f is
injective.
2. 0={Q,:ne N}
Let R be the countable set,

R=QnJ0,1).
We now claim that
(4.5) N'NN®*=0ifr# s and
(4.6) [0,1) = UperN".

Indeed, if z € N" N N® # () then x = r + nmod1 and z = s + n’ mod 1, then

n—nl € Q, ie Q= Q,. That is to say, n = f(Qn) _ f(Qn’) — 1/ and hence
that s = rmod 1, but s,r € [0,1) implies that s = r. Furthermore, if € [0,1) and
n:i= f(QJ;), thenz—n=r¢ (@ and = € Nrmodl

"We have used the Axiom of choice here, i.c. [J4cr(AN[0,1/3]) # 0
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Now that we have constructed N, we are ready for the contradiction. By Equa-
tions (4.4-4.6) we find

L= u(0.1) = 30 (V) = 32 ()
reR rER
_{ oo if wp(N)>0
=1 0 if u(N) =0

which is certainly inconsistent. Incidentally we have just produced an example of
so called “non — measurable” set. m

Because of this example and our desire to have a measure p on R satisfying the
properties in Question 1, we need to modify our definition of a measure. We will
give up on trying to measure all subsets A C R, i.e. we will only try to define u
on a smaller collection of “measurable” sets. Such collections will be called o —
algebras which we now introduce.

4.3. Algebras and o — algebras.

Definition 4.5. A collection of subsets A of X is an Algebra if

1., Xe A

2. A € Aimplies that A° € A

3. Ais closed under finite unions, i.e. if A;,..., A, € Athen A1N---NA, € A.
4. Ais closed under finite intersections.

Definition 4.6. A collection of subsets M of X is a ¢ — algebra (o — field) if M
is an algebra which also closed under countable unions, i.e. if {4;};~; C M, then
U?ilAi e M.

Notice that since M is also closed under taking complements, M is also closed
under taking countable intersections.

The reader should compare these definitions with that of a topology, see Defini-
tion 3.16. Recall that the elements of a topology are called open sets. Analogously,
we will often refer to elements of and algebra A or a o — algebra M as measurable
sets.

Example 4.7. Here are a number of examples.

1. 7= M ="P(X) in which case all subsets of X are open, closed, and measur-
able.

2. Let X ={1,2,3}, then 7 = {0, X, {2,3}} is a topology on X which is not an
algebra.

3.7 =A={{1},{2,3},0,X}. is a topology, an algebra, and a o — algebra on
X. The sets X, {1}, {2,3}, ¢ are open and closed. The sets {1,2} and {1,3}
are neither open nor closed and are not measurable.

Proposition 4.8. Let £ be any collection of subsets of X. Then there exists a
unique smallest topology 7(£), algebra A(E) and o-algebra o(E) which contains E.

Proof. Note P(X) is a topology and an algebra and a o-algebra and £ C P(X),
so that &£ is always a subset of a topology, algebra, and ¢ — algebra. One may now
easily check that

T(€) = ﬂ{T : 7 is a topology and £ C 7}
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is a topology which is clearly the smallest topology containing £. The analogous
construction works for the other cases as well. m
We may give explicit descriptions of 7(€) and A(E).

Proposition 4.9. Let X be a set and £ C P(X). For simplicity of notation, as-
sume that X,0) € € (otherwise adjoin them to & if necessary) and let £¢ = {A° :
Aec&} and &, =EU{X,0}UEC Then 7(€) =7 and A(E) = A where

(4.7) T := {arbitrary unions of finite intersections of elements from E}
and
(4.8) A := {finite unions of finite intersections of elements from &.}.

Proof. From the definition of a topology and an algebra, it is clear that £ C
T C7(€) and £ C A C A(E). Hence to finish that proof it suffices to show 7 is a
topology and A is an algebra. The proof of these assertions are routine except for
possibly showing that 7 is closed under taking finite intersections and A is closed
under complementation.

To check A is closed under complementation, let Z € A be expressed as

N K
z=J M4y

i=1j=1
where A;; € &.. Therefore, writing B;; = Afj € &, we find that

N K K
ZC:ﬂUBiJ‘: U (B1j, N Baj, N---N Byjy) € A(€)
1=1j=1 Jiseesin=1

wherein we have used the fact that Bi;, N Baj, N---N By, is a finite intersection
of sets from €&..
To show 7 is closed under finite intersections it suffices to show for VW e 7
that VN W e 7. Write
V =UqeaVo and W = UgeBW5

where V,, and Wj are sets which are finite intersection of elements from £. Then
VAW = (UseaVa) N (UsesWp) = | VanWer
(a,8)€AxB
since for each (o, §) € A x B, V, NWp is still a finite intersection of elements from

. m

Remark 4.10. One might think that in general o(€) may be described as the count-
able unions of countable intersections of sets in £¢ However this is false, since if

z=J (A

i=1j=1
with Aij € &, then

oo oo
7= U (N
Gi=1jo=1,.jn=1,.. \£=1

which is now an uncountable union. Thus the above description is not correct.
In general it is fairly complicated to explicitly describe o (&), see Proposition 1.23
on page 39 of Folland for details.
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Exercise 4.1. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written as
finite union of sets of the form F NV where F is closed and V is open.

The following notion will be useful in the sequel.

Definition 4.11. A set £ C P(X) is said to be an elementary family or ele-
mentary class provided that

e Necé&

e & is closed under finite intersections

e if E € £, then E° is a finite disjoint union of sets from £. (In particular X = )¢
is a disjoint union of elements from &.)

Proposition 4.12. Suppose £ C P(X) is an elementary family, then A = A(E)
consists of sets which may be written as finite disjoint unions of sets from &.

Proof. This could be porved making use of Proposition 4.12. However it is
easier to give a direct proof.

Let A denote the collection of sets which may be written as finite disjoint unions
of sets from &. Clearly £ C A C A(E) so it suffices to show that A is an algebra
since A(E) is the smallest algebra containing €.

By the properties of £, we know that ), X € A. Now suppose that A; =
HFeAi F € A where, for i = 1,2,...,n., A; is a finite collection of disjoint sets
from &£. Then

ﬁAi_ﬁ<H F)_ U (FANFN---NE,)
i=1 (F1yyennsFy,

i=1 \FEA; JEAL X XAy,

and this is a disjoint (you check) union of elements from £. Therefore A is closed
under finite intersections. Similarly, if A =], F with A being a finite collection
of disjoint sets from &, then A° = (., F°. Since by assumption F¢ € A for
F € A C &€ and A is closed under finite intersections, it follows that A€ A. m

Exercise 4.2. Let A C P(X) and B C P(Y) be elementary families. Show the
collection

E=AxB={AxB:A€cAand B € B}
is also an elementary family.

Proposition 4.13. If £ C P(X) is countable then 7(€) C o(€). In particular
a(1(€)) = a(&).

Proof. Let £; denote the collection of subsets of X which are finite intersection
of elements from £ along with X and (). Notice that &; is still countable (you prove).

A set Z isin 7(€) iff Z is an arbitrary union of sets from £;. Therefore Z = (J A
AcF
for some subset F C &; which is necessarily countable. Since £y C o(€) and o(€) is

closed under countable unions it follows that Z € ¢(£) and hence that 7(£) C o(€).
For the last assertion, since & C 7(€) C o(€) it follows that o(€) C o(7(£)) C a(€).
|

The analogous notion of elementary class £ for topologies is a basis B defined
below.
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d(z,2)

%

FicUrE 10. Fitting balls in the intersection.

Definition 4.14. Let (X, 7) be a topological space. We say that S C 7 is a sub-
basis for the topology 7 iff 7 = 7(S) and X = US := UyesV. Wesay B C T is a
basis for the topology 7 iff B is a sub-basis with the property that every element
V € 7 may be written as

V=U{BeB:BCV}.

Exercise 4.3. Suppose that S is a sub-basis for a topology 7 on a set X. Show
B := Sy consisting of finite intersections of elements from § is a basis for 7. (So S
is a basis for a topology iff US = X and finite intersections of sets from & may be
written as a union of sets from S§. Compare with the definition of an elementary
class.) Moreover, S is itself is a basis for 7 iff

MinV,=u{SesS:SCcVin}.
for every pair of sets V1, V5 € S.

Remark 4.15. Let (X, d) be a metric space, then £ = {B,() : « € X and § > 0}
is a basis for 74 — the topology associated to the metric d. This is the content of
Exercise 3.3.

Let us check directly that £ is a basis for a topology. Suppose that x,y € X and
€,6 >0.If z € B(x,6) N B(y,¢€), then

(4.9) B(z,a) C B(x,6) N B(y,¢)

where v = min{é —d(z, z),e — d(y, z) }, see Figure 10. This is a formal consequence
of the triangle inequality. For example let us show that B(z,«) C B(z,§). By the
definition of «, we have that a < § — d(x,z2) or that d(z,z) < § — a. Hence if
w € B(z,a), then

d(z,w) < d(z,z) +d(z,w) <§—a+dzw) <d—a+a=6§

which shows that w € B(x, ¢). Similarly we show that w € B(y, €) as well. Owing to
Exercise 4.3, this shows £ is a basis for a topology. We do not need to use Exercise
4.3 here since in fact Equation (4.9) may be generalized to finite intersection of
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S

FIGURE 11. A collection of subsets.

balls. Namely if z; € X, 6; > 0 and z € N}_; B(x4, 6;), then

(410) B(Z, Oé) C ﬂ?=1B<£17i, 61)

where now « := min {6; — d(z;,2) : i =1,2,...,n}. By Eq. (4.10) it follows that
any finite intersection of open balls may be written as a union of open balls.

Example 4.16. Suppose that & = {0, X, {1,2},{1,3}},
Then
(&) = {0, X, {1},{1,2},{1,3}}
A(€) =a(€) = P(X).
Definition 4.17. Let X be a set. We say that a family of sets 7 C P(X) is a
partition of X if X is the disjoint union of the sets in F.
Example 4.18. Let X be a set and &€ = {4;,...,A,} where A;,..., A, is a
partition of X. In this case
AE)=0(&) =7(E) = {Uiendi : AC{1,2,...,n}}
where U;ep A; := ) when A = (). Notice that
#AE) =#(P({L,2,...,n})) =2™
Proposition 4.19. Suppose that M C P(X) is a 0 — algebra and M is at most a
countable set. Then there exists a unique finite partition F of X such that F C M
and every element A € M is of the form
(4.11) A = UaefgacAa.
In particular M is actually a finite set.
Proof. For each x € X let
Ax - (ﬂxeAe_AA) S A

That is, A, is the smallest set in A which contains . Suppose that C = A, N A, is
non-empty. If x ¢ C then z € A, \ C € A and hence A, C A, \ C which shows that
Az N C = () which is a contradiction. Hence z € C and similarly y € C, therefore
A, cC=4A,NA, and A, C C = A, N A, which shows that A, = A,. Therefore,
F ={A; : © € X} is a partition of X (which is necessarily countable) and Eq.
(4.11) holds for all A € M. Let F = {P,})_, where for the moment we allow
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N = oco. If N = oo, then M is one to one correspondence with {0, 1}N. Indeed to
each a € {0, I}N, let A, € M be defined by

A, =U{P, :a, =1}

This shows that M is uncountable since {0,1}" is uncountable, think of the base
two expansion of numbers in [0, 1] for example. Thus any countable o — algebra is
necessarily finite. This finishes the proof modulo the uniqueness assertion which is
left as an exercise to the reader. m

As already mentioned the structure of general o — algebras is not so simple.

Example 4.20. Let X =R and
E={(a,0):a € R}U{R,0N} = {(a,00) NR:a € R} C P(R).

Notice that £ = & and that & is closed under unions, which shows that
T(E) = &, i.e. & is already a topology. Since (a,00)¢ = (—o0,a] we find that
& = {(a,00),(—00,a],—00 < a < oo} U{R,P}. Noting that

(a,00) N (—o0,b] = (a, b

it is easy to verify that the algebra A(E) generated by £ may be described as being
those sets which are finite disjoint unions of sets from the following list

£ = {(a,b]ﬁR:a,bER}.

(This follows from Proposition 4.12 and the fact that € is an elementary family of
subsets of R.) The o — algebra, o(&), generated by £ is very complicated. Here
are some sets in ¢(€) — most of which are not in A(E).

(o]

a) (a,0) = | (a,b— L] € o(&).

n

)
)
c) {z} = Q (x—2L,2] €0(é)
; [a,b] = {a} U (a,b] € 0(&)

Remark 4.21. In the above example, one may replace £ by £ = {(a,0) : a €
Q} U {R, 0}, in which case A(E) may be described as being those sets which are
finite disjoint unions of sets from the following list

{(av OO)? (—OO, a]a (av b] 1 a, be Q} U {va} :
This shows that A(€) is a countable set — a fact we will use later on.

Notation 4.22. For a general topological space (X, 7), the Borel o — algebra is
the o — algebra, Bx = o(7). We will use Bg to denote the Borel o - algebra on R.

Exercise 4.4. Verify the following identities

Br =c({(a,0):a € R} =c({(a,0) :a € Q} =o({[a,) : a € Q}).
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4.4. Continuous and Measurable Functions. Our notion of a “measurable”
function will be analogous to that for a continuous function. For motivational pur-
poses, suppose (X, M, u) is a measure space and f : X — R,;. Roughly speaking,
in the next section we are going to define [ fdu by

X

oo
JEZE "D SRR )
X 0<ai<az<asz<...

For this to make sense we will need to require f~*((a,b]) € M for all a < b. Because
of Lemma 4.28 below, this last condition is equivalent to the condition

FH(Br) € M,
where we are using the following notation.
Notation 4.23. If f: X — Y is a function and £ C P(Y) let
frle= @ ={f(BlEec}
If G C P(X), let
LG={AecPY)|f (A eg}.
Exercise 4.5. Show f~1€ and f.G are o — algebras (topologies) provided £ and
G are o — algebras (topologies).

Definition 4.24. Let (X, M) and (Y, F) be measurable (topological) spaces. A
function f: X — Y is measurable (continuous) if f~1(F) C M. We will also
say that f is M/JF — measurable (continuous) or (M, F) — measurable (continuous).

Example 4.25 (Characteristic Functions). Let (X, M) be a measurable space and
A C X. We defnine the characteristic function 14 : X — R by

1 if z€A
1“‘(“’)_{0 if oA

If A € M, then 14 is (M, P(R)) — measurable because 1,*(W) is either §), X, A or
A¢ for any U C R. Conversely, if F is any o — algebra on R containing a set W C R
such that 1 € W and 0 € W*¢, then A € M if 14 is (M, F) — measurable. This is
because A = 1371 (W) € M.

Remark 4.26. Let f : X — Y be a function. Given a o — algebra (topology)
F C P(Y), the o — algebra (topology) M := f~1(F) is the smallest o — algebra
(topology) on X such that f is (M, F) - measurable (continuous). Similarly, if M
is a o - algebra (topology) on X then F = f, M is the largest o — algebra (topology)
on Y such that f is (M, F) - measurable (continuous).

Lemma 4.27. Suppose that (X, M), (Y, F) and (Z,G) are measurable (topological)
spaces. If f : (X, M) — (Y, F) and g : (Y, F) — (Z,G) are measurable (continuous)
functions then go f : (X, M) — (Z,G) is measurable (continuous) as well.

Proof. This is easy since by assumption ¢g=!(G) C F and f~! (F) C M so that
(9o /)G =11 (g (@) cfHF) M.
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Lemma 4.28. Suppose that f : X — Y is a function and € C P(Y), then

(4.12) o (f71E)) =~ (o(&)) and

(4.13) T (f7HE)) = FH(7(€)).

Moreover, if F = o(&) (or F = 7(€)) and M is a 0 — algebra (topology) on X,
then f is (M, F) — measurable (continuous) iff f=*(£) C M.

Proof. We will prove Eq. (4.12), the proof of Eq. (4.13) being analogous.
If £ C F, then f=1(&) C f~'(0(€)) and therefore, (because f~!(c(£)) is a o —
algebra)

G:=o(f71(E)) C F7H(a(€))

which proves half of Eq. (4.12). For the reverse inclusion notice that
fG={BCY:f!(B)egG}.
is a 0 — algebra which contains £ and thus o(& ) C f«G. Hence if B € 0(€) we know
that f~1(B) € G, i.e.
fHo(€) g
The last assertion of the Lemma is an easy consequence of Eqs. (4.12) and (4.13).
- Proof.
F7HBy)=fo(m) = (f7H(r) c M.
|

Definition 4.29. A function f : X — Y between to topological spaces is Borel
measurable if f~1(By) C By.

Proposition 4.30. Let X and Y be two topological spaces and f : X — Y be a
continuous function. Then f is Borel measurable.

Proof. Using Lemma 4.28 and By = o(71y),
71 By) = fH(o(ry)) = o(fH(rv)) C o(x) = Bx.

Corollary 4.31. Suppose that (X, M) is a measurable space. Then f : X — R
is (M, Bg) - measurable iff f='((a,00)) € M for all a € R iff f~((a,0)) € M
for all a € Q iff f~1((—o0,a]) € M for all a € R, ete. Similarly, if (X, M) is
a topological space, then f : X — R is (M, 1) - continuous iff f~1((a,b)) € M
for all —o0o < a < b < oo iff f1((a,0)) € M and f~1((— oob))ej\/lforall
a,b € Q. (We are using g to denote the standard topology on R induced by the
metric d(x,y) = |z —y|.)

Proof. This is an exercise (Exercise 4.7) in using Lemma 4.28. =
We will often deal with functions f: X — R = RU{®oc0}. Let

(4.14) Bz := 0 ({[a,00] : a € R}).
The following Corollary of Lemma 4.28 is a direct analogue of Corollary 4.31.

Corollary 4.32. f: X — R is (M, Bg) - measurable iff f~1((a,o0]) € M for all
a € R iff f1((—o0,a]) € M for all a € R, ete.
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Proposition 4.33. Let Br and Bz be as above, then
(4.15) Bg={ACR:ANR B}
In particular {oo} ,{—oc0} € By and Br C B.
Proof. Let us first observe that
{—o0} = MLy [—00, —n) = NiZ,[—n, 00]® € B,
{oo} =N [n,00] € By and R =R\ {£o0} € B.
Letting 7 : R — R be the inclusion map,
it (Bg) =0 (i7" ({la, 0] :a € R})) =0 ({i7" ([a,0]) : a € R})
=0 ({[a,0]NR:a € R}) =0 ({[a,0) : a € R}) = Bg.
Thus we have shown
Br =i ' (Bg) = {ANR: Ac Bz}
This implies:
1. A€ Bg = ANR €Bg and
2. if A C R is such that ANR €By there exists B € Bz such that ANR = BNR.

Because AAB C {£o0} and {00}, {—o0} € Bz we may conclude that A € Bz
as well.

This proves Eq. (4.15). m

Proposition 4.34 (Closure under sups, infs and limits). Suppose that (X, M) is
a measurable space and f; : (X, M) — R is a sequence of M/Bg — measurable
functions. Then

sup; fj, inf;fj, hjniigp f; and lij_j)rgf fi

are all M /By — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in the
statement. )

Proof. Define g4 (x) :=sup;f;(x), then
{00 g4(@) Sa} = {a: f(2) < a¥j)
=Nj{z: fi(z) <a}leM
so that g4 is measurable. Similarly if g_(z) = inf; f;(z) then
{1 9-(x) > a} = Ny{o: fi(x) > a} € M.
Since

limsup f; =infsup{f;:j >n} and

J—00

liminf f; =supinf{f;:j > n}
J—0 n
we are done by what we have already proved. m

Lemma 4.35. Suppose that (X, M) is a measurable space, (Y,T) be a topological
space and f; : X — Y is (M,By) — measurable for all j. Also assume that for
each v € X, f(x) = limy oo fr(x) exists. Then f : X — Y is also (M,By) -

measurable.
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Proof. Suppose that V' C Y is an open set, then
V) ={z: f(x) €V} ={x: fu(x) €V for almost all n}
= UNo Mt fr (V) e M

since f, 1(V) € M because each f, is measurable. Therefore f~!(7) C M and
thus m

4.5. Topologies and 0 — Algebras Generated by Functions.

Definition 4.36. Let £ C P(X) be a collection of sets, A C X, i4 : A — X be
the inclusion map (i4(z) = z) for all z € A, and

Ea=i,"() ={ANE:E€&}.

When £ = 7 is a topology or £ = M is a ¢ — algebra we call 74 the relative topology
and My the relative o — algebra on A.

Proposition 4.37. Suppose that A C X, M C P(X) is a o — algebra and 7 C
P(X) is a topology, then M4 C P(A) is a o — algebra and 74 C P(A) is a topology.
(The topology T4 is called the relative topology on A.) Moreover if € C P(X) is such
that M = c(&E) (1 =7(E)) then Ma =0c(E4) (Ta =T(E4)).

Proof. The first assertion is easy to check as remarked after Notation 4.23. The
second assertion is a consequence of Lemma 4.28. Indeed,

My =i (M) =i7'(0(€)) = o(i7' (£)) = 0(Ea)
and similarly

TA =i, (1) =i (T(E)) = T(i,*(E)) = T(Ea).
=

Example 4.38. Suppose that (X,d) is a metric space and A C X is a set. Let
T = 74 and dag := d|axa be the metric d restricted to A. Then 74 = 74,, i.e.
the relative topology, 74, of 7, on A is the same as the topology induced by the
restriction of the metric d to A. Indeed, if V' € 74 there exists W & 7 such that
V' N A = W. Therefore for all € A there exists e > 0 such that B,(¢) C W and
hence B, () N A C V. Since B,(e) N A = Bl4(¢) is a d4 — ball in A, this shows
V is da — open, i.e. T4 C 74,. Conversely, if V € 74,, then for each z € A there
exists €, > 0 such that B (e) = B,(e) N A C V. Therefore V.= AN W with
W :=UgecaBy(€) € 7. This shows 74, C T4.

Definition 4.39. Let A C X, f: A — C be a function, M C P(X) be a o — alge-
bra and 7 C P(X) be a topology, then we say that f|4 is measurable (continuous)
if f|a is M4 — measurable (74 continuous).

Proposition 4.40. Let A C X, f : X — C be a function, M C P(X) be a 0 —
algebra and T C P(X) be a topology. If f is M — measurable (T continuous) then
fla is M4 measurable (Ta continuous). Moreover if A, € M (A, € T) such that
X = U2 A, and flAy, is Ma, measurable (T4, continuous) for all n, then f is
M — measurable (T continuous).

Proof. Notice that i is (M4, M) — measurable (74,7) — continuous) hence
fla = foiais M4 measurable (74 — continuous). Let B C C be a Borel set and
consider

FHB) =L, (fHB)NA,) = Uiy f

4. (B).
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If Ae M (A € 7), then it is easy to check that

My={BeM:BC A} C M and
Ta={BeT:BCA}CT.

The second assertion is now an easy consequence of the previous three equations.
L]

Definition 4.41. Let X and A be sets, and suppose for a € A we are give a
measurable (topological) space (Ya, Fo) and a function f, : X — Y,. We will write
0(fa:a € A) (T(fo: a € A)) for the smallest o-algebra (topology) on X such that
each f, is measurable (continuous), i.e.

0(fa:a € A)=0(Usfy (Fa)) and

T(fa:a € A) =7(Uafi (Fo))-
Proposition 4.42. Assuming the notation in Definition 4.41 and additionally let
(Z, M) be a measurable (topological) space and g : Z — X be a function. Then g

is (M,0(fo:a € A)) — measurable (M, 7(fo : a € A)) — continuous) iff fo 0 g is
(M, Fo)-measurable (continuous) for all o € A.

Proof. (=) If gis (M,0(fa : @ € A)) — measurable, then the composition f,0g
is (M, F,) — measurable by Lemma 4.27.
(<) Let
G=0(fa:a€A) =0 (Uacafs'(Fa)).
If fo0gis (M, F,) — measurable for all «, then
g T (Fa) SMYac A

and therefore

9_1 (UaeAfa_l(fa)) = UaeAg_lfa_l(]:a) c M.

Hence

9719 =g (0 (Vaeafa ' (Fa))) = 097! (Vaeafa ' (Fa)) M

which shows that ¢ is (M, G) — measurable.
The topological case is proved in the same way. ®

4.6. Product Spaces. In this section we consider product topologies and o —
algebras. We will start with a finite number of factors first and then later mention
what happens for an infinite number of factors.

4.6.1. Products with a Finite Number of Factors. Let {X;}._, be a collection of sets,
X =X xXox---xX, and 7; : X — X, be the projection map w(zy,xa,...,T,) =
x; for each 1 <i < n. Let us also suppose that 7; is a topology on X; and M; is a
o — algebra on X; for each .

Notation 4.43. Let & C P(X;) be a collection of subsets of X; fori =1,2,...,n
we will write, by abuse of notation, £ x £ x - -+ x &, for the collection of subsets
of X; x---x X, of the form A; x Ay x --- x A,, with A; € &; for all <. That is we
are identifying (Ay, Ag, ..., A,) with A; X Ay X -+ X A,,.
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Definition 4.44. The product topology on X, denoted by 71 ® 7 ® - -+ ® 7, is
the smallest topology on X so that each map 7; : X — X is continuous. Similarly,
the product ¢ — algebra on X, denoted by M; ® My ® ---® M,,, is the smallest
o — algebra on X so that each map 7; : X — X is measurable.

Remark 4.45. The product topology may also be described as the smallest topology
containing sets from 7, X - -+ X T,, i.e.

TLRTE® - QT =T(Tg X -+ X Tp).

Indeed,
TIRT® - QT =T(T1, T2,y ..., )
:T({ﬂleﬂi_l(Vi) :Vierfori = 1,2,...,n})
=7({(VixVox---xV,:Vierfori=1,2,...,n}).
Similarly,

./\/ll(X)MQ(X)"'(X)Mn:(T(MlXMQX-'-XMH).

Furthermore if B; C 7; is a basis for the topology 7; for each i, then By x---x B, is a
basis for 7y ® 7o ® - - - ® T,,. To prove this first notice that 7 X - - - X 7, is closed under
finite intersections and generates 71 ® o ® - - - ® T,,. Therefore 74 X - -+ X 73, is a basis
for the product topology. Hence for W € 7y 0o ®- - @7, and © = (z1,...,2,) € W,
there exists Vi X Vo X --- x V,, € 4 X --- X 7,, such that

zeVixVox---xV, CW.

Since B; is a basis for 7;, we may now choose U; € B; such that x; € U; C V; for
each 7. Thus

xelU; xUzyx---xU, CW
and we have shown W may be written as a union of sets from By X --- X 3,,. Since
By X XBy CTy X XTp) CTLRTRR -+ R Ty,
this shows By X -+ x B, is a basis for 71 ® 79 ® - - - ® Tp,.

Lemma 4.46. Let (X;,d;) fori=1,...,n be metric spaces, X := X1 x --- x X,
and for x = (x1,%2,...,2,) and y = (Y1,Y2,.--,Yn) in X let

(4.16) d(z,y) = Zdi(xi,yi).

Then the topology, T4, associated to the metric d is the product topology on X, i.e.
Td = Tdy W Td, XX Tq

n'

Proof. Let p(x,y) = max{d;(x;,y;) : i =1,2,...,n}. Then p is equivalent to d
and hence 7, = 74. Moreover if € > 0 and = = (1, 22,...,%,) € X, then

Bf(e) = Bgi(e) X - X ng(e).
By Remark 4.15,
E:={Bf(e): x € X and € > 0}

is a basis for 7, and by Remark 4.45 £ is also a basis for 74, ® 74, ® --- ® T4
Therefore,

n'

Td, ®Tagy @ QT1q, =T(E) =T, = T4.

n
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Remark 4.47. Let (Z, M) be a measurable (topological) space, then by Proposition
4.42; afunction f : Z — X is measurable (continuous) iff mo f : Z — X is (M, M;)
— measurable ((7,7;) — continuous) for i = 1,2,...,n. So if we write

f(Z) = (fl(Z), fQ(Z), .. ,fn(Z)) S X1 X X2 X -+ X Xn,

then f: Z — X is measurable (continuous) iff f; : Z — X, is measurable (continu-
ous) for all 4.

Theorem 4.48. Fori=1,2,...,n, let & C P(X;) be a collection of subsets of X;
such that X; € & and M; = o(&;) (or 7, = 7(&;)) fori=1,2,...,n, then

MO Ma®--- @M, =0(E XE X+ x&E,) and
MR ®QT, =T(E X E X -+ X &)

Written out more explicitly, these equations state

(4.17) o(0(&1) x (&) x ---x0(Ey)) =0(E1 xE x -+ x &) and
(4.18) T(T(E1) X T(E) X -+ - X 7(E)) = T(EL X Eg X -+ X &,).
Let us further assume that each &; is countable fori =1,2,...,n, 7, = 7(&;) and

M; = o(m;) is the Borel o — algebra on i. Then

1. M; =0o(r) =0a(&) for all i and
2. the Borel o — algebra on X1 x X5 X --- X X,, with the product topology is the
product of the Borel o — algebras on the X; ’s, i.e.

(T(Tl(X)TQ(X)"'(X)Tn):O'(glngX"’Xgn)le(X)MQ(X)"'@Mn.

Proof. We will prove Eq. (4.17). The proof of Eq. (4.18) is completely analo-
gous. Let us first do the case of two factors. Since

&1 x & Co(&) xo(&)
it follows that
(&1 x &) Co(o(&) xa(&)) =oa(m,ma).

To prove the reverse inequality it suffices to show m; : X7 x Xo — X is 0 (&1 x &)
- M; = 0(&;) measurable for ¢ = 1,2. To prove this suppose that E € &, then

T HE)=Ex Xy €& x & Co (& x &)
wherein we have used the fact that Xy € &. Similarly, for £ € & we have
T (E)=X1 xE€& x& Co(E x&).
This proves the desired measurability, and hence
o(m,me) C o (& x E) C o(m,m2).

Let us now assume that each &; is countable or ¢ = 1,2. Then it has already
been proved in Proposition 4.13 that M; = o(7;) = o(&;). Moreover, & X & is
also countable, another application of Proposition 4.13 along with the first two
assertions of the theorems gives

o(m ®m) =0(1(n X)) =0c(1(17(&) x 7(&2))) = (1 (&1 X &))
=0(& x &) =0(0(&1) x 0(E2)) =0 (M1 X Ma) = My @ Ma.
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The proof for n factors works the same way. Indeed,
EixEx---xE Co(&r) xa(&) x---xa(&)
implies
o1 xE X x&E) Co(o(&r)xa(&)x---xo(&n))=0(m1,...,mn)
and for E € &;,
TTHE)=X1xXox X Xig X Ex Xip1- - x Xp €6 xEa x -+ X &
Co(EgxE&x--%xE,).
This show 7; is 0 (E1 X Ea X -+ x &) — M; = 0(&;) measurable and therefore,
O(T1y ooy Tp) Co(Ey X E X -+- X &) Co(my,...,Tp).
If the &; are countable, then
o(MR®T®- QT =0T
=o(T(1(&1) x 7(E) x -+ - x 7(En)))
o(1(Er xE X+ x &)

(&) x o(&) x -+ x (&)

Remark 4.49. One can not relax the assumption that X; € &; in Theorem 4.48.
For example, if X1 = Xo = {1,2} and & = & = {{1}}, then o(& x &) =
{0, X1 x X5,{(1,1)}} while o(c(&71) x 0(&2)) = P(X1 X Xa).

Proposition 4.50. If (X;,d;) fori=1,...,n be metric spaces such that for each
i there a countable dense subset D; C X;, then

®BXi = B(X1><~~~><X,,,)

where Bx, is the Borel 0 — algebra on X; and B(x, x...xx,) is the Borel 0 — algebra
on X1 X --- x X,, equipped with the product topology.

Proof. This follows directly from Lemma 4.46 and Theorem 4.48 with
&= {Bgi(e) C Xi:xz € D; and e € QN(0,00)} fori=1,2,...,n.
[
Because all norms on finite dimensional spaces are equivalent, the usual Eu-
clidean norm on R™ x R™ is equivalent to the “product” norm defined by
1@, 9)l|lm s = l2llgm + 1Yllgn -

Hence by Lemma 4.46, the Euclidean topology on R™*" is the same as the product
topology on R™*" =~ R™ x R™ Here we are identifying R™ x R™ with R™*" by the
map

(,y) ER™ X R™ — (21, ..., Ton, Y1, - - -, Yn) € R,

Proposition 4.50 and these comments leads to the following corollaries.
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Corollary 4.51. After identifying R™ x R™ with R™t" as above and letting Bgn
denote the Borel o —algebra on R™, we have
n times
—N—
B]R7n+n = B]Rn X B]Rm and B]Rn = B]R XX B]R.
Corollary 4.52. If (X, M) is a measurable space, then

f: (fl,fz,...,fn)ZX—?Rn
is (M, Bgn) — measurable iff f; : X — R is (M, Br) — measurable for each i. In
particular, a function f : X — C is (M, Bc) — measurable iff Re f and Im f are
(M, Bg) — measurable.

Corollary 4.53. Let (X, M) be a measurable space and f,g: X — C be (M, Bc)
— measurable functions. Then f + g and f - g are also (M, Bc) — measurable.

Proof. Define FF: X - CxC, AL :CxC —-Cand M : Cx C — C by
F(z) = (f(z),9(x)), Ax(w,2) = w =+ z and M(w,z) = wz. Then AL and M are
continuous and hence (Bgz, Be) — measurable. Also F' is (M, Be ® Be) = (M, Bez2)
— measurable since ;0 F = f and mg o F' = g are (M, Bc) — measurable. Therefore
AroF=f+gand MoF = f-g, being the composition of measurable functions,
are also measurable.

Lemma 4.54. Let o € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

is measurable.
Proof. Definei: C — C by

if z#0
if z=0.

S
—~
N
SN—

I
—N

O n=

For any open set V' C C we have
THV) = (V{0 U (V N {0})

Because i is continuous except at z = 0, i *(V \ {0}) is an open set and hence
in Bc. Moreover, i~ 1(V N {0}) € Bc since i~ *(V N {0}) is either the empty set or
the one point set {a}. Therefore i~!(7¢) C Bc and hence i~!(Bc) =i~ !(o(7c)) =
o(i7Y(7c)) € Bc which shows that i is Borel measurable. Since F' = io f is the
composition of measurable functions, F' is also measurable. m

4.6.2. General Product spaces .

Definition 4.55. Suppose(XaMaq),c 4 is a collection of measurable spaces and let
X be the product space
X =1]] Xa

acA

and 7, : X — X, be the canonical projection maps. Then the product o — algebra,
QR My, is defined by

®MQ =o(mg:a€A)=0c (UWJ(M@) :

acA
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Similarly if (XoMa),c 4 is @ collection of topological, the product topology @ M.,
is defined by :

®Ma =7(ma:a€A)=1T (Uwgl(/\/la)> .

acA

Remark 4.56. Let (Z, M) be a measurable (topological) space and

(X = I X ®Ma)

acA acA

be as in Definition 4.55. By Proposition 4.42; a function f : Z — X is measurable
(continuous) iff 7, o f is (M, M) — measurable (continuous) for all o € A.

Proposition 4.57. Suppose that (Xa, Ma),c 4 i a collection of measurable (topo-
logical) spaces and E, C M, generates M, for each o € A, then

(4.19) RacaMaq =0 (UaeAﬂgl(&x)) (7' (UaeAﬂ';l(ga)))

Moreover, suppose that A is either finite or countably infinite, X, € E, for each
a € A, and My = 0(Ey) is a o — algebra for all « € A. Then the product o —
algebra satisfies

(4.20) QR Ma=0c ({H Eo: E, € &, for auaeA}>.

acA a€A

Similarly if A is finite and Mo, = 7(Ey), then the product topology satisfies

(4.21) QR Mo =7 ({H E.: E, €&, for allaeA}).

acA acA

Proof. We will prove Eq. (4.19) in the measure theoretic case since a similar
proof works in the topological category. Since |75 (Ea) C Uam; 1 (M,), it follows

[e%

that

Fi=0 (Uwal(ea)> Co <U7Ta1(Ma)> =R M.
Conversely,
F 2 o(mt(€a)) = 1o (0(a)) =m0 (Ma)
holds for all o implies that
Uﬂ';l(/\/la) CcF

and hence that @Q M, C F.

«
We now prove Eq. (4.20). Since we are assuming that X, € &, for each a € A,
we see that

Uﬂ'(jl(fa) C {H E,:E, €&, for allaeA}

acA
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and therefore by Eq. (4.19)

®Ma =0 (UWQI(EQ)> Co ({ H E,:E,€&, foralac A}) .

acA « acA

This last statement is true independent as to whether A is countable or not. For
the reverse inclusion it suffices to notice that since A is countable,

1 B = Nacars! (Ea) € Q) Ma
acA acA

and hence

0<{HEQ:Ea€Eaforalla€A}>C®Ma.

acA acA

Here is a generalization of Theorem 4.48 to the case of countable number of factors.
[

Proposition 4.58. Let {Xa},c4 be a sequence of sets where A is at most count-
able. Suppose for each o € A we are given a countable set £, C P(Xy). Let
Ta = T(Ea) be the topology on X, generated by &, and X be the product space
[Ioca Xo with equipped with the product topology T := ®aecAT(Ea). Then the Borel
o — algebra Bx = o(T) is the same as the product o — algebra:

Bx = ®acaBx,
where Bx, = o(7(€,)) = 0(&a) for all o € A.

a?

Proof. By Proposition 4.57, the topology 7 may be described as the smallest
topology containing £ = Une a7, (€, ). Now & is the countable union of countable
sets so is still countable. Therefore by Proposition 4.13 and Proposition 4.57 we
have

Bx =0(1) =0(1(€)) = 0(€) = ®aca0(€a) = ®acac(Ta) = Racabx,, -
]
4.7. Exercises.

Exercise 4.6 (Structure of countable o — algebras.). Removed, since this problem
is covered in Proposition 4.19.

Exercise 4.7. Prove Corollary 4.31. Hint: See Exercise 4.4.

Exercise 4.8. Folland, Problem 1.5 on p.24. If M is the o — algebra generated by
€ C P(X), then M is the union of the o — algebras generated by countable subsets
FcCéE.

Exercise 4.9. Let (X, M) be a measure space and f,, : X — F be a sequence of
measurable functions on X. Show that {z : lim,,— fn(z) exists} € M.

Exercise 4.10. Show that every monotone function f: R — R is (Bg, Br) — mea-
surable.

Exercise 4.11. Folland problem 2.6 on p. 48.
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Exercise 4.12. Suppose that X is a set, {(Y,,7) : @ € A} is a family of topo-
logical spaces and f, : X — Y, is a given function for all & € A. Assuming that
S, C T4 is a sub-basis for the topology 7, for each a € A, show S := Unea 5 1(Sa)
is a sub-basis for the topology 7:=7(f, : o € A).

Notation 4.59. Let X be a set and p := {p, },., be a family of semi-metrics on
X, ie. pp 1 X x X — [0,00) are functions satisfying the assumptions of metric
except for the assertion that p,(z,y) = 0 implies z = y. Further assume that
(2, y) < ppy1(z,y) for all n and if p,(x,y) = 0 for all n € N then © = y. Given
n € Nand z € X let

Bo(r.€) = (y € X : pulwy) < e}

We will write 7(p) form the smallest topology on X such that p,(z,-) : X — [0, 00)

is continuous for all n € N and z € X, i.e. 7(p) := 7(pp(x-) : n € Nand = € X).

Exercise 4.13. Using Notation 4.59, show that collection of balls,
B:={By(z,e):neN, z € X and € > 0},

forms a basis for the topology 7(p). Hint: Use Exercise 4.12 to show that B is a
sub-basis for the topology 7(p) and then use Exercise 4.3 to show that B is in fact
a basis for the topology 7(p).

Exercise 4.14. Using the notation in 4.59, let

oo

_ —n_ Pn(z,y)
dle,y) =D 2 1+ pu(z,y)

Show d is a metric on X and 74 = 7(p). Conclude that a sequence {zj};., C X
converges to x € X iff

n=0

klim pn(zk, ) =0 for all n € N.

Exercise 4.15. Let {(X,,,d,)},-, be a sequence of metric spaces, X := [[°—; X,
and for z = (z(n)),—, and y = (y(n)),;—, in X let

o n(z(n),y(n))
d(z,y) = 2" .
@0 = 2 2 T, o)
(See Exercise 3.25.) Moreover, let m; : X — X, be the projection maps, show

Tg = Q00 1 Ta, := 7({m; : 1 € N}).

That is show the d — metric topology is the same as the product topology on X.



