4. Algebras, σ – Algebras and Measurability

4.1. Introduction: What are measures and why "measurable" sets.

Definition 4.1 (Preliminary). Suppose that X is a set and $\mathcal{P}(X)$ denotes the collection of all subsets of X. A measure μ on X is a function $\mu : \mathcal{P}(X) \to [0, \infty]$ such that

- 1. $\mu(\emptyset) = 0$
- 2. If $\{A_i\}_{i=1}^N$ is a finite $(N < \infty)$ or countable $(N = \infty)$ collection of subsets of X which are pair-wise disjoint (i.e. $A_i \cap A_j = \emptyset$ if $i \neq j$) then

$$\mu(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} \mu(A_i).$$

Example 4.2. Suppose that X is any set and $x \in X$ is a point. For $A \subset X$, let

$$\delta_x(A) = \begin{cases} 1 & \text{if} & x \in A \\ 0 & \text{otherwise.} \end{cases}$$

Then $\mu = \delta_x$ is a measure on X called the at x.

Example 4.3. Suppose that μ is a measure on X and $\lambda > 0$, then $\lambda \mu$ is also a measure on X. Moreover, if $\{\mu_{\alpha} : \alpha \in J\}$ are all measures on X, then $\mu = \sum_{\alpha \in J} \mu_{\alpha}$, i.e.

$$\mu(A) = \sum_{\alpha \in J} \mu_{\alpha}(A)$$
 for all $A \subset X$

is a measure on X. (See Section 2 for the meaning of this sum.) We must show that μ is countably additive. Suppose that $\{A_i\}_{i=1}^{\infty}$ is a collection of pair-wise disjoint subsets of X, then

$$\mu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \sum_{\alpha \in J} \mu_{\alpha}(A_i)$$
$$= \sum_{\alpha \in J} \sum_{i=1}^{\infty} \mu_{\alpha}(A_i) = \sum_{\alpha \in J} \mu_{\alpha}(\cup_{i=1}^{\infty} A_i)$$
$$= \mu(\cup_{i=1}^{\infty} A_i)$$

where in the third equality we used Theorem 2.21 below and in the fourth we used that fact that μ_{α} is a measure.

Example 4.4. Suppose that X is a set $\lambda: X \to [0, \infty]$ is a function. Then

$$\mu := \sum_{x \in X} \lambda(x) \delta_x$$

is a measure, explicitly

$$\mu(A) = \sum_{x \in A} \lambda(x)$$

for all $A \subset X$.

4.2. The problem with Lebesgue "measure".

Question 1. Does there exist a measure $\mu: \mathcal{P}(\mathbb{R}) \to [0,\infty]$ such that

- 1. $\mu([a,b)) = (b-a)$ for all a < b and
- 2. $\mu(A+x) = \mu(A)$ for all $x \in \mathbb{R}$?

The unfortunate answer is no which we now demonstrate. In fact the answer is no even if we replace (1) by the condition that $0 < \mu((0,1]) < \infty$.

Let us identify [0,1) with the unit circle $S:=\{z\in\mathbb{C}:|z|=1\}$ by the map $\phi(t)=e^{i2\pi t}\in S$ for $t\in[0,1)$. Using this identification we may use μ to define a function ν on $\mathcal{P}(S)$ by $\nu(\phi(A))=\mu(A)$ for all $A\subset[0,1)$. This new function is a measure on S with the property that $0<\nu((0,1])<\infty$. For $z\in S$ and $N\subset S$ let

$$(4.1) zN := \{ zn \in S : n \in N \},$$

that is to say $e^{i\theta}N$ is N rotated counter clockwise by angle θ . We now claim that ν is invariant under these rotations, i.e.

$$(4.2) \nu(zN) = \nu(N)$$

for all $z \in S$ and $N \subset S$. To verify this, write $N = \phi(A)$ and $z = \phi(t)$ for some $t \in [0, 1)$ and $A \subset [0, 1)$. Then

$$\phi(t)\phi(A) = \phi(t + A \mod 1)$$

where For $N \subset [0,1)$ and $\alpha \in [0,1)$, let

$$\begin{split} t + A \operatorname{mod} 1 &= \{ a + t \operatorname{mod} 1 \in [0, 1) : a \in N \} \\ &= (a + A \cap \{ a < 1 - t \}) \cup ((t - 1) + A \cap \{ a \ge 1 - t \}) \,. \end{split}$$

Thus

$$\begin{split} \nu(\phi(t)\phi(A)) &= \mu(t + A \operatorname{mod} 1) \\ &= \mu\left((a + A \cap \{a < 1 - t\}) \cup ((t - 1) + A \cap \{a \ge 1 - t\})\right) \\ &= \mu\left((a + A \cap \{a < 1 - t\})\right) + \mu\left(((t - 1) + A \cap \{a \ge 1 - t\})\right) \\ &= \mu\left(A \cap \{a < 1 - t\}\right) + \mu\left(A \cap \{a \ge 1 - t\}\right) \\ &= \mu\left((A \cap \{a < 1 - t\}) \cup (A \cap \{a \ge 1 - t\})\right) \\ &= \mu(A) = \nu(\phi(A)). \end{split}$$

Therefore it suffices to prove that no finite measure ν on S such that Eq. (4.2) holds. To do this we will "construct" a non-measurable set $N = \phi(A)$ for some $A \subset [0,1)$.

To do this let R be the countable set

$$R:=\{z=e^{i2\pi\,t}:t\in[0,1)\cap\mathbb{Q}\}.$$

As above R acts on S by rotations and divides S up into equivalence classes, where $z,w\in S$ are equivalent if z=rw for some $r\in R$. Choose (using the axiom of choice) one representative point n from each of these equivalence classes and let $N\subset S$ be the set of these representative points. Then every point $z\in S$ may be uniquely written as z=nr with $n\in N$ and $r\in R$. That is to say

$$(4.3) S = \coprod_{r \in R} (rN)$$

where $\coprod_{\alpha} A_{\alpha}$ is used to denote the union of pair-wise disjoint sets $\{A_{\alpha}\}$. By Eqs. (4.2) and (4.3) we find that

$$\nu(S) = \sum_{r \in R} \nu(rN) = \sum_{r \in R} \nu(N).$$

The right member from this equation is either 0 or ∞ , 0 if $\nu(N) = 0$ and ∞ if $\nu(N) > 0$. In either case it is not equal $\nu(S) \in (0,1)$. Thus we have reached the desired contradiction.

Proof. (Second proof) For $N \subset [0,1)$ and $\alpha \in [0,1)$, let

$$\begin{split} N^{\alpha} &= N + \alpha \operatorname{mod} 1 \\ &= \{ a + \alpha \operatorname{mod} 1 \in [0, 1) : a \in N \} \\ &= (\alpha + N \cap \{ a < 1 - \alpha \}) \cup ((\alpha - 1) + N \cap \{ a \ge 1 - \alpha \}) \,. \end{split}$$

If μ is a measure satisfying the properties of the Question we would have

$$\mu(N^{\alpha}) = \mu(\alpha + N \cap \{a < 1 - \alpha\}) + \mu((\alpha - 1) + N \cap \{a \ge 1 - \alpha\})$$

$$= \mu(N \cap \{a < 1 - \alpha\}) + \mu(N \cap \{a \ge 1 - \alpha\})$$

$$= \mu(N \cap \{a < 1 - \alpha\} \cup (N \cap \{a \ge 1 - \alpha\}))$$

$$= \mu(N).$$
(4.4)

We will now construct a bad set N which coupled with Eq. (4.4) will lead to a contradiction.

Set

$$Q_x \equiv \{x + r \in \mathbb{R} : r \in \mathbb{Q}\} = x + \mathbb{Q}.$$

Notice that $Q_x \cap Q_y \neq \emptyset$ implies that $Q_x = Q_y$. Let $\mathcal{O} = \{Q_x : x \in \mathbb{R}\}$ – the orbit space of the \mathbb{Q} action. For all $A \in \mathcal{O}$ choose $f(A) \in [0, 1/3) \cap A$. Define $N = f(\mathcal{O})$. Then observe:

- 1. f(A) = f(B) implies that $A \cap B \neq \emptyset$ which implies that A = B so that f is injective.
- 2. $\mathcal{O} = \{Q_n : n \in N\}.$

Let R be the countable set,

$$R \equiv \mathbb{Q} \cap [0,1).$$

We now claim that

$$(4.5) N^r \cap N^s = \emptyset \text{ if } r \neq s \text{ and }$$

$$[0,1) = \bigcup_{r \in R} N^r.$$

Indeed, if $x \in N^r \cap N^s \neq \emptyset$ then $x = r + n \mod 1$ and $x = s + n' \mod 1$, then $n - n' \in \mathbb{Q}$, i.e. $Q_n = Q_{n'}$. That is to say, $n = f(Q_n) = f(Q_{n'}) = n'$ and hence that $s = r \mod 1$, but $s, r \in [0, 1)$ implies that s = r. Furthermore, if $x \in [0, 1)$ and $n := f(Q_x)$, then $x - n = r \in \mathbb{Q}$ and $x \in N^{r \mod 1}$.

⁷We have used the Axiom of choice here, i.e. $\prod_{A \in \mathcal{F}} (A \cap [0, 1/3]) \neq \emptyset$

Now that we have constructed N, we are ready for the contradiction. By Equations (4.4-4.6) we find

$$1 = \mu([0, 1)) = \sum_{r \in R} \mu(N^r) = \sum_{r \in R} \mu(N)$$
$$= \begin{cases} \infty & \text{if } \mu(N) > 0 \\ 0 & \text{if } \mu(N) = 0 \end{cases}.$$

which is certainly inconsistent. Incidentally we have just produced an example of so called "non – measurable" set. \blacksquare

Because of this example and our desire to have a measure μ on $\mathbb R$ satisfying the properties in Question 1, we need to modify our definition of a measure. We will give up on trying to measure all subsets $A \subset \mathbb R$, i.e. we will only try to define μ on a smaller collection of "measurable" sets. Such collections will be called σ – algebras which we now introduce.

4.3. Algebras and σ – algebras.

Definition 4.5. A collection of subsets A of X is an Algebra if

- 1. $\emptyset, X \in \mathcal{A}$
- 2. $A \in \mathcal{A}$ implies that $A^c \in \mathcal{A}$
- 3. \mathcal{A} is closed under finite unions, i.e. if $A_1, \ldots, A_n \in \mathcal{A}$ then $A_1 \cap \cdots \cap A_n \in \mathcal{A}$.
- 4. \mathcal{A} is closed under finite intersections.

Definition 4.6. A collection of subsets \mathcal{M} of X is a σ – algebra (σ – field) if \mathcal{M} is an algebra which also closed under countable unions, i.e. if $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}$.

Notice that since \mathcal{M} is also closed under taking complements, \mathcal{M} is also closed under taking countable intersections.

The reader should compare these definitions with that of a topology, see Definition 3.16. Recall that the elements of a topology are called open sets. Analogously, we will often refer to elements of and algebra $\mathcal A$ or a σ – algebra $\mathcal M$ as **measurable** sets.

Example 4.7. Here are a number of examples.

- 1. $\tau = \mathcal{M} = \mathcal{P}(X)$ in which case all subsets of X are open, closed, and measurable.
- 2. Let $X=\{1,2,3\},$ then $\tau=\{\emptyset,X,\{2,3\}\}$ is a topology on X which is not an algebra.
- 3. $\tau = \mathcal{A} = \{\{1\}, \{2,3\}, \emptyset, X\}$. is a topology, an algebra, and a σ algebra on X. The sets X, $\{1\}$, $\{2,3\}$, ϕ are open and closed. The sets $\{1,2\}$ and $\{1,3\}$ are neither open nor **closed** and are not measurable.

Proposition 4.8. Let \mathcal{E} be any collection of subsets of X. Then there exists a unique smallest topology $\tau(\mathcal{E})$, algebra $\mathcal{A}(\mathcal{E})$ and σ -algebra $\sigma(\mathcal{E})$ which contains \mathcal{E} .

Proof. Note $\mathcal{P}(X)$ is a topology and an algebra and a σ -algebra and $\mathcal{E} \subseteq \mathcal{P}(X)$, so that \mathcal{E} is always a subset of a topology, algebra, and σ – algebra. One may now easily check that

$$\tau(\mathcal{E}) \equiv \bigcap \{ \tau : \tau \text{ is a topology and } \mathcal{E} \subset \tau \}$$

is a topology which is clearly the smallest topology containing \mathcal{E} . The analogous construction works for the other cases as well.

We may give explicit descriptions of $\tau(\mathcal{E})$ and $\mathcal{A}(\mathcal{E})$.

Proposition 4.9. Let X be a set and $\mathcal{E} \subset \mathcal{P}(X)$. For simplicity of notation, assume that $X, \emptyset \in \mathcal{E}$ (otherwise adjoin them to \mathcal{E} if necessary) and let $\mathcal{E}^c \equiv \{A^c : A \in \mathcal{E}\}$ and $\mathcal{E}_c = \mathcal{E} \cup \{X, \emptyset\} \cup \mathcal{E}^c$ Then $\tau(\mathcal{E}) = \tau$ and $\mathcal{A}(\mathcal{E}) = \mathcal{A}$ where

- (4.7) $\tau := \{arbitrary \ unions \ of \ finite \ intersections \ of \ elements \ from \ \mathcal{E}\}$ and
- (4.8) $\mathcal{A} := \{ \text{finite unions of finite intersections of elements from } \mathcal{E}_c \}.$

Proof. From the definition of a topology and an algebra, it is clear that $\mathcal{E} \subset \tau \subset \tau(\mathcal{E})$ and $\mathcal{E} \subset \mathcal{A} \subset \mathcal{A}(\mathcal{E})$. Hence to finish that proof it suffices to show τ is a topology and \mathcal{A} is an algebra. The proof of these assertions are routine except for possibly showing that τ is closed under taking finite intersections and \mathcal{A} is closed under complementation.

To check A is closed under complementation, let $Z \in A$ be expressed as

$$Z = \bigcup_{i=1}^{N} \bigcap_{j=1}^{K} A_{ij}$$

where $A_{ij} \in \mathcal{E}_c$. Therefore, writing $B_{ij} = A_{ij}^c \in \mathcal{E}_c$, we find that

$$Z^c = igcap_{i=1}^N igcup_{j=1}^K B_{ij} = igcup_{j_1,\dots,j_N=1}^K \left(B_{1j_1} \cap B_{2j_2} \cap \dots \cap B_{Nj_N}
ight) \in \mathcal{A}(\mathcal{E})$$

wherein we have used the fact that $B_{1j_1} \cap B_{2j_2} \cap \cdots \cap B_{Nj_N}$ is a finite intersection of sets from \mathcal{E}_c .

To show τ is closed under finite intersections it suffices to show for $V,W\in\tau$ that $V\cap W\in\tau$. Write

$$V = \bigcup_{\alpha \in A} V_{\alpha}$$
 and $W = \bigcup_{\beta \in B} W_{\beta}$

where V_{α} and W_{β} are sets which are finite intersection of elements from \mathcal{E} . Then

$$V\cap W=(\cup_{\alpha\in A}V_\alpha)\cap(\cup_{\beta\in B}W_\beta)=\bigcup_{(\alpha,\beta)\in A\times B}V_\alpha\cap W_\beta\in\tau$$

since for each $(\alpha, \beta) \in A \times B$, $V_{\alpha} \cap W_{\beta}$ is still a finite intersection of elements from \mathcal{E} .

Remark 4.10. One might think that in general $\sigma(\mathcal{E})$ may be described as the countable unions of countable intersections of sets in \mathcal{E}^c However this is **false**, since if

$$Z = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} A_{ij}$$

with $A_{ij} \in \mathcal{E}_c$, then

$$Z^c = igcup_{j_1=1,j_2=1,...j_N=1,...} \left(igcap_{\ell=1}^\infty A^c_{\ell,j_\ell}
ight)$$

which is now an **uncountable** union. Thus the above description is not correct. In general it is fairly complicated to explicitly describe $\sigma(\mathcal{E})$, see Proposition 1.23 on page 39 of Folland for details.

Exercise 4.1. Let τ be a topology on a set X and $\mathcal{A} = \mathcal{A}(\tau)$ be the algebra generated by τ . Show \mathcal{A} is the collection of subsets of X which may be written as finite union of sets of the form $F \cap V$ where F is closed and V is open.

The following notion will be useful in the sequel.

Definition 4.11. A set $\mathcal{E} \subset \mathcal{P}(X)$ is said to be an **elementary family or elementary class** provided that

- $\emptyset \in \mathcal{E}$
- ullet is closed under finite intersections
- if $E \in \mathcal{E}$, then E^c is a finite disjoint union of sets from \mathcal{E} . (In particular $X = \emptyset^c$ is a disjoint union of elements from \mathcal{E} .)

Proposition 4.12. Suppose $\mathcal{E} \subset \mathcal{P}(X)$ is an elementary family, then $\mathcal{A} = \mathcal{A}(\mathcal{E})$ consists of sets which may be written as finite disjoint unions of sets from \mathcal{E} .

Proof. This could be porved making use of Proposition 4.12. However it is easier to give a direct proof.

Let \mathcal{A} denote the collection of sets which may be written as finite disjoint unions of sets from \mathcal{E} . Clearly $\mathcal{E} \subset \mathcal{A} \subset \mathcal{A}(\mathcal{E})$ so it suffices to show that \mathcal{A} is an algebra since $\mathcal{A}(\mathcal{E})$ is the smallest algebra containing \mathcal{E} .

By the properties of \mathcal{E} , we know that $\emptyset, X \in \mathcal{A}$. Now suppose that $A_i = \coprod_{F \in \Lambda_i} F \in \mathcal{A}$ where, for i = 1, 2, ..., n., Λ_i is a finite collection of disjoint sets from \mathcal{E} . Then

$$\bigcap_{i=1}^n A_i = \bigcap_{i=1}^n \left(\coprod_{F \in \Lambda_i} F\right) = \bigcup_{(F_1, \dots, F_n) \in \Lambda_1 \times \dots \times \Lambda_n} (F_1 \cap F_2 \cap \dots \cap F_n)$$

and this is a disjoint (you check) union of elements from \mathcal{E} . Therefore \mathcal{A} is closed under finite intersections. Similarly, if $A = \coprod_{F \in \Lambda} F$ with Λ being a finite collection of disjoint sets from \mathcal{E} , then $A^c = \bigcap_{F \in \Lambda} F^c$. Since by assumption $F^c \in \mathcal{A}$ for $F \in \Lambda \subset \mathcal{E}$ and \mathcal{A} is closed under finite intersections, it follows that $A^c \in \mathcal{A}$.

Exercise 4.2. Let $\mathcal{A} \subset \mathcal{P}(X)$ and $\mathcal{B} \subset \mathcal{P}(Y)$ be elementary families. Show the collection

$$\mathcal{E} = \mathcal{A} \times \mathcal{B} = \{ A \times B : A \in \mathcal{A} \text{ and } B \in \mathcal{B} \}$$

is also an elementary family.

Proposition 4.13. If $\mathcal{E} \subseteq \mathcal{P}(X)$ is countable then $\tau(\mathcal{E}) \subseteq \sigma(\mathcal{E})$. In particular $\sigma(\tau(\mathcal{E})) = \sigma(\mathcal{E})$.

Proof. Let \mathcal{E}_f denote the collection of subsets of X which are finite intersection of elements from \mathcal{E} along with X and \emptyset . Notice that \mathcal{E}_f is still countable (you prove). A set Z is in $\tau(\mathcal{E})$ iff Z is an arbitrary union of sets from \mathcal{E}_f . Therefore $Z = \bigcup_{A \in \mathcal{F}} A$ for some subset $\mathcal{F} \subseteq \mathcal{E}_f$ which is necessarily countable. Since $\mathcal{E}_f \subseteq \sigma(\mathcal{E})$ and $\sigma(\mathcal{E})$ is closed under countable unions it follows that $Z \in \sigma(\mathcal{E})$ and hence that $\tau(\mathcal{E}) \subseteq \sigma(\mathcal{E})$. For the last assertion, since $\mathcal{E} \subset \tau(\mathcal{E}) \subseteq \sigma(\mathcal{E})$ it follows that $\sigma(\mathcal{E}) \subset \sigma(\tau(\mathcal{E})) \subset \sigma(\mathcal{E})$.

The analogous notion of elementary class $\mathcal E$ for topologies is a basis $\mathcal B$ defined below.

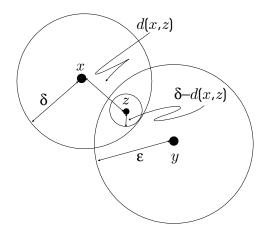


FIGURE 10. Fitting balls in the intersection.

Definition 4.14. Let (X, τ) be a topological space. We say that $S \subset \tau$ is a **subbasis** for the topology τ iff $\tau = \tau(S)$ and $X = \cup S := \cup_{V \in S} V$. We say $\mathcal{B} \subset \tau$ is a **basis** for the topology τ iff \mathcal{B} is a sub-basis with the property that every element $V \in \tau$ may be written as

$$V = \cup \{B \in \mathcal{B} : B \subset V\}.$$

Exercise 4.3. Suppose that S is a sub-basis for a topology τ on a set X. Show $\mathcal{B} := \mathcal{S}_f$ consisting of finite intersections of elements from S is a basis for τ . (So S is a basis for a topology iff $\cup S = X$ and finite intersections of sets from S may be written as a union of sets from S. Compare with the definition of an elementary class.) Moreover, S is itself is a basis for τ iff

$$V_1 \cap V_2 = \cup \{ S \in \mathcal{S} : S \subset V_1 \cap V_2 \}.$$

for every pair of sets $V_1, V_2 \in \mathcal{S}$.

Remark 4.15. Let (X, d) be a metric space, then $\mathcal{E} = \{B_x(\delta) : x \in X \text{ and } \delta > 0\}$ is a basis for τ_d – the topology associated to the metric d. This is the content of Exercise 3.3.

Let us check directly that \mathcal{E} is a basis for a topology. Suppose that $x, y \in X$ and $\epsilon, \delta > 0$. If $z \in B(x, \delta) \cap B(y, \epsilon)$, then

$$(4.9) B(z,\alpha) \subset B(x,\delta) \cap B(y,\epsilon)$$

where $\alpha = \min\{\delta - d(x, z), \epsilon - d(y, z)\}$, see Figure 10. This is a formal consequence of the triangle inequality. For example let us show that $B(z, \alpha) \subset B(x, \delta)$. By the definition of α , we have that $\alpha \leq \delta - d(x, z)$ or that $d(x, z) \leq \delta - \alpha$. Hence if $w \in B(z, \alpha)$, then

$$d(x, w) \le d(x, z) + d(z, w) \le \delta - \alpha + d(z, w) < \delta - \alpha + \alpha = \delta$$

which shows that $w \in B(x, \delta)$. Similarly we show that $w \in B(y, \epsilon)$ as well. Owing to Exercise 4.3, this shows \mathcal{E} is a basis for a topology. We do not need to use Exercise 4.3 here since in fact Equation (4.9) may be generalized to finite intersection of

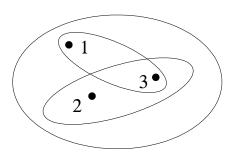


Figure 11. A collection of subsets.

balls. Namely if $x_i \in X$, $\delta_i > 0$ and $z \in \bigcap_{i=1}^n B(x_i, \delta_i)$, then

$$(4.10) B(z,\alpha) \subset \bigcap_{i=1}^{n} B(x_i,\delta_i)$$

where now $\alpha := \min \{\delta_i - d(x_i, z) : i = 1, 2, ..., n\}$. By Eq. (4.10) it follows that any finite intersection of open balls may be written as a union of open balls.

Example 4.16. Suppose that $\mathcal{E} = \{\emptyset, X, \{1, 2\}, \{1, 3\}\},$ Then

$$\tau(\mathcal{E}) = \{\emptyset, X, \{1\}, \{1, 2\}, \{1, 3\}\}
\mathcal{A}(\mathcal{E}) = \sigma(\mathcal{E}) = \mathcal{P}(X).$$

Definition 4.17. Let X be a set. We say that a family of sets $\mathcal{F} \subset \mathcal{P}(X)$ is a **partition** of X if X is the disjoint union of the sets in \mathcal{F} .

Example 4.18. Let X be a set and $\mathcal{E} = \{A_1, \dots, A_n\}$ where A_1, \dots, A_n is a partition of X. In this case

$$\mathcal{A}(\mathcal{E}) = \sigma(\mathcal{E}) = \tau(\mathcal{E}) = \{ \cup_{i \in \Lambda} A_i : \Lambda \subset \{1, 2, \dots, n\} \}$$

where $\bigcup_{i \in \Lambda} A_i := \emptyset$ when $\Lambda = \emptyset$. Notice that

$$\#\mathcal{A}(\mathcal{E}) = \#(\mathcal{P}(\{1, 2, \dots, n\})) = 2^n.$$

Proposition 4.19. Suppose that $\mathcal{M} \subset \mathcal{P}(X)$ is a σ – algebra and \mathcal{M} is at most a countable set. Then there exists a unique **finite** partition \mathcal{F} of X such that $\mathcal{F} \subset \mathcal{M}$ and every element $A \in \mathcal{M}$ is of the form

$$(4.11) A = \bigcup_{\alpha \in \mathcal{F} \ni \alpha \subset A} \alpha.$$

In particular \mathcal{M} is actually a finite set.

Proof. For each $x \in X$ let

$$A_x = (\cap_{x \in A \in \mathcal{A}} A) \in \mathcal{A}.$$

That is, A_x is the smallest set in \mathcal{A} which contains x. Suppose that $C = A_x \cap A_y$ is non-empty. If $x \notin C$ then $x \in A_x \setminus C \in \mathcal{A}$ and hence $A_x \subset A_x \setminus C$ which shows that $A_x \cap C = \emptyset$ which is a contradiction. Hence $x \in C$ and similarly $y \in C$, therefore $A_x \subset C = A_x \cap A_y$ and $A_y \subset C = A_x \cap A_y$ which shows that $A_x = A_y$. Therefore, $\mathcal{F} = \{A_x : x \in X\}$ is a partition of X (which is necessarily countable) and Eq. (4.11) holds for all $A \in \mathcal{M}$. Let $\mathcal{F} = \{P_n\}_{n=1}^N$ where for the moment we allow

 $N=\infty$. If $N=\infty$, then $\mathcal M$ is one to one correspondence with $\{0,1\}^{\mathbb N}$. Indeed to each $a \in \{0,1\}^{\mathbb{N}}$, let $A_a \in \mathcal{M}$ be defined by

$$A_a = \bigcup \{P_n : a_n = 1\}.$$

This shows that \mathcal{M} is uncountable since $\{0,1\}^{\mathbb{N}}$ is uncountable, think of the base two expansion of numbers in [0,1] for example. Thus any countable σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness assertion which is left as an exercise to the reader. ■

As already mentioned the structure of general σ – algebras is not so simple.

Example 4.20. Let $X = \mathbb{R}$ and

$$\mathcal{E} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\} = \{(a, \infty) \cap \mathbb{R} : a \in \overline{\mathbb{R}}\} \subseteq \mathcal{P}(\mathbb{R}).$$

Notice that $\mathcal{E}_f = \mathcal{E}$ and that \mathcal{E} is closed under unions, which shows that $\tau(\mathcal{E}) = \mathcal{E}$, i.e. \mathcal{E} is already a topology. Since $(a, \infty)^c = (-\infty, a]$ we find that $\mathcal{E}_c = \{(a, \infty), (-\infty, a], -\infty \leq a < \infty\} \cup \{\mathbb{R}, \emptyset\}.$ Noting that

$$(a, \infty) \cap (-\infty, b] = (a, b]$$

it is easy to verify that the algebra $\mathcal{A}(\mathcal{E})$ generated by \mathcal{E} may be described as being those sets which are finite disjoint unions of sets from the following list

$$\tilde{\mathcal{E}} := \{(a, b] \cap \mathbb{R} : a, b \in \bar{\mathbb{R}}\}.$$

(This follows from Proposition 4.12 and the fact that $\tilde{\mathcal{E}}$ is an elementary family of subsets of \mathbb{R} .) The σ – algebra, $\sigma(\mathcal{E})$, generated by \mathcal{E} is very complicated. Here are some sets in $\sigma(\mathcal{E})$ – most of which are not in $\mathcal{A}(\mathcal{E})$.

- (a) $(a,b) = \bigcup_{n=1}^{\infty} (a,b-\frac{1}{n}] \in \sigma(\mathcal{E}).$ (b) All of the standard open subsets of \mathbb{R} are in $\sigma(\mathcal{E})$.
- (c) $\{x\} = \bigcap \left(x \frac{1}{n}, x\right] \in \sigma(\mathcal{E})$
- (d) $[a,b] = {a \choose a} \cup (a,b] \in \sigma(\mathcal{E})$ (e) Any countable subset of \mathbb{R} is in $\sigma(\mathcal{E})$.

Remark 4.21. In the above example, one may replace \mathcal{E} by $\mathcal{E} = \{(a, \infty) : a \in \mathcal{E} \}$ \mathbb{Q} } \cup { \mathbb{R} , \emptyset }, in which case $\mathcal{A}(\mathcal{E})$ may be described as being those sets which are finite disjoint unions of sets from the following list

$$\{(a,\infty),(-\infty,a],(a,b]:a,b\in\mathbb{Q}\}\cup\{\emptyset,\mathbb{R}\}.$$

This shows that $\mathcal{A}(\mathcal{E})$ is a countable set – a fact we will use later on.

Notation 4.22. For a general topological space (X, τ) , the Borel σ – algebra is the σ – algebra, $\mathcal{B}_X = \sigma(\tau)$. We will use $\mathcal{B}_{\mathbb{R}}$ to denote the Borel σ - algebra on \mathbb{R} .

Exercise 4.4. Verify the following identities

$$\mathcal{B}_{\mathbb{R}} = \sigma(\{(a, \infty) : a \in \mathbb{R}\}) = \sigma(\{(a, \infty) : a \in \mathbb{Q}\}) = \sigma(\{[a, \infty) : a \in \mathbb{Q}\}).$$

4.4. Continuous and Measurable Functions. Our notion of a "measurable" function will be analogous to that for a continuous function. For motivational purposes, suppose (X, \mathcal{M}, μ) is a measure space and $f: X \to \mathbb{R}_+$. Roughly speaking, in the next section we are going to define $\int_{\mathbb{R}} f d\mu$ by

$$\int_{X} f d\mu = \lim_{\text{mesh} \to 0} \sum_{0 < a_{1} < a_{2} < a_{3} < \dots}^{\infty} a_{i} \mu(f^{-1}(a_{i}, a_{i+1}]).$$

For this to make sense we will need to require $f^{-1}((a,b]) \in \mathcal{M}$ for all a < b. Because of Lemma 4.28 below, this last condition is equivalent to the condition

$$f^{-1}(\mathcal{B}_{\mathbb{R}}) \subseteq \mathcal{M}$$
,

where we are using the following notation.

Notation 4.23. If $f: X \to Y$ is a function and $\mathcal{E} \subset \mathcal{P}(Y)$ let

$$f^{-1}\mathcal{E} \equiv f^{-1}(\mathcal{E}) \equiv \{f^{-1}(E) | E \in \mathcal{E}\}.$$

If $\mathcal{G} \subset \mathcal{P}(X)$, let

$$f_*\mathcal{G} \equiv \{A \in \mathcal{P}(Y) | f^{-1}(A) \in \mathcal{G}\}.$$

Exercise 4.5. Show $f^{-1}\mathcal{E}$ and $f_*\mathcal{G}$ are σ – algebras (topologies) provided \mathcal{E} and \mathcal{G} are σ – algebras (topologies).

Definition 4.24. Let (X, \mathcal{M}) and (Y, \mathcal{F}) be measurable (topological) spaces. A function $f: X \to Y$ is **measurable (continuous)** if $f^{-1}(\mathcal{F}) \subseteq \mathcal{M}$. We will also say that f is \mathcal{M}/\mathcal{F} – measurable (continuous) or $(\mathcal{M}, \mathcal{F})$ – measurable (continuous).

Example 4.25 (Characteristic Functions). Let (X, \mathcal{M}) be a measurable space and $A \subset X$. We definine the characteristic function $1_A : X \to \mathbb{R}$ by

$$1_A(x) = \begin{cases} 1 & \text{if} \quad x \in A \\ 0 & \text{if} \quad x \notin A. \end{cases}$$

If $A \in \mathcal{M}$, then 1_A is $(\mathcal{M}, \mathcal{P}(\mathbb{R}))$ – measurable because $1_A^{-1}(W)$ is either \emptyset , X, A or A^c for any $U \subset \mathbb{R}$. Conversely, if \mathcal{F} is any σ – algebra on \mathbb{R} containing a set $W \subset \mathbb{R}$ such that $1 \in W$ and $0 \in W^c$, then $A \in \mathcal{M}$ if 1_A is $(\mathcal{M}, \mathcal{F})$ – measurable. This is because $A = 1_A^{-1}(W) \in \mathcal{M}$.

Remark 4.26. Let $f: X \to Y$ be a function. Given a σ – algebra (topology) $\mathcal{F} \subset \mathcal{P}(Y)$, the σ – algebra (topology) $\mathcal{M} := f^{-1}(\mathcal{F})$ is the smallest σ – algebra (topology) on X such that f is $(\mathcal{M}, \mathcal{F})$ – measurable (continuous). Similarly, if \mathcal{M} is a σ - algebra (topology) on X then $\mathcal{F} = f_*\mathcal{M}$ is the largest σ – algebra (topology) on X such that X is that X is the largest X – algebra (topology) on X such that X is X – measurable (continuous).

Lemma 4.27. Suppose that (X, \mathcal{M}) , (Y, \mathcal{F}) and (Z, \mathcal{G}) are measurable (topological) spaces. If $f: (X, \mathcal{M}) \to (Y, \mathcal{F})$ and $g: (Y, \mathcal{F}) \to (Z, \mathcal{G})$ are measurable (continuous) functions then $g \circ f: (X, \mathcal{M}) \to (Z, \mathcal{G})$ is measurable (continuous) as well.

Proof. This is easy since by assumption $g^{-1}(\mathcal{G}) \subset \mathcal{F}$ and $f^{-1}(\mathcal{F}) \subset \mathcal{M}$ so that

$$\left(g\circ f\right)^{-1}\left(\mathcal{G}\right)=f^{-1}\left(g^{-1}\left(\mathcal{G}\right)\right)\subset f^{-1}\left(\mathcal{F}\right)\subset\mathcal{M}.$$

Lemma 4.28. Suppose that $f: X \to Y$ is a function and $\mathcal{E} \subset \mathcal{P}(Y)$, then

(4.12)
$$\sigma\left(f^{-1}(\mathcal{E})\right) = f^{-1}(\sigma(\mathcal{E})) \text{ and }$$

(4.13)
$$\tau\left(f^{-1}(\mathcal{E})\right) = f^{-1}(\tau(\mathcal{E})).$$

Moreover, if $\mathcal{F} = \sigma(\mathcal{E})$ (or $\mathcal{F} = \tau(\mathcal{E})$) and \mathcal{M} is a σ – algebra (topology) on X, then f is $(\mathcal{M}, \mathcal{F})$ – measurable (continuous) iff $f^{-1}(\mathcal{E}) \subseteq \mathcal{M}$.

Proof. We will prove Eq. (4.12), the proof of Eq. (4.13) being analogous. If $\mathcal{E} \subset \mathcal{F}$, then $f^{-1}(\mathcal{E}) \subset f^{-1}(\sigma(\mathcal{E}))$ and therefore, (because $f^{-1}(\sigma(\mathcal{E}))$ is a σ – algebra)

$$\mathcal{G} := \sigma(f^{-1}(\mathcal{E})) \subset f^{-1}(\sigma(\mathcal{E}))$$

which proves half of Eq. (4.12). For the reverse inclusion notice that

$$f_*\mathcal{G} = \{B \subset Y : f^{-1}(B) \in \mathcal{G}\}$$
.

is a σ – algebra which contains \mathcal{E} and thus $\sigma(\mathcal{E}) \subset f_*\mathcal{G}$. Hence if $B \in \sigma(\mathcal{E})$ we know that $f^{-1}(B) \in \mathcal{G}$, i.e.

$$f^{-1}(\sigma(\mathcal{E})) \subset \mathcal{G}.$$

The last assertion of the Lemma is an easy consequence of Eqs. (4.12) and (4.13).

Proof.

$$f^{-1}(\mathcal{B}_Y) = f^{-1}(\sigma(\tau)) = \sigma(f^{-1}(\tau)) \subset \mathcal{M}.$$

Definition 4.29. A function $f: X \to Y$ between to topological spaces is **Borel** measurable if $f^{-1}(\mathcal{B}_Y) \subseteq \mathcal{B}_X$.

Proposition 4.30. Let X and Y be two topological spaces and $f: X \to Y$ be a continuous function. Then f is Borel measurable.

Proof. Using Lemma 4.28 and $\mathcal{B}_Y = \sigma(\tau_Y)$,

$$f^{-1}(\mathcal{B}_Y) = f^{-1}(\sigma(\tau_Y)) = \sigma(f^{-1}(\tau_Y)) \subset \sigma(\tau_X) = \mathcal{B}_X.$$

Corollary 4.31. Suppose that (X, \mathcal{M}) is a measurable space. Then $f: X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ - measurable iff $f^{-1}((a, \infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$ iff $f^{-1}((a, \infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$, etc. Similarly, if (X, \mathcal{M}) is a topological space, then $f: X \to \mathbb{R}$ is $(\mathcal{M}, \tau_{\mathbb{R}})$ - continuous iff $f^{-1}((a, b)) \in \mathcal{M}$ for all $-\infty < a < b < \infty$ iff $f^{-1}((a, \infty)) \in \mathcal{M}$ and $f^{-1}((-\infty, b)) \in \mathcal{M}$ for all $a, b \in \mathbb{Q}$. (We are using $\tau_{\mathbb{R}}$ to denote the standard topology on \mathbb{R} induced by the metric d(x, y) = |x - y|.)

Proof. This is an exercise (Exercise 4.7) in using Lemma 4.28. We will often deal with functions $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$. Let

$$\mathcal{B}_{\mathbb{R}} := \sigma\left(\left\{[a, \infty] : a \in \mathbb{R}\right\}\right).$$

The following Corollary of Lemma 4.28 is a direct analogue of Corollary 4.31.

Corollary 4.32. $f: X \to \overline{\mathbb{R}}$ is $(\mathcal{M}, \mathcal{B}_{\overline{\mathbb{R}}})$ - measurable iff $f^{-1}((a, \infty]) \in \mathcal{M}$ for all $a \in \mathbb{R}$ iff $f^{-1}((-\infty, a]) \in \mathcal{M}$ for all $a \in \mathbb{R}$, etc.

Proposition 4.33. Let $\mathcal{B}_{\mathbb{R}}$ and $\mathcal{B}_{\bar{\mathbb{R}}}$ be as above, then

$$\mathcal{B}_{\mathbb{R}} = \{ A \subset \mathbb{R} : A \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}} \}.$$

In particular $\{\infty\}$, $\{-\infty\} \in \mathcal{B}_{\overline{\mathbb{R}}}$ and $\mathcal{B}_{\mathbb{R}} \subset \mathcal{B}_{\overline{\mathbb{R}}}$.

Proof. Let us first observe that

$$\begin{aligned} \{-\infty\} &= \cap_{n=1}^{\infty} [-\infty, -n) = \cap_{n=1}^{\infty} [-n, \infty]^c \in \mathcal{B}_{\mathbb{R}}, \\ \{\infty\} &= \cap_{n=1}^{\infty} [n, \infty] \in \mathcal{B}_{\mathbb{R}} \text{ and } \mathbb{R} = \mathbb{R} \setminus \{\pm \infty\} \in \mathcal{B}_{\mathbb{R}}. \end{aligned}$$

Letting $i: \mathbb{R} \to \overline{\mathbb{R}}$ be the inclusion map,

$$i^{-1}\left(\mathcal{B}_{\mathbb{R}}\right) = \sigma\left(i^{-1}\left(\left\{[a,\infty]: a \in \bar{\mathbb{R}}\right\}\right)\right) = \sigma\left(\left\{i^{-1}\left([a,\infty]\right): a \in \bar{\mathbb{R}}\right\}\right)$$
$$= \sigma\left(\left\{[a,\infty] \cap \mathbb{R}: a \in \bar{\mathbb{R}}\right\}\right) = \sigma\left(\left\{[a,\infty): a \in \mathbb{R}\right\}\right) = \mathcal{B}_{\mathbb{R}}.$$

Thus we have shown

$$\mathcal{B}_{\mathbb{R}} = i^{-1}\left(\mathcal{B}_{\overline{\mathbb{R}}}\right) = \{A \cap \mathbb{R} : A \in \mathcal{B}_{\overline{\mathbb{R}}}\}.$$

This implies:

- 1. $A \in \mathcal{B}_{\bar{\mathbb{R}}} \Longrightarrow A \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}}$ and
- 2. if $A \subset \overline{\mathbb{R}}$ is such that $A \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}}$ there exists $B \in \mathcal{B}_{\overline{\mathbb{R}}}$ such that $A \cap \mathbb{R} = B \cap \mathbb{R}$. Because $A \Delta B \subset \{\pm \infty\}$ and $\{\infty\}$, $\{-\infty\} \in \mathcal{B}_{\overline{\mathbb{R}}}$ we may conclude that $A \in \mathcal{B}_{\overline{\mathbb{R}}}$ as well.

This proves Eq. (4.15).

Proposition 4.34 (Closure under sups, infs and limits). Suppose that (X, \mathcal{M}) is a measurable space and $f_j:(X,\mathcal{M})\to\overline{\mathbb{R}}$ is a sequence of $\mathcal{M}/\mathcal{B}_{\overline{\mathbb{R}}}$ – measurable functions. Then

$$\sup_{j} f_{j}$$
, $\inf_{j} f_{j}$, $\limsup_{j \to \infty} f_{j}$ and $\liminf_{j \to \infty} f_{j}$

are all $\mathcal{M}/\mathcal{B}_{\mathbb{R}}$ – measurable functions. (Note that this result is in generally false when (X,\mathcal{M}) is a topological space and measurable is replaced by continuous in the statement.)

Proof. Define $g_+(x) := \sup_i f_i(x)$, then

$${x: g_{+}(x) \le a} = {x: f_{j}(x) \le a \ \forall j}$$

= $\bigcap_{i} {x: f_{i}(x) \le a} \in \mathcal{M}$

so that g_+ is measurable. Similarly if $g_-(x) = \inf_j f_j(x)$ then

$${x: g_{-}(x) \ge a} = \bigcap_{i} {x: f_{i}(x) \ge a} \in \mathcal{M}.$$

Since

$$\limsup_{j \to \infty} f_j = \inf_n \sup \{ f_j : j \ge n \} \text{ and }$$

$$\liminf_{j \to \infty} f_j = \sup_n \inf \{ f_j : j \ge n \}$$

we are done by what we have already proved.

Lemma 4.35. Suppose that (X, \mathcal{M}) is a measurable space, (Y, τ) be a topological space and $f_j: X \to Y$ is $(\mathcal{M}, \mathcal{B}_Y)$ – measurable for all j. Also assume that for each $x \in X$, $f(x) = \lim_{n \to \infty} f_n(x)$ exists. Then $f: X \to Y$ is also $(\mathcal{M}, \mathcal{B}_Y)$ – measurable.

Proof. Suppose that $V \subset Y$ is an open set, then

$$f^{-1}(V) = \{x : f(x) \in V\} = \{x : f_n(x) \in V \text{ for almost all } n\}$$
$$= \bigcup_{N=1}^{\infty} \cap_{n=N}^{\infty} f_n^{-1}(V) \in \mathcal{M}$$

since $f_n^{-1}(V) \in \mathcal{M}$ because each f_n is measurable. Therefore $f^{-1}(\tau) \subset \mathcal{M}$ and thus

4.5. Topologies and σ – Algebras Generated by Functions.

Definition 4.36. Let $\mathcal{E} \subset \mathcal{P}(X)$ be a collection of sets, $A \subset X$, $i_A : A \to X$ be the inclusion map $(i_A(x) = x)$ for all $x \in A$, and

$$\mathcal{E}_A = i_A^{-1}(\mathcal{E}) = \{ A \cap E : E \in \mathcal{E} \}.$$

When $\mathcal{E} = \tau$ is a topology or $\mathcal{E} = \mathcal{M}$ is a σ – algebra we call τ_A the relative topology and \mathcal{M}_A the relative σ – algebra on A.

Proposition 4.37. Suppose that $A \subset X$, $\mathcal{M} \subset \mathcal{P}(X)$ is a σ – algebra and $\tau \subset \mathcal{P}(X)$ is a topology, then $\mathcal{M}_A \subset \mathcal{P}(A)$ is a σ – algebra and $\tau_A \subset \mathcal{P}(A)$ is a topology. (The topology τ_A is called the relative topology on A.) Moreover if $\mathcal{E} \subset \mathcal{P}(X)$ is such that $\mathcal{M} = \sigma(\mathcal{E})$ ($\tau = \tau(\mathcal{E})$) then $\mathcal{M}_A = \sigma(\mathcal{E}_A)$ ($\tau_A = \tau(\mathcal{E}_A)$).

Proof. The first assertion is easy to check as remarked after Notation 4.23. The second assertion is a consequence of Lemma 4.28. Indeed,

$$\mathcal{M}_A = i_A^{-1}(\mathcal{M}) = i_A^{-1}(\sigma(\mathcal{E})) = \sigma(i_A^{-1}(\mathcal{E})) = \sigma(\mathcal{E}_A)$$

and similarly

$$\tau_A = i_A^{-1}(\tau) = i_A^{-1}(\tau(\mathcal{E})) = \tau(i_A^{-1}(\mathcal{E})) = \tau(\mathcal{E}_A).$$

Example 4.38. Suppose that (X,d) is a metric space and $A \subset X$ is a set. Let $\tau = \tau_d$ and $d_A := d|_{A \times A}$ be the metric d restricted to A. Then $\tau_A = \tau_{d_A}$, i.e. the relative topology, τ_A , of τ_d on A is the same as the topology induced by the restriction of the metric d to A. Indeed, if $V \in \tau_A$ there exists $W \in \tau$ such that $V \cap A = W$. Therefore for all $x \in A$ there exists $\epsilon > 0$ such that $B_x(\epsilon) \subset W$ and hence $B_x(\epsilon) \cap A \subset V$. Since $B_x(\epsilon) \cap A = B_x^{d_A}(\epsilon)$ is a d_A - ball in A, this shows V is d_A - open, i.e. $\tau_A \subset \tau_{d_A}$. Conversely, if $V \in \tau_{d_A}$, then for each $x \in A$ there exists $\epsilon_x > 0$ such that $B_x^{d_A}(\epsilon) = B_x(\epsilon) \cap A \subset V$. Therefore $V = A \cap W$ with $W := \bigcup_{x \in A} B_x(\epsilon) \in \tau$. This shows $\tau_{d_A} \subset \tau_A$.

Definition 4.39. Let $A \subset X$, $f: A \to \mathbb{C}$ be a function, $\mathcal{M} \subset \mathcal{P}(X)$ be a σ – algebra and $\tau \subset \mathcal{P}(X)$ be a topology, then we say that $f|_A$ is measurable (continuous) if $f|_A$ is \mathcal{M}_A – measurable (τ_A continuous).

Proposition 4.40. Let $A \subset X$, $f: X \to \mathbb{C}$ be a function, $\mathcal{M} \subset \mathcal{P}(X)$ be a σ - algebra and $\tau \subset \mathcal{P}(X)$ be a topology. If f is \mathcal{M} - measurable (τ continuous) then $f|_A$ is \mathcal{M}_A measurable (τ_A continuous). Moreover if $A_n \in \mathcal{M}$ ($A_n \in \tau$) such that $X = \bigcup_{n=1}^{\infty} A_n$ and $f|_A$ is \mathcal{M}_{A_n} measurable (τ_{A_n} continuous) for all n, then f is \mathcal{M} - measurable (τ continuous).

Proof. Notice that i_A is $(\mathcal{M}_A, \mathcal{M})$ – measurable (τ_A, τ) – continuous) hence $f|_A = f \circ i_A$ is \mathcal{M}_A measurable $(\tau_A$ – continuous). Let $B \subset \mathbb{C}$ be a Borel set and consider

$$f^{-1}(B) = \bigcup_{n=1}^{\infty} (f^{-1}(B) \cap A_n) = \bigcup_{n=1}^{\infty} f|_{A_n}^{-1}(B).$$

If $A \in \mathcal{M}$ $(A \in \tau)$, then it is easy to check that

$$\mathcal{M}_A = \{B \in \mathcal{M} : B \subset A\} \subset \mathcal{M} \text{ and}$$

$$\tau_A = \{B \in \tau : B \subset A\} \subset \tau.$$

The second assertion is now an easy consequence of the previous three equations.

Definition 4.41. Let X and A be sets, and suppose for $\alpha \in A$ we are give a measurable (topological) space $(Y_{\alpha}, \mathcal{F}_{\alpha})$ and a function $f_{\alpha}: X \to Y_{\alpha}$. We will write $\sigma(f_{\alpha}: \alpha \in A)$ ($\tau(f_{\alpha}: \alpha \in A)$) for the smallest σ -algebra (topology) on X such that each f_{α} is measurable (continuous), i.e.

$$\sigma(f_{\alpha} : \alpha \in A) = \sigma(\bigcup_{\alpha} f_{\alpha}^{-1}(\mathcal{F}_{\alpha}))$$
 and $\tau(f_{\alpha} : \alpha \in A) = \tau(\bigcup_{\alpha} f_{\alpha}^{-1}(\mathcal{F}_{\alpha})).$

Proposition 4.42. Assuming the notation in Definition 4.41 and additionally let (Z, \mathcal{M}) be a measurable (topological) space and $g: Z \to X$ be a function. Then g is $(\mathcal{M}, \sigma(f_{\alpha}: \alpha \in A))$ – measurable $((\mathcal{M}, \tau(f_{\alpha}: \alpha \in A))$ – continuous) iff $f_{\alpha} \circ g$ is $(\mathcal{M}, \mathcal{F}_{\alpha})$ -measurable (continuous) for all $\alpha \in A$.

Proof. (\Rightarrow) If g is $(\mathcal{M}, \sigma(f_{\alpha} : \alpha \in A))$ – measurable, then the composition $f_{\alpha} \circ g$ is $(\mathcal{M}, \mathcal{F}_{\alpha})$ – measurable by Lemma 4.27. (\Leftarrow) Let

$$\mathcal{G} = \sigma(f_{\alpha} : \alpha \in A) = \sigma\left(\bigcup_{\alpha \in A} f_{\alpha}^{-1}(\mathcal{F}_{\alpha})\right).$$

If $f_{\alpha} \circ g$ is $(\mathcal{M}, \mathcal{F}_{\alpha})$ – measurable for all α , then

$$g^{-1}f_{\alpha}^{-1}(\mathcal{F}_{\alpha})\subseteq \mathcal{M}\,\forall\,\alpha\in A$$

and therefore

$$g^{-1}\left(\bigcup_{\alpha\in A}f_{\alpha}^{-1}(\mathcal{F}_{\alpha})\right)=\bigcup_{\alpha\in A}g^{-1}f_{\alpha}^{-1}(\mathcal{F}_{\alpha})\subseteq\mathcal{M}.$$

Hence

$$g^{-1}\left(\mathcal{G}\right) = g^{-1}\left(\sigma\left(\cup_{\alpha\in A}f_{\alpha}^{-1}(\mathcal{F}_{\alpha})\right)\right) = \sigma(g^{-1}\left(\cup_{\alpha\in A}f_{\alpha}^{-1}(\mathcal{F}_{\alpha})\right)\subseteq\mathcal{M}$$

which shows that g is $(\mathcal{M}, \mathcal{G})$ – measurable.

The topological case is proved in the same way.

- 4.6. **Product Spaces.** In this section we consider product topologies and σ algebras. We will start with a finite number of factors first and then later mention what happens for an infinite number of factors.
- 4.6.1. Products with a Finite Number of Factors. Let $\{X_i\}_{i=1}^n$ be a collection of sets, $X := X_1 \times X_2 \times \cdots \times X_n$ and $\pi_i : X \to X_i$ be the projection map $\pi(x_1, x_2, \dots, x_n) = x_i$ for each $1 \le i \le n$. Let us also suppose that τ_i is a topology on X_i and \mathcal{M}_i is a σ algebra on X_i for each i.
- **Notation 4.43.** Let $\mathcal{E}_i \subset \mathcal{P}(X_i)$ be a collection of subsets of X_i for i = 1, 2, ..., n we will write, by abuse of notation, $\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n$ for the collection of subsets of $X_1 \times \cdots \times X_n$ of the form $A_1 \times A_2 \times \cdots \times A_n$ with $A_i \in \mathcal{E}_i$ for all i. That is we are identifying $(A_1, A_2, ..., A_n)$ with $A_1 \times A_2 \times \cdots \times A_n$.

Definition 4.44. The **product topology** on X, denoted by $\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$ is the smallest topology on X so that each map $\pi_i : X \to X_i$ is continuous. Similarly, the **product** σ – **algebra** on X, denoted by $\mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n$, is the smallest σ – algebra on X so that each map $\pi_i : X \to X_i$ is measurable.

Remark 4.45. The product topology may also be described as the smallest topology containing sets from $\tau_1 \times \cdots \times \tau_n$, i.e.

$$\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n = \tau(\tau_1 \times \cdots \times \tau_n).$$

Indeed,

$$\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n = \tau(\pi_1, \pi_2, \dots, \pi_n)$$

$$= \tau(\{\cap_{i=1}^n \pi_i^{-1}(V_i) : V_i \in \tau_i \text{ for } i = 1, 2, \dots, n\})$$

$$= \tau(\{V_1 \times V_2 \times \cdots \times V_n : V_i \in \tau_i \text{ for } i = 1, 2, \dots, n\}).$$

Similarly,

$$\mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n = \sigma(\mathcal{M}_1 \times \mathcal{M}_2 \times \cdots \times \mathcal{M}_n).$$

Furthermore if $\mathcal{B}_i \subset \tau_i$ is a basis for the topology τ_i for each i, then $\mathcal{B}_1 \times \cdots \times \mathcal{B}_n$ is a basis for $\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$. To prove this first notice that $\tau_1 \times \cdots \times \tau_n$ is closed under finite intersections and generates $\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$. Therefore $\tau_1 \times \cdots \times \tau_n$ is a basis for the product topology. Hence for $W \in \tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$ and $x = (x_1, \dots, x_n) \in W$, there exists $V_1 \times V_2 \times \cdots \times V_n \in \tau_1 \times \cdots \times \tau_n$ such that

$$x \in V_1 \times V_2 \times \cdots \times V_n \subset W$$
.

Since \mathcal{B}_i is a basis for τ_i , we may now choose $U_i \in \mathcal{B}_i$ such that $x_i \in U_i \subset V_i$ for each i. Thus

$$x \in U_1 \times U_2 \times \cdots \times U_n \subset W$$

and we have shown W may be written as a union of sets from $\mathcal{B}_1 \times \cdots \times \mathcal{B}_n$. Since

$$\mathcal{B}_1 \times \cdots \times \mathcal{B}_n \subset \tau_1 \times \cdots \times \tau_n \subset \tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$$

this shows $\mathcal{B}_1 \times \cdots \times \mathcal{B}_n$ is a basis for $\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$.

Lemma 4.46. Let (X_i, d_i) for i = 1, ..., n be metric spaces, $X := X_1 \times \cdots \times X_n$ and for $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ in X let

(4.16)
$$d(x,y) = \sum_{i=1}^{n} d_i(x_i, y_i).$$

Then the topology, τ_d , associated to the metric d is the product topology on X, i.e.

$$\tau_d = \tau_{d_1} \otimes \tau_{d_2} \otimes \cdots \otimes \tau_{d_n}$$
.

Proof. Let $\rho(x,y) = \max\{d_i(x_i,y_i) : i = 1,2,\ldots,n\}$. Then ρ is equivalent to d and hence $\tau_{\rho} = \tau_d$. Moreover if $\epsilon > 0$ and $x = (x_1, x_2, \ldots, x_n) \in X$, then

$$B_x^{\rho}(\epsilon) = B_{x_1}^{d_1}(\epsilon) \times \cdots \times B_{x_n}^{d_n}(\epsilon).$$

By Remark 4.15,

$$\mathcal{E} := \{B_x^{\rho}(\epsilon) : x \in X \text{ and } \epsilon > 0\}$$

is a basis for τ_{ρ} and by Remark 4.45 \mathcal{E} is also a basis for $\tau_{d_1} \otimes \tau_{d_2} \otimes \cdots \otimes \tau_{d_n}$. Therefore,

$$\tau_{d_1} \otimes \tau_{d_2} \otimes \cdots \otimes \tau_{d_n} = \tau(\mathcal{E}) = \tau_{\rho} = \tau_d.$$

Remark 4.47. Let (Z, \mathcal{M}) be a measurable (topological) space, then by Proposition 4.42, a function $f: Z \to X$ is measurable (continuous) iff $\pi_i \circ f: Z \to X_i$ is $(\mathcal{M}, \mathcal{M}_i)$ – measurable $((\tau, \tau_i)$ – continuous) for $i = 1, 2, \ldots, n$. So if we write

$$f(z) = (f_1(z), f_2(z), \dots, f_n(z)) \in X_1 \times X_2 \times \dots \times X_n,$$

then $f: Z \to X$ is measurable (continuous) iff $f_i: Z \to X_i$ is measurable (continuous) for all i.

Theorem 4.48. For i = 1, 2, ..., n, let $\mathcal{E}_i \subset \mathcal{P}(X_i)$ be a collection of subsets of X_i such that $X_i \in \mathcal{E}_i$ and $\mathcal{M}_i = \sigma(\mathcal{E}_i)$ (or $\tau_i = \tau(\mathcal{E}_i)$) for i = 1, 2, ..., n, then

$$\mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n = \sigma(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n)$$
 and $\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n = \tau(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n).$

Written out more explicitly, these equations state

(4.17)
$$\sigma(\sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2) \times \cdots \times \sigma(\mathcal{E}_n)) = \sigma(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n) \text{ and }$$

(4.18)
$$\tau(\tau(\mathcal{E}_1) \times \tau(\mathcal{E}_2) \times \cdots \times \tau(\mathcal{E}_n)) = \tau(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n).$$

Let us further assume that each \mathcal{E}_i is countable for $i=1,2,\ldots,n,\ \tau_i=\tau(\mathcal{E}_i)$ and $\mathcal{M}_i=\sigma(\tau_i)$ is the Borel σ – algebra on i. Then

- 1. $\mathcal{M}_i = \sigma(\tau_i) = \sigma(\mathcal{E}_i)$ for all i and
- 2. the Borel σ algebra on $X_1 \times X_2 \times \cdots \times X_n$ with the product topology is the product of the Borel σ algebras on the X_i 's, i.e.

$$\sigma(\tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n) = \sigma(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n) = \mathcal{M}_1 \otimes \mathcal{M}_2 \otimes \cdots \otimes \mathcal{M}_n.$$

Proof. We will prove Eq. (4.17). The proof of Eq. (4.18) is completely analogous. Let us first do the case of two factors. Since

$$\mathcal{E}_1 \times \mathcal{E}_2 \subset \sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2)$$

it follows that

$$\sigma(\mathcal{E}_1 \times \mathcal{E}_2) \subset \sigma(\sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2)) = \sigma(\pi_1, \pi_2).$$

To prove the reverse inequality it suffices to show $\pi_i: X_1 \times X_2 \to X_i$ is $\sigma(\mathcal{E}_1 \times \mathcal{E}_2) - \mathcal{M}_i = \sigma(\mathcal{E}_i)$ measurable for i = 1, 2. To prove this suppose that $E \in \mathcal{E}_1$, then

$$\pi_1^{-1}(E) = E \times X_2 \in \mathcal{E}_1 \times \mathcal{E}_2 \subset \sigma\left(\mathcal{E}_1 \times \mathcal{E}_2\right)$$

wherein we have used the fact that $X_2 \in \mathcal{E}_2$. Similarly, for $E \in \mathcal{E}_2$ we have

$$\pi_2^{-1}(E) = X_1 \times E \in \mathcal{E}_1 \times \mathcal{E}_2 \subset \sigma\left(\mathcal{E}_1 \times \mathcal{E}_2\right).$$

This proves the desired measurability, and hence

$$\sigma(\pi_1, \pi_2) \subset \sigma(\mathcal{E}_1 \times \mathcal{E}_2) \subset \sigma(\pi_1, \pi_2).$$

Let us now assume that each \mathcal{E}_i is countable or i=1,2. Then it has already been proved in Proposition 4.13 that $\mathcal{M}_i = \sigma(\tau_i) = \sigma(\mathcal{E}_i)$. Moreover, $\mathcal{E}_1 \times \mathcal{E}_2$ is also countable, another application of Proposition 4.13 along with the first two assertions of the theorems gives

$$\begin{split} \sigma(\tau_1 \otimes \tau_2) &= \sigma(\tau\left(\tau_1 \times \tau_2\right)) = \sigma(\tau\left(\tau(\mathcal{E}_1) \times \tau(\mathcal{E}_2)\right)) = \sigma(\tau\left(\mathcal{E}_1 \times \mathcal{E}_2\right)) \\ &= \sigma(\mathcal{E}_1 \times \mathcal{E}_2) = \sigma\left(\sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2)\right) = \sigma\left(\mathcal{M}_1 \times \mathcal{M}_2\right) = \mathcal{M}_1 \otimes \mathcal{M}_2. \end{split}$$

The proof for n factors works the same way. Indeed,

$$\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n \subset \sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2) \times \cdots \times \sigma(\mathcal{E}_n)$$

implies

$$\sigma\left(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n\right) \subset \sigma\left(\sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2) \times \cdots \times \sigma(\mathcal{E}_n)\right) = \sigma(\pi_1, \dots, \pi_n)$$
 and for $E \in \mathcal{E}_i$,

$$\pi_i^{-1}(E) = X_1 \times X_2 \times \dots \times X_{i-1} \times E \times X_{i+1} \dots \times X_n \in \mathcal{E}_1 \times \mathcal{E}_2 \times \dots \times \mathcal{E}_n$$
$$\subset \sigma \left(\mathcal{E}_1 \times \mathcal{E}_2 \times \dots \times \mathcal{E}_n \right).$$

This show π_i is $\sigma(\mathcal{E}_1 \times \mathcal{E}_2 \times \cdots \times \mathcal{E}_n) - \mathcal{M}_i = \sigma(\mathcal{E}_i)$ measurable and therefore,

$$\sigma(\pi_1,\ldots,\pi_n)\subset\sigma(\mathcal{E}_1\times\mathcal{E}_2\times\cdots\times\mathcal{E}_n)\subset\sigma(\pi_1,\ldots,\pi_n).$$

If the \mathcal{E}_i are countable, then

$$\sigma(\tau_{1} \otimes \tau_{2} \otimes \cdots \otimes \tau_{n}) = \sigma(\tau (\tau_{1} \times \tau_{2} \times \cdots \times \tau_{n}))$$

$$= \sigma(\tau (\tau(\mathcal{E}_{1}) \times \tau(\mathcal{E}_{2}) \times \cdots \times \tau(\mathcal{E}_{n})))$$

$$= \sigma(\tau (\mathcal{E}_{1} \times \mathcal{E}_{2} \times \cdots \times \mathcal{E}_{n}))$$

$$= \sigma(\mathcal{E}_{1} \times \mathcal{E}_{2} \times \cdots \times \mathcal{E}_{n})$$

$$= \sigma(\sigma(\mathcal{E}_{1}) \times \sigma(\mathcal{E}_{2}) \times \cdots \times \sigma(\mathcal{E}_{n}))$$

$$= \sigma(\mathcal{M}_{1} \times \mathcal{M}_{2} \times \cdots \times \mathcal{M}_{n})$$

$$= \mathcal{M}_{1} \otimes \mathcal{M}_{2} \otimes \cdots \otimes \mathcal{M}_{n}.$$

Remark 4.49. One can not relax the assumption that $X_i \in \mathcal{E}_i$ in Theorem 4.48. For example, if $X_1 = X_2 = \{1,2\}$ and $\mathcal{E}_1 = \mathcal{E}_2 = \{\{1\}\}$, then $\sigma(\mathcal{E}_1 \times \mathcal{E}_2) = \{\emptyset, X_1 \times X_2, \{(1,1)\}\}$ while $\sigma(\sigma(\mathcal{E}_1) \times \sigma(\mathcal{E}_2)) = \mathcal{P}(X_1 \times X_2)$.

Proposition 4.50. If (X_i, d_i) for i = 1, ..., n be metric spaces such that for each i there a countable dense subset $D_i \subseteq X_i$, then

$$igotimes_i \mathcal{B}_{X_i} = \mathcal{B}_{(X_1 imes \cdots imes X_n)}$$

where \mathcal{B}_{X_i} is the Borel σ – algebra on X_i and $\mathcal{B}_{(X_1 \times \cdots \times X_n)}$ is the Borel σ – algebra on $X_1 \times \cdots \times X_n$ equipped with the product topology.

Proof. This follows directly from Lemma 4.46 and Theorem 4.48 with

$$\mathcal{E}_i := \left\{ B_x^{d_i}(\epsilon) \subset X_i : x \in D_i \text{ and } \epsilon \in \mathbb{Q} \cap (0, \infty) \right\} \text{ for } i = 1, 2, \dots, n.$$

Because all norms on finite dimensional spaces are equivalent, the usual Euclidean norm on $\mathbb{R}^m \times \mathbb{R}^n$ is equivalent to the "product" norm defined by

$$||(x,y)||_{\mathbb{R}^m \times \mathbb{R}^n} = ||x||_{\mathbb{R}^m} + ||y||_{\mathbb{R}^n}$$

Hence by Lemma 4.46, the Euclidean topology on \mathbb{R}^{m+n} is the same as the product topology on $\mathbb{R}^{m+n} \cong \mathbb{R}^m \times \mathbb{R}^n$ Here we are identifying $\mathbb{R}^m \times \mathbb{R}^n$ with \mathbb{R}^{m+n} by the map

$$(x,y) \in \mathbb{R}^m \times \mathbb{R}^n \to (x_1,\ldots,x_m,y_1,\ldots,y_n) \in \mathbb{R}^{m+n}.$$

Proposition 4.50 and these comments leads to the following corollaries.

Corollary 4.51. After identifying $\mathbb{R}^m \times \mathbb{R}^n$ with \mathbb{R}^{m+n} as above and letting $\mathcal{B}_{\mathbb{R}^n}$ denote the Borel σ -algebra on \mathbb{R}^n , we have

$$\mathcal{B}_{\mathbb{R}^{m+n}} = \mathcal{B}_{\mathbb{R}^n} \otimes \mathcal{B}_{\mathbb{R}^m} \ \ and \ \mathcal{B}_{\mathbb{R}^n} = \overbrace{\mathcal{B}_{\mathbb{R}} \otimes \cdots \otimes \mathcal{B}_{\mathbb{R}}}^{n-times}.$$

Corollary 4.52. If (X, \mathcal{M}) is a measurable space, then

$$f = (f_1, f_2, \dots, f_n) : X \to \mathbb{R}^n$$

is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}^n})$ – measurable iff $f_i: X \to \mathbb{R}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ – measurable for each i. In particular, a function $f: X \to \mathbb{C}$ is $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ – measurable iff $\operatorname{Re} f$ and $\operatorname{Im} f$ are $(\mathcal{M}, \mathcal{B}_{\mathbb{R}})$ – measurable.

Corollary 4.53. Let (X, \mathcal{M}) be a measurable space and $f, g: X \to \mathbb{C}$ be $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ – measurable functions. Then $f \pm g$ and $f \cdot g$ are also $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ – measurable.

Proof. Define $F: X \to \mathbb{C} \times \mathbb{C}$, $A_{\pm}: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ and $M: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ by F(x) = (f(x), g(x)), $A_{\pm}(w, z) = w \pm z$ and M(w, z) = wz. Then A_{\pm} and M are continuous and hence $(\mathcal{B}_{\mathbb{C}^2}, \mathcal{B}_{\mathbb{C}})$ – measurable. Also F is $(\mathcal{M}, \mathcal{B}_{\mathbb{C}} \otimes \mathcal{B}_{\mathbb{C}}) = (\mathcal{M}, \mathcal{B}_{\mathbb{C}^2})$ – measurable since $\pi_1 \circ F = f$ and $\pi_2 \circ F = g$ are $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ – measurable. Therefore $A_{\pm} \circ F = f \pm g$ and $M \circ F = f \cdot g$, being the composition of measurable functions, are also measurable.

Lemma 4.54. Let $\alpha \in \mathbb{C}$, (X, \mathcal{M}) be a measurable space and $f: X \to \mathbb{C}$ be a $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ – measurable function. Then

$$F(x) := \begin{cases} \frac{1}{f(x)} & \text{if} \quad f(x) \neq 0\\ \alpha & \text{if} \quad f(x) = 0 \end{cases}$$

is measurable.

Proof. Define $i: \mathbb{C} \to \mathbb{C}$ by

$$i(z) = \begin{cases} \frac{1}{z} & \text{if} \quad z \neq 0\\ \alpha & \text{if} \quad z = 0. \end{cases}$$

For any open set $V \subset \mathbb{C}$ we have

$$i^{-1}(V) = i^{-1}(V \setminus \{0\}) \cup i^{-1}(V \cap \{0\})$$

Because i is continuous except at z=0, $i^{-1}(V\setminus\{0\})$ is an open set and hence in $\mathcal{B}_{\mathbb{C}}$. Moreover, $i^{-1}(V\cap\{0\})\in\mathcal{B}_{\mathbb{C}}$ since $i^{-1}(V\cap\{0\})$ is either the empty set or the one point set $\{\alpha\}$. Therefore $i^{-1}(\tau_{\mathbb{C}})\subseteq\mathcal{B}_{\mathbb{C}}$ and hence $i^{-1}(\mathcal{B}_{\mathbb{C}})=i^{-1}(\sigma(\tau_{\mathbb{C}}))=\sigma(i^{-1}(\tau_{\mathbb{C}}))\subseteq\mathcal{B}_{\mathbb{C}}$ which shows that i is Borel measurable. Since $F=i\circ f$ is the composition of measurable functions, F is also measurable.

4.6.2. General Product spaces.

Definition 4.55. Suppose $(X_{\alpha}\mathcal{M}_{\alpha})_{\alpha\in A}$ is a collection of measurable spaces and let X be the product space

$$X = \prod_{\alpha \in A} X_{\alpha}$$

and $\pi_{\alpha}: X \to X_{\alpha}$ be the canonical projection maps. Then the product σ – algebra, $\bigotimes \mathcal{M}_{\alpha}$, is defined by

$$\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} \equiv \sigma(\pi_{\alpha} : \alpha \in A) = \sigma\left(\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{M}_{\alpha})\right).$$

Similarly if $(X_{\alpha}\mathcal{M}_{\alpha})_{\alpha\in A}$ is a collection of topological, the product topology $\bigotimes_{\alpha}\mathcal{M}_{\alpha}$, is defined by

$$\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} \equiv \tau(\pi_{\alpha} : \alpha \in A) = \tau\left(\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{M}_{\alpha})\right).$$

Remark 4.56. Let (Z, \mathcal{M}) be a measurable (topological) space and

$$\left(X = \prod_{\alpha \in A} X_{\alpha}, \bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}\right)$$

be as in Definition 4.55. By Proposition 4.42, a function $f: Z \to X$ is measurable (continuous) iff $\pi_{\alpha} \circ f$ is $(\mathcal{M}, \mathcal{M}_{\alpha})$ – measurable (continuous) for all $\alpha \in A$.

Proposition 4.57. Suppose that $(X_{\alpha}, \mathcal{M}_{\alpha})_{\alpha \in A}$ is a collection of measurable (topological) spaces and $\mathcal{E}_{\alpha} \subseteq \mathcal{M}_{\alpha}$ generates \mathcal{M}_{α} for each $\alpha \in A$, then

$$(4.19) \qquad \otimes_{\alpha \in A} \mathcal{M}_{\alpha} = \sigma \left(\cup_{\alpha \in A} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \right) \quad \left(\tau \left(\cup_{\alpha \in A} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \right) \right)$$

Moreover, suppose that A is either finite or countably infinite, $X_{\alpha} \in \mathcal{E}_{\alpha}$ for each $\alpha \in A$, and $\mathcal{M}_{\alpha} = \sigma(\mathcal{E}_{\alpha})$ is a σ – algebra for all $\alpha \in A$. Then the product σ – algebra satisfies

(4.20)
$$\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} = \sigma \left(\left\{ \prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{E}_{\alpha} \text{ for all } \alpha \in A \right\} \right).$$

Similarly if A is finite and $\mathcal{M}_{\alpha} = \tau(\mathcal{E}_{\alpha})$, then the product topology satisfies

(4.21)
$$\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} = \tau \left(\left\{ \prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{E}_{\alpha} \text{ for all } \alpha \in A \right\} \right).$$

Proof. We will prove Eq. (4.19) in the measure theoretic case since a similar proof works in the topological category. Since $\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \subset \cup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{M}_{\alpha})$, it follows that

$$\mathcal{F} := \sigma \left(\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \right) \subset \sigma \left(\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{M}_{\alpha}) \right) = \bigotimes_{\alpha} \mathcal{M}_{\alpha}.$$

Conversely,

$$\mathcal{F} \supset \sigma(\pi_{\alpha}^{-1}(\mathcal{E}_{\alpha})) = \pi_{\alpha}^{-1}(\sigma(\mathcal{E}_{\alpha})) = \pi_{\alpha}^{-1}(\mathcal{M}_{\alpha})$$

holds for all α implies that

$$\bigcup_{lpha}\pi_{lpha}^{-1}(\mathcal{M}_{lpha})\subset\mathcal{F}$$

and hence that $\bigotimes_{\alpha} \mathcal{M}_{\alpha} \subseteq \mathcal{F}$.

We now prove Eq. (4.20). Since we are assuming that $X_{\alpha} \in \mathcal{E}_{\alpha}$ for each $\alpha \in A$, we see that

$$\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \subset \left\{ \prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{E}_{\alpha} \text{ for all } \alpha \in A \right\}$$

and therefore by Eq. (4.19)

$$\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} = \sigma \left(\bigcup_{\alpha} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha}) \right) \subset \sigma \left(\left\{ \prod_{\alpha \in A} E_{\alpha} : E_{\alpha} \in \mathcal{E}_{\alpha} \text{ for all } \alpha \in A \right\} \right).$$

This last statement is true independent as to whether A is countable or not. For the reverse inclusion it suffices to notice that since A is countable,

$$\prod_{\alpha \in A} E_{\alpha} = \cap_{\alpha \in A} \pi_{\alpha}^{-1}(E_{\alpha}) \in \bigotimes_{\alpha \in A} \mathcal{M}_{\alpha}$$

and hence

$$\sigma\left(\left\{\prod_{\alpha\in A}E_{\alpha}:E_{\alpha}\in\mathcal{E}_{\alpha}\text{ for all }\alpha\in A\right\}\right)\subset\bigotimes_{\alpha\in A}\mathcal{M}_{\alpha}.$$

Here is a generalization of Theorem 4.48 to the case of countable number of factors.

Proposition 4.58. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a sequence of sets where A is at most countable. Suppose for each ${\alpha}\in A$ we are given a countable set ${\mathcal E}_{\alpha}\subset {\mathcal P}(X_{\alpha})$. Let ${\tau}_{\alpha}={\tau}({\mathcal E}_{\alpha})$ be the topology on X_{α} generated by ${\mathcal E}_{\alpha}$ and X be the product space $\prod_{{\alpha}\in A}X_{\alpha}$ with equipped with the product topology ${\tau}:=\otimes_{{\alpha}\in A}{\tau}({\mathcal E}_{\alpha})$. Then the Borel ${\sigma}$ – algebra ${\mathcal B}_X={\sigma}({\tau})$ is the same as the product ${\sigma}$ – algebra:

$$\mathcal{B}_X = \otimes_{\alpha \in A} \mathcal{B}_{X_{\alpha}},$$

where $\mathcal{B}_{X_{\alpha}} = \sigma(\tau(\mathcal{E}_{\alpha})) = \sigma(\mathcal{E}_{\alpha})$ for all $\alpha \in A$.

Proof. By Proposition 4.57, the topology τ may be described as the smallest topology containing $\mathcal{E} = \bigcup_{\alpha \in A} \pi_{\alpha}^{-1}(\mathcal{E}_{\alpha})$. Now \mathcal{E} is the countable union of countable sets so is still countable. Therefore by Proposition 4.13 and Proposition 4.57 we have

$$\mathcal{B}_X = \sigma(\tau) = \sigma(\tau(\mathcal{E})) = \sigma(\mathcal{E}) = \bigotimes_{\alpha \in A} \sigma(\mathcal{E}_\alpha) = \bigotimes_{\alpha \in A} \sigma(\tau_\alpha) = \bigotimes_{\alpha \in A} \mathcal{B}_{X_\alpha}.$$

4.7. Exercises.

Exercise 4.6 (Structure of countable σ – algebras.). Removed, since this problem is covered in Proposition 4.19.

Exercise 4.7. Prove Corollary 4.31. Hint: See Exercise 4.4.

Exercise 4.8. Folland, Problem 1.5 on p.24. If \mathcal{M} is the σ – algebra generated by $\mathcal{E} \subset \mathcal{P}(X)$, then \mathcal{M} is the union of the σ – algebras generated by countable subsets $\mathcal{F} \subset \mathcal{E}$.

Exercise 4.9. Let (X, \mathcal{M}) be a measure space and $f_n : X \to \mathbb{F}$ be a sequence of measurable functions on X. Show that $\{x : \lim_{n \to \infty} f_n(x) \text{ exists}\} \in \mathcal{M}$.

Exercise 4.10. Show that every monotone function $f : \mathbb{R} \to \mathbb{R}$ is $(\mathcal{B}_{\mathbb{R}}, \mathcal{B}_{\mathbb{R}})$ – measurable.

Exercise 4.11. Folland problem 2.6 on p. 48.

Exercise 4.12. Suppose that X is a set, $\{(Y_{\alpha}, \tau_{\alpha}) : \alpha \in A\}$ is a family of topological spaces and $f_{\alpha} : X \to Y_{\alpha}$ is a given function for all $\alpha \in A$. Assuming that $S_{\alpha} \subset \tau_{\alpha}$ is a sub-basis for the topology τ_{α} for each $\alpha \in A$, show $S := \bigcup_{\alpha \in A} f_{\alpha}^{-1}(S_{\alpha})$ is a sub-basis for the topology $\tau := \tau(f_{\alpha} : \alpha \in A)$.

Notation 4.59. Let X be a set and $\mathbf{p} := \{p_n\}_{n=0}^{\infty}$ be a family of semi-metrics on X, i.e. $p_n : X \times X \to [0, \infty)$ are functions satisfying the assumptions of metric except for the assertion that $p_n(x,y) = 0$ implies x = y. Further assume that $p_n(x,y) \le p_{n+1}(x,y)$ for all n and if $p_n(x,y) = 0$ for all $n \in \mathbb{N}$ then x = y. Given $n \in \mathbb{N}$ and $x \in X$ let

$$B_n(x,\epsilon) := \{ y \in X : p_n(x,y) < \epsilon \}.$$

We will write $\tau(\mathbf{p})$ form the smallest topology on X such that $p_n(x,\cdot): X \to [0,\infty)$ is continuous for all $n \in \mathbb{N}$ and $x \in X$, i.e. $\tau(\mathbf{p}) := \tau(p_n(x \cdot): n \in \mathbb{N})$ and $x \in X$.

Exercise 4.13. Using Notation 4.59, show that collection of balls,

$$\mathcal{B} := \{B_n(x, \epsilon) : n \in \mathbb{N}, x \in X \text{ and } \epsilon > 0\},\$$

forms a basis for the topology $\tau(\mathbf{p})$. Hint: Use Exercise 4.12 to show that \mathcal{B} is a sub-basis for the topology $\tau(\mathbf{p})$ and then use Exercise 4.3 to show that \mathcal{B} is in fact a basis for the topology $\tau(\mathbf{p})$.

Exercise 4.14. Using the notation in 4.59, let

$$d(x,y) = \sum_{n=0}^{\infty} 2^{-n} \frac{p_n(x,y)}{1 + p_n(x,y)}.$$

Show d is a metric on X and $\tau_d = \tau(\mathbf{p})$. Conclude that a sequence $\{x_k\}_{k=1}^{\infty} \subset X$ converges to $x \in X$ iff

$$\lim_{k \to \infty} p_n(x_k, x) = 0 \text{ for all } n \in \mathbb{N}.$$

Exercise 4.15. Let $\{(X_n, d_n)\}_{n=1}^{\infty}$ be a sequence of metric spaces, $X := \prod_{n=1}^{\infty} X_n$, and for $x = (x(n))_{n=1}^{\infty}$ and $y = (y(n))_{n=1}^{\infty}$ in X let

$$d(x,y) = \sum_{n=1}^{\infty} 2^{-n} \frac{d_n(x(n), y(n))}{1 + d_n(x(n), y(n))}.$$

(See Exercise 3.25.) Moreover, let $\pi_i: X \to X_i$ be the projection maps, show

$$\tau_d = \bigotimes_{n=1}^{\infty} \tau_{d_i} := \tau(\{\pi_i : i \in \mathbb{N}\}).$$

That is show the d – metric topology is the same as the product topology on X.