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Abstract. These are lecture notes from Math 240.
Things to do:
0) Exhibit a non-measurable null set and a non-Borel measurable Riemann

integrable function.
1) Weak convergence on metric spaces. See Durrett, Stochastic calculus,

Chapter 8 for example. Also see Stroock’s book on this point, chapter 3. See
Problems 3.1.18—3.1.20.
2) Infinite product measures using the Caratheodory extension theorem in

the general case of products of arbitrary probability spaces. See Stroock’s book
on probability from an analytic point of view.
3) Do enough on topological vector spaces to cover what is needed for the

section on distributions, this includes Banach - Steinhauss theorem and open
mapping theorem in the context of Frechet spaces. See Rudin’s functional
analysis and len’s notes.
4) Add manifolds basics including Stoke’s theorems and partitions of unity.

See file Partitn.tex in 257af94 directory. Also add facts about smooth measure
on manifolds, see the last chapter of bookall.tex for this material.
5) Also basic ODE facts, i.e. flows of vector fields
6) Put in some complex variables.
7) Bochner Integrals (See Gaussian.tex for a discussion and problems be-

low.)
8) Add in implicit function theorem proof of existence to ODE’s via Joel

Robbin’s method, see PDE notes.
9) Manifold theory including Sards theorem (See p.538 of Taylor Volume I

and references), Stokes Theorem, perhaps a little PDE on manifolds.
10) Put in more PDE stu , especially by hilbert space methods. See file

zpde.tex in this directory.
11) Add some functional analysis, including the spectral theorem. See

Taylor volume 2.
12) Perhaps some probability theory including stochastic integration. See

course.tex from 257af94 and other files on disk. For Kolmogorov continuity
criteria see course.tex from 257af94 as well. Also see Gaussian.tex in 289aW98
for construction of Wiener measures.
13) There are some typed notes on Partitions of unity called partitn.tex,

from PDE course and other notes from that course may be useful. For more
ODE stu see pdenote2.tex from directory 231a-f96. These notes also contain
quadratic form notes and compact and Fredholm operator notes.
15) Move Holder spaces much earlier in the text as illustrations of com-

pactness theorems.
14) Use the proof in Loomis of Tychono ’s theorem, see p.11
15) Perhaps the pi-lambda theorem should go in section 4 when discussing

the generation of — algebras.
Major Break down thoughts:
I Real Analysis
II: Topology
III: Complex Variables
IV Distributrion Theory, PDE 1
V: Functional analysis and PDE 2. (Sobolev Spaces)
VI: Probability Theory
VII: Manifold Theory and PDE 3.
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1. Introduction

Not written as of yet. Topics to mention.

(1) A better and more general integral.
(a) Convergence Theorems
(b) Integration over diverse collection of sets. (See probability theory.)
(c) Integration relative to di erent weights or densities including singular

weights.
(d) Characterization of dual spaces.
(e) Completeness.

(2) Infinite dimensional Linear algebra.
(3) ODE and PDE.
(4) Harmonic and Fourier Analysis.
(5) Probability Theory

2. Limits, sums, and other basics

2.1. Set Operations. Suppose that is a set. Let P( ) or 2 denote the power
set of that is elements of P( ) = 2 are subsets of For 2 let

= \ = { : }
and more generally if let

\ = { : }
We also define the symmetric di erence of and by

4 = ( \ ) ( \ )

As usual if { } is an indexed collection of subsets of we define the union
and the intersection of this collection by

:= { : 3 } and
:= { : }

Notation 2.1. We will also write
`

for in the case that { }
are pairwise disjoint, i.e. = if 6=
Notice that is closely related to and is closely related to For example

let { } =1 be a sequence of subsets from and define

{ i.o.} := { : # { : } = } and
{ a.a.} := { : for all su ciently large}.

(One should read { i.o.} as infinitely often and { a.a.} as almost al-
ways.) Then { i.o.} i N 3 which may be written
as

{ i.o.} = =1

Similarly, { a.a.} i N 3 which may be written as

{ a.a.} = =1
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2.2. Limits, Limsups, and Liminfs.

Notation 2.2. The Extended real numbers is the set R̄ := R {± } i.e. it
is R with two new points called and We use the following conventions,
± · 0 = 0 ± + = ± for any R + = and = while

is not defined.

If R̄ we will let sup and inf denote the least upper bound and greatest
lower bound of respectively. We will also use the following convention, if =
then sup = and inf = +

Notation 2.3. Suppose that { } =1 R̄ is a sequence of numbers. Then

lim inf = lim inf{ : } and(2.1)

lim sup = lim sup{ : }(2.2)

We will also write lim for lim inf and lim for lim sup

Remark 2.4. Notice that if := inf{ : } and := sup{ : } then
{ } is an increasing sequence while { } is a decreasing sequence. Therefore the
limits in Eq. (2.1) and Eq. (2.2) always exist and

lim inf = sup inf{ : } and
lim sup = inf sup{ : }

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.5. Let { } =1 and { } =1 be two sequences of real numbers.
Then

(1) lim inf lim sup and lim exists in R̄ i lim inf =
lim sup R̄

(2) There is a subsequence { } =1 of { } =1 such that lim =
lim sup

(3)

(2.3) lim sup ( + ) lim sup + lim sup

whenever the right side of this equation is not of the form
(4) If 0 and 0 for all N then

(2.4) lim sup ( ) lim sup · lim sup

provided the right hand side of (2.4) is not of the form 0 · or · 0
Proof. We will only prove part 1. and leave the rest as an exercise to the reader.

We begin by noticing that

inf{ : } sup{ : }
so that

lim inf lim sup

Now suppose that lim inf = lim sup = R Then for all 0
there is an integer such that

inf{ : } sup{ : } +

ANALYSIS TOOLS WITH APPLICATIONS 3

i.e.
+ for all

Hence by the definition of the limit, lim =
If lim inf = then we know for all (0 ) there is an integer

such that
inf{ : }

and hence lim = The case where lim sup = is handled
similarly.
Conversely, suppose that lim = R̄ exists. If R then for every
0 there exists ( ) N such that | | for all ( ) i.e.

+ for all ( )

From this we learn that

lim inf lim sup +

Since 0 is arbitrary, it follows that

lim inf lim sup

i.e. that = lim inf = lim sup
If = then for all 0 there exists ( ) such that for all

( ) This show that
lim inf

and since is arbitrary it follows that

lim inf lim sup

The proof is similar if = as well.

2.3. Sums of positive functions. In this and the next few sections, let and
be two sets. We will write to denote that is a finite subset of

Definition 2.6. Suppose that : [0 ] is a function and is a subset,
then

X

=
X

( ) = sup

(

X

( ) :

)

Remark 2.7. Suppose that = N = {1 2 3 } then
X

N

=
X

=1

( ) := lim
X

=1

( )

Indeed for all
P

=1 ( )
P

N and thus passing to the limit we learn that

X

=1

( )
X

N

Conversely, if N then for all large enough so that {1 2 } we
have

P P

=1 ( ) which upon passing to the limit implies that

X X

=1

( )
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and hence by taking the supremum over we learn that
X

N

X

=1

( )

Remark 2.8. Suppose that
P

then { : ( ) 0} is at most count-
able. To see this first notice that for any 0 the set { : ( ) } must be finite
for otherwise

P

= . Thus

{ : ( ) 0} =
[

=1{ : ( ) 1 }
which shows that { : ( ) 0} is a countable union of finite sets and thus
countable.

Lemma 2.9. Suppose that : [0 ] are two functions, then
X

( + ) =
X

+
X

and

X

=
X

for all 0

I will only prove the first assertion, the second being easy. Let be a
finite set, then

X

( + ) =
X

+
X X

+
X

which after taking sups over shows that
X

( + )
X

+
X

Similarly, if then
X

+
X X

+
X

=
X

( + )
X

( + )

Taking sups over and then shows that
X

+
X X

( + )

Lemma 2.10. Let and be sets, × and suppose that : R̄ is a
function. Let := { : ( ) } and := { : ( ) } Then

sup
( )

( ) = sup sup ( ) = sup sup ( ) and

inf
( )

( ) = inf inf ( ) = inf inf ( )

(Recall the conventions: sup = and inf = + )

Proof. Let = sup( ) ( ) := sup ( ) Then ( )

for all ( ) implies = sup ( ) and therefore that

(2.5) sup sup ( ) = sup

Similarly for any ( )

( ) sup = sup sup ( )

ANALYSIS TOOLS WITH APPLICATIONS 5

and therefore

(2.6) sup
( )

( ) sup sup ( ) =

Equations (2.5) and (2.6) show that

sup
( )

( ) = sup sup ( )

The assertions involving infinums are proved analogously or follow from what we
have just proved applied to the function

Figure 1. The and — slices of a set ×

Theorem 2.11 (Monotone Convergence Theorem for Sums). Suppose that :
[0 ] is an increasing sequence of functions and

( ) := lim ( ) = sup ( )

Then
lim

X

=
X

Proof. We will give two proves. For the first proof, let P ( ) = { :
} Then

lim
X

= sup
X

= sup sup
P ( )

X

= sup
P ( )

sup
X

= sup
P ( )

lim
X

= sup
P ( )

X

lim = sup
P ( )

X

=
X

(Second Proof.) Let =
P

and =
P

Since for all
it follows that

which shows that lim exists and is less that i.e.

(2.7) := lim
X X
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Noting that
P P

= for all and in particular,
X

for all and

Letting tend to infinity in this equation shows that
X

for all

and then taking the sup over all gives

(2.8)
X

= lim
X

which combined with Eq. (2.7) proves the theorem.

Lemma 2.12 (Fatou’s Lemma for Sums). Suppose that : [0 ] is a
sequence of functions, then

X

lim inf lim inf
X

Proof. Define inf so that lim inf as Since

for all
X X

for all

and therefore
X

lim inf
X

for all

We may now use the monotone convergence theorem to let to find
X

lim inf =
X

lim
MCT
= lim

X

lim inf
X

Remark 2.13. If =
P

then for all 0 there exists such that
X

for all containing or equivalently,

(2.9)

¯

¯

¯

¯

¯

X

¯

¯

¯

¯

¯

for all containing . Indeed, choose so that
P

2.4. Sums of complex functions.

Definition 2.14. Suppose that : C is a function, we say that
X

=
X

( )

exists and is equal to C if for all 0 there is a finite subset such
that for all containing we have

¯

¯

¯

¯

¯

X

¯

¯

¯

¯

¯
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The following lemma is left as an exercise to the reader.

Lemma 2.15. Suppose that : C are two functions such that
P

and
P

exist, then
P

( + ) exists for all C and
X

( + ) =
X

+
X

Definition 2.16 (Summable). We call a function : C summable if
X

| |

Proposition 2.17. Let : C be a function, then
P

exists i
P | |

i.e. i is summable.

Proof. If
P | | then

P

(Re )± and
P

(Im )± and hence
by Remark 2.13 these sums exists in the sense of Definition 2.14. Therefore by
Lemma 2.15,

P

exists and

X

=
X

(Re )+
X

(Re ) +

Ã

X

(Im )+
X

(Im )

!

Conversely, if
P | | = then, because | | |Re |+ |Im | we must have

X

|Re | = or
X

|Im | =

Thus it su ces to consider the case where : R is a real function. Write
= + where

(2.10) +( ) = max( ( ) 0) and ( ) = max( ( ) 0)

Then | | = + + and

=
X

| | =
X

+ +
X

which shows that either
P

+ = or
P

= Suppose, with out loss of
generality, that

P

+ = Let 0 := { : ( ) 0} then we know that
P

0 = which means there are finite subsets 0 such that
P

for all Thus if is any finite set, it follows that lim
P

=
and therefore

P

can not exist as a number in R

Remark 2.18. Suppose that = N and : N C is a sequence, then it is not
necessarily true that

(2.11)
X

=1

( ) =
X

N

( )

This is because
X

=1

( ) = lim
X

=1

( )

depends on the ordering of the sequence where as
P

N ( ) does not. For
example, take ( ) = ( 1) then

P

N | ( )| = i.e.
P

N ( ) does not
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exist while
P

=1 ( ) does exist. On the other hand, if

X

N

| ( )| =
X

=1

| ( )|

then Eq. (2.11) is valid.

Theorem 2.19 (Dominated Convergence Theorem for Sums). Suppose that :
C is a sequence of functions on such that ( ) = lim ( ) C exists

for all Further assume there is a dominating function : [0 )
such that

(2.12) | ( )| ( ) for all and N

and that is summable. Then

(2.13) lim
X

( ) =
X

( )

Proof. Notice that | | = lim | | so that is summable. By considering
the real and imaginary parts of separately, it su ces to prove the theorem in the
case where is real. By Fatou’s Lemma,

X

( ± ) =
X

lim inf ( ± ) lim inf
X

( ± )

=
X

+ lim inf

Ã

±
X

!

Since lim inf ( ) = lim sup we have shown,
X

±
X X

+

½

lim inf
P

lim sup
P

and therefore
lim sup

X X

lim inf
X

This shows that lim
P

exists and is equal to
P

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that | |
and in particular that is summable. Given 0 let such that

X

\
Then for such that

¯

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

¯

X

( )

¯

¯

¯

¯

¯

¯

X

| | =
X

| |+
X

\
| |

X

| |+ 2
X

\
X

| |+ 2
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and hence that
¯

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

¯

X

| |+ 2

Since this last equation is true for all such we learn that
¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

X

| |+ 2

which then implies that

lim sup

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

lim sup
X

| |+ 2

= 2

Because 0 is arbitrary we conclude that

lim sup

¯

¯

¯

¯

¯

X X

¯

¯

¯

¯

¯

= 0

which is the same as Eq. (2.13).

2.5. Iterated sums. Let and be two sets. The proof of the following lemma
is left to the reader.

Lemma 2.20. Suppose that : C is function and is a subset such
that ( ) = 0 for all Show that

P

exists i
P

exists, and if the sums
exist then

X

=
X

Theorem 2.21 (Tonelli’s Theorem for Sums). Suppose that : × [0 ]
then

X

×
=
XX

=
XX

Proof. It su ces to show, by symmetry, that
X

×
=
XX

Let × The for any and such that × we have
X X

×
=
XX XX XX

i.e.
P P P

Taking the sup over in this last equation shows
X

×

XX

We must now show the opposite inequality. If
P

× = we are done so
we now assume that is summable. By Remark 2.8, there is a countable set
{( 0 0 )} =1 × o of which is identically 0
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Let { } =1 be an enumeration of { 0 } =1 then since ( ) = 0 if
{ } =1

P

( ) =
P

=1 ( ) for all Hence

XX

( ) =
XX

=1

( ) =
X

lim
X

=1

( )

= lim
XX

=1

( )(2.14)

wherein the last inequality we have used the monotone convergence theorem with
( ) :=

P

=1 ( ) If then

XX

=1

( ) =
X

×{ } =1

X

×

and therefore,

(2.15) lim
XX

=1

( )
X

×

Hence it follows from Eqs. (2.14) and (2.15) that

(2.16)
XX

( )
X

×

as desired.
Alternative proof of Eq. (2.16). Let = { 0 : N} and let { } =1 be an

enumeration of Then for ( ) = 0 for all
Given 0 let : [0 ) be the function such that

P

= and ( ) 0
for (For example we may define by ( ) = 2 for all and ( ) = 0 if

) For each let be a finite set such that
X

( )
X

( ) + ( )

Then
XX X X

( ) +
X

( )

=
X X

( ) + = sup
X X

( ) +

X

×
+(2.17)

wherein the last inequality we have used
X X

( ) =
X X

×

with
:= {( ) × : and } ×

Since 0 is arbitrary in Eq. (2.17), the proof is complete.
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Theorem 2.22 (Fubini’s Theorem for Sums). Now suppose that : × C
is a summable function, i.e. by Theorem 2.21 any one of the following equivalent
conditions hold:

(1)
P

× | |
(2)

P P | | or
(3)

P P | |
Then

X

×
=
XX

=
XX

Proof. If : R is real valued the theorem follows by applying Theorem
2.21 to ± — the positive and negative parts of The general result holds for
complex valued functions by applying the real version just proved to the real and
imaginary parts of

2.6. — spaces, Minkowski and Holder Inequalities. In this subsection, let
: (0 ] be a given function. Let F denote either C or R For (0 )

and : F let
k k (

X

| ( )| ( ))1

and for = let
k k = sup {| ( )| : }

Also, for 0 let
( ) = { : F : k k }

In the case where ( ) = 1 for all we will simply write ( ) for ( )

Definition 2.23. A norm on a vector space is a function k·k : [0 ) such
that

(1) (Homogeneity) k k = | | k k for all F and
(2) (Triangle inequality) k + k k k+ k k for all
(3) (Positive definite) k k = 0 implies = 0

A pair ( k·k) where is a vector space and k·k is a norm on is called a
normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 2.24. For [1 ] ( ( ) k · k ) is a normed vector space.
Proof. The only di culty is the proof of the triangle inequality which is the

content of Minkowski’s Inequality proved in Theorem 2.30 below.

2.6.1. Some inequalities.

Proposition 2.25. Let : [0 ) [0 ) be a continuous strictly increasing
function such that (0) = 0 (for simplicity) and lim ( ) = Let = 1 and

for 0 let

( ) =

Z

0

( 0) 0 and ( ) =

Z

0

( 0) 0

Then for all 0
( ) + ( )

and equality holds i = ( )
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Proof. Let

:= {( ) : 0 ( ) for 0 } and
:= {( ) : 0 ( ) for 0 }

then as one sees from Figure 2, [0 ]× [0 ] (In the figure: = 3 = 1

3 is the region under = ( ) for 0 3 and 1 is the region to the left of the
curve = ( ) for 0 1 ) Hence if denotes the area of a region in the plane,
then

= ([0 ]× [0 ]) ( ) + ( ) = ( ) + ( )

As it stands, this proof is a bit on the intuitive side. However, it will become rig-
orous if one takes to be Lebesgue measure on the plane which will be introduced
later.
We can also give a calculus proof of this theorem under the additional assumption

that is 1 (This restricted version of the theorem is all we need in this section.)
To do this fix 0 and let

( ) = ( ) =

Z

0

( ( ))

If ( ) = 1( ) then ( ) 0 and hence if ( ) we have

( ) =

Z

0

( ( )) =

Z ( )

0

( ( )) +

Z

( )

( ( ))

Z ( )

0

( ( )) = ( ( ))

Combining this with (0) = 0 we see that ( ) takes its maximum at some point
(0 ] and hence at a point where 0 = 0( ) = ( ) The only solution to this

equation is = ( ) and we have thus shown

( ) = ( )

Z ( )

0

( ( )) = ( ( ))

with equality when = ( ) To finish the proof we must show
R ( )

0
( ( )) =

( ) This is verified by making the change of variables = ( ) and then inte-
grating by parts as follows:

Z ( )

0

( ( )) =

Z

0

( ( ( ))) 0( ) =

Z

0

( ) 0( )

=

Z

0

( ) = ( )

Definition 2.26. The conjugate exponent [1 ] to [1 ] is := 1 with
the convention that = if = 1 Notice that is characterized by any of the
following identities:

(2.18)
1
+
1
= 1 1 + = = 1 and ( 1) =
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43210

4

3

2

1

0

x

y

x

y

Figure 2. A picture proof of Proposition 2.25.

Lemma 2.27. Let (1 ) and := 1 (1 ) be the conjugate exponent.
Then

+ for all 0

with equality if and only if = .

Proof. Let ( ) = for 1 Then ( ) = 1 = and ( ) =
1
1 = 1

wherein we have used 1 = ( 1) 1 = 1 ( 1) Therefore ( ) =
and hence by Proposition 2.25,

+

with equality i = 1

Theorem 2.28 (Hölder’s inequality). Let [1 ] be conjugate exponents. For
all : F

(2.19) k k1 k k · k k
If (1 ) then equality holds in Eq. (2.19) i

(
| |
k k ) = (

| |
k k )

Proof. The proof of Eq. (2.19) for {1 } is easy and will be left to
the reader. The cases where k k = 0 or or k k = 0 or are easily dealt
with and are also left to the reader. So we will assume that (1 ) and
0 k k k k Letting = | | k k and = | | k k in Lemma 2.27 implies

| |
k k k k

1 | |
k k +

1 | |
k k

Multiplying this equation by and then summing gives

k k1
k k k k

1
+
1
= 1
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with equality i

| |
k k =

| | 1

k k( 1)

| |
k k =

| |
k k

| | k k = k k | |

Definition 2.29. For a complex number C let

sgn( ) =

½

| | if 6= 0
0 if = 0

Theorem 2.30 (Minkowski’s Inequality). If 1 and ( ) then

k + k k k + k k
with equality i

sgn( ) = sgn( ) when = 1 and

= for some 0 when (1 )

Proof. For = 1

k + k1 =
X

| + |
X

(| | + | | ) =
X

| | +
X

| |

with equality i

| |+ | | = | + | sgn( ) = sgn( )

For =

k + k = sup | + | sup (| |+ | |)
sup | |+ sup | | = k k + k k

Now assume that (1 ) Since

| + | (2max (| | | |)) = 2 max (| | | | ) 2 (| | + | | )
it follows that

k + k 2
¡k k + k k ¢

The theorem is easily verified if k + k = 0 so we may assume k + k 0
Now

(2.20) | + | = | + || + | 1 (| |+ | |)| + | 1

with equality i sgn( ) = sgn( ) Multiplying Eq. (2.20) by and then summing
and applying Holder’s inequality gives

X

| + |
X

| | | + | 1 +
X

| | | + | 1

(k k + k k ) k | + | 1 k(2.21)

with equality i
µ | |
k k

¶

=

µ | + | 1

k| + | 1k
¶

=

µ | |
k k

¶

and sgn( ) = sgn( )
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By Eq. (2.18), ( 1) = and hence

(2.22) k| + | 1k =
X

(| + | 1) =
X

| + |

Combining Eqs. (2.21) and (2.22) implies

(2.23) k + k k k k + k + k k k + k
with equality i

sgn( ) = sgn( ) and
µ | |
k k

¶

=
| + |
k + k =

µ | |
k k

¶

(2.24)

Solving for k + k in Eq. (2.23) with the aid of Eq. (2.18) shows that k + k
k k + k k with equality i Eq. (2.24) holds which happens i = with 0.

2.7. Exercises .

2.7.1. Set Theory. Let : be a function and { } be an indexed family
of subsets of verify the following assertions.

Exercise 2.1. ( ) =

Exercise 2.2. Suppose that show that \ ( ) = ( \ )

Exercise 2.3. 1( ) = 1( )

Exercise 2.4. 1( ) = 1( )

Exercise 2.5. Find a counter example which shows that ( ) = ( ) ( )
need not hold.

Exercise 2.6. Now suppose for each N {1 2 } that : R is a
function. Let

{ : lim ( ) = + }
show that

(2.25) = =1 =1 { : ( ) }
Exercise 2.7. Let : R be as in the last problem. Let

{ : lim ( ) exists in R}
Find an expression for similar to the expression for in (2.25). (Hint: use the
Cauchy criteria for convergence.)

2.7.2. Limit Problems.

Exercise 2.8. Prove Lemma 2.15.

Exercise 2.9. Prove Lemma 2.20.

Let { } =1 and { } =1 be two sequences of real numbers.

Exercise 2.10. Show lim inf ( ) = lim sup

Exercise 2.11. Suppose that lim sup = R̄ show that there is a
subsequence { } =1 of { } =1 such that lim =
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Exercise 2.12. Show that

(2.26) lim sup( + ) lim sup + lim sup

provided that the right side of Eq. (2.26) is well defined, i.e. no or +
type expressions. (It is OK to have + = or = etc.)

Exercise 2.13. Suppose that 0 and 0 for all N Show

(2.27) lim sup( ) lim sup · lim sup

provided the right hand side of (2.27) is not of the form 0 · or · 0
2.7.3. Dominated Convergence Theorem Problems.

Notation 2.31. For 0 R and 0 let 0( ) := { R : | 0| } be
the ball in R centered at 0 with radius

Exercise 2.14. Suppose R is a set and 0 is a point such that
(

0( ) \ { 0}) 6= for all 0 Let : \ { 0} C be a function on
\ { 0} Show that lim 0 ( ) exists and is equal to C 1 i for all se-

quences { } =1 \ { 0} which converge to 0 (i.e. lim = 0) we have
lim ( ) =

Exercise 2.15. Suppose that is a set, R is a set, and : × C is a
function satisfying:

(1) For each the function ( ) is continuous on 2

(2) There is a summable function : [0 ) such that

| ( )| ( ) for all and

Show that

(2.28) ( ) :=
X

( )

is a continuous function for

Exercise 2.16. Suppose that is a set, = ( ) R is an interval, and :
× C is a function satisfying:

(1) For each the function ( ) is di erentiable on
(2) There is a summable function : [0 ) such that

¯

¯

¯

¯

( )

¯

¯

¯

¯

( ) for all

(3) There is a 0 such that
P | ( 0 )|

Show:

a) for all that
P | ( )|

1More explicitly, lim 0 ( ) = means for every every 0 there exists a 0 such that

| ( ) | whenerver ( 0( ) \ { 0})

2To say := (· ) is continuous on means that : C is continuous relative to the
metric on R restricted to
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b) Let ( ) :=
P

( ) show is di erentiable on and that

˙ ( ) =
X

( )

(Hint: Use the mean value theorem.)

Exercise 2.17 (Di erentiation of Power Series). Suppose 0 and { } =0 is
a sequence of complex numbers such that

P

=0 | | for all (0 )
Show, using Exercise 2.16, ( ) :=

P

=0 is continuously di erentiable for
( ) and

0( ) =
X

=0

1 =
X

=1

1

Exercise 2.18. Let { } = be a summable sequence of complex numbers, i.e.
P

= | | For 0 and R define

( ) =
X

=

2

where as usual = cos( ) + sin( ) Prove the following facts about :

(1) ( ) is continuous for ( ) [0 )×R Hint: Let = Z and = ( )
and use Exercise 2.15.

(2) ( ) ( ) and 2 ( ) 2 exist for 0 and R
Hint: Let = Z and = for computing ( ) and = for
computing ( ) and 2 ( ) 2 See Exercise 2.16.

(3) satisfies the heat equation, namely

( ) = 2 ( ) 2 for 0 and R

2.7.4. Inequalities.

Exercise 2.19. Generalize Proposition 2.25 as follows. Let [ 0] and : R
[ ) [0 ) be a continuous strictly increasing function such that lim ( ) =

( ) = 0 if or lim ( ) = 0 if = Also let = 1

= (0) 0

( ) =

Z

0

( 0) 0 and ( ) =

Z

0

( 0) 0

Then for all 0

( ) + ( ) ( ) + ( )

and equality holds i = ( ) In particular, taking ( ) = prove Young’s
inequality stating

+ ( 1) ln ( 1) ( 1) + ln

Hint: Refer to the following pictures.
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Figure 3. Comparing areas when goes the same way as in
the text.

210-1-2

5

3.75

2.5

1.25

0

s

t

s

t

Figure 4. When notice that ( ) 0 but ( ) 0 Also
notice that ( ) is no longer needed to estimate

3. Metric, Banach and Topological Spaces

3.1. Basic metric space notions.

Definition 3.1. A function : × [0 ) is called a metric if
(1) (Symmetry) ( ) = ( ) for all
(2) (Non-degenerate) ( ) = 0 if and only if =
(3) (Triangle inequality) ( ) ( ) + ( ) for all

As primary examples, any normed space ( k·k) is a metric space with ( ) :=
k k Thus the space ( ) is a metric space for all [1 ] Also any subset
of a metric space is a metric space. For example a surface in R3 is a metric space
with the distance between two points on being the usual distance in R3

Definition 3.2. Let ( ) be a metric space. The open ball ( ) centered
at with radius 0 is the set

( ) := { : ( ) }

ANALYSIS TOOLS WITH APPLICATIONS 19

We will often also write ( ) as ( ) We also define the closed ball centered
at with radius 0 as the set ( ) := { : ( ) }
Definition 3.3. A sequence { } =1 in a metric space ( ) is said to be conver-
gent if there exists a point such that lim ( ) = 0 In this case we
write lim = of as

Exercise 3.1. Show that in Definition 3.3 is necessarily unique.

Definition 3.4. A set is closed i every convergent sequence { } =1

which is contained in has its limit back in A set is open i is
closed. We will write @ to indicate the is a closed subset of and
to indicate the is an open subset of We also let denote the collection of
open subsets of relative to the metric

Exercise 3.2. Let F be a collection of closed subsets of show F := F
is closed. Also show that finite unions of closed sets are closed, i.e. if { } =1 are
closed sets then =1 is closed. (By taking complements, this shows that the
collection of open sets, is closed under finite intersections and arbitrary unions.)

The following “continuity” facts of the metric will be used frequently in the
remainder of this book.

Lemma 3.5. For any non empty subset let ( ) inf{ ( )| }
then

(3.1) | ( ) ( )| ( )

Moreover the set { | ( ) } is closed in
Proof. Let and , then

( ) ( ) + ( )

Take the inf over in the above equation shows that

( ) ( ) + ( )

Therefore, ( ) ( ) ( ) and by interchanging and we also have that
( ) ( ) ( ) which implies Eq. (3.1). Now suppose that { } =1

is a convergent sequence and = lim By Eq. (3.1),

( ) ( ) ( ) ( ) 0 as

so that ( ) This shows that and hence is closed.

Corollary 3.6. The function satisfies,

| ( ) ( 0 0)| ( 0) + ( 0)

and in particular : × [0 ) is continuous.

Proof. By Lemma 3.5 for single point sets and the triangle inequality for the
absolute value of real numbers,

| ( ) ( 0 0)| | ( ) ( 0)|+ | ( 0) ( 0 0)|
( 0) + ( 0)
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Exercise 3.3. Show that is open i for every there is a 0 such
that ( ) In particular show ( ) is open for all and 0

Lemma 3.7. Let be a closed subset of and @ be as defined as in Lemma
3.5. Then as 0.

Proof. It is clear that ( ) = 0 for so that for each 0 and
hence 0 Now suppose that By Exercise 3.3 there exists
an 0 such that ( ) i.e. ( ) for all Hence and we
have shown that 0 . Finally it is clear that 0 whenever 0 .

Definition 3.8. Given a set contained a metric space let ¯ be the
closure of defined by

¯ := { : { } 3 = lim }

That is to say ¯ contains all limit points of

Exercise 3.4. Given show ¯ is a closed set and in fact

(3.2) ¯ = { : with closed}
That is to say ¯ is the smallest closed set containing

3.2. Continuity. Suppose that ( ) and ( ) are two metric spaces and :
is a function.

Definition 3.9. A function : is continuous at if for all 0 there
is a 0 such that

( ( ) ( 0)) provided that ( 0)

The function is said to be continuous if is continuous at all points

The following lemma gives three other ways to characterize continuous functions.

Lemma 3.10 (Continuity Lemma). Suppose that ( ) and ( ) are two metric
spaces and : is a function. Then the following are equivalent:

(1) is continuous.
(2) 1( ) for all i.e. 1( ) is open in if is open in
(3) 1( ) is closed in if is closed in
(4) For all convergent sequences { } { ( )} is convergent in and

lim ( ) =
³

lim
´

Proof. 1. 2. For all and 0 there exists 0 such that
( ( ) ( 0)) if ( 0) . i.e.

( ) 1( ( )( ))

So if and 1( ) we may choose 0 such that ( )( ) then

( ) 1( ( )( ))
1( )

showing that 1( ) is open.
2. 1 Let 0 and then, since 1( ( )( )) there exists 0

such that ( ) 1( ( )( )) i.e. if ( 0) then ( ( 0) ( )) .
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2. 3. If is closed in then and hence 1( ) Since
1( ) =

¡

1( )
¢

this shows that 1( ) is the complement of an open set
and hence closed. Similarly one shows that 3. 2
1. 4. If is continuous and in let 0 and choose 0

such that ( ( ) ( 0)) when ( 0) . There exists an 0 such that
( ) for all and therefore ( ( ) ( )) for all That is
to say lim ( ) = ( ) as .
4. 1. We will show that not 1. not 4. Not 1 implies there exists 0,

a point and a sequence { } =1 such that ( ( ) ( )) while
( ) 1 Clearly this sequence { } violates 4.
There is of course a local version of this lemma. To state this lemma, we will

use the following terminology.

Definition 3.11. Let be metric space and A subset is a neigh-
borhood of if there exists an open set such that We will
say that is an open neighborhood of if is open and

Lemma 3.12 (Local Continuity Lemma). Suppose that ( ) and ( ) are two
metric spaces and : is a function. Then following are equivalent:

(1) is continuous as
(2) For all neighborhoods of ( ) 1( ) is a neighborhood of
(3) For all sequences { } such that = lim { ( )} is conver-

gent in and

lim ( ) =
³

lim
´

The proof of this lemma is similar to Lemma 3.10 and so will be omitted.

Example 3.13. The function defined in Lemma 3.5 is continuous for each
In particular, if = { } it follows that ( ) is continuous for

each

Exercise 3.5. Show the closed ball ( ) := { : ( ) } is a closed
subset of

3.3. Basic Topological Notions. Using the metric space results above as moti-
vation we will axiomatize the notion of being an open set to more general settings.

Definition 3.14. A collection of subsets of is a topology if
(1)
(2) is closed under arbitrary unions, i.e. if for then

S

.

(3) is closed under finite intersections, i.e. if 1 then 1 · · ·

A pair ( ) where is a topology on will be called a topological space.

Notation 3.15. The subsets which are in are called open sets and we
will abbreviate this by writing and the those sets such that
are called closed sets. We will write @ if is a closed subset of

Example 3.16. (1) Let ( ) be a metric space, we write for the collection
of — open sets in We have already seen that is a topology, see Exercise
3.2.
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(2) Let be any set, then = P( ) is a topology. In this topology all subsets
of are both open and closed. At the opposite extreme we have the trivial
topology, = { } In this topology only the empty set and are open
(closed).

(3) Let = {1 2 3} then = { {2 3}} is a topology on which does
not come from a metric.

(4) Again let = {1 2 3} Then = {{1} {2 3} } is a topology, and the
sets {1} {2 3} are open and closed. The sets {1 2} and {1 3} are
neither open nor closed.

Figure 5. A topology.

Definition 3.17. Let ( ) be a topological space, and : be
the inclusion map, i.e. ( ) = for all Define

= 1( ) = { : }
the so called relative topology on

Notice that the closed sets in relative to are precisely those sets of the form
where is close in Indeed, is closed i \ = for some
which is equivalent to = \ ( ) = for some

Exercise 3.6. Show the relative topology is a topology on . Also show if ( ) is
a metric space and = is the topology coming from then ( ) is the topology
induced by making into a metric space using the metric | ×

Notation 3.18 (Neighborhoods of ). An open neighborhood of a point
is an open set such that Let = { : } denote the
collection of open neighborhoods of A collection is called a neighborhood
base at if for all there exists such that .

The notation should not be confused with

{ } := 1
{ }( ) = {{ } : } = { { }}

When ( ) is a metric space, a typical example of a neighborhood base for is
= { ( ) : D} where D is any dense subset of (0 1]

Definition 3.19. Let ( ) be a topological space and be a subset of
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(1) The closure of is the smallest closed set ¯ containing i.e.

¯ := { : @ }
(Because of Exercise 3.4 this is consistent with Definition 3.8 for the closure
of a set in a metric space.)

(2) The interior of is the largest open set contained in i.e.

= { : }
(3) The accumulation points of is the set

acc( ) = { : \ { } 6= for all }
(4) The boundary of is the set := ¯ \
(5) is a neighborhood of a point if This is equivalent to

requiring there to be an open neighborhood of of such that

Remark 3.20. The relationships between the interior and the closure of a set are:

( ) =
\

{ : and } =
\

{ : is closed } =
and similarly, ( ¯) = ( ) Hence the boundary of may be written as

(3.3) ¯ \ = ¯ ( ) = ¯

which is to say consists of the points in both the closure of and

Proposition 3.21. Let and

(1) If and = then ¯ =
(2) ¯ i 6= for all
(3) i 6= and 6= for all
(4) ¯ = acc( )

Proof. 1. Since = and since is closed, ¯ That is to
say ¯ =
2. By Remark 3.203, ¯ = (( ) ) so ¯ i ( ) which happens i
* for all i.e. i 6= for all
3. This assertion easily follows from the Item 2. and Eq. (3.3).
4. Item 4. is an easy consequence of the definition of acc( ) and item 2.

Lemma 3.22. Let ¯ denote the closure of in with its relative
topology and ¯ = ¯ be the closure of in then ¯ = ¯

Proof. Using the comments after Definition 3.17,

¯ = { @ : } = { : @ }
= ( { : @ }) = ¯

Alternative proof. Let then ¯ i for all 6= This
happens i for all = 6= which happens i ¯ That
is to say ¯ = ¯

3Here is another direct proof of item 2. which goes by showing ¯ i there exists
such that = . If ¯ then = and ¯ = . Conversely if there
exists such that = then by Item 1. ¯ =
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Definition 3.23. Let ( ) be a topological space and We say a subset
U is an open cover of if U The set is said to be compact if every
open cover of has finite a sub-cover, i.e. if U is an open cover of there exists
U0 U such that U0 is a cover of (We will write @@ to denote that

and is compact.) A subset is precompact if ¯ is compact.

Proposition 3.24. Suppose that is a compact set and is a closed
subset. Then is compact. If { } =1 is a finite collections of compact subsets of
then = =1 is also a compact subset of

Proof. Let U is an open cover of then U { } is an open cover of
The cover U { } of has a finite subcover which we denote by U0 { } where
U0 U Since = it follows that U0 is the desired subcover of
For the second assertion suppose U is an open cover of Then U covers

each compact set and therefore there exists a finite subset U U for each
such that U Then U0 := =1U is a finite cover of

Definition 3.25. We say a collection F of closed subsets of a topological space
( ) has the finite intersection property if F0 6= for all F0 F
The notion of compactness may be expressed in terms of closed sets as follows.

Proposition 3.26. A topological space is compact i every family of closed sets
F P( ) with the finite intersection property satisfies

TF 6=
Proof. ( ) Suppose that is compact and F P( ) is a collection of closed

sets such that
TF = Let

U = F := { : F}
then U is a cover of and hence has a finite subcover, U0 Let F0 = U0 F
then F0 = so that F does not have the finite intersection property.
( ) If is not compact, there exists an open cover U of with no finite sub-

cover. Let F = U then F is a collection of closed sets with the finite intersection
property while

TF =
Exercise 3.7. Let ( ) be a topological space. Show that is compact i
( ) is a compact topological space.

Definition 3.27. Let ( ) be a topological space. A sequence { } =1

converges to a point if for all almost always (abbreviated
a.a.), i.e. #({ : }) We will write as or lim =
when converges to

Example 3.28. Let = {1 2 3} and = { {1 2} {2 3} {2}} and = 2 for
all Then for every So limits need not be unique!

Definition 3.29. Let ( ) and ( ) be topological spaces. A function :
is continuous if 1( ) . We will also say that is —

continuous or ( ) — continuous. We also say that is continuous at a point
if for every open neighborhood of ( ) there is an open neighborhood

of such that 1( ) See Figure 6.

Definition 3.30. A map : between topological spaces is called a home-
omorphism provided that is bijective, is continuous and 1 : is
continuous. If there exists : which is a homeomorphism, we say that
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Figure 6. Checking that a function is continuous at

and are homeomorphic. (As topological spaces and are essentially the
same.)

Exercise 3.8. Show : is continuous i is continuous at all points

Exercise 3.9. Show : is continuous i 1( ) is closed in for all
closed subsets of

Exercise 3.10. Suppose : is continuous and is compact, then
( ) is a compact subset of

Exercise 3.11 (Dini’s Theorem). Let be a compact topological space and :
[0 ) be a sequence of continuous functions such that ( ) 0 as

for each Show that in fact 0 uniformly in i.e. sup ( ) 0 as
Hint: Given 0 consider the open sets := { : ( ) }

Definition 3.31 (First Countable). A topological space, ( ) is first countable
i every point has a countable neighborhood base. (All metric space are
first countable.)

When is first countable, we may formulate many topological notions in terms
of sequences.

Proposition 3.32. If : is continuous at and lim =
then lim ( ) = ( ) Moreover, if there exists a countable neighborhood
base of then is continuous at i lim ( ) = ( ) for all sequences

{ } =1 such that as

Proof. If : is continuous and is a neighborhood of ( )
then there exists a neighborhood of such that ( ) Since

a.a. and therefore ( ) ( ) a.a., i.e. ( ) ( ) as
Conversely suppose that { } =1 is a countable neighborhood base at and

lim ( ) = ( ) for all sequences { } =1 such that By replacing

by 1 · · · if necessary, we may assume that { } =1 is a decreasing
sequence of sets. If were not continuous at then there exists ( ) such
that 1( )0 Therefore, is not a subset of 1( ) for all Hence for
each we may choose \ 1( ) This sequence then has the property
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that as while ( ) for all and hence lim ( ) 6= ( )

Lemma 3.33. Suppose there exists { } =1 such that then ¯

Conversely if ( ) is a first countable space (like a metric space) then if ¯

there exists { } =1 such that

Proof. Suppose { } =1 and Since ¯ is an open set, if
¯ then ¯ a.a. contradicting the assumption that { } =1

Hence ¯

For the converse we now assume that ( ) is first countable and that { } =1 is
a countable neighborhood base at such that 1 2 3 By Proposition
3.21, ¯ i 6= for all Hence ¯ implies there exists
for all It is now easily seen that as

Definition 3.34 (Support). Let : be a function from a topological space
( ) to a vector space Then we define the support of by

supp( ) := { : ( ) 6= 0}
a closed subset of

Example 3.35. For example, let ( ) = sin( )1[0 4 ]( ) R then

{ 6= 0} = (0 4 ) \ { 2 3 }
and therefore supp( ) = [0 4 ]

Notation 3.36. If and are two topological spaces, let ( ) denote the
continuous functions from to If is a Banach space, let

( ) := { ( ) : sup k ( )k }

and
( ) := { ( ) : supp( ) is compact}

If = R or C we will simply write ( ) ( ) and ( ) for ( )
( ) and ( ) respectively.

The next result is included for completeness but will not be used in the sequel
so may be omitted.

Lemma 3.37. Suppose that : is a map between topological spaces. Then
the following are equivalent:

(1) is continuous.
(2) ( ¯) ( ) for all
(3) 1( ) 1( ¯) for all @

Proof. If is continuous, then 1
³

( )
´

is closed and since 1 ( ( ))

1
³

( )
´

it follows that ¯ 1
³

( )
´

From this equation we learn that

( ¯) ( ) so that (1) implies (2) Now assume (2), then for (taking
= 1( ¯)) we have

( 1( )) ( 1( ¯)) ( 1( ¯)) ¯
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and therefore

(3.4) 1( ) 1( ¯)

This shows that (2) implies (3) Finally if Eq. (3.4) holds for all then when is
closed this shows that

1( ) 1( ¯) = 1( ) 1( )

which shows that
1( ) = 1( )

Therefore 1( ) is closed whenever is closed which implies that is continuous.

3.4. Completeness.

Definition 3.38 (Cauchy sequences). A sequence { } =1 in a metric space ( )
is Cauchy provided that

lim ( ) = 0

Exercise 3.12. Show that convergent sequences are always Cauchy sequences. The
converse is not always true. For example, let = Q be the set of rational numbers
and ( ) = | | Choose a sequence { } =1 Q which converges to 2 R
then { } =1 is (Q ) — Cauchy but not (Q ) — convergent. The sequence does
converge in R however.

Definition 3.39. A metric space ( ) is complete if all Cauchy sequences are
convergent sequences.

Exercise 3.13. Let ( ) be a complete metric space. Let be a subset of
viewed as a metric space using | × Show that ( | × ) is complete i is

a closed subset of

Definition 3.40. If ( k·k) is a normed vector space, then we say { } =1

is a Cauchy sequence if lim k k = 0 The normed vector space is a
Banach space if it is complete, i.e. if every { } =1 which is Cauchy is
convergent where { } =1 is convergent i there exists such that
lim k k = 0 As usual we will abbreviate this last statement by writing
lim =

Lemma 3.41. Suppose that is a set then the bounded functions ( ) on is
a Banach space with the norm

k k = k k = sup | ( )|

Moreover if is a topological space the set ( ) ( ) = ( ) is closed
subspace of ( ) and hence is also a Banach space.

Proof. Let { } =1 ( ) be a Cauchy sequence. Since for any we
have

(3.5) | ( ) ( )| k k
which shows that { ( )} =1 F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, ( ) := lim ( ) exists for all Passing to
the limit in Eq. (3.5) implies

| ( ) ( )| lim sup k k
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and taking the supremum over of this inequality implies

k k lim sup k k 0 as

showing in ( )
For the second assertion, suppose that { } =1 ( ) ( ) and

( ) We must show that ( ) i.e. that is continuous. To this end
let then

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2 k k + | ( ) ( )|

Thus if 0 we may choose large so that 2 k k 2 and then for this
there exists an open neighborhood of such that | ( ) ( )| 2

for Thus | ( ) ( )| for showing the limiting function is
continuous.

Remark 3.42. Let be a set, be a Banach space and ( ) denote
the bounded functions : equipped with the norm k k = k k =
sup k ( )k If is a topological space, let ( ) denote those
( ) which are continuous. The same proof used in Lemma 3.41 shows that
( ) is a Banach space and that ( ) is a closed subspace of ( )

Theorem 3.43 (Completeness of ( )). Let be a set and : (0 ] be a
given function. Then for any [1 ] ( ( ) k·k ) is a Banach space.
Proof. We have already proved this for = in Lemma 3.41 so we now assume

that [1 ) Let { } =1 ( ) be a Cauchy sequence. Since for any

| ( ) ( )| 1

( )
k k 0 as

it follows that { ( )} =1 is a Cauchy sequence of numbers and ( ) :=
lim ( ) exists for all By Fatou’s Lemma,

k k =
X

· lim inf | | lim inf
X

· | |

= lim inf k k 0 as

This then shows that = ( )+ ( ) (being the sum of two — functions)

and that

Example 3.44. Here are a couple of examples of complete metric spaces.
(1) = R and ( ) = | |
(2) = R and ( ) = k k2 =

P

=1( )2

(3) = ( ) for [1 ] and any weight function
(4) = ([0 1] R) — the space of continuous functions from [0 1] to R and

( ) := max [0 1] | ( ) ( )| This is a special case of Lemma 3.41.
(5) Here is a typical example of a non-complete metric space. Let =

([0 1] R) and

( ) :=

Z 1

0

| ( ) ( )|
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3.5. Compactness in Metric Spaces. Let ( ) be a metric space and let
0 ( ) = ( ) \ { }

Definition 3.45. A point is an accumulation point of a subset if
6= \ { } for all containing

Let us start with the following elementary lemma which is left as an exercise to
the reader.

Lemma 3.46. Let be a subset of a metric space ( ) Then the following
are equivalent:

(1) is an accumulation point of
(2) 0 ( ) 6= for all 0
(3) ( ) is an infinite set for all 0
(4) There exists { } =1 \ { } with lim =

Definition 3.47. A metric space ( ) is said to be — bounded ( 0) provided
there exists a finite cover of by balls of radius The metric space is totally
bounded if it is — bounded for all 0

Theorem 3.48. Let be a metric space. The following are equivalent.
(a) is compact.
(b) Every infinite subset of has an accumulation point.
(c) is totally bounded and complete.

Proof. The proof will consist of showing that
( ) We will show that not not . Suppose there exists such

that #( ) = and has no accumulation points. Then for all there exists
0 such that := ( ) satisfies ( \ { }) = Clearly V = { } is

a cover of yet V has no finite sub cover. Indeed, for each consists
of at most one point, therefore if can only contain a finite number
of points from in particular 6= (See Figure 7.)

Figure 7. The construction of an open cover with no finite sub-cover.

( ) To show is complete, let { } =1 be a sequence and
:= { : N} If #( ) then { } =1 has a subsequence { } which

is constant and hence convergent. If is an infinite set it has an accumulation
point by assumption and hence Lemma 3.46 implies that { } has a convergence
subsequence.
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We now show that is totally bounded. Let 0 be given and choose 1 If
possible choose 2 such that ( 2 1) then if possible choose 3 such
that ( 3 { 1 2}) and continue inductively choosing points { } =1

such that ( { 1 1}) This process must terminate, for otherwise
we could choose = { } =1 and infinite number of distinct points such that
( { 1 1}) for all = 2 3 4 Since for all the ( 3)
can contain at most one point, no point is an accumulation point of (See
Figure 8.)

Figure 8. Constructing a set with out an accumulation point.

( ) For sake of contradiction, assume there exists a cover an open cover
V = { } of with no finite subcover. Since is totally bounded for each

N there exists such that

=
[

(1 )
[

(1 )

Choose 1 1 such that no finite subset of V covers 1 := 1
(1) Since 1 =

2 1 (1 2) there exists 2 2 such that 2 := 1 2
(1 2) can not be

covered by a finite subset of V Continuing this way inductively, we construct sets
= 1 (1 ) with such no can be covered by a finite subset

of V Now choose for each Since { } =1 is a decreasing sequence of
closed sets such that diam( ) 2 it follows that { } is a Cauchy and hence
convergent with

= lim =1

Since V is a cover of there exists V such that Since { } and
diam( ) 0 it now follows that for some large. But this violates the
assertion that can not be covered by a finite subset of V (See Figure 9.)

Remark 3.49. Let be a topological space and be a Banach space. By combining
Exercise 3.10 and Theorem 3.48 it follows that ( ) ( )

Corollary 3.50. Let be a metric space then is compact i all sequences
{ } have convergent subsequences.

Proof. Suppose is compact and { }

ANALYSIS TOOLS WITH APPLICATIONS 31

Figure 9. Nested Sequence of cubes.

(1) If #({ : = 1 2 }) then choose such that = i.o.
and let { } { } such that = for all . Then

(2) If #({ : = 1 2 }) = We know = { } has an accumulation
point { }, hence there exists

Conversely if is an infinite set let { } =1 be a sequence of distinct
elements of . We may, by passing to a subsequence, assume as

. Now is an accumulation point of by Theorem 3.48 and hence
is compact.

Corollary 3.51. Compact subsets of R are the closed and bounded sets.

Proof. If is closed and bounded then is complete (being the closed subset
of a complete space) and is contained in [ ] for some positive integer
For 0 let

= Z [ ] := { : Z and | | for = 1 2 }
We will show, by choosing 0 su ciently small, that

(3.6) [ ] ( )

which shows that is totally bounded. Hence by Theorem 3.48, is compact.
Suppose that [ ] then there exists such that | | for
= 1 2 Hence

2( ) =
X

=1

( )
2 2

which shows that ( ) Hence if choose we have shows that
( ) i.e. Eq. (3.6) holds.

Example 3.52. Let = (N) with [1 ) and such that ( ) 0 for
all N The set

:= { : | ( )| ( ) for all N}
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is compact. To prove this, let { } =1 be a sequence. By compactness of
closed bounded sets in C for each N there is a subsequence of { ( )} =1 C
which is convergent. By Cantor’s diagonalization trick, we may choose a subse-
quence { } =1 of { } =1 such that ( ) := lim ( ) exists for all N 4

Since | ( )| ( ) for all it follows that | ( )| ( ) i.e. Finally

lim k k = lim
X

=1

| ( ) ( )| =
X

=1

lim | ( ) ( )| = 0

where we have used the Dominated convergence theorem. (Note | ( ) ( )|
2 ( ) and is summable.) Therefore and we are done.
Alternatively, we can prove is compact by showing that is closed and totally

bounded. It is simple to show is closed, for if { } =1 is a convergent
sequence in := lim then | ( )| lim | ( )| ( ) for all N
This shows that and hence is closed. To see that is totally bounded, let

0 and choose such that
¡
P

= +1 | ( )|
¢1

Since
Q

=1 ( )(0) C
is closed and bounded, it is compact. Therefore there exists a finite subset
Q

=1 ( )(0) such that

Y

=1

( )(0) ( )

where ( ) is the open ball centered at C relative to the ({1 2 3 })
— norm. For each let ˜ be defined by ˜( ) = ( ) if and ˜( ) = 0
for + 1 I now claim that

(3.7) ˜(2 )

which, when verified, shows is totally bounced. To verify Eq. (3.7), let
and write = + where ( ) = ( ) for and ( ) = 0 for Then
by construction ˜( ) for some ˜ and

k k
Ã

X

= +1

| ( )|
!1

So we have

k ˜k = k + ˜k k ˜k + k k 2

Exercise 3.14 (Extreme value theorem). Let ( ) be a compact topological space
and : R be a continuous function. Show inf sup and

4The argument is as follows. Let { 1} =1 be a subsequence of N = { } =1 such that
lim 1 (1) exists. Now choose a subsequence { 2} =1 of { 1} =1 such that lim 2(2)

exists and similalry { 3} =1 of { 2} =1 such that lim 3(3) exists. Continue on this way

inductively to get

{ } =1 { 1} =1 { 2} =1 { 3} =1

such that lim ( ) exists for all N Let := so that eventually { } =1 is a

subsequnce of { } =1 for all Therefore, we may take :=
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there exists such that ( ) = inf and ( ) = sup 5 Hint: use Exercise
3.10 and Corollary 3.51.

Exercise 3.15 (Uniform Continuity). Let ( ) be a compact metric space, ( )
be a metric space and : be a continuous function. Show that is
uniformly continuous, i.e. if 0 there exists 0 such that ( ( ) ( )) if

with ( ) Hint: I think the easiest proof is by using a sequence
argument.

Definition 3.53. Let be a vector space. We say that two norms, |·| and k·k on
are equivalent if there exists constants (0 ) such that

k k | | and | | k k for all
Lemma 3.54. Let be a finite dimensional vector space. Then any two norms
|·| and k·k on are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let { } =1 be a basis for and define a new norm on by
°

°

°

°

°

X

=1

°

°

°

°

°

1

X

=1

| | for F

By the triangle inequality of the norm |·| we find
¯

¯

¯

¯

¯

X

=1

¯

¯

¯

¯

¯

X

=1

| | | |
X

=1

| | =
°

°

°

°

°

X

=1

°

°

°

°

°

1

where = max | | Thus we have
| | k k1

for all This inequality shows that |·| is continuous relative to k·k1 Now
let := { : k k1 = 1} a compact subset of relative to k·k1 Therefore by
Exercise 3.14 there exists 0 such that

= inf {| | : } = | 0| 0

Hence given 0 6= then k k1 so that
¯

¯

¯

¯k k1

¯

¯

¯

¯

= | | 1

k k1
or equivalently

k k1
1 | |

This shows that |·| and k·k1 are equivalent norms. Similarly one shows that k·k and
k·k1 are equivalent and hence so are |·| and k·k
Definition 3.55. A subset of a topological space is dense if ¯ = A
topological space is said to be separable if it contains a countable dense subset,

Example 3.56. The following are examples of countable dense sets.

5Here is a proof if is a metric space. Let { } =1 be a sequence such that ( ) sup
By compactness of we may assume, by passing to a subsequence if necessary that
as By continuity of ( ) = sup
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(1) The rational number Q are dense in R equipped with the usual topology.
(2) More generally, Q is a countable dense subset of R for any N
(3) Even more generally, for any function : N (0 ) ( ) is separable for

all 1 For example, let F be a countable dense set, then

:= { ( ) : ¡ for all and #{ : 6= 0} }
The set can be taken to be Q if F = R or Q+ Q if F = C

(4) If ( ) is a metric space which is separable then every subset is
also separable in the induced topology.

To prove 4. above, let = { } =1 be a countable dense subset of
Let ( ) = inf{ ( ) : } be the distance from to . Recall that
(· ) : [0 ) is continuous. Let = ( ) 0 and for each let

( 1 ) if = 0 otherwise choose (2 ) Then if and
0 we may choose N such that ( ) 3 and 1 3 If 0

( ) 2 2 3 and if = 0 ( ) 3 and therefore

( ) ( ) + ( )

This shows that { } =1 is a countable dense subset of

Lemma 3.57. Any compact metric space ( ) is separable.

Proof. To each integer there exists such that = ( 1 )
Let := =1 — a countable subset of Moreover, it is clear by construction
that ¯ =

3.6. Compactness in Function Spaces. In this section, let ( ) be a topolog-
ical space.

Definition 3.58. Let F ( )

(1) F is equicontinuous at i for all 0 there exists such that
| ( ) ( )| for all and F

(2) F is equicontinuous if F is equicontinuous at all points
(3) F is pointwise bounded if sup{| ( )| : | F} for all .

Theorem 3.59 (Ascoli-Arzela Theorem). Let ( ) be a compact topological space
and F ( ) Then F is precompact in ( ) i F is equicontinuous and point-
wise bounded.

Proof. ( ) Since ( ) ( ) is a complete metric space, we must show F
is totally bounded. Let 0 be given. By equicontinuity there exists for
all such that | ( ) ( )| 2 if and F . Since is compact
we may choose such that = We have now decomposed
into “blocks” { } such that each F is constant to within on Since
sup {| ( )| : and F} it is now evident that

sup {| ( )| : and F} sup {| ( )| : and F}+
Let D { 2 : Z} [ ] If F and D (i.e. : D is a

function) is chosen so that | ( ) ( )| 2 for all then

| ( ) ( )| | ( ) ( )|+ | ( ) ( )| and

From this it follows that F = S©F : D
ª

where, for D

F { F : | ( ) ( )| for and }
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Let :=
©

D : F 6= ª

and for each choose F F For F
and we have

| ( ) ( )| | ( ) ( ))|+ | ( ) ( )| 2

So k k 2 for all F showing that F (2 ) Therefore,

F = F (2 )

and because 0 was arbitrary we have shown that F is totally bounded.
( ) Since k·k : ( ) [0 ) is a continuous function on ( ) it is bounded

on any compact subset F ( ) This shows that sup {k k : F} which
clearly implies that F is pointwise bounded.6 Suppose F were not equicontinuous
at some point that is to say there exists 0 such that for all
sup sup

F
| ( ) ( )| 7 Equivalently said, to each we may choose

(3.8) F and such that | ( ) ( )|

Set C = { : and }k·k F and notice for any V that

VC C V 6=
so that {C } F has the finite intersection property.8 Since F is compact,
it follows that there exists some

\

C 6=

Since is continuous, there exists such that | ( ) ( )| 3 for all
Because C there exists such that k k 3 We now

arrive at a contradiction;

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
3 + 3 + 3 =

6One could also prove that F is pointwise bounded by considering the continuous evaluation
maps : ( ) R given by ( ) = ( ) for all

7If is first countable we could finish the proof with the following argument. Let { } =1
be a neighborhood base at such that 1 2 3 By the assumption that F is not
equicontinuous at there exist F and such that | ( ) ( )| Since
F is a compact metric space by passing to a subsequence if necessary we may assume that
converges uniformly to some F Because as we learn that

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2k k+ | ( ) ( )| 0 as

which is a contradiction.
8If we are willing to use Net’s described in Appendix D below we could finish the proof as

follows. Since F is compact, the net { } F has a cluster point F ( ) Choose a
subnet { } of { } such that uniformly. Then, since implies
we may conclude from Eq. (3.8) that

| ( ) ( )| | ( ) ( )| = 0
which is a contradiction.
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3.7. Bounded Linear Operators Basics.

Definition 3.60. Let and be normed spaces and : be a linear
map. Then is said to be bounded provided there exists such that
k ( )k k k for all We denote the best constant by k k, i.e.

k k = sup
6=0
k ( )k
k k = sup

6=0
{k ( )k : k k = 1}

The number k k is called the operator norm of

Proposition 3.61. Suppose that and are normed spaces and : is a
linear map. The the following are equivalent:

(a) is continuous.
(b) is continuous at 0.
(c) is bounded.

Proof. (a) (b) trivial. (b) (c) If continuous at 0 then there exist 0
such that k ( )k 1 if k k . Therefore for any k ( k k) k 1 which
implies that k ( )k 1k k and hence k k 1 (c) (a) Let and

0 be given. Then

k ( ) ( )k = k ( )k k k k k
provided k k k k
In the examples to follow all integrals are the standard Riemann integrals, see

Section 4 below for the definition and the basic properties of the Riemann integral.

Example 3.62. Suppose that : [0 1]× [0 1] C is a continuous function. For
([0 1]) let

( ) =

Z 1

0

( ) ( )

Since

| ( ) ( )|
Z 1

0

| ( ) ( )| | ( )|
k k max | ( ) ( )|(3.9)

and the latter expression tends to 0 as by uniform continuity of Therefore
([0 1]) and by the linearity of the Riemann integral, : ([0 1]) ([0 1])

is a linear map. Moreover,

| ( )|
Z 1

0

| ( )| | ( )|
Z 1

0

| ( )| · k k k k

where

(3.10) := sup
[0 1]

Z 1

0

| ( )|

This shows k k and therefore is bounded. We may in fact show
k k = To do this let 0 [0 1] be such that

sup
[0 1]

Z 1

0

| ( )| =

Z 1

0

| ( 0 )|
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Such an 0 can be found since, using a similar argument to that in Eq. (3.9),
R 1

0
| ( )| is continuous. Given 0 let

( ) :=
( 0 )

q

+ | ( 0 )|2

and notice that lim 0 k k = 1 and

k k | ( 0)| = ( 0) =

Z 1

0

| ( 0 )|2
q

+ | ( 0 )|2

Therefore,

k k lim
0

1

k k
Z 1

0

| ( 0 )|2
q

+ | ( 0 )|2

= lim
0

Z 1

0

| ( 0 )|2
q

+ | ( 0 )|2
=

since

0 | ( 0 )| | ( 0 )|2
q

+ | ( 0 )|2
=

| ( 0 )|
q

+ | ( 0 )|2
·

q

+ | ( 0 )|2 | ( 0 )|
¸

q

+ | ( 0 )|2 | ( 0 )|
and the latter expression tends to zero uniformly in as 0
We may also consider other norms on ([0 1]) Let (for now) 1 ([0 1]) denote
([0 1]) with the norm

k k1 =
Z 1

0

| ( )|
then : 1 ([0 1] ) ([0 1]) is bounded as well. Indeed, let =
sup {| ( )| : [0 1]} then

|( )( )|
Z 1

0

| ( ) ( )| k k1
which shows k k k k1 and hence,

k k 1 max {| ( )| : [0 1]}
We can in fact show that k k = as follows. Let ( 0 0) [0 1]2 satisfying
| ( 0 0)| = Then given 0 there exists a neighborhood = × of
( 0 0) such that | ( ) ( 0 0)| for all ( ) Let ( [0 ))

such that
R 1

0
( ) = 1 Choose C such that | | = 1 and ( 0 0) =

then

|( )( 0)| =
¯

¯

¯

¯

Z 1

0

( 0 ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

( 0 ) ( )

¯

¯

¯

¯

Re

Z

( 0 ) ( )

Z

( ) ( ) = ( ) k k 1

and hence
k k ( ) k k 1
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showing that k k Since 0 is arbitrary, we learn that k k and
hence k k =
One may also view as a map from : ([0 1]) 1([0 1]) in which case one

may show

k k 1

Z 1

0

max | ( )|

For the next three exercises, let = R and = R and : be a linear
transformation so that is given by matrix multiplication by an × matrix. Let
us identify the linear transformation with this matrix.

Exercise 3.16. Assume the norms on and are the 1 — norms, i.e. for R
k k =P =1 | | Then the operator norm of is given by

k k = max
1

X

=1

| |

Exercise 3.17. ms on and are the — norms, i.e. for R k k =
max1 | | Then the operator norm of is given by

k k = max
1

X

=1

| |

Exercise 3.18. Assume the norms on and are the 2 — norms, i.e. for R
k k2 =P =1

2 Show k k2 is the largest eigenvalue of the matrix : R R

Exercise 3.19. If is finite dimensional normed space then all linear maps are
bounded.

Notation 3.63. Let ( ) denote the bounded linear operators from to If
= F we write for ( F) and call the (continuous) dual space to

Lemma 3.64. Let be normed spaces, then the operator norm k·k on ( )
is a norm. Moreover if is another normed space and : and :
are linear maps, then k k k kk k where :=

Proof. As usual, the main point in checking the operator norm is a norm is
to verify the triangle inequality, the other axioms being easy to check. If
( ) then the triangle inequality is verified as follows:

k + k = sup
6=0
k + k

k k sup
6=0
k k+ k k

k k

sup
6=0
k k
k k + sup

6=0
k k
k k = k k+ k k

For the second assertion, we have for that

k k k kk k k kk kk k
From this inequality and the definition of k k it follows that k k k kk k
Proposition 3.65. Suppose that is a normed vector space and is a Banach
space. Then ( ( ) k · k ) is a Banach space. In particular the dual space
is always a Banach space.
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We will use the following characterization of a Banach space in the proof of this
proposition.

Theorem 3.66. A normed space ( k · k) is a Banach space i for every sequence

{ } =1 such that
P

=1
k k then lim

P

=1
= exists in (that is to

say every absolutely convergent series is a convergent series in ). As usual we

will denote by
P

=1

Proof. ( )If is complete and
P

=1
k k then sequence

P

=1
for

N is Cauchy because (for )

k k
X

= +1

k k 0 as

Therefore =
P

=1
:= lim

P

=1
exists in

( =) Suppose that { } =1 is a Cauchy sequence and let { = } =1 be a

subsequence of { } =1 such that
P

=1
k +1 k By assumption

+1 1 =
X

=1

( +1 ) =
X

=1

( +1 ) as

This shows that lim exists and is equal to := 1 + Since { } =1 is
Cauchy,

k k k k+ k k 0 as

showing that lim exists and is equal to
Proof. (Proof of Proposition 3.65.) We must show ( ( ) k·k ) is complete.

Suppose that ( ) is a sequence of operators such that
P

=1
k k

Then
X

=1

k k
X

=1

k k k k

and therefore by the completeness of :=
P

=1
= lim exists in

where :=
P

=1
The reader should check that : so defined in

linear. Since,

k k = lim k k lim
X

=1

k k
X

=1

k k k k

is bounded and

(3.11) k k
X

=1

k k
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Similarly,

k k = lim k k lim
X

= +1

k k k k =
X

= +1

k k k k

and therefore,

k k
X

=

k k 0 as

Of course we did not actually need to use Theorem 3.66 in the proof. Here is
another proof. Let { } =1 be a Cauchy sequence in ( ) Then for each

k k k k k k 0 as

showing { } =1 is Cauchy in Using the completeness of there exists an
element such that

lim k k = 0

It is a simple matter to show : is a linear map. Moreover,

k k k k+ k k k k+ k k k k
and therefore

k k lim sup (k k+ k k k k) = k k·lim sup k k

Hence

k k lim sup k k 0 as

Thus we have shown that in ( ) as desired.

3.8. Inverting Elements in ( ) and Linear ODE.

Definition 3.67. A linear map : is an isometry if k k = k k for
all is said to be invertible if is a bijection and 1 is bounded.

Notation 3.68. We will write ( ) for those ( ) which are invert-
ible. If = we simply write ( ) and ( ) for ( ) and ( )
respectively.

Proposition 3.69. Suppose is a Banach space and ( ) ( )

satisfies
P

=0
k k Then is invertible and

( ) 1 = “
1

” =
X

=0

and
°

°( ) 1
°

°

X

=0

k k

In particular if k k 1 then the above formula holds and

°

°( ) 1
°

°

1

1 k k
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Proof. Since ( ) is a Banach space and
P

=0
k k it follows from Theo-

rem 3.66 that

:= lim := lim
X

=0

exists in ( ) Moreover, by Exercise 3.38 below,

( ) = ( ) lim = lim ( )

= lim ( )
X

=0

= lim ( +1) =

and similarly ( ) = This shows that ( ) 1 exists and is equal to
Moreover, ( ) 1 is bounded because

°

°( ) 1
°

° = k k
X

=0

k k

If we further assume k k 1 then k k k k and

X

=0

k k
X

=0

k k 1

1 k k

Corollary 3.70. Let and be Banach spaces. Then ( ) is an open
(possibly empty) subset of ( ) More specifically, if ( ) and
( ) satisfies

(3.12) k k k 1k 1

then ( )

(3.13) 1 =
X

=0

£

1
¤

1 ( )

and
°

°

1
°

° k 1k 1

1 k 1k k k
Proof. Let and be as above, then

= ( ) =
£

1( ))
¤

= ( )

where : is given by

:= 1( ) = 1

Now

k k = °° 1( ))
°

° k 1k k k k 1kk 1k 1 = 1

Therefore is invertible and hence so is (being the product of invertible
elements) with

1 = ( ) 1 1 =
£

1( ))
¤ 1 1

For the last assertion we have,
°

°

1
°

°

°

°( ) 1
°

° k 1k k 1k 1

1 k k k 1k 1

1 k 1k k k
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For an application of these results to linear ordinary di erential equations, see
Section 5.2.

3.9. Supplement: Sums in Banach Spaces.

Definition 3.71. Suppose that is a normed space and { : } is a
given collection of vectors in We say that =

P

if for all 0

there exists a finite set such that
°

°

P

°

° for all
such that (Unlike the case of real valued sums, this does not imply that
P k k See Proposition 12.19 below, from which one may manufacture
counter-examples to this false premise.)

Lemma 3.72. (1) When is a Banach space,
P

exists in i for all
0 there exists such that

°

°

P

°

° for all \
Also if

P

exists in then { : 6= 0} is at most countable. (2) If
=
P

exists and : is a bounded linear map between normed
spaces, then

P

exists in and

=
X

=
X

Proof. (1) Suppose that =
P

exists and 0 Let be as in
Definition 3.71. Then for \

°

°

°

°

°

X

°

°

°

°

°

°

°

°

°

°

X

+
X

°

°

°

°

°

+

°

°

°

°

°

X

°

°

°

°

°

=

°

°

°

°

°

X

°

°

°

°

°

+ 2

Conversely, suppose for all 0 there exists such that
°

°

P

°

°

for all \ Let := =1 1 and set :=
P

Then for

k k =
°

°

°

°

°

°

X

\

°

°

°

°

°

°

1 0 as

Therefore { } =1 is Cauchy and hence convergent in Let := lim then
for such that we have

°

°

°

°

°

X

°

°

°

°

°

k k+
°

°

°

°

°

°

X

\

°

°

°

°

°

°

k k+ 1

Since the right member of this equation goes to zero as it follows that
P

exists and is equal to
Let := =1 — a countable subset of Then for { } \ for all
and hence

k k =
°

°

°

°

°

°

X

{ }

°

°

°

°

°

°

1 0 as

Therefore = 0 for all \
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(2) Let be as in Definition 3.71 and such that Then
°

°

°

°

°

X

°

°

°

°

°

k k
°

°

°

°

°

X

°

°

°

°

°

k k

which shows that
P

exists and is equal to

3.10. Word of Caution.

Example 3.73. Let ( ) be a metric space. It is always true that ( ) ( )
since ( ) is a closed set containing ( ) However, it is not always true that
( ) = ( ) For example let = {1 2} and (1 2) = 1 then 1(1) = {1}
1(1) = {1} while 1(1) = For another counter example, take

=
©

( ) R2 : = 0 or = 1
ª

with the usually Euclidean metric coming from the plane. Then

(0 0)(1) =
©

(0 ) R2 : | | 1
ª

(0 0)(1) =
©

(0 ) R2 : | | 1
ª

while

(0 0)(1) = (0 0)(1) {(0 1)}
In spite of the above examples, Lemmas 3.74 and 3.75 below shows that for

certain metric spaces of interest it is true that ( ) = ( )

Lemma 3.74. Suppose that ( |·|) is a normed vector space and is the metric
on defined by ( ) = | | Then

( ) = ( ) and

( ) = { : ( ) = }
Proof. We must show that := ( ) ( ) =: ¯ For let =

then
| | = | | = ( )

Let = 1 1 so that 1 as Let = + then ( ) =
( ) so that ( ) and ( ) = 1 0 as This shows

that as and hence that ¯

3.10.1. Riemannian Metrics. This subsection is not completely self contained and
may safely be skipped.

Lemma 3.75. Suppose that is a Riemannian (or sub-Riemannian) manifold
and is the metric on defined by

( ) = inf { ( ) : (0) = and (1) = }
where ( ) is the length of the curve We define ( ) = if is not piecewise
smooth.
Then

( ) = ( ) and

( ) = { : ( ) = }
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x

y

z

Figure 10. An almost length minimizing curve joining to

Proof. Let := ( ) ( ) =: ¯ We will show that ¯ by showing
¯ Suppose that ¯ and choose 0 such that ( ) ¯ = In
particular this implies that

( ) ( ) =

We will finish the proof by showing that ( ) + and hence that
This will be accomplished by showing: if ( ) + then ( ) ( ) 6=
If ( ) max( ) then either ( ) or ( ) In either case ( )
( ) 6= Hence we may assume that max( ) ( ) + Let 0 be a

number such that
max( ) ( ) +

and choose a curve from to such that ( ) Also choose 0 0 such
that 0 0 which can be done since Let ( ) = ( ( )) a
continuous function on [0 1] and therefore ([0 1]) R is a connected set which
contains 0 and ( ) Therefore there exists 0 [0 1] such that ( ( 0)) =
( 0) =

0 Let = ( 0) ( ) then

( ) ( |[0 0]) = ( ) ( |[ 0 1]) ( ) = 0

and therefore ( ) ( ) 6=
Remark 3.76. Suppose again that is a Riemannian (or sub-Riemannian) manifold
and

( ) = inf { ( ) : (0) = and (1) = }
Let be a curve from to and let = ( ) ( ) Then for all 0 1

( ( ) ( )) ( |[ ]) +

So if is within of a length minimizing curve from to that |[ ] is within
of a length minimizing curve from ( ) to ( ) In particular if ( ) = ( )

then ( ( ) ( )) = ( |[ ]) for all 0 1 i.e. if is a length minimizing
curve from to that |[ ] is a length minimizing curve from ( ) to ( )
To prove these assertions notice that

( ) + = ( ) = ( |[0 ]) + ( |[ ]) + ( |[ 1])

( ( )) + ( |[ ]) + ( ( ) )

and therefore

( |[ ]) ( ) + ( ( )) ( ( ) )

( ( ) ( )) +
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3.11. Exercises.

Exercise 3.20. Prove Lemma 3.46.

Exercise 3.21. Let = ([0 1] R) and for let

k k1 :=
Z 1

0

| ( )|

Show that ( k·k1) is normed space and show by example that this space is not
complete.

Exercise 3.22. Let ( ) be a metric space. Suppose that { } =1 is a
sequence and set := ( +1) Show that for that

( )
1

X

=

X

=

Conclude from this that if
X

=1

=
X

=1

( +1)

then { } =1 is Cauchy. Moreover, show that if { } =1 is a convergent sequence
and = lim then

( )
X

=

Exercise 3.23. Show that ( ) is a complete metric space i every sequence
{ } =1 such that

P

=1 ( +1) is a convergent sequence in You
may find it useful to prove the following statements in the course of the proof.

(1) If { } is Cauchy sequence, then there is a subsequence such that
P

=1 ( +1 )

(2) If { } =1 is Cauchy and there exists a subsequence of { } such
that = lim exists, then lim also exists and is equal to

Exercise 3.24. Suppose that : [0 ) [0 ) is a 2 — function such that
(0) = 0 0 0 and 00 0 and ( ) is a metric space. Show that ( ) =
( ( )) is a metric on In particular show that

( )
( )

1 + ( )

is a metric on (Hint: use calculus to verify that ( + ) ( ) + ( ) for all
[0 ) )

Exercise 3.25. Let : (R)× (R) [0 ) be defined by

( ) =
X

=1

2
k k

1 + k k
where k k sup{| ( )| : | | } = max{| ( )| : | | }

(1) Show that is a metric on (R)
(2) Show that a sequence { } =1 (R) converges to (R) as

i converges to uniformly on compact subsets of R
(3) Show that ( (R) ) is a complete metric space.
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Exercise 3.26. Let {( )} =1 be a sequence of metric spaces, :=
Q

=1

and for = ( ( )) =1 and = ( ( )) =1 in let

( ) =
X

=1

2
( ( ) ( ))

1 + ( ( ) ( ))

Show: 1) ( ) is a metric space, 2) a sequence { } =1 converges to
i ( ) ( ) as for every = 1 2 and 3) is complete if

is complete for all

Exercise 3.27 (Tychono ’s Theorem). Let us continue the notation of the previous
problem. Further assume that the spaces are compact for all Show ( ) is
compact. Hint: Either use Cantor’s method to show every sequence { } =1

has a convergent subsequence or alternatively show ( ) is complete and totally
bounded.

Exercise 3.28. Let ( ) for = 1 be a finite collection of metric spaces
and for 1 and = ( 1 2 ) and = ( 1 ) in :=

Q

=1

let

( ) =

½

(
P

=1 [ ( )] )
1 if 6=

max ( ) if =

(1) Show ( ) is a metric space for [1 ] Hint: Minkowski’s inequality.
(2) Show that all of the metric { : 1 } are equivalent, i.e. for any

[1 ] there exists constants such that

( ) ( ) and ( ) ( ) for all

Hint: This can be done with explicit estimates or more simply using
Lemma 3.54.

(3) Show that the topologies associated to the metrics are the same for all
[1 ]

Exercise 3.29. Let be a closed proper subset of R and R \ Show there
exists a such that ( ) = ( )

Exercise 3.30. Let F = R in this problem and 2(N) be defined by

= { 2(N) : ( ) 1 + 1 for some N}
= =1{ 2(N) : ( ) 1 + 1 }

Show is a closed subset of 2(N) with the property that (0) = 1 while there
is no such that ( ) = 1 (Remember that in general an infinite union of
closed sets need not be closed.)

3.11.1. Banach Space Problems.

Exercise 3.31. Show that all finite dimensional normed vector spaces ( k·k) are
necessarily complete. Also show that closed and bounded sets (relative to the given
norm) are compact.

Exercise 3.32. Let ( k·k) be a normed space over F (R or C) Show the map
( ) F× × +

is continuous relative to the topology on F× × defined by the norm

k( )kF× × := | |+ k k+ k k

ANALYSIS TOOLS WITH APPLICATIONS 47

(See Exercise 3.28 for more on the metric associated to this norm.) Also show that
k·k : [0 ) is continuous.

Exercise 3.33. Let [1 ] and be an infinite set. Show the closed unit ball
in ( ) is not compact.

Exercise 3.34. Let = N and for [1 ) let k·k denote the (N) — norm.
Show k·k and k·k are inequivalent norms for 6= by showing

sup
6=0

k k
k k = if

Exercise 3.35. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 3.36. Folland Problem 5.9. Showing ([0 1]) is a Banach space.

Exercise 3.37. Folland Problem 5.11. Showing Holder spaces are Banach spaces.

Exercise 3.38. Let and be normed spaces. Prove the maps

( ) ( )×
and

( ) ( )× ( ) ( )

are continuous relative to the norms

k( )k ( )× := k k ( ) + k k and

k( )k ( )× ( ) := k k ( ) + k k ( )

on ( )× and ( )× ( ) respectively.

3.11.2. Ascoli-Arzela Theorem Problems.

Exercise 3.39. Let (0 ) and F ([0 ]) be a family of functions such
that:

(1) ˙( ) exists for all (0 ) and F
(2) sup F | (0)| and

(3) := sup F sup (0 )

¯

¯

¯

˙( )
¯

¯

¯

Show F is precompact in the Banach space ([0 ]) equipped with the norm
k k = sup [0 ] | ( )|
Exercise 3.40. Folland Problem 4.63.

Exercise 3.41. Folland Problem 4.64.

3.11.3. General Topological Space Problems.

Exercise 3.42. Give an example of continuous map, : and a compact
subset of such that 1( ) is not compact.

Exercise 3.43. Let be an open subset of R Show may be written as a disjoint
union of open intervals = ( ) where R {± } for = 1 2 · · ·
with = possible.
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4. The Riemann Integral

In this short chapter, the Riemann integral for Banach space valued functions
is defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter. The
following simple “Bounded Linear Transformation” theorem will often be used here
and in the sequel to define linear transformations.

Theorem 4.1 (B. L. T. Theorem). Suppose that is a normed space, is a
Banach space, and S is a dense linear subspace of If : S is a
bounded linear transformation (i.e. there exists such that k k k k
for all S) then has a unique extension to an element ¯ ( ) and this
extension still satisfies

°

° ¯
°

° k k for all S̄
Exercise 4.1. Prove Theorem 4.1.

For the remainder of the chapter, let [ ] be a fixed compact interval and be
a Banach space. The collection S = S([ ] ) of step functions, : [ ]
consists of those functions which may be written in the form

(4.1) ( ) = 01[ 1]( ) +
1

X

=1

1( +1]( )

where { = 0 1 · · · = } is a partition of [ ] and For as
in Eq. (4.1), let

(4.2) ( )
1

X

=0

( +1 )

Exercise 4.2. Show that ( ) is well defined, independent of how is represented
as a step function. (Hint: show that adding a point to a partition of [ ] does
not change the right side of Eq. (4.2).) Also verify that : S is a linear
operator.

Proposition 4.2 (Riemann Integral). The linear function : S extends
uniquely to a continuous linear operator ¯ from S̄ (the closure of the step functions
inside of ([ ] )) to and this operator satisfies,

(4.3) k (̄ )k ( ) k k for all S̄
Furthermore, ([ ] ) S̄ ([ ] ) and for (̄ ) may be computed
as

(4.4) (̄ ) = lim
| | 0

1
X

=0

( )( +1 )

where { = 0 1 · · · = } denotes a partition of [ ]
| | = max {| +1 | : = 0 1} is the mesh size of and may be chosen
arbitrarily inside [ +1]

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality shows,

(4.5) k ( )k
1

X

=0

( +1 )k k
1

X

=0

( +1 )k k ( )k k
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The existence of ¯ satisfying Eq. (4.3) is a consequence of Theorem 4.1.
For ([ ] ) { = 0 1 · · · = } a partition of [ ] and
[ +1] for = 0 1 2 1 let

( ) ( 0)01[ 0 1]( ) +
1

X

=1

( )1( +1]( )

Then ( ) =
P 1

=0 ( )( +1 ) so to finish the proof of Eq. (4.4) and that
([ ] ) S̄ it su ces to observe that lim| | 0 k k = 0 because is

uniformly continuous on [ ]
If S and S̄ such that lim k k = 0 then for

then 1[ ] S and lim °

°1[ ] 1[ ]

°

° = 0 This shows 1[ ] S̄
whenever S̄
Notation 4.3. For S̄ and we will write denote (̄1[ ] ) by
R

( ) or
R

[ ]
( ) Also following the usual convention, if we

will let
Z

( ) = (̄1[ ] ) =

Z

( )

The next Lemma, whose proof is left to the reader (Exercise 4.4) contains some
of the many familiar properties of the Riemann integral.

Lemma 4.4. For S̄([ ] ) and [ ], the Riemann integral satisfies:

(1)
°

°

°

R

( )
°

°

°
( ) sup {k ( )k : }

(2)
R

( ) =
R

( ) +
R

( )

(3) The function ( ) :=
R

( ) is continuous on [ ]

(4) If is another Banach space and ( ) then S̄([ ] ) and
Ã

Z

( )

!

=

Z

( )

(5) The function k ( )k is in S̄([ ] R) and
°

°

°

°

°

Z

( )

°

°

°

°

°

Z

k ( )k

(6) If S̄([ ] R) and then
Z

( )

Z

( )

Theorem 4.5 (Baby Fubini Theorem). Let R and ( ) be a
continuous function of ( ) for between and and between and Then the
maps

R

( ) and
R

( ) are continuous and

(4.6)
Z

"

Z

( )

#

=

Z

"

Z

( )

#



50 BRUCE K. DRIVER†

Proof. With out loss of generality we may assume and By uniform
continuity of Exercise 3.15,

sup k ( ) ( 0 )k 0 as 0

and so by Lemma 4.4
Z

( )

Z

( 0 ) as 0

showing the continuity of
R

( ) The other continuity assertion is proved
similarly.
Now let

= { 0 1 · · · = } and 0 = { 0 1 · · · = }
be partitions of [ ] and [ ] respectively. For [ ] let = if ( +1]
and 1 and = 0 = if [ 0 1] Define 0 for [ ] analogously. Then

Z

"

Z

( )

#

=

Z

"

Z

( 0)

#

+

Z

0( )

=

Z

"

Z

( 0)

#

+ 0 +

Z

0( )

where

0( ) =

Z

( )

Z

( 0)

and

0 =

Z

"

Z

{ ( 0) ( 0)}
#

The uniform continuity of and the estimates

sup
[ ]

k 0( )k sup
[ ]

Z

k ( ) ( 0)k

( ) sup {k ( ) ( 0)k : ( ) }
and

k 0k
Z

"

Z

k ( 0) ( 0)k
#

( )( ) sup {k ( ) ( 0)k : ( ) }
allow us to conclude that

Z

"

Z

( )

#

Z

"

Z

( 0)

#

0 as | |+ | 0| 0

By symmetry (or an analogous argument),
Z

"

Z

( )

#

Z

"

Z

( 0)

#

0 as | |+ | 0| 0
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This completes the proof since
Z

"

Z

( 0)

#

=
X

0 0

( )( +1 )( +1 )

=

Z

"

Z

( 0)

#

4.1. The Fundamental Theorem of Calculus. Our next goal is to show that
our Riemann integral interacts well with di erentiation, namely the fundamental
theorem of calculus holds. Before doing this we will need a couple of basic definitions
and results.

Definition 4.6. Let ( ) R A function : ( ) is di erentiable at
( ) i := lim 0

( + ) ( ) exists in The limit if it exists, will be
denoted by ˙( ) or ( ) We also say that 1(( ) ) if is di erentiable
at all points ( ) and ˙ (( ) )

Proposition 4.7. Suppose that : [ ] is a continuous function such that
˙( ) exists and is equal to zero for ( ) Then is constant.

Proof. Let 0 and ( ) be given. (We will later let 0 and ) By
the definition of the derivative, for all ( ) there exists 0 such that

(4.7) k ( ) ( )k =
°

°

°
( ) ( ) ˙( )( )

°

°

°
| | if | |

Let

(4.8) = { [ ] : k ( ) ( )k ( )}
and 0 be the least upper bound for We will now use a standard argument called
continuous induction to show 0 =
Eq. (4.7) with = shows 0 and a simple continuity argument shows

0 i.e.

(4.9) k ( 0) ( )k ( 0 )

For the sake of contradiction, suppose that 0 By Eqs. (4.7) and (4.9),

k ( ) ( )k k ( ) ( 0)k+ k ( 0) ( )k ( 0 ) + ( 0) = ( )

for 0 0 0 which violates the definition of 0 being an upper bound. Thus
we have shown Eq. (4.8) holds for all [ ] Since 0 and were
arbitrary we may conclude, using the continuity of that k ( ) ( )k = 0 for all

[ ]

Remark 4.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem is not
available to vector valued functions. However with the aid of the Hahn Banach
Theorem 18.16 and Lemma 4.4, it is possible to reduce the proof of Proposition 4.7
and the proof of the Fundamental Theorem of Calculus 4.9 to the real valued case,
see Exercise 18.12.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that ([ ] )
Then
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(1)
R

( ) = ( ) for all ( )
(2) Now assume that ([ ] ) is continuously di erentiable on ( )

and ˙ extends to a continuous function on [ ] which is still denoted by
˙ Then

Z

˙ ( ) = ( ) ( )

Proof. Let 0 be a small number and consider

k
Z +

( )

Z

( ) ( ) k = k
Z +

( ( ) ( )) k
Z +

k( ( ) ( ))k
( )

where ( ) max [ + ] k( ( ) ( ))k Combining this with a similar computa-
tion when 0 shows, for all R su ciently small, that

k
Z +

( )

Z

( ) ( ) k | | ( )

where now ( ) max [ | | +| |] k( ( ) ( ))k By continuity of at ( ) 0

and hence
R

( ) exists and is equal to ( )

For the second item, set ( )
R

˙ ( ) ( ) Then is continuous by
Lemma 4.4 and ˙ ( ) = 0 for all ( ) by item 1. An application of Proposition
4.7 shows is a constant and in particular ( ) = ( ) i.e.

R

˙ ( ) ( ) =
( )

Corollary 4.10 (Mean Value Inequality). Suppose that : [ ] is a con-
tinuous function such that ˙( ) exists for ( ) and ˙ extends to a continuous
function on [ ] Then

(4.10) k ( ) ( )k
Z

k ˙( )k ( ) ·
°

°

°

˙
°

°

°

Proof. By the fundamental theorem of calculus, ( ) ( ) =
R

˙( ) and
then by Lemma 4.4,

k ( ) ( )k =
°

°

°

°

°

Z

˙( )

°

°

°

°

°

Z

k ˙( )k
Z

°

°

°

˙
°

°

°
= ( ) ·

°

°

°

˙
°

°

°

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let = ( )× ( )
be an open rectangle in R2 and ( ) Assume that ( ) ( ) and

( ) exists and are continuous for ( ) then ( ) exists for
( ) and

(4.11) ( ) = ( ) for ( )
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Proof. Fix ( 0 0) By two applications of Theorem 4.9,

( ) = ( 0
) +

Z

0

( )

= ( 0 ) +

Z

0

( 0) +

Z

0

Z

0

( )(4.12)

and then by Fubini’s Theorem 4.5 we learn

( ) = ( 0 ) +

Z

0

( 0) +

Z

0

Z

0

( )

Di erentiating this equation in and then in (again using two more applications
of Theorem 4.9) shows Eq. (4.11) holds.

4.2. Exercises.

Exercise 4.3. Let ([ ] ) { : [ ] : k k sup [ ] k ( )k }
Show that ( ([ ] ) k · k ) is a complete Banach space.

Exercise 4.4. Prove Lemma 4.4.

Exercise 4.5. Using Lemma 4.4, show = ( 1 ) S̄([ ] R ) i
S̄([ ] R) for = 1 2 and

Z

( ) =

Ã

Z

1( )

Z

( )

!

Exercise 4.6. Give another proof of Proposition 4.11 which does not use Fubini’s
Theorem 4.5 as follows.

(1) By a simple translation argument we may assume (0 0) and we are
trying to prove Eq. (4.11) holds at ( ) = (0 0)

(2) Let ( ) := ( ) and

( ) :=

Z

0

Z

0

( )

so that Eq. (4.12) states

( ) = (0 ) +

Z

0

( 0) + ( )

and di erentiating this equation at = 0 shows

(4.13) ( 0) = (0 0) + ( 0)

Now show using the definition of the derivative that

(4.14) ( 0) =

Z

0

( 0)

Hint: Consider

( )

Z

0

( 0) =

Z

0

Z

0

[ ( ) ( 0)]

(3) Now di erentiate Eq. (4.13) in using Theorem 4.9 to finish the proof.
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Exercise 4.7. Give another proof of Eq. (4.6) in Theorem 4.5 based on Proposition
4.11. To do this let 0 ( ) and 0 ( ) and define

( ) :=

Z

0

Z

0

( )

Show satisfies the hypothesis of Proposition 4.11 which combined with two ap-
plications of the fundamental theorem of calculus implies

( ) = ( ) = ( )

Use two more applications of the fundamental theorem of calculus along with the
observation that = 0 if = 0 or = 0 to conclude

(4.15) ( ) =

Z

0

Z

0

( ) =

Z

0

Z

0

( )

Finally let = and = in Eq. (4.15) and then let 0 and 0 to prove Eq.
(4.6).
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5. Ordinary Differential Equations in a Banach Space

Let be a Banach space, = ( ) 3 0 and ( × ) —
is to be interpreted as a time dependent vector-field on In this section we
will consider the ordinary di erential equation (ODE for short)

(5.1) ˙( ) = ( ( )) with (0) =

The reader should check that any solution 1( ) to Eq. (5.1) gives a solution
( ) to the integral equation:

(5.2) ( ) = +

Z

0

( ( ))

and conversely if ( ) solves Eq. (5.2) then 1( ) and solves Eq.
(5.1).

Remark 5.1. For notational simplicity we have assumed that the initial condition
for the ODE in Eq. (5.1) is taken at = 0 There is no loss in generality in doing
this since if ˜ solves

˜
( ) = ˜( ˜( )) with ˜( 0) =

i ( ) := ˜( + 0) solves Eq. (5.1) with ( ) = ˜( + 0 )

5.1. Examples. Let = R ( ) = with N and consider the ordinary
di erential equation

(5.3) ˙( ) = ( ( )) = ( ) with (0) = R

If solves Eq. (5.3) with 6= 0 then ( ) is not zero for near 0 Therefore up to
the first time possibly hits 0 we must have

=

Z

0

˙( )

( )
=

Z ( )

0

=

[ ( )]1 1

1 if 1

ln
¯

¯

¯

( )
¯

¯

¯
if = 1

and solving these equations for ( ) implies

(5.4) ( ) = ( ) =

(

1 1 ( 1) 1
if 1

if = 1

The reader should verify by direct calculation that ( ) defined above does in-
deed solve Eq. (5.3). The above argument shows that these are the only possible
solutions to the Equations in (5.3).
Notice that when = 1 the solution exists for all time while for 1 we must

require
1 ( 1) 1 0

or equivalently that

1

(1 ) 1
if 1 0 and

1

(1 ) | | 1 if
1 0
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Moreover for 1 ( ) blows up as approaches the value for which 1 (
1) 1 = 0 The reader should also observe that, at least for and close to 0

(5.5) ( ( )) = ( + )

for each of the solutions above. Indeed, if = 1 Eq. (5.5) is equivalent to the well
know identity, = + and for 1

( ( )) =
( )

1
p

1 ( 1) ( ) 1

=
1 1 ( 1) 1

1

s

1 ( 1)

·

1 1 ( 1) 1

¸ 1

=
1 1 ( 1) 1

1

q

1 ( 1)
1

1 ( 1) 1

=
1
p

1 ( 1) 1 ( 1) 1

=
1
p

1 ( 1)( + ) 1
= ( + )

Now suppose ( ) = | | with 0 1 and we now consider the ordinary
di erential equation

(5.6) ˙( ) = ( ( )) = | ( )| with (0) = R

Working as above we find, if 6= 0 that

=

Z

0

˙( )

| ( )| =

Z ( )

0

| | =
[ ( )]1 1

1

where 1 := | |1 sgn( ) Since sgn( ( )) = sgn( ) the previous equation im-
plies

sgn( )(1 ) = sgn( )
h

sgn( ( )) | ( )|1 sgn( ) | |1
i

= | ( )|1 | |1

and therefore,

(5.7) ( ) = sgn( )
³

| |1 + sgn( )(1 )
´

1
1

is uniquely determined by this formula until the first time where | |1 +sgn( )(1
) = 0 As before ( ) = 0 is a solution to Eq. (5.6), however it is far from being
the unique solution. For example letting 0 in Eq. (5.7) gives a function

( 0+) = ((1 ) )
1

1

which solves Eq. (5.6) for 0 Moreover if we define

( ) :=

½

((1 ) )
1

1 if 0
0 if 0
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(for example if = 1 2 then ( ) = 1
4
21 0) then the reader may easily check

also solve Eq. (5.6). Furthermore, ( ) := ( ) also solves Eq. (5.6) for all
0 see Figure 11 below.

86420

10

7.5

5

2.5

0

tt

Figure 11. Three di erent solutions to the ODE ˙( ) = | ( )|1 2

with (0) = 0

With these examples in mind, let us now go to the general theory starting with
linear ODEs.

5.2. Linear Ordinary Di erential Equations. Consider the linear di erential
equation

(5.8) ˙( ) = ( ) ( ) where (0) =

Here ( ( )) and 1( ) This equation may be written in its
equivalent (as the reader should verify) integral form, namely we are looking for

( ) such that

(5.9) ( ) = +

Z

0

( ) ( )

In what follows, we will abuse notation and use k·k to denote the operator norm
on ( ) associated to k·k on we will also fix = ( ) 3 0 and let k k :=
max k ( )k for ( ) or ( ( ))

Notation 5.2. For R and N let

( ) =

½ {( 1 ) R : 0 1 · · · } if 0
{( 1 ) R : · · · 1 0} if 0

and also write = 1 and
Z

( )

( 1 ) : = ( 1) ·1 0

Z

0

Z

0
1

Z

2

0
1 ( 1 )

Lemma 5.3. Suppose that (R R) then

(5.10) ( 1) ·1 0

Z

( )

( 1) ( ) =
1

!

µ
Z

0

( )

¶
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Proof. Let ( ) :=
R

0
( ) The proof will go by induction on The case

= 1 is easily verified since

( 1)1·1 0

Z

1( )

( 1) 1 =

Z

0

( ) = ( )

Now assume the truth of Eq. (5.10) for 1 for some 2 then

( 1) ·1 0

Z

( )

( 1) ( ) =

Z

0

Z

0
1

Z

2

0
1 ( 1) ( )

=

Z

0

1( )

( 1)!
( ) =

Z

0

1( )

( 1)!
˙ ( )

=

Z ( )

0

1

( 1)!
=

( )

!

wherein we made the change of variables, = ( ) in the second to last equality.

Remark 5.4. Eq. (5.10) is equivalent to
Z

( )

( 1) ( ) =
1

!

Ã

Z

1( )

( )

!

and another way to understand this equality is to view
R

( )
( 1) ( ) as

a multiple integral (see Section 8 below) rather than an iterated integral. Indeed,
taking 0 for simplicity and letting be the permutation group on {1 2 }
we have

[0 ] = {( 1 ) R : 0 1 · · · }
with the union being “essentially” disjoint. Therefore, making a change of variables
and using the fact that ( 1) ( ) is invariant under permutations, we find

µ
Z

0

( )

¶

=

Z

[0 ]

( 1) ( )

=
X

Z

{( 1 ) R :0 1 ··· }
( 1) ( )

=
X

Z

{( 1 ) R :0 1 ··· }
( 11) ( 1 ) s

=
X

Z

{( 1 ) R :0 1 ··· }
( 1) ( ) s

= !

Z

( )

( 1) ( )

Theorem 5.5. Let ( ) then the integral equation

(5.11) ( ) = ( ) +

Z

0

( ) ( )

has a unique solution given by

(5.12) ( ) = ( ) +
X

=1

( 1) ·1 0

Z

( )

( ) ( 1) ( 1)
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and this solution satisfies the bound

k k k k
R k ( )k

Proof. Define : ( ) ( ) by

( )( ) =

Z

0

( ) ( )

Then solves Eq. (5.9) i = + or equivalently i ( ) =
An induction argument shows

( )( ) =

Z

0

( )( 1 )( )

=

Z

0

Z

0
1 ( ) ( 1)(

2 )( 1)

...

=

Z

0

Z

0
1

Z

2

0
1 ( ) ( 1) ( 1)

= ( 1)
·1 0

Z

( )

( ) ( 1) ( 1)

Taking norms of this equation and using the triangle inequality along with Lemma
5.3 gives,

k( )( )k k k ·
Z

( )

k ( )k k ( 1)k

k k · 1
!

Ã

Z

1( )

k ( )k
!

k k · 1
!

µ
Z

k ( )k
¶

Therefore,

(5.13) k k 1

!

µ
Z

k ( )k
¶

and
X

=0

k k
R k ( )k

where k·k denotes the operator norm on ( ( )) An application of Propo-

sition 3.69 now shows ( ) 1 =
P

=0
exists and

°

°( ) 1
°

°

R k ( )k

It is now only a matter of working through the notation to see that these assertions
prove the theorem.

Corollary 5.6. Suppose that ( ) is independent of time, then the solution
to

˙( ) = ( ) with (0) =
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is given by ( ) = where

(5.14) =
X

=0
!

Proof. This is a simple consequence of Eq. 5.12 and Lemma 5.3 with = 1
We also have the following converse to this corollary whose proof is outlined in

Exercise 5.11 below.

Theorem 5.7. Suppose that ( ) for 0 satisfies

(1) (Semi-group property.) 0 = and = + for all 0
(2) (Norm Continuity) is continuous at 0 i.e. k k ( ) 0 as

0

Then there exists ( ) such that = where is defined in Eq.
(5.14).

5.3. Uniqueness Theorem and Continuous Dependence on Initial Data.

Lemma 5.8. Gronwall’s Lemma. Suppose that and are non-negative
functions of a real variable such that

(5.15) ( ) ( ) +

¯

¯

¯

¯

Z

0

( ) ( )

¯

¯

¯

¯

Then

(5.16) ( ) ( ) +

¯

¯

¯

¯

Z

0

( ) ( ) |
R

( ) |
¯

¯

¯

¯

and in particular if and are constants we find that

(5.17) ( ) | |

Proof. I will only prove the case 0 The case 0 can be derived by
applying the 0 to (̃ ) = ( ) ˜( ) = ( ) and (̃ ) = ( )

Set ( ) =
R

0
( ) ( ) . Then by (5.15),

˙ = +

Hence,

(
R

0
( ) ) =

R

0
( ) ( ˙ )

R

0
( )

Integrating this last inequality from 0 to and then solving for yields:

( )
R

0
( ) ·

Z

0

( ) ( )
R

0
( ) =

Z

0

( ) ( )
R

( )

But by the definition of we have that

+

and hence the last two displayed equations imply (5.16). Equation (5.17) follows
from (5.16) by a simple integration.

Corollary 5.9 (Continuous Dependence on Initial Data). Let 0 ( )
and : ( )× be a continuous function which is —Lipschitz function on
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i.e. k ( ) ( 0)k k 0k for all and 0 in Suppose 1 2 : ( )
solve

(5.18)
( )

= ( ( )) with (0) = for = 1 2

Then

(5.19) k 2( ) 1( )k k 2 1k | | for ( )

and in particular, there is at most one solution to Eq. (5.1) under the above Lip-
schitz assumption on

Proof. Let ( ) k 2( ) 1( )k Then by the fundamental theorem of calculus,

( ) = k 2(0) 1(0) +

Z

0

( ˙2( ) ˙1( )) k

(0) +

¯

¯

¯

¯

Z

0

k ( 2( )) ( 1( ))k
¯

¯

¯

¯

= k 2 1k+
¯

¯

¯

¯

Z

0

( )

¯

¯

¯

¯

Therefore by Gronwall’s inequality we have,

k 2( ) 1( )k = ( ) k 2 1k | |

5.4. Local Existence (Non-Linear ODE). We now show that Eq. (5.1) under
a Lipschitz condition on Another existence theorem is given in Exercise 7.9.

Theorem 5.10 (Local Existence). Let 0 = ( ) 0 0 and

( 0 ) := { : k 0k }
be the closed — ball centered at 0 Assume

(5.20) = sup {k ( )k : ( ) × ( 0 )}
and there exists such that

(5.21) k ( ) ( )k k k for all ( 0 ) and

Let 0 min { } and 0 := ( 0 0) then for each ( 0 0) there
exists a unique solution ( ) = ( ) to Eq. (5.2) in ( 0 ( 0 )) Moreover
( ) is jointly continuous in ( ) ( ) is di erentiable in ˙( ) is jointly
continuous for all ( ) 0 × ( 0 0) and satisfies Eq. (5.1).

Proof. The uniqueness assertion has already been proved in Corollary 5.9. To
prove existence, let := ( 0 ) := ( 0 ( 0 )) and

(5.22) ( )( ) := +

Z

0

( ( ))

With this notation, Eq. (5.2) becomes = ( ) i.e. we are looking for a fixed
point of If then

k ( )( ) 0k k 0k+
¯

¯

¯

¯

Z

0

k ( ( ))k
¯

¯

¯

¯

k 0k+ | |
k 0k+ 0 0 + 0 =
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showing ( ) for all ( 0 0) Moreover if

k ( )( ) ( )( )k =
°

°

°

°

Z

0

[ ( ( )) ( ( ))]

°

°

°

°

¯

¯

¯

¯

Z

0

k ( ( )) ( ( ))k
¯

¯

¯

¯

¯

¯

¯

¯

Z

0

k ( ) ( )k
¯

¯

¯

¯

(5.23)

Let 0( ) = and (· ) defined inductively by

(5.24) (· ) := ( 1(· )) = +

Z

0

( 1( ))

Using the estimate in Eq. (5.23) repeatedly we find

k +1( ) ( )k
¯

¯

¯

¯

Z

0

k ( ) 1( )k
¯

¯

¯

¯

2

¯

¯

¯

¯

Z

0
1

¯

¯

¯

¯

Z

1

0
2 k 1( 2) 2( 2)k

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

Z

0
1

¯

¯

¯

¯

Z

1

0
2

¯

¯

¯

¯

Z

1

0

k 1( ) 0( )k
¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

k 1(· ) 0(· )k
Z

( )

=
| |
!

k 1(· ) 0(· )k 2
| |
!

(5.25)

wherein we have also made use of Lemma 5.3. Combining this estimate with

k 1( ) 0( )k =
°

°

°

°

Z

0

( )

°

°

°

°

¯

¯

¯

¯

Z

0

k ( )k
¯

¯

¯

¯

0

where

0 = 0max

(

Z

0

0

k ( )k
Z 0

0

k ( )k
)

0

shows

k +1( ) ( )k 0
| |
!

0
0

!
and this implies

X

=0

sup
n

k +1(· ) (· )k
0
: 0

o

X

=0

0
0

!
= 0

0

where

k +1(· ) (· )k
0
:= sup {k +1( ) ( )k : 0}

So ( ) := lim ( ) exists uniformly for and using Eq. (5.21) we
also have

sup {k ( ( )) ( 1( ))k : 0} k (· ) 1(· )k
0

0 as

ANALYSIS TOOLS WITH APPLICATIONS 63

Now passing to the limit in Eq. (5.24) shows solves Eq. (5.2). From this equation
it follows that ( ) is di erentiable in and satisfies Eq. (5.1).
The continuity of ( ) follows from Corollary 5.9 and mean value inequality

(Corollary 4.10):

k ( ) ( 0 0)k k ( ) ( 0)k+ k ( 0) ( 0 0)k

= k ( ) ( 0)k+
°

°

°

°

Z

0
( ( 0))

°

°

°

°

k ( ) ( 0)k+
¯

¯

¯

¯

Z

0
k ( ( 0))k

¯

¯

¯

¯

k 0k +

¯

¯

¯

¯

Z

0
k ( ( 0))k

¯

¯

¯

¯

(5.26)

k 0k + | 0|
The continuity of ˙( ) is now a consequence Eq. (5.1) and the continuity of

and

Corollary 5.11. Let = ( ) 3 0 and suppose ( × ) satisfies

(5.27) k ( ) ( )k k k for all and

Then for all there is a unique solution ( ) (for ) to Eq. (5.1).
Moreover ( ) and ˙( ) are jointly continuous in ( )

Proof. Let 0 = ( 0 0) 3 0 be a precompact subinterval of and :=
( 0 ) By compactness, := sup

0̄
k ( 0)k which combined with

Eq. (5.27) implies

sup
0̄

k ( )k + k k for all

Using this estimate and Lemma 4.4 one easily shows ( ) for all The
proof of Theorem 5.10 now goes through without any further change.

5.5. Global Properties.

Definition 5.12 (Local Lipschitz Functions). Let be an open interval
and ( × ) The function is said to be locally Lipschitz in if for
all and all compact intervals there exists = ( ) and
= ( ) 0 such that ( ( )) and
(5.28)
k ( 1) ( 0)k ( )k 1 0k for all 0 1 ( ( )) and

For the rest of this section, we will assume is an open interval containing 0
is an open subset of and ( × ) is a locally Lipschitz function.

Lemma 5.13. Let ( × ) be a locally Lipschitz function in and be
a compact subset of and be a compact subset of Then there exists 0 such
that ( ) is bounded for ( ) × and and ( ) is — Lipschitz on
for all where

:= { : dist( ) }
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Proof. Let ( ) and ( ) be as in Definition 5.12 above. Since is com-
pact, there exists a finite subset such that := ( ( ) 2) If

there exists such that k k ( ) 2 and therefore

k ( )k k ( )k+ ( ) k k k ( )k+ ( ) ( ) 2

sup {k ( )k+ ( ) ( ) 2} =:

This shows is bounded on ×
Let

:= ( )
1

2
min ( )

and notice that 0 since is compact, is closed and = If
and k k then as before there exists such that k k ( ) 2
Therefore

k k k k+ k k + ( ) 2 ( )

and since ( ( )) it follows that

k ( ) ( )k ( )k k 0k k
where 0 := max ( ) On the other hand if and k k
then

k ( ) ( )k 2
2 k k

Thus if we let := max {2 0} we have shown

k ( ) ( )k k k for all and

Proposition 5.14 (Maximal Solutions). Let ( × ) be a locally Lipschitz
function in and let be fixed. Then there is an interval = ( ( ) ( ))
with [ 0) and (0 ] and a 1—function : with the following
properties:

(1) solves ODE in Eq. (5.1).
(2) If ˜ : ˜ = (˜ ˜) is another solution of Eq. (5.1) (we assume that

0 )̃ then ˜ and ˜ = | ˜
The function : is called the maximal solution to Eq. (5.1).

Proof. Suppose that : = ( ) = 1 2, are two solutions to Eq.
(5.1). We will start by showing the 1 = 2 on 1 2 To do this9 let 0 = ( 0 0)
be chosen so that 0 0 1 2 and let := 1( 0) 2( 0) — a compact
subset of Choose 0 as in Lemma 5.13 so that is Lipschitz on Then
1| 0 2| 0

: 0 both solve Eq. (5.1) and therefore are equal by Corollary 5.9.

9Here is an alternate proof of the uniqueness. Let

sup{ [0 min{ 1 2}) : 1 = 2 on [0 ]}
( is the first positive time after which 1 and 2 disagree.
Suppose, for sake of contradiction, that min{ 1 2} Notice that 1( ) = 2( ) =: 0

Applying the local uniqueness theorem to 1(· ) and 2(· ) thought as function from
( ) ( 0 ( 0)) for some su ciently small, we learn that 1(· ) = 2(· ) on ( )
But this shows that 1 = 2 on [0 + ) which contradicts the definition of Hence we must
have the = min{ 1 2} i.e. 1 = 2 on 1 2 [0 ) A similar argument shows that 1 = 2

on 1 2 ( 0] as well.
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Since 0 = ( 0 0) was chosen arbitrarily so that [ ] 1 2 we may conclude
that 1 = 2 on 1 2

Let ( = ( )) denote the possible solutions to (5.1) such that 0
. Define = and set = on . We have just checked that is well

defined and the reader may easily check that this function : satisfies all
the conclusions of the theorem.

Notation 5.15. For each let = ( ( ) ( )) be the maximal interval on
which Eq. (5.1) may be solved, see Proposition 5.14. Set D( ) ( ×{ })
× and let : D( ) be defined by ( ) = ( ) where is the maximal

solution to Eq. (5.1). (So for each (· ) is the maximal solution to Eq.
(5.1).)

Proposition 5.16. Let ( × ) be a locally Lipschitz function in and :
= ( ( ) ( )) be the maximal solution to Eq. (5.1). If ( ) then either

lim sup ( ) k ( ( ))k = or ( ( ) ) lim ( ) ( ) exists and ( ( ) )

Similarly, if ( ) then either lim sup ( ) k ( )k = or ( ( )+)

lim ( ) exists and ( ( )+)

Proof. Suppose that ( ) and lim sup ( ) k ( ( ))k Then
there is a 0 (0 ( )) such that k ( ( ))k 2 for all ( 0 ( )) Thus, by
the usual fundamental theorem of calculus argument,

k ( ) ( 0)k
¯

¯

¯

¯

¯

Z
0

k ( ( ))k
¯

¯

¯

¯

¯

2 | 0|

for all 0 ( 0 ( )) From this it is easy to conclude that ( ( ) ) = lim ( ) ( )
exists. If ( ( ) ) by the local existence Theorem 5.10, there exists 0 and

1 (( ( ) ( ) + ) ) such that

˙ ( ) = ( ( )) and ( ( )) = ( ( ) )

Now define ˜ : ( ( ) + ) by

˜( ) =

½

( ) if
( ) if [ ( ) ( ) + )

The reader may now easily show ˜ solves the integral Eq. (5.2) and hence also
solves Eq. 5.1 for ( ( ) ( ) + ) 10 But this violates the maximality of and
hence we must have that ( ( ) ) The assertions for near ( ) are proved
similarly.

Example 5.17. Let = R2 = R =
©

( ) R2 : 0 1
ª

where 2 =
2 + 2 and

( ) =
1
( ) +

1

1 2
( )

The the unique solution ( ( ) ( )) to

( ( ) ( )) = ( ( ) ( )) with ( (0) (0)) = (
1

2
0)

10See the argument in Proposition 5.19 for a slightly di erent method of extending which
avoids the use of the integral equation (5.2).
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is given by

( ( ) ( )) =

µ

+
1

2

¶µ

cos

µ

1

1 2

¶

sin

µ

1

1 2

¶¶

for (1 2 0) = ( 1 2) Notice that k ( ( ) ( ))k as 1 2 and
dist(( ( ) ( )) ) 0 as 1 2

Example 5.18. (Not worked out completely.) Let = = 2 (R2) be
a smooth function such that = 1 in a neighborhood of the line segment joining
(1 0) to (0 1) and being supported within the 1 10 — neighborhood of this segment.
Choose and and define

(5.29) ( ) =
X

=1

( ( +1))( +1 )

For any 2 only a finite number of terms are non-zero in the above some in a
neighborhood of Therefor : 2 2 is a smooth and hence locally Lipshcitz
vector field. Let ( ( ) = ( )) denote the maximal solution to

˙( ) = ( ( )) with (0) = 1

Then if the and are chosen appropriately, then and there will exist
such that ( ) is approximately for all So again ( ) does not have

a limit yet sup [0 ) k ( )k The idea is that is constructed to blow the
particle form 1 to 2 to 3 to 4 etc. etc. with the time it takes to travel from
to +1 being on order 1 2 The vector field in Eq. (5.29) is a first approximation
at such a vector field, it may have to be adjusted a little more to provide an honest
example. In this example, we are having problems because ( ) is “going o in
dimensions.”

Here is another version of Proposition 5.16 which is more useful when dim( )

Proposition 5.19. Let ( × ) be a locally Lipschitz function in and
: = ( ( ) ( )) be the maximal solution to Eq. (5.1).
(1) If ( ) then for every compact subset there exists ( )

such that ( ) for all [ ( ))
(2) When dim( ) we may write this condition as: if ( ) then either

lim sup
( )

k ( )k = or lim inf
( )

dist( ( ) ) = 0

Proof. 1) Suppose that ( ) and, for sake of contradiction, there exists a
compact set and ( ) such that ( ) for all Since is compact,
by passing to a subsequence if necessary, we may assume := lim ( )
exists in By the local existence Theorem 5.10, there exists 0 0 and

0 such that for each 0 ( ) there exists a unique solution (· 0)
1(( 0 0) ) solving

( 0) = ( ( 0)) and (0 0) = 0

Now choose su ciently large so that ( ( ) 0 2 ( )) and ( )
( ) Define ˜ : ( ( ) ( ) + 0 2) by

˜( ) =

½

( ) if
( ( )) if ( 0 ( ) + 0 2) ( 0 + 0)
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By uniqueness of solutions to ODE’s ˜ is well defined, ˜ 1(( ( ) ( ) + 0 2) )
and ˜ solves the ODE in Eq. 5.1. But this violates the maximality of
2) For each N let

:= { : k k and dist( ) 1 }
Then and each is a closed bounded set and hence compact if dim( )

Therefore if ( ) by item 1., there exists [0 ( )) such that ( )
for all [ ( )) or equivalently k ( )k or dist( ( ) ) 1 for all

[ ( ))

Remark 5.20. In general it is not true that the functions and are continuous.
For example, let be the region in R2 described in polar coordinates by 0 and
0 3 4 and ( ) = (0 1) as in Figure 12 below. Then ( ) = for all

0 while ( ) = for all 0 and R which shows is discontinuous.
On the other hand notice that

{ } = { 0} {( ) : 0 }
is an open set for all 0

Figure 12. An example of a vector field for which ( ) is discon-
tinuous. This is given in the top left hand corner of the figure.
The map would allow the reader to find an example on R2 if so
desired. Some calculations shows that transfered to R2 by the
map is given by

˜( ) =

µ

sin

µ

3

8
+
3

4
tan 1 ( )

¶

cos

µ

3

8
+
3

4
tan 1 ( )

¶¶

Theorem 5.21 (Global Continuity). Let ( × ) be a locally Lipschitz
function in Then D( ) is an open subset of × and the functions : D( )

and ˙ : D( ) are continuous. More precisely, for all 0 and all
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open intervals 0 such that 0 0 @@ 0 there exists = ( 0 0 ) 0 and
= ( 0 0 ) such that for all ( 0 ) 0 and

(5.30) k (· ) (· 0)k ( 0 ) k 0k
Proof. Let | 0| = 0 0 = 0̄ and := ( 0̄) — a compact subset of and

let 0 and be given as in Lemma 5.13, i.e. is the Lipschitz constant
for on Also recall the notation: 1( ) = [0 ] if 0 and 1( ) = [ 0] if

0
Suppose that then by Corollary 5.9,

(5.31) k ( ) ( 0)k k 0k | | k 0k | 0|

for all 0 such that such that ( 1( ) ) Letting := | 0| 2
and assuming ( 0 ) the previous equation implies

k ( ) ( 0)k 2 for all 0 such that ( 1( ) )

This estimate further shows that ( ) remains bounded and strictly away from
the boundary of for all such Therefore, it follows from Proposition 5.14 and
“continuous induction11” that 0 and Eq. (5.31) is valid for all 0 This
proves Eq. (5.30) with := | 0|

Suppose that ( 0 0) D( ) and let 0 0 @@ 0 such that 0 0 and be
as above. Then we have just shown 0 × ( 0 ) D( ) which proves D( ) is
open. Furthermore, since the evaluation map

( 0 ) 0 × ( 0 ) ( 0)

is continuous (as the reader should check) it follows that = ( (· )) :

0 × ( 0 ) is also continuous; being the composition of continuous maps.
The continuity of ˙( 0 ) is a consequences of the continuity of and the di erential
equation 5.1
Alternatively using Eq. (5.2),

k ( 0 ) ( 0)k k ( 0 ) ( 0 0)k+ k ( 0 0) ( 0)k

k 0k+
¯

¯

¯

¯

Z

0

k ( ( 0))k
¯

¯

¯

¯

k 0k+ | 0 |

where is the constant in Eq. (5.30) and = sup
0
k ( ( 0))k This

clearly shows is continuous.

5.6. Semi-Group Properties of time independent flows. To end this chapter
we investigate the semi-group property of the flow associated to the vector-field .
It will be convenient to introduce the following suggestive notation. For ( )
D( ) set ( ) = ( ) So the path ( ) is the maximal solution to

( ) = ( ( )) with 0 ( ) =

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

11See the argument in the proof of Proposition 4.7.
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Notation 5.22. We write : to mean a function defined on some open
subset ( ) The open set ( ) will be called the domain of Given two
functions : and : with domains ( ) and ( ) respectively,
we define the composite function : to be the function with domain

( ) = { : ( ) and ( ) ( )} = 1( ( ))

given by the rule ( ) = ( ( )) for all ( ) We now write = i
( ) = ( ) and ( ) = ( ) for all ( ) = ( ) We will also write

i ( ) ( ) and | ( ) =

Theorem 5.23. For fixed R we consider as a function from to with
domain ( ) = { : ( ) D( )} where ( ) = D( ) R× D( ) and
are defined in Notation 5.15. Conclusions:
(1) If R and · 0 then = ( + )

(2) If R, then = ( )

(3) For arbitrary R ( + )

Proof. Item 1. For simplicity assume that 0 The case 0 is left to
the reader. Suppose that ( ) Then by assumption ( ) and
( ) ( ) Define the path ( ) via:

( ) =

½

( ) if 0
( ) ( ) if +

It is easy to check that solves ˙( ) = ( ( )) with (0) = But since, ( ) is
the maximal solution we must have that ( ( + ) ) and ( + ) = ( + ) ( )
That is ( + ) ( ) = ( ) Hence we have shown that ( + )

To finish the proof of item 1. it su ces to show that ( ( + ) ) ( )
Take ( ( + ) ), then clearly ( ). Set ( ) = ( + ) ( ) defined for
0 Then solves

˙( ) = ( ( )) with (0) = ( )

But since ( ( )) is the maximal solution to the above initial valued prob-
lem we must have that ( ) = ( ( )) and in particular at = ( + ) ( ) =
( ( )) This shows that ( ) and in fact ( + )

Item 2. Let ( ) — again assume for simplicity that 0 Set ( ) =
( ) ( ) defined for 0 Notice that (0) = ( ) and ˙( ) = ( ( ))
This shows that ( ) = ( ( )) and in particular that ( ) and

( ) = This proves item 2.
Item 3. I will only consider the case that 0 and + 0 the other

cases are handled similarly. Write for + so that = + We know that
= by item 1. Therefore

= ( )

Notice in general, one has ( ) = ( ) (you prove). Hence, the above
displayed equation and item 2. imply that

= ( ) = ( + )
( )

( + )

The following result is trivial but conceptually illuminating partial converse to
Theorem 5.23.
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Proposition 5.24 (Flows and Complete Vector Fields). Suppose
(R× ) and ( ) = ( ) Suppose satisfies:

(1) 0 =
(2) = + for all R and
(3) ( ) := ˙(0 ) exists for all and ( ) is locally Lipschitz.

Then =

Proof. Let and ( ) ( ) Then using Item 2.,

˙( ) = |0 ( + ) = |0 ( + )( ) = |0 ( ) = ( ( ))

Since (0) = by Item 1. and is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 5.9) that ( ) = ( ) = ( )

5.7. Exercises.

Exercise 5.1. Find a vector field such that ( + ) is not contained in

Definition 5.25. A locally Lipschitz function : is said to be a
complete vector field if D( ) = R× That is for any ( ) is defined
for all R

Exercise 5.2. Suppose that : is a locally Lipschitz function. Assume
there is a constant 0 such that

k ( )k (1 + k k) for all
Then is complete. Hint: use Gronwall’s Lemma 5.8 and Proposition 5.16.

Exercise 5.3. Suppose is a solution to ˙( ) = | ( )|1 2 with (0) = 0 Show there
exists [0 ] such that

( ) =

1
4( )2 if

0 if
1
4( + )2 if

Exercise 5.4. Using the fact that the solutions to Eq. (5.3) are never 0 if 6= 0
show that ( ) = 0 is the only solution to Eq. (5.3) with (0) = 0

Exercise 5.5. Suppose that ( ) Show directly that:

(1) define in Eq. (5.14) is convergent in ( ) when equipped with the
operator norm.

(2) is di erentiable in and that =

Exercise 5.6. Suppose that ( ) and is an eigenvector of with
eigenvalue i.e. that = Show = Also show that = R and
is a diagonalizable × matrix with

= 1 with = ( 1 )

then = 1 where = ( 1 )

Exercise 5.7. Suppose that ( ) and [ ] = 0 Show that
( + ) =
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Exercise 5.8. Suppose (R ( )) satisfies [ ( ) ( )] = 0 for all R
Show

( ) := (
R

0
( ) )

is the unique solution to ˙( ) = ( ) ( ) with (0) =

Exercise 5.9. Compute when

=

µ

0 1
1 0

¶

and use the result to prove the formula

cos( + ) = cos cos sin sin

Hint: Sum the series and use = ( + )

Exercise 5.10. Compute when

=
0
0 0
0 0 0

with R Use your result to compute ( + ) where R and is the 3×3
identity matrix. Hint: Sum the series.

Exercise 5.11. Prove Theorem 5.7 using the following outline.

(1) First show [0 ) ( ) is continuos.
(2) For 0 let := 1

R

0
( ) Show as 0 and conclude

from this that is invertible when 0 is su ciently small. For the
remainder of the proof fix such a small 0

(3) Show

=
1
Z +

and conclude from this that

lim
0

1 ( ) =
1
( )

(4) Using the fact that is invertible, conclude = lim 0
1 ( ) exists

in ( ) and that

=
1
( ) 1

(5) Now show using the semigroup property and step 4. that = for
all 0

(6) Using step 5, show = 0 for all 0 and therefore =
0

0 =

Exercise 5.12 (Higher Order ODE). Let be a Banach space, , U and
( × U ) be a Locally Lipschitz function in x = ( 1 ) Show the th

ordinary di erential equation,
(5.32)

( )( ) = ( ( ) ˙( ) ( 1)( )) with ( )(0) = 0 for = 0 1 2 1
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where ( 0
0

1
0 ) is given in U has a unique solution for small Hint: let

y( ) =
¡

( ) ˙( ) ( 1)( )
¢

and rewrite Eq. (5.32) as a first order ODE of the
form

ẏ( ) = ( y( )) with y(0) = ( 0
0

1
0 )

Exercise 5.13. Use the results of Exercises 5.10 and 5.12 to solve

¨( ) 2 ˙( ) + ( ) = 0 with (0) = and ˙(0) =

Hint: The 2 × 2 matrix associated to this system, , has only one eigenvalue 1
and may be written as = + where 2 = 0

Exercise 5.14. Suppose that : R ( ) is a continuous function and :
R ( ) are the unique solution to the linear di erential equations

˙ ( ) = ( ) ( ) with (0) =

and

(5.33) ˙ ( ) = ( ) ( ) with (0) =

Prove that ( ) is invertible and that 1( ) = ( ) Hint: 1) show [ ( ) ( )] =
0 (which is su cient if dim( ) ) and 2) show compute ( ) := ( ) ( ) solves
a linear di erential ordinary di erential equation that has 0 as an obvious
solution. Then use the uniqueness of solutions to ODEs. (The fact that ( ) must
be defined as in Eq. (5.33) is the content of Exercise 26.2 below.)

Exercise 5.15 (Duhamel’ s Principle I). Suppose that : R ( ) is a contin-
uous function and : R ( ) is the unique solution to the linear di erential
equation in Eq. (26.36). Let and (R ) be given. Show that the
unique solution to the di erential equation:

(5.34) ˙( ) = ( ) ( ) + ( ) with (0) =

is given by

(5.35) ( ) = ( ) + ( )

Z

0

( ) 1 ( )

Hint: compute [ 1( ) ( )] when solves Eq. (5.34).

Exercise 5.16 (Duhamel’ s Principle II). Suppose that : R ( ) is a con-
tinuous function and : R ( ) is the unique solution to the linear di erential
equation in Eq. (26.36). Let 0 ( ) and (R ( )) be given. Show that
the unique solution to the di erential equation:

(5.36) ˙ ( ) = ( ) ( ) + ( ) with (0) = 0

is given by

(5.37) ( ) = ( ) 0 + ( )

Z

0

( ) 1 ( )

Exercise 5.17 (Non-Homogeneous ODE). Suppose that is open and
: R× is a continuous function. Let = ( ) be an interval and 0

Suppose that 1( ) is a solution to the “non-homogeneous” di erential
equation:

(5.38) ˙( ) = ( ( )) with ( ) =
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Define 1( 0 R× ) by ( ) ( + 0 ( + 0)) Show that solves the
“homogeneous” di erential equation

(5.39) ˙ ( ) = ˜( ( )) with (0) = ( 0 0)

where ˜( ) (1 ( )) Conversely, suppose that 1( 0 R × ) is a
solution to Eq. (5.39). Show that ( ) = ( + 0 ( + 0)) for some 1( )
satisfying Eq. (5.38). (In this way the theory of non-homogeneous ode’s may be
reduced to the theory of homogeneous ode’s.)

Exercise 5.18 (Di erential Equations with Parameters). Let be another Ba-
nach space, × × and ( × ) be a locally Lipschitz function
on × For each ( ) × let ( ) denote the maximal
solution to the ODE

(5.40) ˙( ) = ( ( ) ) with (0) =

Prove

(5.41) D := {( ) R× × : }
is open in R× × and and ˙ are continuous functions on D
Hint: If ( ) solves the di erential equation in (5.40), then ( ) ( ( ) )

solves the di erential equation,

(5.42) ˙( ) = ˜( ( )) with (0) = ( )

where ˜( ) ( ( ) 0) × and let ( ( )) := ( ) Now apply the
Theorem 5.21 to the di erential equation (5.42).

Exercise 5.19 (Abstract Wave Equation). For ( ) and R let

cos( ) :=
X

=0

( 1)

(2 )!
2 2 and

sin( )
:=
X

=0

( 1)

(2 + 1)!
2 +1 2

Show that the unique solution 2 (R ) to

(5.43) ¨( ) + 2 ( ) = 0 with (0) = 0 and ˙(0) = ˙0

is given by

( ) = cos( ) 0 +
sin( )

˙0

Remark 5.26. Exercise 5.19 can be done by direct verification. Alternatively and
more instructively, rewrite Eq. (5.43) as a first order ODE using Exercise 5.12. In
doing so you will be lead to compute where ( × ) is given by

=

µ

0
2 0

¶

where we are writing elements of × as column vectors,
µ

1

2

¶

You should

then show

=

µ

cos( ) sin( )

sin( ) cos( )

¶
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where

sin( ) :=
X

=0

( 1)

(2 + 1)!
2 +1 2( +1)

Exercise 5.20 (Duhamel’s Principle for the Abstract Wave Equation). Continue
the notation in Exercise 5.19, but now consider the ODE,

(5.44) ¨( ) + 2 ( ) = ( ) with (0) = 0 and ˙(0) = ˙0

where (R ) Show the unique solution to Eq. (5.44) is given by

(5.45) ( ) = cos( ) 0 +
sin( )

˙0 +

Z

0

sin(( ) )
( )

Hint: Again this could be proved by direct calculation. However it is more in-
structive to deduce Eq. (5.45) from Exercise 5.15 and the comments in Remark
5.26.
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6. Algebras, — Algebras and Measurability

6.1. Introduction: What are measures and why “measurable” sets.

Definition 6.1 (Preliminary). Suppose that is a set and P( ) denotes the
collection of all subsets of A measure on is a function : P( ) [0 ]
such that

(1) ( ) = 0

(2) If { } =1 is a finite ( ) or countable ( = ) collection of subsets
of which are pair-wise disjoint (i.e. = if 6= ) then

( =1 ) =
X

=1

( )

Example 6.2. Suppose that is any set and is a point. For let

( ) =

½

1 if
0 otherwise.

Then = is a measure on called the Dirac delta function at

Example 6.3. Suppose that is a measure on and 0 then · is also a
measure on Moreover, if { } are all measures on then =

P

i.e.

( ) =
X

( ) for all

is a measure on (See Section 2 for the meaning of this sum.) To prove this we
must show that is countably additive. Suppose that { } =1 is a collection of
pair-wise disjoint subsets of then

( =1 ) =
X

=1

( ) =
X

=1

X

( )

=
XX

=1

( ) =
X

( =1 )

= ( =1 )

wherein the third equality we used Theorem 2.21 and in the fourth we used that
fact that is a measure.

Example 6.4. Suppose that is a set : [0 ] is a function. Then

:=
X

( )

is a measure, explicitly

( ) =
X

( )

for all
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6.2. The problem with Lebesgue “measure”.

Question 1. Does there exist a measure : P(R) [0 ] such that

(1) ([ )) = ( ) for all and
(2) (Translation invariant) ( + ) = ( ) for all R? (Here + :=

{ + : } R )

The answer is no which we now demonstrate. In fact the answer is no even if we
replace (1) by the condition that 0 ((0 1])

Let us identify [0 1) with the unit circle 1 := { C : | | = 1} by the map
( ) = 2 1 for [0 1) Using this identification we may use to define a
function on P( 1) by ( ( )) = ( ) for all [0 1) This new function is a
measure on 1 with the property that 0 ((0 1]) For 1 and 1

let

(6.1) := { 1 : }
that is to say is rotated counter clockwise by angle We now claim that
is invariant under these rotations, i.e.

(6.2) ( ) = ( )

for all 1 and 1 To verify this, write = ( ) and = ( ) for some
[0 1) and [0 1) Then

( ) ( ) = ( + mod1)

where for [0 1) and [0 1) let

+ mod1 = { + mod1 [0 1) : }
= ( + { 1 }) (( 1) + { 1 })

Thus

( ( ) ( )) = ( + mod1)

= (( + { 1 }) (( 1) + { 1 }))
= (( + { 1 })) + ((( 1) + { 1 }))
= ( { 1 }) + ( { 1 })
= (( { 1 }) ( { 1 }))
= ( ) = ( ( ))

Therefore it su ces to prove that no finite measure on 1 such that Eq. (6.2)
holds. To do this we will “construct” a non-measurable set = ( ) for some

[0 1)
To do this let

:= { = 2 : Q} = { = 2 : [0 1) Q}
a countable subgroup of 1 As above acts on 1 by rotations and divides 1 up
into equivalence classes, where 1 are equivalent if = for some
Choose (using the axiom of choice) one representative point from each of these
equivalence classes and let 1 be the set of these representative points. Then
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every point 1 may be uniquely written as = with and That
is to say

(6.3) 1 =
a

( )

where
`

is used to denote the union of pair-wise disjoint sets { } By Eqs.
(6.2) and (6.3),

( 1) =
X

( ) =
X

( )

The right member from this equation is either 0 or , 0 if ( ) = 0 and if
( ) 0 In either case it is not equal ( 1) (0 1) Thus we have reached the
desired contradiction.
Proof. (Second proof of Answer to Question 1) For [0 1) and [0 1)

let

= + mod1

= { + mod1 [0 1) : }
= ( + { 1 }) (( 1) + { 1 })

If is a measure satisfying the properties of the Question we would have

( ) = ( + { 1 }) + (( 1) + { 1 })
= ( { 1 }) + ( { 1 })
= ( { 1 } ( { 1 }))
= ( )(6.4)

We will now construct a bad set which coupled with Eq. (6.4) will lead to a
contradiction.
Set

{ + R : Q} = +Q

Notice that 6= implies that = Let O = { : R} — the
orbit space of the Q action. For all O choose ( ) [0 1 3) 12 Define
= (O) Then observe:
(1) ( ) = ( ) implies that 6= which implies that = so that

is injective.
(2) O = { : }
Let be the countable set,

Q [0 1)

We now claim that

= if 6= and(6.5)

[0 1) =(6.6)

Indeed, if 6= then = + mod1 and = + 0mod1 then
0 Q i.e. = 0 . That is to say, = ( ) = ( 0) = 0 and hence

that = mod1 but [0 1) implies that = Furthermore, if [0 1) and
:= ( ) then = Q and mod 1

12We have used the Axiom of choice here, i.e.
Q

F ( [0 1 3]) 6=
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Now that we have constructed we are ready for the contradiction. By Equa-
tions (6.4—6.6) we find

1 = ([0 1)) =
X

( ) =
X

( )

=

½

if ( ) 0
0 if ( ) = 0

which is certainly inconsistent. Incidentally we have just produced an example of
so called “non — measurable” set.
Because of this example and our desire to have a measure on R satisfying the

properties in Question 1, we need to modify our definition of a measure. We will
give up on trying to measure all subsets R i.e. we will only try to define on a
smaller collection of “measurable” sets. Such collections will be called — algebras
which we now introduce. The formal definition of a measure appears in Definition
7.1 of Section 7 below.

6.3. Algebras and — algebras.

Definition 6.5. A collection of subsets A of is an Algebra if
(1) A
(2) A implies that A
(3) A is closed under finite unions, i.e. if 1 A then 1 · · · A

In view of conditions 1. and 2., 3. is equivalent to
30. A is closed under finite intersections.

Definition 6.6. A collection of subsetsM of is a — algebra ( — field) ifM
is an algebra which also closed under countable unions, i.e. if { } =1 M then

=1 M (Notice that sinceM is also closed under taking complements,M is
also closed under taking countable intersections.) A pair ( M) where is a set
andM is a — algebra on is called a measurable space.

The reader should compare these definitions with that of a topology, see Defini-
tion 3.14. Recall that the elements of a topology are called open sets. Analogously,
we will often refer to elements of and algebra A or a — algebraM asmeasurable
sets.

Example 6.7. Here are some examples.
(1) =M = P( ) in which case all subsets of are open, closed, and mea-

surable.
(2) Let = {1 2 3} then = { {2 3}} is a topology on which is not

an algebra.
(3) = A = {{1} {2 3} } is a topology, an algebra, and a — algebra

on The sets {1} {2 3} are open and closed. The sets {1 2} and
{1 3} are neither open nor closed and are not measurable.

Proposition 6.8. Let E be any collection of subsets of . Then there exists a
unique smallest topology (E), algebra A(E) and -algebra (E) which contains E
Proof. Note P( ) is a topology and an algebra and a -algebra and E P( ),

so E is always a subset of a topology, algebra, and — algebra. One may now easily
check that

(E)
\

{ : is a topology and E }
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is a topology which is clearly the smallest topology containing E The analogous
construction works for the other cases as well.
We may give explicit descriptions of (E) and A(E) However (E) typically does

not admit a simple concrete description.

Proposition 6.9. Let be a set and E P( ) For simplicity of notation, assume
that E (otherwise adjoin them to E if necessary) and let E { : E}
and E = E { } E Then (E) = and A(E) = A where

(6.7) := {arbitrary unions of finite intersections of elements from E}
and

(6.8) A := {finite unions of finite intersections of elements from E }
Proof. From the definition of a topology and an algebra, it is clear that E
(E) and E A A(E) Hence to finish that proof it su ces to show is a

topology and A is an algebra. The proof of these assertions are routine except for
possibly showing that is closed under taking finite intersections and A is closed
under complementation.
To check A is closed under complementation, let A be expressed as

=
[

=1

\

=1

where E Therefore, writing = E we find that

=
\

=1

[

=1

=
[

1 =1

( 1 1 2 2 · · · ) A

wherein we have used the fact that 1 1 2 2
· · · is a finite intersection

of sets from E
To show is closed under finite intersections it su ces to show for

that Write

= and =

where and are sets which are finite intersection of elements from E Then

= ( ) ( ) =
[

( ) ×

since for each ( ) × is still a finite intersection of elements from
E
Remark 6.10. One might think that in general (E) may be described as the count-
able unions of countable intersections of sets in E However this is false, since if

=
[

=1

\

=1

with E then

=
[

1=1 2=1 =1

Ã

\

=1

!
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which is now an uncountable union. Thus the above description is not correct. In
general it is complicated to explicitly describe (E) see Proposition 1.23 on page
39 of Folland for details.

Exercise 6.1. Let be a topology on a set and A = A( ) be the algebra
generated by Show A is the collection of subsets of which may be written as
finite union of sets of the form where is closed and is open.

The following notion will be useful in the sequel.

Definition 6.11. A set E P( ) is said to be an elementary family or ele-
mentary class provided that

• E
• E is closed under finite intersections
• if E then is a finite disjoint union of sets from E (In particular

= is a disjoint union of elements from E )
Proposition 6.12. Suppose E P( ) is an elementary family, then A = A(E)
consists of sets which may be written as finite disjoint unions of sets from E
Proof. This could be proved making use of Proposition 6.12. However it is

easier to give a direct proof.
Let A denote the collection of sets which may be written as finite disjoint unions

of sets from E Clearly E A A(E) so it su ces to show A is an algebra since
A(E) is the smallest algebra containing E
By the properties of E we know that A Now suppose that =

` A where, for = 1 2 is a finite collection of disjoint sets
from E Then

\

=1

=
\

=1

Ã

a

!

=
[

( 1 ) 1×···×
( 1 2 · · · )

and this is a disjoint (you check) union of elements from E Therefore A is closed
under finite intersections. Similarly, if =

`

with being a finite collection
of disjoint sets from E then =

T

Since by assumption A for
E and A is closed under finite intersections, it follows that A

Exercise 6.2. Let A P( ) and B P( ) be elementary families. Show the
collection

E = A×B = { × : A and B}
is also an elementary family.

The analogous notion of elementary class E for topologies is a basis V defined
below.

Definition 6.13. Let ( ) be a topological space. We say that S is a sub-
basis for the topology i = (S) and = S := S We say V is a
basis for the topology i V is a sub-basis with the property that every element

may be written as

= { V : }
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x

y

z

d(x,z)

d(x,z)

Figure 13. Fitting balls in the intersection.

Exercise 6.3. Suppose that S is a sub-basis for a topology on a set Show V :=
S consisting of finite intersections of elements from S is a basis for Moreover, S
is itself a basis for i

1 2 = { S : 1 2}
for every pair of sets 1 2 S
Remark 6.14. Let ( ) be a metric space, then E = { ( ) : and 0}
is a basis for — the topology associated to the metric This is the content of
Exercise 3.3.
Let us check directly that E is a basis for a topology. Suppose that and
0 If ( ) ( ) then

(6.9) ( ) ( ) ( )

where = min{ ( ) ( )} see Figure 13. This is a formal consequence
of the triangle inequality. For example let us show that ( ) ( ) By the
definition of we have that ( ) or that ( ) Hence if

( ) then

( ) ( ) + ( ) + ( ) + =

which shows that ( ) Similarly we show that ( ) as well.
Owing to Exercise 6.3, this shows E is a basis for a topology. We do not need

to use Exercise 6.3 here since in fact Equation (6.9) may be generalized to finite
intersection of balls. Namely if 0 and =1 ( ) then

(6.10) ( ) =1 ( )

where now := min { ( ) : = 1 2 } By Eq. (6.10) it follows that
any finite intersection of open balls may be written as a union of open balls.

Example 6.15. Suppose = {1 2 3} and E = { {1 2} {1 3}} see Figure 14
below.
Then

(E) = { {1} {1 2} {1 3}}
A(E) = (E) = P( )
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Figure 14. A collection of subsets.

Definition 6.16. Let be a set. We say that a family of sets F P( ) is a
partition of if is the disjoint union of the sets in F
Example 6.17. Let be a set and E = { 1 } where 1 is a
partition of In this case

A(E) = (E) = (E) = { : {1 2 }}
where := when = Notice that

#A(E) = #(P({1 2 })) = 2
Proposition 6.18. Suppose thatM P( ) is a — algebra andM is at most a
countable set. Then there exists a unique finite partition F of such that F M
and every element M is of the form

(6.11) = { F : }
In particularM is actually a finite set.

Proof. For each let

= ( M ) M
That is, is the smallest set inM which contains Suppose that =
is non-empty. If then \ M and hence \ which
shows that = which is a contradiction. Hence and similarly
therefore = and = which shows that =
Therefore, F = { : } is a partition of (which is necessarily countable)
and Eq. (6.11) holds for all M Let F = { } =1 where for the moment
we allow = If = then M is one to one correspondence with {0 1}N
Indeed to each {0 1}N let M be defined by

= { : = 1}
This shows that M is uncountable since {0 1}N is uncountable; think of the base
two expansion of numbers in [0 1] for example. Thus any countable — algebra is
necessarily finite. This finishes the proof modulo the uniqueness assertion which is
left as an exercise to the reader.
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Example 6.19. Let = R and

E = {( ) : R} {R } = {( ) R : R̄} P(R)
Notice that E = E and that E is closed under unions, which shows that
(E) = E , i.e. E is already a topology. Since ( ) = ( ] we find that
E = {( ) ( ] } {R }. Noting that

( ) ( ] = ( ]

it is easy to verify that the algebra A(E) generated by E may be described as being
those sets which are finite disjoint unions of sets from the following list

Ẽ := ©( ] R : R̄
ª

(This follows from Proposition 6.12 and the fact that Ẽ is an elementary family of
subsets of R ) The — algebra, (E) generated by E is very complicated. Here
are some sets in (E) — most of which are not in A(E)

(a) ( ) =
S

=1
( 1 ] (E)

(b) All of the standard open subsets of R are in (E)
(c) { } = T¡ 1

¤

(E)
(d) [ ] = { } ( ] (E)
(e) Any countable subset of R is in (E).

Remark 6.20. In the above example, one may replace E by E = {( ) :
Q} {R } in which case A(E) may be described as being those sets which are
finite disjoint unions of sets from the following list

{( ) ( ] ( ] : Q} { R}
This shows that A(E) is a countable set — a fact we will use later on.
Definition 6.21. A topological space, ( ) is second countable if there exists
a countable base V for i.e. V is a countable set such that for every

= { : V 3 }
Exercise 6.4. Suppose E P( ) is a countable collection of subsets of then
= (E) is a second countable topology on

Proposition 6.22. Every separable metric space, ( ) is second countable.

Proof. Let { } =1 be a countable dense subset of . Let V
{ } S

=1
{ ( )} , where { } =1 is dense in (0 ). Then V is a

countable base for To see this let be open and . Choose
0 such that ( ) and then choose ( 3) Choose near

3 such that ( ) 3 so that ( ) . This shows
=
S { ( ) : ( ) }

Notation 6.23. For a general topological space ( ), the Borel — algebra is
the — algebra, B = ( ) We will use BR to denote the Borel - algebra on R

Proposition 6.24. If is a second countable topology on and E P( ) is a
countable set such that = (E) then B := ( ) = (E) i.e. ( (E)) = (E)
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Proof. Let E denote the collection of subsets of which are finite intersection
of elements from E along with and Notice that E is still countable (you prove).
A set is in (E) i is an arbitrary union of sets from E Therefore =

S

F
for some subset F E which is necessarily countable. Since E (E) and (E) is
closed under countable unions it follows that (E) and hence that (E) (E)
For the last assertion, since E (E) (E) it follows that (E) ( (E)) (E)

Exercise 6.5. Verify the following identities

BR = ({( ) : R} = ({( ) : Q} = ({[ ) : Q})
6.4. Continuous and Measurable Functions. Our notion of a “measurable”
function will be analogous to that for a continuous function. For motivational pur-
poses, suppose ( M ) is a measure space and : R+. Roughly speaking,
in the next section we are going to define

R

by

Z

= lim
mesh 0

X

0 1 2 3

( 1( +1])

For this to make sense we will need to require 1(( ]) M for all Because
of Lemma 6.30 below, this last condition is equivalent to the condition

1(BR) M
where we are using the following notation.

Notation 6.25. If : is a function and E P( ) let
1E 1 (E) { 1( )| E}

If G P( ) let
G { P( )| 1( ) G}

Exercise 6.6. Show 1E and G are — algebras (topologies) provided E and
G are — algebras (topologies).

Definition 6.26. Let ( M) and ( F) be measurable (topological) spaces. A
function : is measurable (continuous) if 1(F) M. We will also
say that isM F — measurable (continuous) or (M F) — measurable (continuous).
Example 6.27 (Characteristic Functions). Let ( M) be a measurable space and

We define the characteristic function 1 : R by

1 ( ) =

½

1 if
0 if

If M then 1 is (M P(R)) — measurable because 1 1( ) is either or
for any R Conversely, if F is any — algebra on R containing a set R

such that 1 and 0 then M if 1 is (M F) — measurable. This is
because = 1 1( ) M
Remark 6.28. Let : be a function. Given a — algebra (topology)
F P( ) the — algebra (topology) M := 1(F) is the smallest — algebra
(topology) on such that is (M F) - measurable (continuous). Similarly, ifM
is a - algebra (topology) on then F = M is the largest — algebra (topology)
on such that is (M F) - measurable (continuous).
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Lemma 6.29. Suppose that ( M) ( F) and ( G) are measurable (topological)
spaces. If : ( M) ( F) and : ( F) ( G) are measurable (continuous)
functions then : ( M) ( G) is measurable (continuous) as well.
Proof. This is easy since by assumption 1(G) F and 1 (F) M so that

( )
1
(G) = 1

¡

1 (G)¢ 1 (F) M

Lemma 6.30. Suppose that : is a function and E P( ) then
¡

1(E)¢ = 1( (E)) and(6.12)
¡

1(E)¢ = 1( (E))(6.13)

Moreover, if F = (E) (or F = (E)) and M is a — algebra (topology) on
then is (M F) — measurable (continuous) i 1(E) M
Proof. We will prove Eq. (6.12), the proof of Eq. (6.13) being analogous.

If E F then 1(E) 1( (E)) and therefore, (because 1( (E)) is a —
algebra)

G := ( 1(E)) 1( (E))
which proves half of Eq. (6.12). For the reverse inclusion notice that

G = © : 1( ) Gª

is a — algebra which contains E and thus (E) G Hence if (E) we
know that 1( ) G i.e. 1( (E)) G The last assertion of the Lemma is
an easy consequence of Eqs. (6.12) and (6.13). For example, if 1E M then

1 (E) = ¡

1E¢ M which shows is (M F) — measurable.
Definition 6.31. A function : between to topological spaces is Borel
measurable if 1(B ) B .

Proposition 6.32. Let and be two topological spaces and : be a
continuous function. Then is Borel measurable.

Proof. Using Lemma 6.30 and B = ( )

1(B ) = 1( ( )) = ( 1( )) ( ) = B

Corollary 6.33. Suppose that ( M) is a measurable space. Then : R
is (M BR) — measurable i 1(( )) M for all R i 1(( )) M
for all Q i 1(( ]) M for all R etc. Similarly, if ( M) is
a topological space, then : R is (M R) - continuous i 1(( )) M
for all i 1(( )) M and 1(( )) M for all

Q (We are using R to denote the standard topology on R induced by the
metric ( ) = | | )
Proof. This is an exercise (Exercise 6.7) in using Lemma 6.30.
We will often deal with functions : R̄ = R {± } Let

(6.14) BR̄ := ({[ ] : R})
The following Corollary of Lemma 6.30 is a direct analogue of Corollary 6.33.
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Corollary 6.34. : R̄ is (M BR̄) - measurable i 1(( ]) M for all
R i 1(( ]) M for all R etc.

Proposition 6.35. Let BR and BR̄ be as above, then
(6.15) BR̄ = { R̄ : R BR}
In particular { } { } BR̄ and BR BR̄
Proof. Let us first observe that

{ } = =1[ ) = =1[ ] BR̄
{ } = =1[ ] BR̄ and R = R̄\ {± } BR̄

Letting : R R̄ be the inclusion map,
1 (BR̄) =

¡

1
¡©

[ ] : R̄
ª¢¢

=
¡©

1 ([ ]) : R̄
ª¢

=
¡©

[ ] R : R̄
ª¢

= ({[ ) : R}) = BR
Thus we have shown

BR = 1 (BR̄) = { R : BR̄}
This implies:

(1) BR̄ = R BR and
(2) if R̄ is such that R BR there exists BR̄ such that R = R

Because {± } and { } { } BR̄ we may conclude that
BR̄ as well.

This proves Eq. (6.15).

Proposition 6.36 (Closure under sups, infs and limits). Suppose that ( M) is
a measurable space and : ( M) R is a sequence of M BR — measurable
functions. Then

sup inf lim sup and lim inf

are all M BR — measurable functions. (Note that this result is in generally false
when ( M) is a topological space and measurable is replaced by continuous in the
statement.)

Proof. Define +( ) := sup ( ) then

{ : +( ) } = { : ( ) }
= { : ( ) } M

so that + is measurable. Similarly if ( ) = inf ( ) then

{ : ( ) } = { : ( ) } M
Since

lim sup = inf sup { : } and

lim inf = sup inf { : }

we are done by what we have already proved.
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6.4.1. More general pointwise limits.

Lemma 6.37. Suppose that ( M) is a measurable space, ( ) is a metric space
and : is (M B ) — measurable for all Also assume that for each
( ) = lim ( ) exists. Then : is also (M B ) — measurable.

Proof. Let and := { : ( ) 1 } for = 1 2 Then

¯ { : ( ) 1 }
for all and as The proof will be completed by verifying the
identity,

1( ) = =1 =1
1( ) M

If 1( ) then ( ) and hence ( ) for some Since ( ) ( )
( ) for almost all That is =1 =1

1( ) Conversely
when =1 =1

1( ) there exists an such that ( )
¯ for almost all Since ( ) ( ) ¯ it follows that 1( )

Remark 6.38. In the previous Lemma 6.37 it is possible to let ( ) be any topo-
logical space which has the “regularity” property that if there exists
such that ¯ and = =1 Moreover, some extra condition is
necessary on the topology in order for Lemma 6.37 to be correct. For example if
= {1 2 3} and = { {1 2} {2 3} {2}} as in Example 3.28 and = { }

with the trivial — algebra. Let ( ) = ( ) = 2 for all then is constant and
hence measurable. Let ( ) = 1 and ( ) = 2 then as with being
non-measurable. Notice that the Borel — algebra on is P( )

6.5. Topologies and — Algebras Generated by Functions.

Definition 6.39. Let E P( ) be a collection of sets, : be
the inclusion map ( ( ) = ) for all and

E = 1(E) = { : E}
When E = is a topology or E =M is a — algebra we call the relative topology
andM the relative — algebra on

Proposition 6.40. Suppose that M P( ) is a — algebra and
P( ) is a topology, thenM P( ) is a — algebra and P( ) is a topology.
Moreover if E P( ) is such that M = (E) ( = (E)) then M = (E )
( = (E ))

Proof. The first assertion is Exercise 6.6 and the second assertion is a conse-
quence of Lemma 6.30. Indeed,

M = 1(M) = 1( (E)) = ( 1(E)) = (E )

and similarly
= 1( ) = 1( (E)) = ( 1(E)) = (E )

Example 6.41. Suppose that ( ) is a metric space and is a set. Let
= and := | × be the metric restricted to Then = i.e.

the relative topology, , of on is the same as the topology induced by the
restriction of the metric to Indeed, if there exists such that

= Therefore for all there exists 0 such that ( ) and
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hence ( ) Since ( ) = ( ) is a — ball in this shows
is — open, i.e. Conversely, if then for each there

exists 0 such that ( ) = ( ) Therefore = with
:= ( ) This shows

Definition 6.42. Let : C be a function,M P( ) be a — algebra
and P( ) be a topology, then we say that | is measurable (continuous) if
| isM — measurable ( continuous).

Proposition 6.43. Let : C be a function, M P( ) be a —
algebra and P( ) be a topology. If is M — measurable ( continuous) then
| is M measurable ( continuous). Moreover if M ( ) such that
= =1 and | is M measurable ( continuous) for all then is

M — measurable ( continuous).

Proof. Notice that is (M M) — measurable ( ) — continuous) hence
| = isM measurable ( — continuous). Let C be a Borel set and
consider

1( ) = =1

¡

1( )
¢

= =1 | 1( )

If M ( ) then it is easy to check that

M = { M : } M and

= { : }
The second assertion is now an easy consequence of the previous three equations.

Definition 6.44. Let and be sets, and suppose for we are give a
measurable (topological) space ( F ) and a function : We will write
( : ) ( ( : )) for the smallest -algebra (topology) on such that
each is measurable (continuous), i.e.

( : ) = ( 1(F )) and

( : ) = ( 1(F )).

Proposition 6.45. Assuming the notation in Definition 6.44 and additionally let
( M) be a measurable (topological) space and : be a function. Then
is (M ( : )) — measurable ((M ( : )) — continuous) i is
(M F )—measurable (continuous) for all

Proof. ( ) If is (M ( : )) — measurable, then the composition
is (M F ) — measurable by Lemma 6.29.
( ) Let

G = ( : ) =
¡

1(F )
¢

If is (M F ) — measurable for all then
1 1(F ) M

and therefore
1
¡

1(F )
¢

= 1 1(F ) M
Hence

1 (G) = 1
¡ ¡

1(F )
¢¢

= ( 1
¡

1(F )
¢ M
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which shows that is (M G) — measurable.
The topological case is proved in the same way.

6.6. Product Spaces. In this section we consider product topologies and —
algebras. We will start with a finite number of factors first and then later mention
what happens for an infinite number of factors.

6.6.1. Products with a Finite Number of Factors. Let { } =1 be a collection of sets,
:= 1× 2×· · ·× and : be the projection map ( 1 2 ) =
for each 1 Let us also suppose that is a topology on andM is a
— algebra on for each

Notation 6.46. Let E P( ) be a collection of subsets of for = 1 2
we will write, by abuse of notation, E1 × E2 × · · · × E for the collection of subsets
of 1 × · · · × of the form 1 × 2 × · · · × with E for all That is we
are identifying ( 1 2 ) with 1 × 2 × · · · ×
Definition 6.47. The product topology on , denoted by 1 2 · · · is
the smallest topology on so that each map : is continuous. Similarly,
the product — algebra on , denoted byM1 M2 · · · M is the smallest
— algebra on so that each map : is measurable.

Remark 6.48. The product topology may also be described as the smallest topology
containing sets from 1 × · · · × i.e.

1 2 · · · = ( 1 × · · · × )

Indeed,

1 2 · · · = ( 1 2 )

= (
©

=1
1( ) : for = 1 2

ª

)

= ({ 1 × 2 × · · · × : for = 1 2 })
Similarly,

M1 M2 · · · M = (M1 ×M2 × · · · ×M )

Furthermore if B is a basis for the topology for each then B1×· · ·×B is
a basis for 1 2 · · · Indeed, 1×· · ·× is closed under finite intersections
and generates 1 2 · · · therefore 1 × · · · × is a basis for the product
topology. Hence for 1 2 · · · and = ( 1 ) there exists
1 × 2 × · · · × 1 × · · · × such that

1 × 2 × · · · ×
Since B is a basis for we may now choose B such that for
each Thus

1 × 2 × · · · ×
and we have shown may be written as a union of sets from B1 × · · · × B Since

B1 × · · · × B 1 × · · · × 1 2 · · ·
this shows B1 × · · · × B is a basis for 1 2 · · ·
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Lemma 6.49. Let ( ) for = 1 be metric spaces, := 1 × · · · ×
and for = ( 1 2 ) and = ( 1 2 ) in let

(6.16) ( ) =
X

=1

( )

Then the topology, associated to the metric is the product topology on i.e.

=
1 2

· · ·
Proof. Let ( ) = max{ ( ) : = 1 2 } Then is equivalent to

and hence = Moreover if 0 and = ( 1 2 ) then

( ) = 1

1
( )× · · · × ( )

By Remark 6.14,
E := { ( ) : and 0}

is a basis for and by Remark 6.48 E is also a basis for 1 2 · · ·
Therefore,

1 2
· · · = (E) = =

Remark 6.50. Let ( M) be a measurable (topological) space, then by Proposition
6.45, a function : is measurable (continuous) i : is
(M M ) — measurable (( ) — continuous) for = 1 2 So if we write

( ) = ( 1( ) 2( ) ( )) 1 × 2 × · · · ×
then : is measurable (continuous) i : is measurable (continu-
ous) for all

Theorem 6.51. For = 1 2 let E P( ) be a collection of subsets of
such that E andM = (E ) (or = (E )) for = 1 2 then

M1 M2 · · · M = (E1 × E2 × · · · × E ) and
1 2 · · · = (E1 × E2 × · · · × E )

Written out more explicitly, these equations state

( (E1)× (E2)× · · · × (E )) = (E1 × E2 × · · · × E ) and(6.17)

( (E1)× (E2)× · · · × (E )) = (E1 × E2 × · · · × E )(6.18)

Moreover if {( )} =1 is a sequence of second countable topological spaces, =

1 2 · · · is the product topology on = 1 × · · · × then

B := ( 1 2 · · · ) = (B 1 × · · · × B ) =: B 1 · · · B
That is to say the Borel — algebra and the product — algebra on are the same.

Proof. We will prove Eq. (6.17). The proof of Eq. (6.18) is completely analo-
gous. Let us first do the case of two factors. Since

E1 × E2 (E1)× (E2)
it follows that

(E1 × E2) ( (E1)× (E2)) = ( 1 2)
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To prove the reverse inequality it su ces to show : 1× 2 is (E1 × E2)
—M = (E ) measurable for = 1 2 To prove this suppose that E1 then

1
1 ( ) = × 2 E1 × E2 (E1 × E2)

wherein we have used the fact that 2 E2 Similarly, for E2 we have
1

2 ( ) = 1 × E1 × E2 (E1 × E2)
This proves the desired measurability, and hence

( 1 2) (E1 × E2) ( 1 2)

To prove the last assertion we may assume each E is countable for = 1 2 Since
E1 × E2 is countable, a couple of applications of Proposition 6.24 along with the
first two assertions of the theorems gives

( 1 2) = ( ( 1 × 2)) = ( ( (E1)× (E2))) = ( (E1 × E2))
= (E1 × E2) = ( (E1)× (E2)) = (M1 ×M2) =M1 M2

The proof for factors works the same way. Indeed,

E1 × E2 × · · · × E (E1)× (E2)× · · · × (E )
implies

(E1 × E2 × · · · × E ) ( (E1)× (E2)× · · · × (E )) = ( 1 )

and for E
1( ) = 1 × 2 × · · · × 1 × × +1 · · · × E1 × E2 × · · · × E

(E1 × E2 × · · · × E )
This show is (E1 × E2 × · · · × E ) —M = (E ) measurable and therefore,

( 1 ) (E1 × E2 × · · · × E ) ( 1 )

If the E are countable, then

( 1 2 · · · ) = ( ( 1 × 2 × · · · × ))

= ( ( (E1)× (E2)× · · · × (E )))
= ( (E1 × E2 × · · · × E ))
= (E1 × E2 × · · · × E )
= ( (E1)× (E2)× · · · × (E ))
= (M1 ×M2 × · · · ×M )

=M1 M2 · · · M

Remark 6.52. One can not relax the assumption that E in Theorem 6.51.
For example, if 1 = 2 = {1 2} and E1 = E2 = {{1}} then (E1 × E2) =
{ 1 × 2 {(1 1)}} while ( (E1)× (E2)) = P( 1 × 2)

Proposition 6.53. If ( ) are separable metric spaces for = 1 then

B 1 · · · B = B( 1×···× )

where B is the Borel — algebra on and B( 1×···× ) is the Borel — algebra
on 1 × · · · × equipped with the product topology.
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Proof. This follows directly from Proposition 6.22 and Theorem 6.51.
Because all norms on finite dimensional spaces are equivalent, the usual Euclid-

ean norm on R ×R is equivalent to the “product” norm defined by

k( )kR ×R = k kR + k kR
Hence by Lemma 6.49, the Euclidean topology on R + is the same as the product
topology on R + = R ×R Here we are identifying R ×R with R + by the
map

( ) R ×R ( 1 1 ) R +

Proposition 6.53 and these comments leads to the following corollaries.

Corollary 6.54. After identifying R × R with R + as above and letting BR
denote the Borel —algebra on R we have

BR + = BR BR and BR =

—times
z }| {

BR · · · BR
Corollary 6.55. If ( M) is a measurable space, then

= ( 1 2 ) : R

is (M BR ) — measurable i : R is (M BR) — measurable for each In
particular, a function : C is (M BC) — measurable i Re and Im are
(M BR) — measurable.
Corollary 6.56. Let ( M) be a measurable space and : C be (M BC)
— measurable functions. Then ± and · are also (M BC) — measurable.
Proof. Define : C × C ± : C × C C and : C × C C by
( ) = ( ( ) ( )) ±( ) = ± and ( ) = Then ± and are

continuous and hence (BC2 BC) — measurable. Also is (M BC BC) = (M BC2)
— measurable since 1 = and 2 = are (M BC) — measurable. Therefore
± = ± and = · being the composition of measurable functions,
are also measurable.

Lemma 6.57. Let C ( M) be a measurable space and : C be a
(M BC) — measurable function. Then

( ) :=

½ 1
( ) if ( ) 6= 0

if ( ) = 0

is measurable.

Proof. Define : C C by

( ) =

½

1 if 6= 0
if = 0

For any open set C we have
1( ) = 1( \ {0}) 1( {0})

Because is continuous except at = 0 1( \ {0}) is an open set and hence
in BC Moreover, 1( {0}) BC since 1( {0}) is either the empty set or
the one point set { } Therefore 1( C) BC and hence 1(BC) = 1( ( C)) =
( 1( C)) BC which shows that is Borel measurable. Since = is the
composition of measurable functions, is also measurable.
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6.6.2. General Product spaces .

Definition 6.58. Suppose( M ) is a collection of measurable spaces and
let be the product space

=
Y

and : be the canonical projection maps. Then the product — algebra,
NM is defined by

O

M ( : ) =

Ã

[

1(M )

!

Similarly if ( M ) is a collection of topological spaces, the product topology
NM is defined by

O

M ( : ) =

Ã

[

1(M )

!

Remark 6.59. Let ( M) be a measurable (topological) space and
Ã

=
Y O

M
!

be as in Definition 6.58. By Proposition 6.45, a function : is measurable
(continuous) i is (M M ) — measurable (continuous) for all

Proposition 6.60. Suppose that ( M ) is a collection of measurable (topo-
logical) spaces and E M generatesM for each then

(6.19) M =
¡

1(E )¢ ¡ ¡

1(E )¢¢

Moreover, suppose that is either finite or countably infinite, E for each
andM = (E ) for each Then the product — algebra satisfies

(6.20)
O

M =

Ã(

Y

: E for all

)!

Similarly if is finite andM = (E ) then the product topology satisfies

(6.21)
O

M =

Ã(

Y

: E for all

)!

Proof. We will prove Eq. (6.19) in the measure theoretic case since a similar
proof works in the topological category. Since

S

1(E ) 1(M ) it follows

that

F :=
Ã

[

1(E )
! Ã

[

1(M )

!

=
O

M

Conversely,
F ( 1(E )) = 1( (E )) = 1(M )

holds for all implies that
[

1(M ) F
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and hence that
NM F .

We now prove Eq. (6.20). Since we are assuming that E for each
we see that

[

1(E )
(

Y

: E for all

)

and therefore by Eq. (6.19)

O

M =

Ã

[

1(E )
! Ã(

Y

: E for all

)!

This last statement is true independent as to whether is countable or not. For
the reverse inclusion it su ces to notice that since is countable,

Y

= 1( )
O

M

and hence
Ã(

Y

: E for all

)!

O

M

Here is a generalization of Theorem 6.51 to the case of countable number of factors.

Proposition 6.61. Let { } be a sequence of sets where is at most count-
able. Suppose for each we are given a countable set E P( ). Let
= (E ) be the topology on generated by E and be the product space

Q

with equipped with the product topology := (E ) Then the Borel
— algebra B = ( ) is the same as the product — algebra:

B = B
where B = ( (E )) = (E ) for all
Proof. By Proposition 6.60, the topology may be described as the smallest

topology containing E = 1(E ) Now E is the countable union of countable
sets so is still countable. Therefore by Proposition 6.24 and Proposition 6.60 we
have

B = ( ) = ( (E)) = (E) = (E ) = ( ) = B

Lemma 6.62. Suppose that ( F) is a measurable space and : is a
map. Then to every ( ( ) BR̄) — measurable function, from R̄ there is a
(F BR̄) — measurable function : R̄ such that =

Proof. First suppose that = 1 where ( ) = 1(BR̄) Let BR̄
such that = 1( ) then 1 = 1 1( ) = 1 and hence the Lemma is valid
in this case with = 1 More generally if =

P

1 is a simple function, then
there exists BR̄ such that 1 = 1 and hence = with :=

P

1
— a simple function on R̄
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For general ( ( ) BR̄) — measurable function, from R̄ choose simple
functions converging to Let be simple functions on R̄ such that =

Then it follows that

= lim = lim sup = lim sup =

where := lim sup — a measurable function from to R̄
The following is an immediate corollary of Proposition 6.45 and Lemma 6.62.

Corollary 6.63. Let and be sets, and suppose for we are give a
measurable space ( F ) and a function : Let :=

Q F :=
F be the product — algebra on andM := ( : ) be the smallest

-algebra on such that each is measurable. Then the function :
defined by [ ( )] := ( ) for each is (M F) — measurable and a function
: R̄ is (M BR̄) — measurable i there exists a (F BR̄) — measurable function
from to R̄ such that =

6.7. Exercises.

Exercise 6.7. Prove Corollary 6.33. Hint: See Exercise 6.5.

Exercise 6.8. Folland, Problem 1.5 on p.24. IfM is the — algebra generated by
E P( ) thenM is the union of the — algebras generated by countable subsets
F E
Exercise 6.9. Let ( M) be a measure space and : F be a sequence of
measurable functions on Show that { : lim ( ) exists} M
Exercise 6.10. Show that every monotone function : R R is (BR BR) — mea-
surable.

Exercise 6.11. Folland problem 2.6 on p. 48.

Exercise 6.12. Suppose that is a set, {( ) : } is a family of topological
spaces and : is a given function for all Assuming that S
is a sub-basis for the topology for each show S := 1(S ) is a
sub-basis for the topology := ( : )

Notation 6.64. Let be a set and p := { } =0 be a family of semi-metrics on
i.e. : × [0 ) are functions satisfying the assumptions of metric

except for the assertion that ( ) = 0 implies = Further assume that
( ) +1( ) for all and if ( ) = 0 for all N then = Given
N and let

( ) := { : ( ) }
We will write (p) form the smallest topology on such that ( ·) : [0 )
is continuous for all N and i.e. (p) := ( ( ·) : N and )

Exercise 6.13. Using Notation 6.64, show that collection of balls,

B := { ( ) : N and 0}
forms a basis for the topology (p) Hint: Use Exercise 6.12 to show B is a sub-
basis for the topology (p) and then use Exercise 6.3 to show B is in fact a basis
for the topology (p)
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Exercise 6.14. Using the notation in 6.64, let

( ) =
X

=0

2
( )

1 + ( )

Show is a metric on and = (p) Conclude that a sequence { } =1

converges to i

lim ( ) = 0 for all N

Exercise 6.15. Let {( )} =1 be a sequence of metric spaces, :=
Q

=1

and for = ( ( )) =1 and = ( ( )) =1 in let

( ) =
X

=1

2
( ( ) ( ))

1 + ( ( ) ( ))

(See Exercise 3.26.) Moreover, let : be the projection maps, show

= =1 := ({ : N})
That is show the — metric topology is the same as the product topology on
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7. Measures and Integration

Definition 7.1. A measure on a measurable space ( M) is a function :
M [0 ] such that

(1) ( ) = 0 and
(2) (Finite Additivity) If { } =1 M are pairwise disjoint, i.e. =

when 6= then

(
[

=1

) =
X

=1

( )

(3) (Continuity) If M and then ( ) ( )

We call a triple ( M ) where ( M) is a measurable space and :M
[0 ] is a measure, a measure space.

Remark 7.2. Properties 2) and 3) in Definition 7.1 are equivalent to the following
condition. If { } =1 M are pairwise disjoint then

(7.1) (
[

=1

) =
X

=1

( )

To prove this suppose that Properties 2) and 3) in Definition 7.1 and { } =1 M
are pairwise disjoint. Let :=

S

=1
:=

S

=1
so that

( )
(3)
= lim ( )

(2)
= lim

X

=1

( ) =
X

=1

( )

Conversely, if Eq. (7.1) holds we may take = for all to see that Property
2) of Definition 7.1 holds. Also if let := \ 1 Then { } =1 are
pairwise disjoint, = =1 and = =1 So if Eq. (7.1) holds we have

( ) =
¡

=1

¢

=
X

=1

( )

= lim
X

=1

( ) = lim ( =1 ) = lim ( )

Proposition 7.3 (Basic properties of measures). Suppose that ( M ) is a mea-
sure space and M and { } =1 M then :

(1) ( ) ( ) if
(2) ( )

P

( )
(3) If ( 1) and , i.e. 1 2 3 and = then

( ) ( ) as

Proof.
(1) Since = ( \ )

( ) = ( ) + ( \ ) ( )

(2) Let e = \ ( 1 · · · 1) so that the ˜ ’s are pair-wise disjoint and
= e Since ˜ it follows from Remark 7.2 and part (1) that

( ) =
X

( e )
X

( )
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N
F

A

Figure 15. Completing a — algebra.

(3) Define 1 \ then 1 \ which implies that

( 1) ( ) = lim ( ) = ( 1) lim ( )

which shows that lim ( ) = ( ).

Definition 7.4. A set is a null set if M and ( ) = 0. If is some
“property” which is either true or false for each we will use the terminology
a.e. (to be read almost everywhere) to mean

:= { : is false for }
is a null set. For example if and are two measurable functions on ( M )
= a.e. means that ( 6= ) = 0

Definition 7.5. A measure space ( M ) is complete if every subset of a null
set is inM, i.e. for all such that M with ( ) = 0 implies that

M.

Proposition 7.6. Let ( M ) be a measure space. Set

N { : M 3 and ( ) = 0}
and

M̄ = { : M M}
see Fig. 15. Then M̄ is a -algebra. Define ¯( ) = ( ), then ¯ is the unique
measure on M̄ which extends .

Proof. Clearly M̄.
Let M and N and choose M such that and ( ) = 0.

Since = ( \ )

( ) = = ( \ ) = [ ( \ )] [ ]

where [ ( \ )] N and [ ] M Thus M̄ is closed under complements.
If M and M such that ( ) = 0 then ( ) = ( )

( ) M̄ since M and and ( )
P

( ) = 0 Therefore,
M̄ is a -algebra.
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Suppose 1 = 2 with M and 1 2 N . Then 1

1 2 = 2 which shows that

( ) ( ) + ( 2) = ( )

Similarly, we show that ( ) ( ) so that ( ) = ( ) and hence ¯( ) :=
( ) is well defined. It is left as an exercise to show ¯ is a measure, i.e. that it is
countable additive.
Many theorems in the sequel will require some control on the size of a measure
The relevant notion for our purposes (and most purposes) is that of a — finite

measure defined next.

Definition 7.7. Suppose is a set, E M P( ) and : M [0 ] is
a function. The function is — finite on E if there exists E such that
( ) and = =1 If M is a — algebra and is a measure on M
which is — finite onM we will say ( M ) is a -finite measure space.

The reader should check that if is a finitely additive measure on an algebra,
M then is — finite on M i there exists M such that and
( )

7.1. Example of Measures. Most — algebras and -additive measures are
somewhat di cult to describe and define. However, one special case is fairly easy
to understand. Namely suppose that F P( ) is a countable or finite partition of
andM P( ) is the — algebra which consists of the collection of sets

such that

(7.2) = { F : }
It is easily seen thatM is a — algebra.
Any measure :M [0 ] is determined uniquely by its values on F Con-

versely, if we are given any function : F [0 ] we may define, for M
( ) =

X

F3
( ) =

X

F
( )1

where 1 is one if and zero otherwise. We may check that is a measure
onM Indeed, if =

`

=1 and F then i for one and hence
exactly one Therefore 1 =

P

=1 1 and hence

( ) =
X

F
( )1 =

X

F
( )

X

=1

1

=
X

=1

X

F
( )1 =

X

=1

( )

as desired. Thus we have shown that there is a one to one correspondence between
measures onM and functions : F [0 ]
We will leave the issue of constructing measures until Sections 13 and 14. How-

ever, let us point out that interesting measures do exist. The following theorem
may be found in Theorem 13.35 or see Section 13.8.1.

Theorem 7.8. To every right continuous non-decreasing function : R R there
exists a unique measure on BR such that
(7.3) (( ]) = ( ) ( )
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Moreover, if BR then

( ) = inf

(

X

=1

( ( ) ( )) : =1( ]

)

(7.4)

= inf

(

X

=1

( ( ) ( )) :
a

=1

( ]

)

(7.5)

In fact the map is a one to one correspondence between right continuous
functions with (0) = 0 on one hand and measures on BR such that ( )
on any bounded set BR on the other.
Example 7.9. The most important special case of Theorem 7.8 is when ( ) =
in which case we write for The measure is called Lebesgue measure.

Theorem 7.10. Lebesgue measure is invariant under translations, i.e. for
BR and R

(7.6) ( + ) = ( )

Moreover, is the unique measure on BR such that ((0 1]) = 1 and Eq. (7.6)
holds for BR and R Moreover, has the scaling property

(7.7) ( ) = | | ( )

where R, BR and := { : }
Proof. Let ( ) := ( + ) then one easily shows that is a measure on

BR such that (( ]) = for all Therefore, = by the uniqueness
assertion in Theorem 7.8.
For the converse, suppose that is translation invariant and ((0 1]) = 1

Given N we have

(0 1] = =1(
1

] = =1

µ

1
+ (0

1
]

¶

Therefore,

1 = ((0 1]) =
X

=1

µ

1
+ (0

1
]

¶

=
X

=1

((0
1
]) = · ((0

1
])

That is to say

((0
1
]) = 1

Similarly, ((0 ]) = for all N and therefore by the translation invariance
of

(( ]) = for all Q with

Finally for R such that choose Q such that and
then ( ] ( ] and thus

(( ]) = lim (( ]) = lim ( ) =

i.e. is Lebesgue measure.
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To prove Eq. (7.7) we may assume that 6= 0 since this case is trivial to prove.
Now let ( ) := | | 1

( ) It is easily checked that is again a measure on
BR which satisfies

(( ]) = 1 (( ]) = 1( ) =

if 0 and

(( ]) = | | 1 ([ )) = | | 1 ( ) =

if 0 Hence =
We are now going to develope integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, will be an extension of the
standard Riemann integral on R

7.2. Integrals of Simple functions. Let ( M ) be a fixed measure space in
this section.

Definition 7.11. A function : F is a simple function if is M — BR
measurable and ( ) is a finite set. Any such simple functions can be written as

(7.8) =
X

=1

1 with M and F

Indeed, let 1 2 be an enumeration of the range of and = 1({ })
Also note that Eq. (7.8) may be written more intrinsically as

=
X

F

1 1({ })

The next theorem shows that simple functions are “pointwise dense” in the space
of measurable functions.

Theorem 7.12 (Approximation Theorem). Let : [0 ] be measurable and
define

( )
22 1
X

=0
2
1 1(( 2

+1
2 ])( ) + 2 1 1((2 ])( )

=
22 1
X

=0
2
1{ 2 +1

2 }( ) + 2 1{ 2 }( )

then for all ( ) ( ) for all and uniformly on the sets
:= { : ( ) } with Moreover, if : C is a measurable

function, then there exists simple functions such that lim ( ) = ( ) for
all and | | | | as
Proof. It is clear by construction that ( ) ( ) for all and that 0
( ) ( ) 2 if 2 From this it follows that ( ) ( ) for all
and uniformly on bounded sets.
Also notice that

(
2

+ 1

2
] = (

2

2 +1

2 + 2

2 +1
] = (

2

2 +1

2 + 1

2 +1
] (

2 + 1

2 +1

2 + 2

2 +1
]
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and for 1
¡

( 2
2 +1

2 +1
2 +1 ]

¢

( ) = +1( ) = 2
2 +1 and for

1
¡

( 2 +1
2 +1

2 +2
2 +1 ]

¢

( ) = 2
2 +1

2 +1
2 +1 = +1( ) Similarly

(2 ] = (2 2 +1] (2 +1 ]

so for 1((2 +1 ]) ( ) = 2 2 +1 = +1( ) and for
1((2 2 +1]) +1( ) 2 = ( ) Therefore +1 for all and we

have completed the proof of the first assertion.
For the second assertion, first assume that : R is a measurable function

and choose ± to be simple functions such that ± ± as and define
= + Then

| | = + + +
+1 + +1 = | +1|

and clearly | | = + + + + = | | and = +
+ = as

Now suppose that : C is measurable. We may now choose simple
function and such that | | |Re | | | |Im | Re and Im
as Let = + then

| |2 = 2 + 2 |Re |2 + |Im |2 = | |2

and = + Re + Im = as
We are now ready to define the Lebesgue integral. We will start by integrating

simple functions and then proceed to general measurable functions.

Definition 7.13. Let F = C or [0 ) and suppose that : F is a simple
function. If F = C assume further that ( 1({ })) for all 6= 0 in C For
such functions define ( ) by

( ) =
X

F

( 1({ }))

Proposition 7.14. Let F and and be two simple functions, then
satisfies:

(1)

(7.9) ( ) = ( )

(2)

( + ) = ( ) + ( )

(3) If and are non-negative simple functions such that then

( ) ( )

Proof. Let us write { = } for the set 1({ }) and ( = ) for
({ = }) = ( 1 ({ })) so that

( ) =
X

C

( = )
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We will also write { = = } for 1({ }) 1({ }) This notation is more
intuitive for the purposes of this proof. Suppose that F then

( ) =
X

F

( = ) =
X

F

( = )

=
X

F

( = ) = ( )

provided that 6= 0 The case = 0 is clear, so we have proved 1.
Suppose that and are two simple functions, then

( + ) =
X

F

( + = )

=
X

F

( F { = = })

=
X

F

X

F

( = = )

=
X

F

( + ) ( = = )

=
X

F

( = ) +
X

F

( = )

= ( ) + ( )

which proves 2.
For 3. if and are non-negative simple functions such that

( ) =
X

0

( = ) =
X

0

( = = )

X

0

( = = ) =
X

0

( = ) = ( )

wherein the third inequality we have used { = = } = if

7.3. Integrals of positive functions.

Definition 7.15. Let + = { : [0 ] : is measurable}. Define
Z

= sup { ( ) : is simple and }

Because of item 3. of Proposition 7.14, if is a non-negative simple function,
R

= ( ) so that
R

is an extension of We say the + is integrable
if
R

Remark 7.16. Notice that we still have the monotonicity property: 0 then
Z

= sup { ( ) : is simple and }

sup { ( ) : is simple and }
Z

Similarly if 0
Z

=

Z
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Also notice that if is integrable, then ({ = }) = 0
Lemma 7.17. Let be a set and : [0 ] be a function, let =
P

( ) onM = P( ) i.e.

( ) =
X

( )

If : [0 ] is a function (which is necessarily measurable), then
Z

=
X

Proof. Suppose that : [0 ] is a simple function, then =
P

[0 ] 1 1({ }) and
X

=
X

( )
X

[0 ]

1 1({ })( ) =
X

[0 ]

X

( )1 1({ })( )

=
X

[0 ]

( 1({ })) =
Z

So if : [0 ) is a simple function such that then
Z

=
X X

Taking the sup over in this last equation then shows that
Z

X

For the reverse inequality, let be a finite set and (0 ) Set
( ) = min { ( )} and let be the simple function given by ( ) :=

1 ( ) ( ) Because ( ) ( )

X

=
X

=

Z Z

Since as we may let in this last equation to concluded
that

X

Z

and since is arbitrary we learn that
X

Z

Theorem 7.18 (Monotone Convergence Theorem). Suppose + is a sequence
of functions such that ( is necessarily in +) then

Z Z

as
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Proof. Since for all
Z Z Z

from which if follows
R

is increasing in and

(7.10) lim

Z Z

For the opposite inequality, let be a simple function such that 0 and
let (0 1) By Proposition 7.14,

(7.11)
Z Z

1

Z

=

Z

Write =
P

1 with 0 and M then

lim

Z

= lim
X

Z

1 =
X

( ) =
X

lim ( )

=
X

( ) =

Z

Using this we may let in Eq. (7.11) to conclude

lim

Z

lim

Z

=

Z

Because this equation holds for all simple functions 0 form the definition
of
R

we have lim
R R

Since (0 1) is arbitrary, lim
R R

which combined with Eq. (7.10) proves the theorem.
The following simple lemma will be use often in the sequel.

Lemma 7.19 (Chebyshev’s Inequality). Suppose that 0 is a measurable func-
tion, then for any 0

(7.12) ( )
1
Z

In particular if
R

then ( = ) = 0 (i.e. a.e.) and the set
{ 0} is — finite.

Proof. Since 1{ } 1{ } 1 1

( ) =

Z

1{ }

Z

1{ }
1 1

Z

If :=
R

then

( = ) ( ) 0 as

and { 1 } { 0} with ( 1 ) for all

Corollary 7.20. If + is a sequence of functions then
Z

X

=
X

Z

In particular, if
P

R

then
P

a.e.
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Proof. First o we show that
Z

( 1 + 2) =

Z

1 +

Z

2

by choosing non-negative simple function and such that 1 and 2

Then ( + ) is simple as well and ( + ) ( 1 + 2) so by the monotone
convergence theorem,

Z

( 1 + 2) = lim

Z

( + ) = lim

µ
Z

+

Z
¶

= lim

Z

+ lim

Z

=

Z

1 +

Z

2

Now to the general case. Let
P

=1
and =

P

1
then and so again

by monotone convergence theorem and the additivity just proved,

X

=1

Z

:= lim
X

=1

Z

= lim

Z

X

=1

= lim

Z

=

Z

=
X

=1

Z

Remark 7.21. It is in the proof of this corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measurable.
In fact the definition

R

makes sense for all functions : [0 ] not just
measurable functions. Moreover the monotone convergence theorem holds in this
generality with no change in the proof. However, in the proof of Corollary 7.20, we
use the approximation Theorem 7.12 which relies heavily on the measurability of
the functions to be approximated.

The following Lemma and the next Corollary are simple applications of Corollary
7.20.

Lemma 7.22 (First Borell-Carnteli- Lemma.). Let ( M ) be a measure space,
M and set

{ i.o.} = { : for infinitely many ’s} =
\

=1

[

If
P

=1 ( ) then ({ i.o.}) = 0.
Proof. (First Proof.) Let us first observe that

{ i.o.} =
(

:
X

=1

1 ( ) =

)

Hence if
P

=1 ( ) then

X

=1

( ) =
X

=1

Z

1 =

Z

X

=1

1

implies that
P

=1
1 ( ) for - a.e. That is to say ({ i.o.}) = 0.
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(Second Proof.) Of course we may give a strictly measure theoretic proof of this
fact:

( i.o.) = lim
[

lim
X

( )

and the last limit is zero since
P

=1 ( )

Corollary 7.23. Suppose that ( M ) is a measure space and { } =1 M is
a collection of sets such that ( ) = 0 for all 6= then

( =1 ) =
X

=1

( )

Proof. Since

( =1 ) =

Z

1
=1

and

X

=1

( ) =

Z

X

=1

1

it su ces to show

(7.13)
X

=1

1 = 1
=1

— a.e.

Now
P

=1 1 1
=1

and
P

=1 1 ( ) 6= 1
=1

( ) i for some
6= that is

(

:
X

=1

1 ( ) 6= 1
=1

( )

)

=

and the later set has measure 0 being the countable union of sets of measure zero.
This proves Eq. (7.13) and hence the corollary.

Example 7.24. Suppose ([ ] [0 )) and be
Lebesgue measure on R Also let = { = 0 1 · · · = } be a
sequence of refining partitions (i.e. +1 for all ) such that

mesh( ) := max{¯¯ +1
1

¯

¯ : = 1 } 0 as

For each let

( ) = ( )1{ } +
1

X

=0

min
©

( ) : +1

ª

1( +1]
( )
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then as and so by the monotone convergence theorem,
Z

:=

Z

[ ]

= lim

Z

= lim
X

=0

min
©

( ) : +1

ª ¡

( +1]
¢

=

Z

( )

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable functions:

Example 7.25. For all 0
R

0
( ) = 1 and

R

R
1

1+ 2 ( ) =
The proof of these equations are similar. By the monotone convergence theorem,
Example 7.24 and the fundamental theorem of calculus for Riemann integrals (or
see Theorem 7.40 below),

Z

0

( ) = lim

Z

0

( ) = lim

Z

0

= lim
1 |0 = 1

and
Z

R

1

1 + 2
( ) = lim

Z

1

1 + 2
( ) = lim

Z

1

1 + 2

= tan 1( ) tan 1( ) =

Let us also consider the functions
Z

(0 1]

1
( ) = lim

Z 1

0

1( 1 1]( )
1

( )

= lim

Z 1

1

1
= lim

+1

1

¯

¯

¯

¯

1

1

=

½ 1
1 if 1

if 1

If = 1 we find
Z

(0 1]

1
( ) = lim

Z 1

1

1
= lim ln( )|11 =

Example 7.26. Let { } =1 be an enumeration of the points in Q [0 1] and
define

( ) =
X

=1

2
1

p| |
with the convention that

1
p| | = 5 if =
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Since, By Theorem 7.40,
Z 1

0

1
p| | =

Z 1 1
+

Z

0

1

= 2 |1 2 |0 = 2
¡

1
¢

4

we find
Z

[0 1]

( ) ( ) =
X

=1

2

Z

[0 1]

1
p| |

X

=1

2 4 = 4

In particular, ( = ) = 0 i.e. that for almost every [0 1] and this
implies that

X

=1

2
1

p| | for a.e. [0 1]

This result is somewhat surprising since the singularities of the summands form a
dense subset of [0 1]

Proposition 7.27. Suppose that 0 is a measurable function. Then
R

= 0
i = 0 a.e. Also if 0 are measurable functions such that a.e. then
R R

In particular if = a.e. then
R

=
R

Proof. If = 0 a.e. and is a simple function then = 0 a.e. This implies
that ( 1({ })) = 0 for all 0 and hence

R

= 0 and therefore
R

= 0

Conversely, if
R

= 0 then by Chebyshev’s Inequality (Lemma 7.19),

( 1 )

Z

= 0 for all

Therefore, ( 0)
P

=1 ( 1 ) = 0 i.e. = 0 a.e.
For the second assertion let be the exceptional set where i.e. := {
: ( ) ( )} By assumption is a null set and 1 1 everywhere.

Because = 1 + 1 and 1 = 0 a.e.
Z

=

Z

1 +

Z

1 =

Z

1

and similarly
R

=
R

1 Since 1 1 everywhere,
Z

=

Z

1

Z

1 =

Z

Corollary 7.28. Suppose that { } is a sequence of non-negative functions and
is a measurable function such that o a null set, then

Z Z

as

Proof. Let be a null set such that 1 1 as Then by
the monotone convergence theorem and Proposition 7.27,

Z

=

Z

1

Z

1 =

Z

as
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Lemma 7.29 (Fatou’s Lemma). If : [0 ] is a sequence of measurable
functions then

Z

lim inf lim inf

Z

Proof. Define inf so that lim inf as Since

for all
Z Z

for all

and therefore
Z

lim inf

Z

for all

We may now use the monotone convergence theorem to let to find
Z

lim inf =

Z

lim
MCT
= lim

Z

lim inf

Z

7.4. Integrals of Complex Valued Functions.

Definition 7.30. A measurable function : R̄ is integrable if + 1{ 0}
and = 1{ 0} are integrable. We write 1 for the space of integrable
functions. For 1 let

Z

=

Z

+

Z

Convention: If : R̄ are two measurable functions, let + denote
the collection of measurable functions : R̄ such that ( ) = ( ) + ( )
whenever ( ) + ( ) is well defined, i.e. is not of the form or +
We use a similar convention for Notice that if 1 and 1 2 +
then 1 = 2 a.e. because | | and | | a.e.

Remark 7.31. Since

± | | + +

a measurable function is integrable i
R | | If 1 and = a.e.

then ± = ± a.e. and so it follows from Proposition 7.27 that
R

=
R

In
particular if 1 we may define

Z

( + ) =

Z

where is any element of +

Proposition 7.32. The map

1

Z

R

is linear and has the monotonicity property:
R R

for all 1 such
that a.e.
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Proof. Let 1 and R By modifying and on a null set, we may
assume that are real valued functions. We have + 1 because

| + | | || |+ | | | | 1

If 0 then
( )+ = and ( ) = +

so that
Z

=

Z

+

Z

+ = (

Z

+

Z

) =

Z

A similar calculation works for 0 and the case = 0 is trivial so we have shown
that

Z

=

Z

Now set = + Since = +

+ = + + +

or
+ + + = + + + +

Therefore,
Z

+ +

Z

+

Z

=

Z

+

Z

+ +

Z

+

and hence
Z

=

Z

+

Z

=

Z

+ +

Z

+

Z Z

=

Z

+

Z

Finally if + = = + then + + + + which implies
that

Z

+ +

Z Z

+ +

Z

or equivalently that
Z

=

Z

+

Z Z

+

Z

=

Z

The monotonicity property is also a consequence of the linearity of the integral, the
fact that a.e. implies 0 a.e. and Proposition 7.27.

Definition 7.33. A measurable function : C is integrable if
R | |

again we write 1 Because,max (|Re | |Im |) | | 2max (|Re | |Im |)
R | | i

Z

|Re | +

Z

|Im |
For 1 define

Z

=

Z

Re +

Z

Im

It is routine to show the integral is still linear on the complex 1 (prove!).

Proposition 7.34. Suppose that 1 then
¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| |
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Proof. Start by writing
R

= . Then using the monotonicity in
Proposition 7.27,

¯

¯

¯

¯

Z

¯

¯

¯

¯

= =

Z

=

Z

=

Z

Re
¡ ¢

Z

¯

¯Re
¡ ¢

¯

¯

Z

| |

Proposition 7.35. 1 then

(1) The set { 6= 0} is -finite, in fact {| | 1 } { 6= 0} and (| | 1 )
for all .

(2) The following are equivalent
(a)

R

=
R

for all M
(b)

R | | = 0
(c) = a.e

Proof. 1. By Chebyshev’s inequality, Lemma 7.19,

(| | 1
)

Z

| |

for all
2. (a) = (c) Notice that

Z

=

Z Z

( ) = 0

for all M. Taking = {Re( ) 0} and using 1 Re( ) 0 we learn
that

0 = Re

Z

( ) =

Z

1 Re( ) = 1 Re( ) = 0 a.e.

This implies that 1 = 0 a.e. which happens i

({Re( ) 0}) = ( ) = 0

Similar (Re( ) 0) = 0 so that Re( ) = 0 a.e. Similarly, Im( ) = 0
a.e and hence = 0 a.e., i.e. = a.e.
(c) = (b) is clear and so is (b) = (a) since

¯

¯

¯

¯

Z Z

¯

¯

¯

¯

Z

| | = 0

Definition 7.36. Let ( M ) be a measure space and 1( ) = 1( M )
denote the set of 1 functions modulo the equivalence relation; i = a.e.
We make this into a normed space using the norm

k k 1 =

Z

| |

and into a metric space using 1( ) = k k 1
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Remark 7.37. More generally we may define ( ) = ( M ) for [1 )
as the set of measurable functions such that

Z

| |

modulo the equivalence relation; i = a.e.

We will see in Section 9 that

k k =

µ
Z

| |
¶1

for ( )

is a norm and ( ( ) k·k ) is a Banach space in this norm.

Theorem 7.38 (Dominated Convergence Theorem). Suppose 1

a.e., | | 1 a.e. and
R R

Then 1 and
Z

= lim

Z

(In most typical applications of this theorem = 1 for all )

Proof. Notice that | | = lim | | lim | | a.e. so that 1

By considering the real and imaginary parts of separately, it su ces to prove the
theorem in the case where is real. By Fatou’s Lemma,

Z

( ± ) =

Z

lim inf ( ± ) lim inf

Z

( ± )

= lim

Z

+ lim inf

µ

±
Z

¶

=

Z

+ lim inf

µ

±
Z

¶

Since lim inf ( ) = lim sup we have shown,
Z

±
Z Z

+

½

lim inf
R

lim sup
R

and therefore

lim sup

Z Z

lim inf

Z

This shows that lim
R

exists and is equal to
R

Corollary 7.39. Let { } =1
1 be a sequence such that

P

=1 k k 1

then
P

=1 is convergent a.e. and
Z

Ã

X

=1

!

=
X

=1

Z

Proof. The condition
P

=1 k k 1 is equivalent to
P

=1 | | 1 Hence
P

=1 is almost everywhere convergent and if :=
P

=1 then

| |
X

=1

| |
X

=1

| | 1
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So by the dominated convergence theorem,
Z

Ã

X

=1

!

=

Z

lim = lim

Z

= lim
X

=1

Z

=
X

=1

Z

Theorem 7.40 (The Fundamental Theorem of Calculus). Suppose
(( ) R) 1(( ) ) and ( ) :=

R

( ) ( ) Then

(1) ([ ] R) 1(( ) R)
(2) 0( ) = ( ) for all ( )
(3) If ([ ] R) 1(( ) R) is an anti-derivative of on ( ) (i.e.

= 0|( )) then
Z

( ) ( ) = ( ) ( )

Proof. Since ( ) :=
R

R 1( )( ) ( ) ( ) lim 1( )( ) = 1( )( ) for
— a.e. and

¯

¯1( )( ) ( )
¯

¯ 1( )( ) | ( )| is an 1 — function, it follows from
the dominated convergence Theorem 7.38 that is continuous on [ ] Simple
manipulations show,

¯

¯

¯

¯

( + ) ( )
( )

¯

¯

¯

¯

=
1

| |

¯

¯

¯

R +
[ ( ) ( )] ( )

¯

¯

¯
if 0

¯

¯

¯

R

+
[ ( ) ( )] ( )

¯

¯

¯
if 0

1

| |

(

R + | ( ) ( )| ( ) if 0
R

+
| ( ) ( )| ( ) if 0

sup {| ( ) ( )| : [ | | + | |]}
and the latter expression, by the continuity of goes to zero as 0 This shows
0 = on ( )
For the converse direction, we have by assumption that 0( ) = 0( ) for

( ) Therefore by the mean value theorem, = for some constant Hence
Z

( ) ( ) = ( ) = ( ) ( ) = ( ( ) + ) ( ( ) + ) = ( ) ( )

Example 7.41. The following limit holds,

lim

Z

0

(1 ) ( ) = 1

Let ( ) = (1 ) 1[0 ]( ) and notice that lim ( ) = We will now
show

0 ( ) for all 0

It su ces to consider [0 ] Let ( ) = ( ) then for (0 )

ln ( ) = 1 +
1

(1 )
(
1
) = 1

1

(1 )
0
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which shows that ln ( ) and hence ( ) is decreasing on [0 ] Therefore ( )
(0) = 1 i.e.

0 ( )

From Example 7.25, we know
Z

0

( ) = 1

so that is an integrable function on [0 ) Hence by the dominated convergence
theorem,

lim

Z

0

(1 ) ( ) = lim

Z

0

( ) ( )

=

Z

0

lim ( ) ( ) =

Z

0

( ) = 1

Example 7.42 (Integration of Power Series). Suppose 0 and { } =0 is a
sequence of complex numbers such that

P

=0 | | for all (0 ) Then
Z

Ã

X

=0

!

( ) =
X

=0

Z

( ) =
X

=0

+1 +1

+ 1

for all Indeed this follows from Corollary 7.39 since

X

=0

Z

| | | | ( )
X

=0

Ã

Z | |

0

| | | | ( ) +

Z | |

0

| | | | ( )

!

X

=0

| | | |
+1 + | | +1
+ 1

2
X

=0

| |

where = max(| | | |)
Corollary 7.43 (Di erentiation Under the Integral). Suppose that R is an
open interval and : × C is a function such that

(1) ( ) is measurable for each
(2) ( 0 ·) 1( ) for some 0

(3) ( ) exists for all ( )

(4) There is a function 1 such that
¯

¯

¯
( ·)

¯

¯

¯

1 for each

Then ( ·) 1( ) for all (i.e.
R | ( )| ( ) )

R

( ) ( ) is a di erentiable function on and
Z

( ) ( ) =

Z

( ) ( )

Proof. (The proof is essentially the same as for sums.) By considering the real
and imaginary parts of separately, we may assume that is real. Also notice that

( ) = lim ( ( + 1 ) ( ))

and therefore, for ( ) is a sequential limit of measurable functions and
hence is measurable for all By the mean value theorem,

(7.14) | ( ) ( 0 )| ( ) | 0| for all
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and hence

| ( )| | ( ) ( 0 )|+ | ( 0 )| ( ) | 0|+ | ( 0 )|
This shows ( ·) 1( ) for all Let ( ) :=

R

( ) ( ) then

( ) ( 0)

0
=

Z

( ) ( 0 )

0
( )

By assumption,

lim
0

( ) ( 0 )

0
= ( ) for all

and by Eq. (7.14),
¯

¯

¯

¯

( ) ( 0 )

0

¯

¯

¯

¯

( ) for all and

Therefore, we may apply the dominated convergence theorem to conclude

lim
( ) ( 0)

0
= lim

Z

( ) ( 0 )

0
( )

=

Z

lim
( ) ( 0 )

0
( ) =

Z

( 0 ) ( )

for all sequences \ { 0} such that 0 Therefore, ˙ ( 0) =

lim 0

( ) ( 0)

0
exists and

˙ ( 0) =

Z

( 0 ) ( )

Example 7.44. Recall from Example 7.25 that

1 =

Z

[0 )

( ) for all 0

Let 0 For 2 0 and N there exists ( ) such that

0

µ ¶

= ( )

Using this fact, Corollary 7.43 and induction gives

! 1 =

µ ¶

1 =

Z

[0 )

µ ¶

( ) =

Z

[0 )

( )

That is ! =
R

[0 )
( ) Recall that

( ) :=

Z

[0 )

1 for 0

(The reader should check that ( ) for all 0 ) We have just shown that
( + 1) = ! for all N
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Remark 7.45. Corollary 7.43 may be generalized by allowing the hypothesis to hold
for \ where M is a fixed null set, i.e. must be independent of Con-
sider what happens if we formally apply Corollary 7.43 to ( ) :=

R

0
1 ( )

˙( ) =

Z

0

1 ( )
?
=

Z

0

1 ( )

The last integral is zero since 1 = 0 unless = in which case it is not
defined. On the other hand ( ) = so that ˙( ) = 1 (The reader should decide
which hypothesis of Corollary 7.43 has been violated in this example.)

7.5. Measurability on Complete Measure Spaces. In this subsection we will
discuss a couple of measurability results concerning completions of measure spaces.

Proposition 7.46. Suppose that ( M ) is a complete measure space13 and
: R is measurable.

(1) If : R is a function such that ( ) = ( ) for — a.e. then is
measurable.

(2) If : R are measurable and : R is a function such that
lim = - a.e., then is measurable as well.

Proof. 1. Let = { : ( ) 6= ( )} which is assumed to be in M and
( ) = 0. Then = 1 + 1 since = on . Now 1 is measurable so
will be measurable if we show 1 is measurable. For this consider,

(7.15) (1 ) 1( ) =

½

(1 ) 1( \ {0}) if 0
(1 ) 1( ) if 0

Since (1 ) 1( ) if 0 and ( ) = 0, it follow by completeness ofM that
(1 ) 1( ) M if 0 Therefore Eq. (7.15) shows that 1 is measurable.
2. Let = { : lim ( ) 6= ( )} by assumption M and ( ) = 0. Since

1 = lim 1 , is measurable. Because = on and ( ) = 0
= a.e. so by part 1. is also measurable.
The above results are in general false if ( M ) is not complete. For example,

let = {0 1 2} M = {{0} {1 2} } and = 0 Take (0) = 0 (1) =
1 (2) = 2 then = 0 a.e. yet is not measurable.

Lemma 7.47. Suppose that ( M ) is a measure space and M̄ is the completion
of M relative to and ¯ is the extension of to M̄ Then a function : R
is (M̄ B = BR) — measurable i there exists a function : R that is (M B) —
measurable such = { : ( ) 6= ( )} M̄ and ¯ ( ) = 0 i.e. ( ) = ( ) for ¯
— a.e. Moreover for such a pair and 1(¯) i 1( ) and in which
case

Z

¯ =

Z

Proof. Suppose first that such a function exists so that ¯( ) = 0 Since
is also (M̄ B) — measurable, we see from Proposition 7.46 that is (M̄ B) —

measurable.

13Recall this means that if is a set such that M and ( ) = 0 then M
as well.
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Conversely if is (M̄ B) — measurable, by considering ± we may assume that
0 Choose (M̄ B) — measurable simple function 0 such that as

Writing

=
X

1

with M̄ we may choose M such that and ¯( \ ) = 0
Letting

˜ :=
X

1

we have produced a (M B) — measurable simple function ˜ 0 such that :=

{ 6= ˜ } has zero ¯ — measure. Since ¯ ( )
P

¯ ( ) there exists M
such that and ( ) = 0 It now follows that

1 ˜ = 1 := 1 as

This shows that = 1 is (M B) — measurable and that { 6= } has ¯ —
measure zero.
Since = , ¯ — a.e.,

R

¯ =
R

¯ so to prove Eq. (7.16) it su ces to prove

(7.16)
Z

¯ =

Z

Because ¯ = onM Eq. (7.16) is easily verified for non-negativeM — measurable
simple functions. Then by the monotone convergence theorem and the approxi-
mation Theorem 7.12 it holds for all M — measurable functions : [0 ]
The rest of the assertions follow in the standard way by considering (Re )± and
(Im )±

7.6. Comparison of the Lebesgue and the Riemann Integral. For the rest
of this chapter, let and : [ ] R be a bounded function. A
partition of [ ] is a finite subset [ ] containing { } To each partition
(7.17) = { = 0 1 · · · = }
of [ ] let

mesh( ) := max{| 1| : = 1 }

= sup{ ( ) : 1} = inf{ ( ) : 1}

= ( )1{ } +
X

1

1( 1 ] = ( )1{ } +
X

1

1( 1 ] and

=
X

( 1) and =
X

( 1)

Notice that

=

Z

and =

Z

The upper and lower Riemann integrals are defined respectively by
Z

( ) = inf and
Z

( ) = sup
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Definition 7.48. The function is Riemann integrable i
R

=
R

and

which case the Riemann integral
R

is defined to be the common value:

Z

( ) =

Z

( ) =

Z

( )

The proof of the following Lemma is left as an exercise to the reader.

Lemma 7.49. If 0 and are two partitions of [ ] and 0 then

0 0 and

0 0

There exists an increasing sequence of partitions { } =1 such that mesh( ) 0
and

Z

and
Z

as

If we let

(7.18) lim and lim

then by the dominated convergence theorem,
Z

[ ]

= lim

Z

[ ]

= lim =

Z

( )(7.19)

and
Z

[ ]

= lim

Z

[ ]

= lim =

Z

( )(7.20)

Notation 7.50. For [ ] let

( ) = lim sup ( ) = lim
0
sup{ ( ) : | | [ ]} and

( ) lim inf ( ) = lim
0
inf { ( ) : | | [ ]}

Lemma 7.51. The functions : [ ] R satisfy:

(1) ( ) ( ) ( ) for all [ ] and ( ) = ( ) i is continuous
at

(2) If { } =1 is any increasing sequence of partitions such that mesh( ) 0
and and are defined as in Eq. (7.18), then

(7.21) ( ) = ( ) ( ) ( ) = ( ) := =1

(Note is a countable set.)
(3) and are Borel measurable.

Proof. Let and

(1) It is clear that ( ) ( ) ( ) for all and ( ) = ( ) i lim ( )

exists and is equal to ( ) That is ( ) = ( ) i is continuous at
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(2) For

( ) ( ) ( ) ( ) ( )

and letting in this equation implies

(7.22) ( ) ( ) ( ) ( ) ( )

Moreover, given 0 and

sup{ ( ) : | | [ ]} ( )

for all large enough, since eventually ( ) is the supremum of ( )
over some interval contained in [ + ] Again letting implies
sup

| |
( ) ( ) and therefore, that

( ) = lim sup ( ) ( )

for all Combining this equation with Eq. (7.22) then implies ( ) =
( ) if A similar argument shows that ( ) = ( ) if and

hence Eq. (7.21) is proved.
(3) The functions and are limits of measurable functions and hence mea-

surable. Since = and = except possibly on the countable set
both and are also Borel measurable. (You justify this statement.)

Theorem 7.52. Let : [ ] R be a bounded function. Then

(7.23)
Z

=

Z

[ ]

and
Z

=

Z

[ ]

and the following statements are equivalent:
(1) ( ) = ( ) for -a.e.
(2) the set

:= { [ ] : is disconituous at }
is an ¯ — null set.

(3) is Riemann integrable.
If is Riemann integrable then is Lebesgue measurable14, i.e. is L B —

measurable where L is the Lebesgue — algebra and B is the Borel — algebra on
[ ]. Moreover if we let ¯ denote the completion of then

(7.24)
Z

[ ]

=

Z

( ) =

Z

[ ]

¯ =

Z

[ ]

Proof. Let { } =1 be an increasing sequence of partitions of [ ] as described
in Lemma 7.49 and let and be defined as in Lemma 7.51. Since ( ) = 0
= a.e., Eq. (7.23) is a consequence of Eqs. (7.19) and (7.20). From Eq. (7.23),
is Riemann integrable i

Z

[ ]

=

Z

[ ]

and because this happens i ( ) = ( ) for - a.e. Since
= { : ( ) 6= ( )} this last condition is equivalent to being a — null

14 need not be Borel measurable.
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set. In light of these results and Eq. (7.21), the remaining assertions including Eq.
(7.24) are now consequences of Lemma 7.47.

Notation 7.53. In view of this theorem we will often write
R

( ) for
R

7.7. Appendix: Bochner Integral. In this appendix we will discuss how to
define integrals of functions taking values in a Banach space. The resulting integral
will be called the Bochner integral. In this section, let ( F ) be a probability
space and be a separable Banach space.

Remark 7.54. Recall that we have already seen in this case that the Borel — field
B = B( ) on is the same as the — field ( ( )) which is generated by —
the continuous linear functionals on As a consequence : is F B( )
measurable i : R is F B(R) — measurable for all .

Lemma 7.55. Let 1 and ( ; ) denote the space of measurable func-
tions : such that

R k k For ( ; ) define

k k =

Z

k k
1

Then after identifying function ( ; ) which agree modulo sets of — mea-
sure zero, ( ( ; ) k · k ) becomes a Banach space.

Proof. It is easily checked that k · k is a norm, for example,

k + k =

Z

k + k
1

Z

(k k + k k )

1

k k + k k
So the main point is to check completeness of the space. For this suppose { }1
= ( ; ) such that

P

=1
k +1 k and define 0 0 Since k k 1

k k it follows that
Z

X

=1

k +1 k
X

=1

k +1 k 1

and therefore that
P

=1
k +1 k on as set 0 such that ( 0) = 1

Since is complete, we know
P

=0
( +1( ) ( )) exists in for all 0 so

we may define : by
P

=0
( +1 ) on 0

0 on 0

Then on 0

=
X

= +1

( +1 ) = lim
X

= +1

( +1 )
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So

k k
X

= +1

k +1 k = lim
X

+1

k +1 k

and therefore by Fatou’s Lemma and Minikowski’s inequality,

k k
°

°

°

°

°

lim inf
X

+1

k +1 k
°

°

°

°

°

lim inf

°

°

°

°

°

X

+1

| +1 |
°

°

°

°

°

lim inf
X

+1

k +1 k =
X

+1

k +1 k 0 as

Therefore and lim = in

Definition 7.56. A measurable function : is said to be a simple function
provided that ( ) is a finite set. Let S denote the collection of simple functions.
For S set

( )
X

( 1({ })) =
X

({ = }) =
X

( )

({ = })

Proposition 7.57. The map : S is linear and satisfies for all S

(7.25) k ( )k
Z

k k

and

(7.26) ( ( )) =

Z

Proof. If 0 6= R and S then

( ) =
X

( = ) =
X

³

=
´

=
X

( = ) = ( )

and if = 0 (0 ) = 0 = 0 ( ) If S
( + ) =

X

( + = )

=
X X

+ =

( = = )

=
X

( + ) ( = = )

=
X

( = ) +
X

( = ) = ( ) + ( )

Equation (7.25) is a consequence of the following computation:

k ( )k = k
X

( = )k
X

k k ( = ) =

Z

k k
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and Eq. (7.26) follows from:

( ( )) = (
X

({ = }))

=
X

( ) ({ = }) =
Z

Proposition 7.58. The set of simple functions, S is dense in ( ) for all
[1 )

Proof. By assumption that is separable, there is a countable dense set
D ={ } =1 Given 0 and N set

= ( )r

Ã

1
[

=1

( )

!

where by convention 1 = ( 1 ) Then =
`

=1
disjoint union. For

( ; ) let

=
X

=1

1 1( )

and notice that k k on and therefore, k k . In particular
this shows that

k k k k + k k + k k
so that ( ; ) Since

k k =
X

=1

k k ( 1( ))

there exists such that
P

= +1

k k ( 1( )) and hence

°

°

°

°

°

X

=1

1 1( )

°

°

°

°

°

k k +

°

°

°

°

°

X

=1

1 1( )

°

°

°

°

°

+

°

°

°

°

°

X

= +1

1 1( )

°

°

°

°

°

= +

Ã

X

= +1

k k ( 1( ))

!1

+ = 2

Since
P

=1
1 1( ) S and 0 is arbitrary, the last estimate proves the

proposition.
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Theorem 7.59. There is a unique continuous linear map ¯ : 1( F ; )
such that |̄S = where is defined in Definition 7.56. Moreover, for all
1( F ; )

(7.27) k (̄ )k
Z

k k

and (̄ ) is the unique element in such that

(7.28) ( (̄ )) =

Z

The map (̄ ) will be denoted suggestively by
R

so that Eq. (7.28) may be
written as

(

Z

) =

Z

Proof. The existence of a continuous linear map ¯ : 1( F ; ) such
that |̄S = and Eq. (7.27) holds follows from Propositions 7.57 and 7.58 and the
bounded linear transformation Theorem 4.1. If and 1( F ; )
choose S such that in 1( F ; ) as Then (̄ ) =
lim ( ) and hence by Eq. (7.26),

( (̄ )) = ( lim ( )) = lim ( ( )) = lim

Z

This proves Eq. (7.28) since
¯

¯

¯

¯

¯

¯

Z

( )

¯

¯

¯

¯

¯

¯

Z

| |
Z

k k k k

= k k k k 1 0 as

The fact that (̄ ) is determined by Eq. (7.28) is a consequence of the Hahn —
Banach theorem.

Remark 7.60. The separability assumption on may be relaxed by assuming that
: has separable essential range. In this case we may still define

R

by applying the above formalism with replaced by the separable Banach space
0 := essran ( ) For example if is a compact topological space and :

is a continuous map, then
R

is always defined.

7.8. Bochner Integrals.

7.8.1. Bochner Integral Problems From Folland. #15
Let 1 C then |( + )( )| | ( )| + | | | ( )| for all .

Integrating over k + k1 k k1 + | | k k1 . Hence and
C + so that is vector subspace of all functions from .

(By the way is a vector space since the map ( 1 2) 1+ 2 from × is
continuous and therefore + = ( ) is a composition of measurable functions).

It is clear that is a linear space. Moreover if =
X

=1

with ( )
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then | ( )| P

=1
| | ( ) k k 1

P

=1
| | ( ) . So 1 . It is

easily checked that k · k1 is a seminorm with the property

k k1 = 0
Z

k ( )k ( ) = 0

k ( )k = 0
( ) = 0

Hence k · k1 is a norm on 1 (null functions).
#16

= { : k k k k}
{ } =1 =

.

Let 0 6= and choose { } { } 3 as . Then k k 0
while k k k k 6= 0 as . Hence eventually | k k k for
su ciently large, i.e. for all su ciently large. Thus \ {0} S

=1
.

Also \ {0} = S

=1
if 1. Since k0 k k k can not happen.

#17
Let 1 and 1 0 as in problem 16. Define \ ( 1 · · ·
1) and

1( ) and set

X

1

=
X

1

Suppose then k ( ) ( )k = k ( )k k k. Now k k k ( )k+
k ( )k k k+k ( )k. Therefore k k k ( )k

1
. So k ( ) ( )k 1 k ( )k

for . Since is arbitrary it follows by problem 16 that k ( ) ( )k
1 k ( )k for all 1({0}). Since 1, by the end of problem 16 we know
0 for any ( ) = 0 if ( ) = 0. Hence k ( ) ( )k 1 k ( )k
holds for all . This implies k k1 1 k k1 0 0. Also we

see k k1 k k1 + k k1
P

=1
k k ( ) = k k1 . Choose

( ) {1 2 3 } such that P

= ( )+1

k k ( ) . Set ( ) =
( )
P

=1
.

Then

k k1 k k1 + k k1

1
k k1 +

X

= ( )+1

k k ( )

(1 +
k k1
1

) 0 as 0

Finally so we are done.
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#18
Define

R

: by
R

( ) ( ) =
P

( 1({ }) Just is the real variable
case be in class are shows that

R

: is linear. For 1 choose
such that k k1 0 . Then k k1 0 as . Now

.

k
Z

k
X

k k ( 1({ })) =
Z

k k

Therefore k R R k k k1 0 . Hence lim
R

exists in . Set
R

= lim
R

.

Claim 1.
R

is well defined. Indeed if such that k k1 0

as . Then k k1 0 as also. k R R k
k k1 0 . So lim

R

= lim
R

Finally:

k
Z

k = lim k
Z

k
lim sup k k1 = k k1

#19 D.C.T { } 1 1 such that 1( ) for all k ( )k ( )
a.e. and ( ) ( ) a.e. Then k R R k k k 0 by real variable.

7.9. Exercises.

Exercise 7.1. Let be a measure on an algebra A P( ) then ( ) + ( ) =
( ) + ( ) for all A
Exercise 7.2. Problem 12 on p. 27 of Folland. Let ( M ) be a finite measure
space and for M let ( ) = ( ) where = ( \ ) ( \ )
Define i ( ) = 0 Show “ ” is an equivalence relation, is a metric
on M and ( ) = ( ) if Also show that : (M ) [0 ) is a
continuous function relative to the metric

Exercise 7.3. Suppose that :M [0 ] are measures onM for N Also
suppose that ( ) is increasing in for all M Prove that :M [0 ]
defined by ( ) := lim ( ) is also a measure.

Exercise 7.4. Now suppose that is some index set and for each :
M [0 ] is a measure on M Define :M [0 ] by ( ) =

P

( )
for each M Show that is also a measure.

Exercise 7.5. Let ( M ) be a measure space and : [0 ] be a measur-
able function. For M set ( ) :=

R

(1) Show :M [0 ] is a measure.
(2) Let : [0 ] be a measurable function, show

(7.29)
Z

=

Z

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.
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(3) Show that 1( ) i 1( ) and if 1( ) then Eq. (7.29) still
holds.

Notation 7.61. It is customary to informally describe defined in Exercise 7.5
by writing =

Exercise 7.6. Let ( M ) be a measure space, ( F) be a measurable space
and : be a measurable map. Define a function : F [0 ] by
( ) := ( 1( )) for all F
(1) Show is a measure. (We will write = or = 1 )
(2) Show

(7.30)
Z

=

Z

( )

for all measurable functions : [0 ] Hint: see the hint from
Exercise 7.5.

(3) Show 1( ) i 1( ) and that Eq. (7.30) holds for all 1( )

Exercise 7.7. Let : R R be a 1-function such that 0( ) 0 for all
R and lim ± ( ) = ± (Notice that is strictly increasing so that

1 : R R exists and moreover, by the implicit function theorem that 1 is a
1 — function.) Let be Lebesgue measure on BR and

( ) = ( ( )) = (
¡

1
¢ 1

( )) =
¡

1
¢

( )

for all BR Show = 0 Use this result to prove the change of variable
formula,

(7.31)
Z

R
· 0 =

Z

R

which is valid for all Borel measurable functions : R [0 ]
Hint: Start by showing = 0 on sets of the form = ( ] with R

and Then use the uniqueness assertions in Theorem 7.8 to conclude =
0 on all of BR To prove Eq. (7.31) apply Exercise 7.6 with = and
= 1

Exercise 7.8. Let ( M ) be a measure space and { } =1 M show

({ a.a.}) lim inf ( )

and if ( ) for some then

({ i.o.}) lim sup ( )

Exercise 7.9 (Peano’s Existence Theorem). Suppose : R×R R is a bounded
continuous function. Then for each 15 there exists a solution to the di er-
ential equation

(7.32) ˙ ( ) = ( ( )) for 0 with (0) = 0

Do this by filling in the following outline for the proof.

15Using Corollary 10.12 below, we may in fact allow =
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(1) Given 0 show there exists a unique function ([ ) R )
such that ( ) 0 for 0 and

(7.33) ( ) = 0 +

Z

0

( ( )) for all 0

Here
Z

0

( ( )) =

µ
Z

0
1( ( ))

Z

0

( ( ))

¶

where = ( 1 ) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For

[0 ] it follows from Eq. (7.33) that

( ) = 0 +

Z

0

( 0)

Now that ( ) is known for [ ] it can be found by integration for
[ 2 ] The process can be repeated.

(2) Then use Exercise 3.39 to show there exists { } =1 (0 ) such that
lim = 0 and converges to some ([0 ]) (relative to the
sup-norm: k k = sup [0 ] | ( )|) as

(3) Pass to the limit in Eq. (7.33) with replaced by to show satisfies

( ) = 0 +

Z

0

( ( )) [0 ]

(4) Conclude from this that ˙ ( ) exists for (0 ) and that solves Eq.
(7.32).

(5) Apply what you have just prove to the ODE,

˙( ) = ( ( )) for 0 with (0) = 0

Then extend ( ) above to [ ] by setting ( ) = ( ) if [ 0]
Show so defined solves Eq. (7.32) for ( )

Exercise 7.10. Folland 2.12 on p. 52.

Exercise 7.11. Folland 2.13 on p. 52.

Exercise 7.12. Folland 2.14 on p. 52.

Exercise 7.13. Give examples of measurable functions { } on R such that
decreases to 0 uniformly yet

R

= for all Also give an example of a
sequence of measurable functions { } on [0 1] such that 0 while

R

= 1
for all

Exercise 7.14. Folland 2.19 on p. 59.

Exercise 7.15. Suppose { } = C is a summable sequence (i.e.
P

= | |
) then ( ) :=

P

= is a continuous function for R and

=
1

2

Z

( )

Exercise 7.16. Folland 2.26 on p. 59.

Exercise 7.17. Folland 2.28 on p. 59.

Exercise 7.18. Folland 2.31b on p. 60.
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8. Fubini’s Theorem

This next example gives a “real world” example of the fact that it is not always
possible to interchange order of integration.

Example 8.1. Consider
Z 1

0

Z

1

( 2 2 ) =

Z 1

0

½

2
2

2

¾
¯

¯

¯

¯

=1

=

Z 1

0

·

2
¸

=

Z 1

0

µ

1
¶

(0 )

Note well that
³

1
´

has not singularity at 0 On the other hand

Z

1

Z 1

0

( 2 2 ) =

Z

1

½

2
2

2

¾
¯

¯

¯

¯

1

=0

=

Z

1

½

2
¾

=

Z

1

·

1
¸

( 0)

Moral
R R

( ) 6= R R

( ) is not always true.

In the remainder of this section we will let ( M ) and ( N ) be fixed
measure spaces. Our main goals are to show:

(1) There exists a unique measure onM N such that ( × ) =
( ) ( ) for all M and N and

(2) For all : × [0 ] which areM N — measurable,
Z

×
( ) =

Z

( )

Z

( ) ( )

=

Z

( )

Z

( ) ( )

Before proving such assertions, we will need a few more technical measure
theoretic arguments which are of independent interest.

8.1. Measure Theoretic Arguments.

Definition 8.2. Let C P( ) be a collection of sets. We say:

(1) C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

(2) C is a — class if it is closed under finite intersections and
(3) C is a —class if C satisfies the following properties:

(a) C
(b) If C and = , then C (Closed under disjoint

unions.)
(c) If C and , then \ C. (Closed under proper

di erences.)
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(d) If C and , then C (Closed under countable increasing
unions.)

(4) We will say C is a 0 — class if C satisfies conditions a) — c) but not necessarily
d).

Remark 8.3. Notice that every — class is also a monotone class.

(The reader wishing to shortcut this section may jump to Theorem 8.7 where
he/she should then only read the second proof.)

Lemma 8.4 (Monotone Class Theorem). Suppose A P( ) is an algebra and C
is the smallest monotone class containing A. Then C = (A).
Proof. For C let

C( ) = { C : C}
then C( ) is a monotone class. Indeed, if C( ) and then
and so

C 3
C 3 and

C 3
Since C is a monotone class, it follows that C i.e. C( )
This shows that C( ) is closed under increasing limits and a similar argument shows
that C( ) is closed under decreasing limits. Thus we have shown that C( ) is a
monotone class for all C
If A C then A C for all A and hence

it follows that A C( ) C Since C is the smallest monotone class containing
A and C( ) is a monotone class containing A we conclude that C( ) = C for any

A
Let C and notice that C( ) happens i C( ) This observation and

the fact that C( ) = C for all A implies A C( ) C for all C Again
since C is the smallest monotone class containing A and C( ) is a monotone class we
conclude that C( ) = C for all C That is to say, if C then C = C( )
and hence C So C is closed under complements (since

A C) and finite intersections and increasing unions from which it easily
follows that C is a — algebra.
Let E P( × ) be given by

E =M×N = { × : M N}
and recall from Exercise 6.2 that E is an elementary family. Hence the algebra
A = A(E) generated by E consists of sets which may be written as disjoint unions
of sets from E
Theorem 8.5 (Uniqueness). Suppose that E P( ) is an elementary class and
M = (E) (the — algebra generated by E) If and are two measures on M
which are — finite on E and such that = on E then = onM
Proof. Let A := A(E) be the algebra generated by E Since every element of A

is a disjoint union of elements from E it is clear that = on A Henceforth we
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may assume that E = A We begin first with the special case where ( ) and
hence ( ) = ( ) Let

C = { M : ( ) = ( )}
The reader may easily check that C is a monotone class. Since A C the monotone
class lemma asserts thatM = (A) C M showing that C =M and hence that
= onM
For the — finite case, let A be sets such that ( ) = ( ) and

as For N let

(8.1) ( ) := ( ) and ( ) = ( )

for all M Then one easily checks that and are finite measure on M
such that = on A Therefore, by what we have just proved, = onM
Hence or all M, using the continuity of measures,

( ) = lim ( ) = lim ( ) = ( )

Lemma 8.6. If D is a 0 — class which contains a -class, C then D contains
A (C) — the algebra generated by C
Proof. We will give two proofs of this lemma. The first proof is “constructive”

and makes use of Proposition 6.9 which tells how to construct A(C) from C The
key to the first proof is the following claim which will be proved by induction.
Claim. Let C̃0 = C and C̃ denote the collection of subsets of of the form

(8.2) 1 · · · = \ 1 \ 2 \ · · · \
with C and C { } Then C̃ D for all i.e. C̃ := =0C̃ D
By assumption C̃0 D and when = 1

\ 1 = \ ( 1 ) D
when 1 C D since 1 C D Therefore, C̃1 D For the induction
step, let C { } and C { } and let denote the set in Eq. (8.2) We
now assume C̃ D and wish to show +1 D where

+1 = \ +1 = \ ( +1 )

Because
+1 = 1 · · · ( +1) C̃ D

and ( +1 ) C̃ D we have +1 D as well. This finishes the
proof of the claim.
Notice that C̃ is still a multiplicative class and from Proposition 6.9 (using the

fact that C is a multiplicative class), A(C) consists of finite unions of elements from
C̃ By applying the claim to C̃ 1 · · · D for all C̃ and hence

1 · · · = ( 1 · · · ) D
Thus we have shown A(C) D which completes the proof.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest 0 — class containing C for if not just replace D by the intersection of all
0 — classes containing C Let

D1 := { D : D C}
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Then C D1 and D1 is also a 0—class as we now check. a) D1 b) If D1
with = then ( ) = ( )

`

( ) D for all C c) If
D1 with then ( \ ) = \ ( ) D for all C Since

C D1 D and D is the smallest 0 — class containing C it follows that D1 = D
From this we conclude that if D and C then D
Let

D2 := { D : D D}
ThenD2 is a 0—class (as you should check) which, by the above paragraph, contains
C As above this implies that D = D2 i.e. we have shown that D is closed under
finite intersections. Since 0 — classes are closed under complementation, D is an
algebra and hence A (C) D In fact D = A(C)
This Lemma along with the monotone class theorem immediately implies

Dynkin’s very useful “ — theorem.”

Theorem 8.7 ( — Theorem). If D is a class which contains a contains a
-class, C then (C) D
Proof. Since D is a 0 — class, Lemma 8.6 implies that A(C) D and so by

Remark 8.3 and Lemma 8.4, (C) D Let us pause to give a second stand-alone
proof of this Theorem.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest — class containing C for if not just replace D by the intersection of all
— classes containing C Let

D1 := { D : D C}
Then C D1 and D1 is also a —class because as we now check. a) D1 b)
If D1 with = then ( ) = ( )

`

( ) D for all
C c) If D1 with then ( \ ) = \ ( ) D for

all C d) If D1 and as then D for all D
and hence D Since C D1 D and D is the smallest — class
containing C it follows that D1 = D From this we conclude that if D and

C then D
Let

D2 := { D : D D}
Then D2 is a —class (as you should check) which, by the above paragraph, contains
C As above this implies that D = D2 i.e. we have shown that D is closed under
finite intersections.
Since — classes are closed under complementation, D is an algebra which is

closed under increasing unions and hence is closed under arbitrary countable unions,
i.e. D is a — algebra. Since C D we must have (C) D and in fact (C) = D

Using this theorem we may strengthen Theorem 8.5 to the following.

Theorem 8.8 (Uniqueness). Suppose that C P( ) is a — class such that
M = (C) If and are two measures on M and there exists C such that

and ( ) = ( ) for each then = onM
Proof. As in the proof of Theorem 8.5, it su ces to consider the case where

and are finite measure such that ( ) = ( ) In this case the reader may
easily verify from the basic properties of measures that

D = { M : ( ) = ( )}
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is a — class. By assumption C D and hence by the — theorem, D contains
M = (C)
As an immediate consequence we have the following corollaries.

Corollary 8.9. Suppose that ( ) is a topological space, B = ( ) is the Borel
— algebra on and and are two measures on B which are — finite on

If = on then = on B i.e.

Corollary 8.10. Suppose that and are two measures on BR which are finite
on bounded sets and such that ( ) = ( ) for all sets of the form

= ( ] = ( 1 1]× · · · × ( ]

with R and i.e. for all Then = on BR
To end this section we wish to reformulate the — theorem in a function

theoretic setting.

Definition 8.11 (Bounded Convergence). Let be a set. We say that a se-
quence of functions from to R or C converges boundedly to a function if
lim ( ) = ( ) for all and

sup{| ( )| : and = 1 2 }
Theorem 8.12. Let be a set and H be a subspace of ( R) — the space of
bounded real valued functions on Assume:

(1) 1 H i.e. the constant functions are in H and
(2) H is closed under bounded convergence, i.e. if { } =1 H and

boundedly then H
If C P( ) is a multiplicative class such that 1 H for all C then H

contains all bounded (C) — measurable functions.
Proof. Let D := { : 1 H} Then by assumption C D and since

1 H we know D If D are disjoint then 1 = 1 + 1 H so
that D and if D and then 1 \ = 1 1 H Finally
if D and as then 1 1 boundedly so 1 H and
hence D So D is — class containing C and hence D contains (C) From this
it follows that H contains 1 for all (C) and hence all (C) — measurable
simple functions by linearity. The proof is now complete with an application of
the approximation Theorem 7.12 along with the assumption that H is closed under
bounded convergence.

Corollary 8.13. Suppose that ( ) is a metric space and B = ( ) is the
Borel — algebra on and H is a subspace of ( R) such that ( R) H
( ( R) — the bounded continuous functions on ) and H is closed under
bounded convergence. Then H contains all bounded B — measurable real val-
ued functions on (This may be paraphrased as follows. The smallest vector
space of bounded functions which is closed under bounded convergence and contains

( R) is the space of bounded B — measurable real valued functions on )

Proof. Let be an open subset of and for N let

( ) := min( · ( ) 1) for all

Notice that = where ( ) = min( 1) which is continuous and hence
( R) for all Furthermore, converges boundedly to 1 as
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and therefore 1 H for all Since is a — class the corollary follows by
an application of Theorem 8.12.
Here is a basic application of this corollary.

Proposition 8.14. Suppose that ( ) is a metric space, and are two measures
on B = ( ) which are finite on bounded measurable subsets of and

(8.3)
Z

=

Z

for all ( R) where

( R) = { ( R) : supp( ) is bounded}
Then

Proof. To prove this fix a and let

( ) = ([ + 1 ( )] 1) 0

so that ( [0 1]) supp( ) ( + 2) and 1 as Let
H denote the space of bounded measurable functions such that

(8.4)
Z

=

Z

Then H is closed under bounded convergence and because of Eq. (8.3) contains
( R) Therefore by Corollary 8.13, H contains all bounded measurable func-

tions on Take = 1 in Eq. (8.4) with B and then use the monotone
convergence theorem to let The result is ( ) = ( ) for all B
Corollary 8.15. Let ( ) be a metric space, B = ( ) be the Borel — algebra
and : B [0 ] be a measure such that ( ) when is a compact
subset of Assume further there exists compact sets such that
Suppose that H is a subspace of ( R) such that ( R) H ( ( R) is the
space of continuous functions with compact support) and H is closed under bounded
convergence. Then H contains all bounded B — measurable real valued functions
on

Proof. Let and be positive integers and set ( ) = min(1 · ( ) ( ))

Then ( R) and { 6= 0} Let H denote those bounded
B — measurable functions, : R such that H It is easily seen
that H is closed under bounded convergence and that H contains ( R)
and therefore by Corollary 8.13, H for all bounded measurable functions
: R Since 1 boundedly as 1 H for all and

similarly 1 boundedly as and therefore H
Here is another version of Proposition 8.14.

Proposition 8.16. Suppose that ( ) is a metric space, and are two measures
on B = ( ) which are both finite on compact sets. Further assume there exists
compact sets such that If

(8.5)
Z

=

Z

for all ( R) then
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Proof. Let be defined as in the proof of Corollary 8.15 and let H denote
those bounded B — measurable functions, : R such that

Z

=

Z

By assumption ( R) H and one easily checks that H is closed under
bounded convergence. Therefore, by Corollary 8.13, H contains all bounded
measurable function. In particular for B

Z

1 =

Z

1

Letting in this equation, using the dominated convergence theorem, one
shows

Z

1 1 =

Z

1 1

holds for Finally using the monotone convergence theorem we may let
to conclude

( ) =

Z

1 =

Z

1 = ( )

for all B
8.2. Fubini-Tonelli’s Theorem and Product Measure. Recall that ( M )
and ( N ) are fixed measure spaces.

Notation 8.17. Suppose that : C and : C are functions, let
denote the function on × given by

( ) = ( ) ( )

Notice that if are measurable, then is (M N BC) — measurable.
To prove this let ( ) = ( ) and ( ) = ( ) so that = · will
be measurable provided that and are measurable. Now = 1 where
1 : × is the projection map. This shows that is the composition
of measurable functions and hence measurable. Similarly one shows that is
measurable.

Theorem 8.18. Suppose ( M ) and ( N ) are -finite measure spaces and
is a nonnegative (M N BR) — measurable function, then for each

(8.6) ( ) isM — B[0 ] measurable,

for each

(8.7) ( ) is N — B[0 ] measurable,

Z

( ) ( ) isM — B[0 ] measurable,(8.8)
Z

( ) ( ) is N — B[0 ] measurable,(8.9)

and

(8.10)
Z

( )

Z

( ) ( ) =

Z

( )

Z

( ) ( )
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Proof. Suppose that = × E :=M×N and = 1 Then

( ) = 1 × ( ) = 1 ( )1 ( )

and one sees that Eqs. (8.6) and (8.7) hold. Moreover
Z

( ) ( ) =

Z

1 ( )1 ( ) ( ) = 1 ( ) ( )

so that Eq. (8.8) holds and we have

(8.11)
Z

( )

Z

( ) ( ) = ( ) ( )

Similarly,
Z

( ) ( ) = ( )1 ( ) and
Z

( )

Z

( ) ( ) = ( ) ( )

from which it follows that Eqs. (8.9) and (8.10) hold in this case as well.
For the moment let us further assume that ( ) and ( ) and let H

be the collection of all bounded (M N BR) — measurable functions on × such
that Eqs. (8.6) — (8.10) hold. Using the fact that measurable functions are closed
under pointwise limits and the dominated convergence theorem (the dominating
function always being a constant), one easily shows that H closed under bounded
convergence. Since we have just verified that 1 H for all in the — class, E
it follows that H is the space of all bounded (M N BR) — measurable functions
on × Finally if : × [0 ] is a (M N BR̄) — measurable function,
let = so that as and Eqs. (8.6) — (8.10) hold with
replaced by for all N Repeated use of the monotone convergence theorem
allows us to pass to the limit in these equations to deduce the theorem in
the case and are finite measures.
For the — finite case, choose M N such that
( ) and ( ) for all N Then define ( ) = ( ) and
( ) = ( ) for all M and N or equivalently = 1 and
= 1 By what we have just proved Eqs. (8.6) — (8.10) with replaced by
and by for all (M N BR̄) — measurable functions, : × [0 ]

The validity of Eqs. (8.6) — (8.10) then follows by passing to the limits
and then using the monotone convergence theorem again to conclude

Z

=

Z

1

Z

as

and
Z

=

Z

1

Z

as

for all +( M) and +( N )
Corollary 8.19. Suppose ( M ) and ( N ) are -finite measure spaces.
Then there exists a unique measure onM N such that ( × ) = ( ) ( )
for all M and N Moreover is given by

(8.12) ( ) =

Z

( )

Z

( )1 ( ) =

Z

( )

Z

( )1 ( )
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for all M N and is — finite.

Notation 8.20. The measure is called the product measure of and and will
be denoted by

Proof. Notice that any measure such that ( × ) = ( ) ( ) for all M
and N is necessarily — finite. Indeed, let M and N be chosen
so that ( ) ( ) and then × M N

× × and ( × ) for all The uniqueness assertion is
a consequence of either Theorem 8.5 or by Theorem 8.8 with E = M×N . For
the existence, it su ces to observe, using the monotone convergence theorem, that
defined in Eq. (8.12) is a measure on M N Moreover this measure satisfies
( × ) = ( ) ( ) for all M and N from Eq. (8.11

Theorem 8.21 (Tonelli’s Theorem). Suppose ( M ) and ( N ) are -finite
measure spaces and = is the product measure on M N If +( ×
M N ) then (· ) +( M) for all ( ·) +( N ) for all

Z

(· ) ( ) +( M)

Z

( ·) ( ) +( N )

and
Z

×
=

Z

( )

Z

( ) ( )(8.13)

=

Z

( )

Z

( ) ( )(8.14)

Proof. By Theorem 8.18 and Corollary 8.19, the theorem holds when = 1
with M N Using the linearity of all of the statements, the theorem is
also true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with Theorem 7.12, one deduces the theorem for general

+( × M N )
Theorem 8.22 (Fubini’s Theorem). Suppose ( M ) and ( N ) are -finite
measure spaces and = be the product measure onM N If 1( ) then
for a.e. ( ·) 1( ) and for a.e. (· ) 1( ) Moreover,

( ) =

Z

( ) ( ) and ( ) =

Z

( ) ( )

are in 1( ) and 1( ) respectively and Eq. (8.14) holds.

Proof. If 1( × ) + then by Eq. (8.13),
Z
µ
Z

( ) ( )

¶

( )

so
R

( ) ( ) for a.e. , i.e. for a.e. ( ·) 1( ). Similarly for
a.e. (· ) 1( ) Let be a real valued function in 1( × ) and let
= + Apply the results just proved to ± to conclude, ±( ·) 1( ) for
a.e. and that

Z

±(· ) ( ) 1( )
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Therefore for a.e. ,

( ·) = +( ·) ( ·) 1( )

and
Z

( ) ( ) =

Z

+( ·) ( )

Z

( ·) ( )

is a — almost everywhere defined function such that
R

(· ) ( ) 1( ) Be-
cause

Z

±( ) ( ) =

Z

( )

Z

( ) ±( )

Z

( ) =

Z

+ ( )

Z

( )

=

Z Z

+

Z Z

=

Z
µ
Z

+

Z
¶

=

Z Z

( + ) =

Z Z

The proof that
Z

( ) =

Z

( )

Z

( ) ( )

is analogous. As usual the complex case follows by applying the real results just
proved to the real and imaginary parts of

Notation 8.23. Given × and let

:= { : ( ) }
Similarly if is given let

:= { : ( ) }
If : × C is a function let = ( ·) and := (· ) so that : C
and : C

Theorem 8.24. Suppose ( M ) and ( N ) are complete -finite measure
spaces. Let ( × L ) be the completion of ( × M N ). If is
L-measurable and (a) 0 or (b) 1( ) then is N -measurable for a.e.
and isM-measurable for a.e. and in case (b) 1( ) and 1( )

for a.e. and a.e. respectively. Moreover,
Z

and
Z

are measurable and
Z

=

Z Z

=

Z Z

Proof. If M N is a null set (( )( ) = 0) then

0 = ( )( ) =

Z

( ) ( ) =

Z

( ) ( )
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This shows that

({ : ( ) 6= 0}) = 0 and ({ : ( ) 6= 0}) = 0
i.e. ( ) = 0 for a.e. and ( ) = 0 for a.e.
If is L measurable and = 0 for - a.e., then there exists M N 3

{( ) : ( ) 6= 0} and ( )( ) = 0. Therefore | ( )| 1 ( ) and
( )( ) = 0. Since

{ 6= 0} = { : ( ) 6= 0} and

{ 6= 0} = { : ( ) 6= 0}
we learn that for a.e. and a.e. that { 6= 0} M { 6= 0} N
({ 6= 0}) = 0 and a.e. and ({ 6= 0}) = 0 This implies

for a.e.
Z

( ) ( ) exists and equals 0

and

for a.e.
Z

( ) ( ) exists and equals 0

Therefore

0 =

Z

=

Z
µ
Z

¶

=

Z
µ
Z

¶

For general 1( ) we may choose 1(M N ) such that ( ) =
( ) for a.e. ( ) Define Then = 0 a.e. Hence by what
we have just proved and Theorem 8.21 = + has the following properties:

(1) For a.e. ( ) = ( ) + ( ) is in 1( ) and
Z

( ) ( ) =

Z

( ) ( )

(2) For a.e. ( ) = ( ) + ( ) is in 1( ) and
Z

( ) ( ) =

Z

( ) ( )

From these assertions and Theorem 8.21, it follows that
Z

( )

Z

( ) ( ) =

Z

( )

Z

( ) ( )

=

Z

( )

Z

( ) ( )

=

Z

( ) ( )( )

=

Z

( ) ( )

and similarly we shows
Z

( )

Z

( ) ( ) =

Z

( ) ( )

The previous theorems have obvious generalizations to products of any finite
number of — compact measure spaces. For example the following theorem holds.
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Theorem 8.25. Suppose {( M )} =1 are — finite measure spaces and :=

1×· · ·× Then there exists a unique measure, on ( M1 · · · M ) such
that ( 1 × · · · × ) = 1( 1) ( ) for all M (This measure and its
completion will be denote by 1 · · · ) If : [0 ] is a measurable
function then

Z

=
Y

=1

Z

( )

( )( ( )) ( 1 )

where is any permutation of {1 2 } This equation also holds for any
1( ) and moreover, 1( ) i

Y

=1

Z

( )

( )( ( )) | ( 1 )|

for some (and hence all) permutation,

This theorem can be proved by the same methods as in the two factor case.
Alternatively, one can use induction on see Exercise 8.6.

Example 8.26. We have

(8.15)
Z

0

sin
=
1

2
arctan for all 0

and for [0 )

(8.16)

¯

¯

¯

¯

¯

Z

0

sin 1

2
+ arctan

¯

¯

¯

¯

¯

where = max 0
1+
1+ 2 =

1
2 2 2

= 1 2 In particular,

(8.17) lim

Z

0

sin
= 2

To verify these assertions, first notice that by the fundamental theorem of cal-
culus,

|sin | =
¯

¯

¯

¯

Z

0

cos

¯

¯

¯

¯

¯

¯

¯

¯

Z

0

|cos |
¯

¯

¯

¯

¯

¯

¯

¯

Z

0

1

¯

¯

¯

¯

= | |

so
¯

¯

sin
¯

¯ 1 for all 6= 0 Making use of the identity
Z

0

= 1
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and Fubini’s theorem,
Z

0

sin
=

Z

0

sin

Z

0

=

Z

0

Z

0

sin ( + )

=

Z

0

1 (cos + ( + ) sin ) ( + )

( + )
2
+ 1

=

Z

0

1

( + )
2
+ 1

Z

0

cos + ( + ) sin

( + )
2
+ 1

( + )

=
1

2
arctan ( )(8.18)

where

( ) =

Z

0

cos + ( + ) sin

( + )2 + 1

( + )

Since
¯

¯

¯

¯

¯

cos + ( + ) sin

( + )
2
+ 1

¯

¯

¯

¯

¯

1 + ( + )

( + )
2
+ 1

| ( )|
Z

0

( + ) =

This estimate along with Eq. (8.18) proves Eq. (8.16) from which Eq. (8.17)
follows by taking and Eq. (8.15) follows (using the dominated convergence
theorem again) by letting

8.3. Lebesgue measure on R .

Notation 8.27. Let

:=

times
z }| {

· · · on BR =

times
z }| {

BR · · · BR
be the — fold product of Lebesgue measure on BR We will also use to denote
its completion and let L be the completion of BR relative to A subset L
is called a Lebesgue measurable set and is called — dimensional Lebesgue
measure, or just Lebesgue measure for short.

Definition 8.28. A function : R R is Lebesgue measurable if 1(BR)
L
Theorem 8.29. Lebesgue measure is translation invariant. Moreover is
the unique translation invariant measure on BR such that ((0 1] ) = 1

Proof. Let = 1 × · · · × with BR and R Then

+ = ( 1 + 1)× ( 2 + 2)× · · · × ( + )

and therefore by translation invariance of on BR we find that
( + ) = ( 1 + 1) ( + ) = ( 1) ( ) = ( )

and hence ( + ) = ( ) for all BR by Corollary 8.10. From this fact
we see that the measure ( + ·) and (·) have the same null sets. Using this
it is easily seen that ( + ) = ( ) for all L The proof of the second
assertion is Exercise 8.7.
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Notation 8.30. I will often be sloppy in the sequel and write for and
for ( ) = ( ) Hopefully the reader will understand the meaning from the
context.

The following change of variable theorem is an important tool in using Lebesgue
measure.

Theorem 8.31 (Change of Variables Theorem). Let R be an open set and
: ( ) R be a 1 — di eomorphism16. Then for any Borel measurable

function, : ( ) [0 ]

(8.19)
Z

|det 0| =

Z

( )

where 0( ) is the linear transformation on R defined by 0( ) := |0 ( + )
Alternatively, the — matrix entry of 0( ) is given by 0( ) = ( ) where
( ) = ( 1( ) ( ))

We will postpone the full proof of this theorem until Section 27. However we will
give here the proof in the case that is linear. The following elementary remark
will be used in the proof.

Remark 8.32. Suppose that

( ) ( ( ))

are two 1 — di eomorphisms and Theorem 8.31 holds for and separately, then
it holds for the composition Indeed

Z

|det ( )0 | =

Z

|det ( 0 ) 0|

=

Z

(|det 0| ) |det 0|

=

Z

( )

|det 0| =

Z

( ( ))

Theorem 8.33. Suppose ( R) = (R ) — the space of × invertible
matrices.

(1) If : R R is Borel — measurable then so is and if 0 or 1

then

(8.20)
Z

R
( ) = |det |

Z

R
( )

(2) If L then ( ) L and ( ( )) = |det | ( )

Proof. Since is Borel measurable and : R R is continuous and hence
Borel measurable, is also Borel measurable. We now break the proof of Eq.
(8.20) into a number of cases. In each case we make use Tonelli’s theorem and the
basic properties of one dimensional Lebesgue measure.

16That is : ( ) R is a continuously di erentiable bijection and the inverse map
1 : ( ) is also continuously di erentiable.
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(1) Suppose that and

( 1 2 ) = ( 1 1 +1 1 +1 )

then by Tonelli’s theorem,
Z

R
( 1 ) =

Z

R
( 1 ) 1

=

Z

R
( 1 ) 1

which prove Eq. (8.20) in this case since |det | = 1
(2) Suppose that R and ( 1 ) = ( 1 ) then
Z

R
( 1 ) =

Z

R
( 1 ) 1

= | | 1

Z

R
( 1 ) 1

= |det | 1

Z

R

which again proves Eq. (8.20) in this case.
(3) Suppose that

( 1 2 ) = ( 1

i’th spot
+ )

Then
Z

R
( 1 ) =

Z

R
( 1 + ) 1

=

Z

R
( 1 ) 1

=

Z

R
( 1 ) 1

where in the second inequality we did the integral first and used trans-
lation invariance of Lebesgue measure. Again this proves Eq. (8.20) in this
case since det( ) = 1

Since every invertible matrix is a product of matrices of the type occurring in
steps 1. — 3. above, it follows by Remark 8.32 that Eq. (8.20) holds in general. For
the second assertion, let BR and take = 1 in Eq. (8.20) to find

|det | ( 1( )) = |det |
Z

R
1 1( ) = |det |

Z

R
1 =

Z

R
1 = ( )

Replacing by 1 in this equation shows that

( ( )) = |det | ( )

for all BR In particular this shows that and have the same null sets
and therefore the completion of BR is L for both measures. Using Proposition
7.6 one now easily shows

( ( )) = |det | ( ) L
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8.4. Polar Coordinates and Surface Measure. Let

1 = { R : | |2 :=
X

=1

2 = 1}

be the unit sphere in R Let : R \ (0) (0 )× 1 and 1 be the inverse
map given by

(8.21) ( ) := (| | | | ) and
1( ) =

respectively. Since and 1 are continuous, they are Borel measurable.
Consider the measure on B(0 ) B 1 given by

( ) :=
¡

1( )
¢

for all B(0 ) B 1 For B 1 and 0 let

:= { : (0 ] and } = 1((0 ]× ) BR
Noting that = 1 we have for 0 B 1 and = ( ] ×
that

1( ) = { : ( ] and }(8.22)

= 1 \ 1(8.23)

Therefore,

( ) (( ]× ) = ( 1 \ 1) = ( 1) ( 1)

= ( 1) ( 1)

= · ( 1)

Z

1(8.24)

Let denote the unique measure on B(0 ) such that

(8.25) ( ) =

Z

1

for all B(0 ) i.e. ( ) = 1

Definition 8.34. For B 1 , let ( ) := · ( 1) We call the surface
measure on

It is easy to check that is a measure. Indeed if B 1 then 1 =
1 ((0 1]× ) BR so that ( 1) is well defined. Moreover if =

`

=1

then 1 =
`

=1 ( )1 and

( ) = · ( 1) =
X

=1

(( )1) =
X

=1

( )

The intuition behind this definition is as follows. If 1 is a set and 0 is
a small number, then the volume of

(1 1 + ] · = { : (1 1 + ] and }
should be approximately given by ((1 1 + ] · ) = ( ) see Figure 16 below.
On the other hand

((1 1 + ] ) = ( 1+ \ 1) =
©

(1 + ) 1
ª

( 1)
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Figure 16. Motivating the definition of surface measure for a sphere.

Therefore we expect the area of should be given by

( ) = lim
0

©

(1 + ) 1
ª

( 1)
= · ( 1)

According to these definitions and Eq. (8.24) we have shown that

(8.26) (( ]× ) = (( ]) · ( )

Let
E = {( ]× : 0 B 1}

then E is an elementary class. Since (E) = B(0 ) B 1 we conclude from Eq.
(8.26) that

=

and this implies the following theorem.

Theorem 8.35. If : R [0 ] is a (B B)—measurable function then
(8.27)

Z

R

( ) ( ) =

Z

[0 )× 1

( ) ( ) 1

Let us now work out some integrals using Eq. (8.27).

Lemma 8.36. Let 0 and

( ) :=

Z

R

| |2 ( )

Then ( ) = ( ) 2

Proof. By Tonelli’s theorem and induction,

( ) =

Z

R 1×R
| |2 2

1( )

= 1( ) 1( ) = 1 ( )(8.28)

So it su ces to compute:

2( ) =

Z

R2

| |2 ( ) =

Z

R2\{0}

( 2
1+

2
2)

1 2
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We now make the change of variables,

1 = cos and 2 = sin for 0 and 0 2

In vector form this transform is

= ( ) =

µ

cos
sin

¶

and the di erential and the Jacobian determinant are given by

0( ) =

µ

cos sin
sin cos

¶

and det 0( ) = cos2 + sin2 =

Notice that : (0 ) × (0 2 ) R2 \ where is the ray, := {( 0) : 0}
which is a 2 — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function : R2 [0 ] we have

Z

R2
( ) =

Z 2

0

Z

0

( cos sin )

In particular,

2( ) =

Z

0

Z 2

0

2

= 2

Z

0

2

= 2 lim

Z

0

2

= 2 lim

2

2

Z

0

=
2

2
=

This shows that 2( ) = and the result now follows from Eq. (8.28).

Corollary 8.37. The surface area ( 1) of the unit sphere 1 R is

(8.29) ( 1) =
2 2

( 2)

where is the gamma function given by

(8.30) ( ) :=

Z

0

1

Moreover, (1 2) = (1) = 1 and ( + 1) = ( ) for 0

Proof. We may alternatively compute (1) = 2 using Theorem 8.35;

(1) =

Z

0

1 2

Z

1

= ( 1)

Z

0

1 2

We simplify this last integral by making the change of variables = 2 so that
= 1 2 and = 1

2
1 2 The result is

Z

0

1 2

=

Z

0

1
2

1

2
1 2

=
1

2

Z

0

2 1

=
1

2
( 2)(8.31)
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Collecting these observations implies that

2 = (1) =
1

2
( 1) ( 2)

which proves Eq. (8.29).
The computation of (1) is easy and is left to the reader. By Eq. (8.31),

(1 2) = 2

Z

0

2

=

Z

2

= 1(1) =

The relation, ( + 1) = ( ) is the consequence of the following integration by
parts:

( + 1) =

Z

0

+1 =

Z

0

µ ¶

=

Z

0

1 = ( )

8.5. Regularity of Measures.

Definition 8.38. Suppose that E is a collection of subsets of let E denote
the collection of subsets of which are finite or countable unions of sets from E
Similarly let E denote the collection of subsets of which are finite or countable
intersections of sets from E We also write E = (E ) and E = (E ) etc.

Remark 8.39. Notice that if A is an algebra and = and = with
A then

= ( ) A
so that A is closed under finite intersections.

The following theorem shows how recover a measure on (A) from its values
on an algebra A
Theorem 8.40 (Regularity Theorem). Let A P( ) be an algebra of sets,M =
(A) and :M [0 ] be a measure on M which is — finite on A Then for
all M
(8.32) ( ) = inf { ( ) : A }
Moreover, if M and 0 are given, then there exists A such that
and ( \ )

Proof. For define

( ) = inf { ( ) : A }
We are trying to show = on M We will begin by first assuming that is a
finite measure, i.e. ( )
Let

F = { M : ( ) = ( )} = { M : ( ) ( )}
It is clear that A F so the finite case will be finished by showing F is a monotone
class. Suppose F as and let 0 be given. Since ( ) =
( ) there exists A such that and ( ) ( ) + 2 i.e.

( \ ) 2
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Let = A then and

( \ ) = ( ( \ ))
X

=1

(( \ ))

X

=1

(( \ ))
X

=1

2 =

Therefore,
( ) ( ) ( ) +

and since 0 was arbitrary it follows that F
Now suppose that F and as so that

( ) ( ) as

As above choose A such that and

0 ( ) ( ) = ( \ ) 2

Combining the previous two equations shows that lim ( ) = ( ) Since
( ) ( ) for all we conclude that ( ) ( ) i.e. that F
Since F is a monotone class containing the algebra A the monotone class theo-

rem asserts that
M = (A) F M

showing the F =M and hence that = onM
For the — finite case, let A be sets such that ( ) and as

Let be the finite measure onM defined by ( ) := ( ) for all
M Suppose that 0 and M are given. By what we have just proved,

for all M there exists A such that and

(( ) \ ( )) = ( \ ) 2

Notice that since A A and

:= =1 ( ) A
Moreover, and

( \ )
X

=1

(( ) \ )
X

=1

(( ) \ ( ))

X

=1

2 =

Since this implies that
( ) ( ) ( ) +

and 0 is arbitrary, this equation shows that Eq. (8.32) holds.

Corollary 8.41. Let A P( ) be an algebra of sets, M = (A) and :M
[0 ] be a measure onM which is — finite on A Then for all M and 0
there exists A such that and

( \ )

Furthermore, for any M there exists A and A such that
and ( \ ) = 0
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Proof. By Theorem 8.40, there exist A such that and ( \ )
Let = and notice that A and that \ = = \ so

that
( \ ) = ( \ )

Finally, given M we may choose A and A such that
and ( \ ) 1 and ( \ ) 1 By replacing by =1 and

by =1 we may assume that and as increases. Let = A
and = A then and

( \ ) = ( \ ) + ( \ ) ( \ ) + ( \ )

2 0 as

Corollary 8.42. Let A P( ) be an algebra of sets, M = (A) and :M
[0 ] be a measure on M which is — finite on A Then for every M such
that ( ) and 0 there exists A such that ( 4 )

Proof. By Corollary 8.41, there exists A such and ( \ )
Now write = =1 with A for each By replacing by =1 A
if necessary, we may assume that as Since \ \ and
\ \ = as and ( \ 1) ( ) we know that

lim ( \ ) = ( \ ) and lim ( \ ) = ( \ ) = 0

Hence for su ciently large,

( 4 ) = ( ( \ ) + ( \ )

Hence we are done by taking = A for an su ciently large.

Remark 8.43. We have to assume that ( ) as the following example shows.
Let = R M = B = A be the algebra generated by half open intervals of
the form ( ] and = =1(2 2 +1] It is easily checked that for every A
that ( ) =

For Exercises 8.1 — 8.3 let P( ) be a topology, M = ( ) and : M
[0 ) be a finite measure, i.e. ( )

Exercise 8.1. Let

(8.33) F := { M : ( ) = inf { ( ) : }}
(1) Show F may be described as the collection of set M such that for all

0 there exists such that and ( \ )
(2) Show F is a monotone class.

Exercise 8.2. Give an example of a topology on = {1 2} and a measure on
M = ( ) such that F defined in Eq. (8.33) is notM
Exercise 8.3. Suppose now P( ) is a topology with the property that to
every closed set there exists such that as Let
A = A( ) be the algebra generated by

(1) With the aid of Exercise 6.1, show that A F Therefore by exercise 8.1
and the monotone class theorem, F =M i.e.

( ) = inf { ( ) : }
(Hint: Recall the structure of A from Exercise 6.1.)



150 BRUCE K. DRIVER†

(2) Show this result is equivalent to following statement: for every 0 and
M there exist a closed set and an open set such that

and ( \ ) (Hint: Apply part 1. to both and )

Exercise 8.4 (Generalization to the — finite case). Let P( ) be a topology
with the property that to every closed set there exists such that

as Also letM = ( ) and :M [0 ] be a measure which is
— finite on
(1) Show that for all 0 and M there exists an open set and a

closed set such that and ( \ )
(2) Let denote the collection of subsets of which may be written as a

countable union of closed sets. Use item 1. to show for all M there
exists ( is customarily written as ) and such that

and ( \ ) = 0

Exercise 8.5 (Metric Space Examples). Suppose that ( ) is a metric space and
is the topology of — open subsets of To each set and 0 let

= { : ( ) } = ( )

Show that if is closed, then as 0 and in particular := 1 are
open sets decreasing to Therefore the results of Exercises 8.3 and 8.4 apply to
measures on metric spaces with the Borel — algebra, B = ( )

Corollary 8.44. Let R be an open set and B = B be the Borel — algebra
on equipped with the standard topology induced by open balls with respect to the
Euclidean distance. Suppose that : B [0 ] is a measure such that ( )
whenever is a compact set.

(1) Then for all B and 0 there exist a closed set and an open set
such that and ( \ )

(2) If ( ) the set in item 1. may be chosen to be compact.
(3) For all B we may compute ( ) using

( ) = inf{ ( ) : and is open}(8.34)

= sup{ ( ) : and is compact}(8.35)

Proof. For N let

(8.36) := { : | | and ( ) 1 }
Then is a closed and bounded subset of R and hence compact. Moreover

as since17

{ : | | and ( ) 1 }
and { : | | and ( ) 1 } as This shows is — finite
on and Item 1. follows from Exercises 8.4 and 8.5.
If ( ) and as in item 1. Then as and

therefore since ( ) ( \ ) ( \ ) as Hence by choosing
su ciently large, ( \ ) and we may replace by the compact set

and item 1. still holds. This proves item 2.
Item 3. Item 1. easily implies that Eq. (8.34) holds and item 2. implies Eq.

(8.35) holds when ( ) So we need only check Eq. (8.35) when ( ) =

17In fact this is an equality, but we will not need this here.
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By Item 1. there is a closed set such that ( \ ) 1 and in particular
( ) = Since and is compact, it follows that the right side
of Eq. (8.35) is infinite and hence equal to ( )

8.6. Exercises.

Exercise 8.6. Let ( M ) for = 1 2 3 be — finite measure spaces. Let
: 1 × 2 × 3 ( 1 × 2)× 3 be defined by

(( 1 2) 3) = ( 1 2 3)

(1) Show is ((M1 M2) M3 M1 M2 M3) — measurable and 1 is
(M1 M2 M3 (M1 M2) M3) — measurable. That is

: (( 1 × 2)× 3 (M1 M2) M3) ( 1 × 2 × 3 M1 M2 M3)

is a “measure theoretic isomorphism.”
(2) Let := [( 1 2) 3] i.e. ( ) = [( 1 2) 3] (

1( )) for all
M1 M2 M3 Then is the unique measure onM1 M2 M3

such that

( 1 × 2 × 3) = 1( 1) 2( 2) 3( 3)

for all M We will write := 1 2 3

(3) Let : 1 × 2 × 3 [0 ] be a (M1 M2 M3 BR̄) — measurable
function. Verify the identity,
Z

1× 2× 3

=

Z

3

Z

2

Z

1

( 1 2 3) 1( 1) 2( 2) 3( 3)

makes sense and is correct. Also show the identity holds for any one of the
six possible orderings of the iterated integrals.

Exercise 8.7. Prove the second assertion of Theorem 8.29. That is show is
the unique translation invariant measure on BR such that ((0 1] ) = 1 Hint:
Look at the proof of Theorem 7.10.

Exercise 8.8. (Part of Folland Problem 2.46 on p. 69.) Let = [0 1] M = B[0 1]
be the Borel — field on be Lebesgue measure on [0 1] and be counting
measure, ( ) = #( ) Finally let = {( ) 2 : } be the diagonal in
2 Show

Z Z

1 ( ) ( ) ( ) 6=
Z Z

1 ( ) ( ) ( )

by explicitly computing both sides of this equation.

Exercise 8.9. Folland Problem 2.48 on p. 69. (Fubini problem.)

Exercise 8.10. Folland Problem 2.50 on p. 69. (Note the M× BR should be
M BR̄ in this problem.)
Exercise 8.11. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 8.12. Folland Problem 2.56 on p. 77. Let 1((0 ) ) ( ) =
R ( ) for (0 ) show 1((0 ) ) and

Z

0

( ) =

Z

0

( )
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Exercise 8.13. Show
R

0

¯

¯

sin
¯

¯ ( ) = So sin 1([0 ) ) and
R

0
sin ( ) is not defined as a Lebesgue integral.

Exercise 8.14. Folland Problem 2.57 on p. 77.

Exercise 8.15. Folland Problem 2.58 on p. 77.

Exercise 8.16. Folland Problem 2.60 on p. 77. Properties of — functions.

Exercise 8.17. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 8.18. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on 1

Exercise 8.19. Folland Problem 2.64 on p. 80. On the integrability of | | |log | ||
for near 0 and near in R
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9. -spaces

Let ( M ) be a measure space and for 0 and a measurable function
: C let

(9.1) k k (

Z

| | )1

When = let

(9.2) k k = inf { 0 : (| | ) = 0}
For 0 let

( M ) = { : C : is measurable and k k }
where i = a.e. Notice that k k = 0 i and if then
k k = k k In general we will (by abuse of notation) use to denote both the
function and the equivalence class containing

Remark 9.1. Suppose that k k then for all (| | ) = 0 and
therefore (| | ) = lim (| | + 1 ) = 0 i.e. | ( )| for -
a.e. Conversely, if | | a.e. and then (| | ) = 0 and hence
k k This leads to the identity:

k k = inf { 0 : | ( )| for — a.e. }
Theorem 9.2 (Hölder’s inequality). Suppose that 1 and := 1 or
equivalently 1 + 1 = 1 If and are measurable functions then

(9.3) k k1 k k · k k
Assuming (1 ) and k k · k k equality holds in Eq. (9.3) i | | and
| | are linearly dependent as elements of 1 If we further assume that k k and
k k are positive then equality holds in Eq. (9.3) i

(9.4) | | k k = k k | | a.e.
Proof. The cases where k k = 0 or or k k = 0 or are easy to deal with

and are left to the reader. So we will now assume that 0 k k k k Let
= | | k k and = | | k k then Lemma 2.27 implies

(9.5)
| |

k k k k
1 | |
k k +

1 | |
k k

with equality i | k k | = | | 1 k k( 1)
= | | k k , i.e. | | k k =

k k | | Integrating Eq. (9.5) implies

k k1
k k k k

1
+
1
= 1

with equality i Eq. (9.4) holds. The proof is finished since it is easily checked that
equality holds in Eq. (9.3) when | | = | | of | | = | | for some constant
The following corollary is an easy extension of Hölder’s inequality.

Corollary 9.3. Suppose that : C are measurable functions for = 1
and 1 and are positive numbers such that

P

=1
1 = 1 then

°

°

°

°

°

Y

=1

°

°

°

°

°

Y

=1

k k where
X

=1

1 = 1
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Proof. To prove this inequality, start with = 2 then for any [1 ]

k k =

Z

k k k k
where = 1 is the conjugate exponent. Let 1 = and 2 = so that

1
1 + 1

2 = 1 as desired. Then the previous equation states that

k k k k
1
k k

2

as desired. The general case is now proved by induction. Indeed,
°

°

°

°

°

+1
Y

=1

°

°

°

°

°

=

°

°

°

°

°

Y

=1

· +1

°

°

°

°

°

°

°

°

°

°

Y

=1

°

°

°

°

°

k +1k +1

where 1 + 1
+1 =

1 Since
P

=1
1 = 1 we may now use the induction

hypothesis to conclude
°

°

°

°

°

Y

=1

°

°

°

°

°

Y

=1

k k

which combined with the previous displayed equation proves the generalized form
of Holder’s inequality.

Theorem 9.4 (Minkowski’s Inequality). If 1 and then

(9.6) k + k k k + k k
Moreover if then equality holds in this inequality i

sgn( ) = sgn( ) when = 1 and

= or = for some 0 when 1

Proof. When = | | k k a.e. and | | k k a.e. so that | + |
| |+ | | k k + k k a.e. and therefore

k + k k k + k k
When

| + | (2max (| | | |)) = 2 max (| | | | ) 2 (| | + | | )
k + k 2

¡k k + k k ¢

In case = 1

k + k1 =
Z

| + |
Z

| | +

Z

| |

with equality i | |+ | | = | + | a.e. which happens i sgn( ) = sgn( ) a.e.
In case (1 ) we may assume k + k k k and k k are all positive since

otherwise the theorem is easily verified. Now

| + | = | + || + | 1 (| |+ | |)| + | 1

with equality i sgn( ) = sgn( ) Integrating this equation and applying Holder’s
inequality with = ( 1) gives

Z

| + |
Z

| | | + | 1 +

Z

| | | + | 1

(k k + k k ) k | + | 1 k(9.7)
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with equality i

sgn( ) = sgn( ) and
µ | |
k k

¶

=
| + |
k + k =

µ | |
k k

¶

a.e.(9.8)

Therefore

(9.9) k| + | 1k =

Z

(| + | 1) =

Z

| + |

Combining Eqs. (9.7) and (9.9) implies

(9.10) k + k k k k + k + k k k + k
with equality i Eq. (9.8) holds which happens i = a.e. with 0.. Solving
for k + k in Eq. (9.10) gives Eq. (9.6).
The next theorem gives another example of using Hölder’s inequality

Theorem 9.5. Suppose that ( M ) and ( N ) be -finite measure spaces,
[1 ] = ( 1) and : × C be a M N — measurable function.

Assume there exist finite constants 1 and 2 such that
Z

| ( )| ( ) 1 for a.e. and
Z

| ( )| ( ) 2 for a.e. .

If ( ) then
Z

| ( ) ( )| ( ) for — a.e.

( ) :=
R

( ) ( ) ( ) ( ) and

(9.11) k k ( )
1
1

1
2 k k ( )

Proof. Suppose (1 ) to begin with and let = ( 1) then by Hölder’s
inequality,
Z

| ( ) ( )| ( ) =

Z

| ( )|1 | ( )|1 | ( )| ( )

·
Z

| ( )| ( )

¸1 ·
Z

| ( )| | ( )| ( )

¸1

1
2

·
Z

| ( )| | ( )| ( )

¸1

Therefore, using Tonelli’s theorem,
°

°

°

°

Z

| (· ) ( )| ( )

°

°

°

°

2

Z

( )

Z

( ) | ( )| | ( )|

= 2

Z

( ) | ( )|
Z

( ) | ( )|

2 1

Z

( ) | ( )| = 2 1 k k
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From this it follows that ( ) :=
R

( ) ( ) ( ) ( ) and that Eq.
(9.11) holds.
Similarly, if =
Z

| ( ) ( )| ( ) k k
Z

| ( )| ( ) 2 k k for — a.e.

so that k k ( ) 2 k k ( ) If = 1 then
Z

( )

Z

( ) | ( ) ( )| =
Z

( ) | ( )|
Z

( ) | ( )|

1

Z

( ) | ( )|

which shows k k 1( ) 1 k k 1( )

9.1. Jensen’s Inequality.

Definition 9.6. A function : ( ) R is convex if for all 0 1 and
[0 1] ( ) ( 1) + (1 ) ( 0) where = 1 + (1 ) 0

The following Proposition is clearly motivated by Figure 17.

420-2-4

25

12.5

0

-12.5

-25

x

y

x

y

Figure 17. A convex function along with two cords corresponding
to 0 = 2 and 1 = 4 and 0 = 5 and 1 = 2

Proposition 9.7. Suppose : ( ) R is a convex function, then

(1) For all ( ) such that [ ) and ( ]

(9.12)
( ) ( ) ( ) ( )

(2) For each ( ) the right and left sided derivatives 0±( ) exists in R
and if then 0

+( )
0 ( ) 0

+( )
(3) The function is continuous.
(4) For all ( ) and [ 0 ( ) 0

+( )] ( ) ( ) + ( ) for all
( ) In particular,

( ) ( ) + 0 ( )( ) for all ( )
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Proof. 1a) Suppose first that = in which case Eq. (9.12) is
equivalent to

( ( ) ( )) ( ) ( ( ) ( )) ( )

which after solving for ( ) is equivalent to the following equations holding:

( ) ( ) + ( )

But this last equation states that ( ) ( ) + ( ) (1 ) where = and
= + (1 ) and hence is valid by the definition of being convex.
1b) Now assume = in which case Eq. (9.12) is equivalent to

( ( ) ( )) ( ) ( ( ) ( )) ( )

which after solving for ( ) is equivalent to

( ) ( ) ( ) ( ) + ( ) ( )

which is equivalent to

( ) ( ) + ( )

Again this equation is valid by the convexity of
1c) = in which case Eq. (9.12) is equivalent to

( ( ) ( )) ( ) ( ( ) ( )) ( )

and this is equivalent to the inequality,

( ) ( ) + ( )

which again is true by the convexity of
1) General case. If then by 1a-1c)

( ) ( ) ( ) ( ) ( ) ( )

and if
( ) ( ) ( ) ( ) ( ) ( )

We have now taken care of all possible cases.
2) On the set Eq. (9.12) shows that ( ( ) ( )) ( ) is a

decreasing function in and an increasing function in and therefore 0±( ) exists
for all ( ) Also from Eq. (9.12) we learn that

0
+( )

( ) ( )
for all(9.13)

( ) ( ) 0 ( ) for all(9.14)

and letting in the first equation also implies that
0
+( )

0 ( ) for all

The inequality, 0 ( ) 0
+( ) is also an easy consequence of Eq. (9.12).

3) Since ( ) has both left and right finite derivatives, it follows that is con-
tinuous. (For an alternative proof, see Rudin.)
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4) Given let [ 0 ( ) 0
+( )] then by Eqs. (9.13) and (9.14),

( ) ( ) 0 ( ) 0
+( )

( ) ( )

for all Item 4. now follows.

Corollary 9.8. Suppose : ( ) R is di erential then is convex i 0 is non
decreasing. In particular if 2( ) then is convex i 00 0

Proof. By Proposition 9.7, if is convex then 0 is non-decreasing. Conversely
if 0 is increasing then by the mean value theorem,

( 1) ( )

1
= 0( 1) for some 1 ( 1)

and
( ) ( 0)

0
= 0( 2) for some 2 ( 0 )

Hence
( 1) ( )

1

( ) ( 0)

0

for all 0 1 Solving this inequality for ( ) gives

( )
0

1 0
( 1) +

1

1 0
( 0)

showing is convex.

Example 9.9. The functions exp( ) and log( ) are convex and is convex i
1

Theorem 9.10 (Jensen’s Inequality). Suppose that ( M ) is a probability space,
i.e. is a positive measure and ( ) = 1 Also suppose that 1( ) :
( ) and : ( ) R is a convex function. Then

µ
Z

¶
Z

( )

where if 1( ) then is integrable in the extended sense and
R

( ) =

Proof. Let =
R

( ) and let R be such that ( ) ( ) ( )
for all ( ) Then integrating the inequality, ( ) ( ) ( ) implies
that

0

Z

( ) ( ) =

Z

( ) (

Z

)

Moreover, if ( ) is not integrable, then ( ) ( ) + ( ) which shows that
negative part of ( ) is integrable. Therefore,

R

( ) = in this case.

Example 9.11. The convex functions in Example 9.9 lead to the following inequal-
ities,

exp

µ
Z

¶
Z

(9.15)
Z

log(| |) log

µ
Z

| |
¶

log

µ
Z

¶
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and for 1
¯

¯

¯

¯

Z

¯

¯

¯

¯

µ
Z

| |
¶

Z

| |
The last equation may also easily be derived using Hölder’s inequality. As a special
case of the first equation, we get another proof of Lemma 2.27. Indeed, more
generally, suppose 0 for = 1 2 and

P

=1
1 = 1 then

(9.16) 1 =
P

=1 ln =
P

=1
1 ln

X

=1

1 ln =
X

=1

where the inequality follows from Eq. (9.15) with =
P

=1
1 Of course Eq.

(9.16) may be proved directly by directly using the convexity of the exponential
function.

9.2. Modes of Convergence. As usual let ( M ) be a fixed measure space
and let { } be a sequence of measurable functions on Also let : C be
a measurable function. We have the following notions of convergence and Cauchy
sequences.

Definition 9.12. (1) a.e. if there is a set M such that ( ) = 0
and lim 1 = 1

(2) in — measure if lim (| | ) = 0 for all 0 We will
abbreviate this by saying in 0 or by

(3) in i and for all and lim
R | | = 0

Definition 9.13. (1) { } is a.e. Cauchy if there is a set M such that
( ) = 0 and{1 } is a pointwise Cauchy sequences.

(2) { } is Cauchy in — measure (or 0 — Cauchy) if lim (| |
) = 0 for all 0

(3) { } is Cauchy in if lim
R | | = 0

Lemma 9.14 (Chebyshev’s inequality again). Let [1 ) and then

(| | )
1 k k for all 0

In particular if { } is — convergent (Cauchy) then { } is also convergent
(Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.12),

(| | ) = (| | )
1
Z

| | =
1 k k

and therefore if { } is — Cauchy, then

(| | )
1 k k 0 as

showing { } is 0 — Cauchy. A similar argument holds for the — convergent
case.

Lemma 9.15. Suppose C and | +1 | and
P

=1
. Then

lim = C exists and | | P

=

.
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Figure 18. Modes of convergence examples. In picture 1. 0

a.e., 9 0 in 1 0 In picture 2. 0 a.e., 9 0 in
1 9 0 In picture 3., 0 a.e., 0 but 9 0 in 1

In picture 4., 0 in 1 9 0 a.e., and 0

Proof. Let then

(9.17) | | =

¯

¯

¯

¯

1
P

=

( +1 )

¯

¯

¯

¯

1
P

=

| +1 | P

=

So | | min( ) 0 as i.e. { } is Cauchy. Let in
(9.17) to find | |
Theorem 9.16. Suppose { } is 0-Cauchy. Then there exists a subsequence

= of { } such that lim exists a.e. and as

Moreover if is a measurable function such that as then =
a.e.

Proof. Let 0 such that
P

=1
( = 2 would do) and set =

P

=

Choose = such that { } is a subsequence of N and

({| +1 | })
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Let = {| +1 | }

=
[

=

=
[

=

{| +1 | }

and
\

=1

=
\

=1

[

=

= {| +1 | i.o.}

Then ( ) = 0 since

( )
X

=

( )
X

=

= 0 as

For | +1( ) ( )| for all and by Lemma 9.15, ( ) =
lim ( ) exists and | ( ) ( )| for all . Therefore, lim ( ) = ( )

exists for all . Moreover, { : | ( ) ( )| } for all and
hence

(| | ) ( ) 0 as

Therefore as .
Since

{| | } = {| + | }
{| | 2} {| | 2}

({| | }) ({| | 2}) + (| | 2)

and
({| | }) lim sup (| | 2) 0 as

If also as then arguing as above

(| | ) ({| | 2}) + (| | 2) 0 as

Hence

(| | 0) = ( =1{| | 1 })
X

=1

(| | 1
) = 0

i.e. = a.e.

Corollary 9.17 (Dominated Convergence Theorem). Suppose { } { } and
are in 1 and 0 are functions such that

| | a.e. and
Z Z

as

Then 1 and lim k k1 = 0 i.e. in 1 In particular
lim

R

=
R

Proof. First notice that | | a.e. and hence 1 since 1 To see that
| | use Theorem 9.16 to find subsequences { } and { } of { } and { }
respectively which are almost everywhere convergent. Then

| | = lim | | lim = a.e.
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If (for sake of contradiction) lim k k1 6= 0 there exists 0 and a
subsequence { } of { } such that

(9.18)
Z

| | for all

Using Theorem 9.16 again, we may assume (by passing to a further subsequences
if necessary) that and almost everywhere. Noting, | |
+ 2 and

R

( + )
R

2 an application of the dominated convergence
Theorem 7.38 implies lim

R | | = 0 which contradicts Eq. (9.18).
Exercise 9.1 (Fatou’s Lemma). If 0 and in measure, then

R

lim inf
R

Theorem 9.18 (Egoro ’s Theorem). Suppose ( ) and a.e. Then
for all 0 there exists M such that ( ) and uniformly on
In particular as

Proof. Let a.e. Then ({| | 1 i.o. }) = 0 for all 0 i.e.

lim
[

{| | 1} =
\

=1

[

{| | 1} = 0

Let :=
S {| | 1} and choose an increasing sequence { } =1 such

that ( ) 2 for all Setting := ( )
P

2 = and if
then | | 1 for all and all That is uniformly on

Exercise 9.2. Show that Egoro ’s Theorem remains valid when the assumption
( ) is replaced by the assumption that | | 1 for all

9.3. Completeness of — spaces.

Theorem 9.19. Let k·k be as defined in Eq. (9.2), then ( ( M ) k·k ) is
a Banach space. A sequence { } =1 converges to i there exists

M such that ( ) = 0 and uniformly on Moreover, bounded
simple functions are dense in

Proof. By Minkowski’s Theorem 9.4, k·k satisfies the triangle inequality. The
reader may easily check the remaining conditions that ensure k·k is a norm.
Suppose that { } =1 is a sequence such i.e. k k

0 as Then for all N there exists such that
¡| | 1

¢

= 0 for all

Let
= =1

©| | 1
ª

Then ( ) = 0 and for | ( ) ( )| 1 for all This shows
that uniformly on Conversely, if there exists M such that ( ) = 0
and uniformly on then for any 0

(| | ) = ({| | } ) = 0

for all su ciently large. That is to say lim sup k k for all 0
The density of simple functions follows from the approximation Theorem 7.12.
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So the last item to prove is the completeness of for which we will use Theorem
3.66. Suppose that { } =1 is a sequence such that

P

=1 k k Let
:= k k := {| | } and := =1 so that ( ) = 0 Then

X

=1

sup | ( )|
X

=1

which shows that ( ) =
P

=1 ( ) converges uniformly to ( ) :=
P

=1 ( )
on i.e. lim k k = 0
Alternatively, suppose := k k 0 as Let =

{| | } and := then ( ) = 0 and k k = 0
as Therefore, := lim exists on and the limit is uniform on

Letting = lim sup it then follows that k k 0 as

Theorem 9.20 (Completeness of ( )). For 1 ( ) equipped with the
— norm, k·k (see Eq. (9.1)), is a Banach space.

Proof. By Minkowski’s Theorem 9.4, k·k satisfies the triangle inequality. As
above the reader may easily check the remaining conditions that ensure k·k is a
norm. So we are left to prove the completeness of ( ) for 1 the case
= being done in Theorem 9.19. By Chebyshev’s inequality (Lemma 9.14),

{ } is 0-Cauchy (i.e. Cauchy in measure) and by Theorem 9.16 there exists a
subsequence { } of { } such that a.e. By Fatou’s Lemma,

k k =

Z

lim inf | | lim inf

Z

| |
= lim inf k k 0 as

In particular, k k k k + k k so the and . The
proof is finished because,

k k k k + k k 0 as

The ( ) — norm controls two types of behaviors of namely the “behavior at
infinity” and the behavior of local singularities. So in particular, if is blows up at
a point 0 then locally near 0 it is harder for to be in ( ) as increases.
On the other hand a function ( ) is allowed to decay at “infinity” slower and
slower as increases. With these insights in mind, we should not in general expect
( ) ( ) or ( ) ( ) However, there are two notable exceptions. (1) If
( ) then there is no behavior at infinity to worry about and ( ) ( )
for all as is shown in Corollary 9.21 below. (2) If is counting measure, i.e.
( ) = #( ) then all functions in ( ) for any can not blow up on a set of
positive measure, so there are no local singularities. In this case ( ) ( ) for
all see Corollary 9.25 below.

Corollary 9.21. If ( ) then ( ) ( ) for all 0 and
the inclusion map is bounded.

Proof. Choose [1 ] such that

1
=
1
+
1
i.e. =
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Then by Corollary 9.3,

k k = k · 1k k k · k1k = ( )1 k k = ( )(
1 1 )k k

The reader may easily check this final formula is correct even when = provided
we interpret 1 1 to be 1

Proposition 9.22. Suppose that 0 then + i.e.
every function may be written as = + with and For
1 and + let

k k := inf
n

k k + k k : = +
o

Then ( + k·k) is a Banach space and the inclusion map from to +
is bounded; in fact k k 2 k k for all

Proof. Let 0 then the local singularities of are contained in the set
:= {| | } and the behavior of at “infinity” is solely determined by on
Hence let = 1 and = 1 so that = + By our earlier discussion

we expect that and and this is the case since,

k k =
°

° 1| |
°

° =

Z

| | 1| | =

Z

¯

¯

¯

¯

¯

¯

¯

¯

1| |
Z

¯

¯

¯

¯

¯

¯

¯

¯

1| | k k

and

k k =
°

° 1| |
°

° =

Z

| | 1| | =

Z

¯

¯

¯

¯

¯

¯

¯

¯

1| |
Z

¯

¯

¯

¯

¯

¯

¯

¯

1| | k k

Moreover this shows

k k 1 k k + 1 k k
Taking = k k then gives

k k
³

1 + 1
´

k k
and then taking = 1 shows k k 2 k k The the proof that ( + k·k) is a
Banach space is left as Exercise 9.7 to the reader.

Corollary 9.23. Suppose that 0 then and

(9.19) k k k k k k1

where (0 1) is determined so that

1
= +

1
with = if =

Further assume 1 and for let

k k := k k + k k
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Then ( k·k) is a Banach space and the inclusion map of into is
bounded, in fact

(9.20) k k max
¡

1 (1 ) 1
¢

³

k k + k k
´

where

=

1 1

1 1 =
( )

( )

The heuristic explanation of this corollary is that if then has local
singularities no worse than an function and behavior at infinity no worse than
an function. Hence for any between and
Proof. Let be determined as above, = and = (1 ), then by

Corollary 9.3,

k k =
°

°

°
| | | |1

°

°

°

°

°

°
| |

°

°

°

°

°

°
| |1

°

°

°
= k k k k1

It is easily checked that k·k is a norm on To show this space is complete,
suppose that { } is a k·k — Cauchy sequence. Then { } is both and
— Cauchy. Hence there exist and such that lim k k = 0

and lim k k = 0 By Chebyshev’s inequality (Lemma 9.14) and
in measure and therefore by Theorem 9.16, = a.e. It now is clear that

lim k k = 0 The estimate in Eq. (9.20) is left as Exercise 9.6 to the
reader.

Remark 9.24. Let = 1 = 0 and for (0 1) let be defined by

(9.21)
1
=
1

0
+

1

Combining Proposition 9.22 and Corollary 9.23 gives

0 1 0 + 1

and Eq. (9.19) becomes

k k k k1
0
k k

1

Corollary 9.25. Suppose now that is counting measure on Then ( )
( ) for all 0 and k k k k
Proof. Suppose that 0 = then

k k = sup {| ( )| : }
X

| ( )| = k k

i.e. k k k k for all 0 For 0 apply Corollary 9.23 with
= to find

k k k k k k1 k k k k1 = k k
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9.3.1. Summary:

(1) Since (| | ) k k it follows that — convergence implies 0 —
convergence.

(2) 0 — convergence implies almost everywhere convergence for some subse-
quence.

(3) If ( ) then for all in fact

k k [ ( )](
1 1 ) k k

i.e. — convergence implies — convergence.
(4) 0 1 0 + 1 where

1
=
1

0
+

1

(5) if In fact k k k k in this case. To prove this write

1
= +

(1 )

then using k k k k for all

k k k k k k1 k k k k1 = k k
(6) If ( ) then almost everywhere convergence implies 0 — convergence.

9.4. Converse of Hölder’s Inequality. Throughout this section we assume
( M ) is a -finite measure space, [1 ] and [1 ] are conjugate
exponents, i.e. 1 + 1 = 1 For let ( ) be given by

(9.22) ( ) =

Z

By Hölder’s inequality

(9.23) | ( )|
Z

| | k k k k

which implies that

(9.24) k k( ) := sup{| ( )| : k k = 1} k k
Proposition 9.26 (Converse of Hölder’s Inequality). Let ( M ) be a -finite
measure space and 1 as above. For all

(9.25) k k = k k( ) := sup
n

| ( )| : k k = 1
o

and for any measurable function : C

(9.26) k k = sup

½
Z

| | : k k = 1 and 0

¾

Proof. We begin by proving Eq. (9.25). Assume first that so 1
Then

| ( )| =
¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| | k k k k
and equality occurs in the first inequality when sgn( ) is constant a.e. while
equality in the second occurs, by Theorem 9.2, when | | = | | for some constant
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0 So let := sgn( )| | which for = is to be interpreted as = sgn( )

i.e. | | 1
When =

| ( )| =
Z

sgn( ) = k k 1( ) = k k1 k k

which shows that k k( ) k k1 If then

k k =

Z

| | =
Z

| | = k k

while

( ) =

Z

=

Z

| || | =

Z

| | = k k
Hence

| ( )|
k k =

k k
k k

= k k (1 1 )
= k k

This shows that || k k k which combined with Eq. (9.24) implies Eq. (9.25).
The last case to consider is = 1 and = Let := k k and choose

M such that as and ( ) for all For any
0 (| | ) 0 and {| | } {| | } Therefore,

( {| | }) 0 for su ciently large. Let

= sgn( )1 {| | }

then
k k1 = ( {| | }) (0 )

and

| ( )| =
Z

{| | }
sgn( ) =

Z

{| | }
| |

( ) ( {| | }) = ( )k k1
Since 0 is arbitrary, it follows from this equation that k k( 1) = k k
We now will prove Eq. (9.26). The key new point is that we no longer are

assuming that Let ( ) denote the right member in Eq. (9.26) and set
:= 1 {| | } Then | | | | as and it is clear that ( ) is increasing

in Therefore using Lemma 2.10 and the monotone convergence theorem,

lim ( ) = sup ( ) = sup sup

½
Z

| | : k k = 1 and 0

¾

= sup

½

sup

Z

| | : k k = 1 and 0

¾

= sup

½

lim

Z

| | : k k = 1 and 0

¾

= sup

½
Z

| | : k k = 1 and 0

¾

= ( )

Since for all and ( ) = k k( ) (as you should verify), it fol-
lows from Eq. (9.25) that ( ) = k k When by the monotone
convergence theorem, and when = directly from the definitions, one learns
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that lim k k = k k Combining this fact with lim ( ) = ( ) just
proved shows ( ) = k k
As an application we can derive a sweeping generalization of Minkowski’s inequal-

ity. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough discussion of
complex interpolation theory.)

Theorem 9.27 (Minkowski’s Inequality for Integrals). Let ( M ) and ( N )
be -finite measure spaces and 1 If is a M N measurable function,
then k (· )k ( ) is measurable and

(1) if is a positiveM N measurable function, then

(9.27) k
Z

(· ) ( )k ( )

Z

k (· )k ( ) ( )

(2) If : × C is aM N measurable function and
R k (· )k ( ) ( )

then
(a) for — a.e. ( ·) 1( )
(b) the —a.e. defined function,

R

( ) ( ) is in ( ) and
(c) the bound in Eq. (9.27) holds.

Proof. For [1 ] let ( ) := k (· )k ( ) If [1 )

( ) = k (· )k ( ) =

µ
Z

| ( )| ( )

¶1

is a measurable function on by Fubini’s theorem. To see that is measurable,
let M such that and ( ) for all Then by Exercise 9.5,

( ) = lim lim k (· )1 k ( )

which shows that is ( N ) — measurable as well. This shows that integral on
the right side of Eq. (9.27) is well defined.
Now suppose that 0 = ( 1)and ( ) such that 0 and

k k ( ) = 1 Then by Tonelli’s theorem and Hölder’s inequality,
Z
·
Z

( ) ( )

¸

( ) ( ) =

Z

( )

Z

( ) ( ) ( )

k k ( )

Z

k (· )k ( ) ( )

=

Z

k (· )k ( ) ( )

Therefore by Proposition 9.26,

k
Z

(· ) ( )k ( ) = sup

½
Z
·
Z

( ) ( )

¸

( ) ( ) : k k ( ) = 1 and 0

¾

Z

k (· )k ( ) ( )

proving Eq. (9.27) in this case.
Now let : × C be as in item 2) of the theorem. Applying the first part

of the theorem to | | shows
Z

| ( )| ( ) for — a.e.
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i.e. ( ·) 1( ) for the —a.e. Since
¯

¯

R

( ) ( )
¯

¯

R | ( )| ( ) it
follows by item 1) that

k
Z

(· ) ( )k ( ) k
Z

| (· )| ( )k ( )

Z

k (· )k ( ) ( )

Hence the function,
R

( ) ( ) is in ( ) and the bound in Eq.
(9.27) holds.
Here is an application of Minkowski’s inequality for integrals.

Theorem 9.28 (Theorem 6.20 in Folland). Suppose that : (0 )× (0 ) C
is a measurable function such that is homogenous of degree 1 i.e. ( ) =

1 ( ) for all 0 If

:=

Z

0

| ( 1)| 1

for some [1 ] then for ((0 ) ) ( ·) (·) ((0 ) ) for
— a.e. Moreover, the — a.e. defined function

(9.28) ( )( ) =

Z

0

( ) ( )

is in ((0 ) ) and

k k ((0 ) ) k k ((0 ) )

Proof. By the homogeneity of ( ) = 1 ( 1) Hence
Z

0

| ( ) ( )| =

Z

0

1 | (1 ) ( )|

=

Z

0

1 | (1 ) ( )| =

Z

0

| (1 ) ( )|
Since

k (· )k ((0 ) ) =

Z

0

| ( )| =

Z

0

| ( )|

k (· )k ((0 ) ) =
1 k k ((0 ) )

Using Minkowski’s inequality for integrals then shows
°

°

°

°

Z

0

| (· ) ( )|
°

°

°

°

((0 ) )

Z

0

| (1 )| k (· )k ((0 ) )

= k k ((0 ) )

Z

0

| (1 )| 1

= k k ((0 ) )

This shows that in Eq. (9.28) is well defined from — a.e. The proof is
finished by observing

k k ((0 ) )

°

°

°

°

Z

0

| (· ) ( )|
°

°

°

°

((0 ) )

k k ((0 ) )

for all ((0 ) )
The following theorem is a strengthening of Proposition 9.26. which will be used

(actually maybe not) in Theorem G.49 below. (WHERE IS THIS THEOREM
USED?)
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Theorem 9.29 (Converse of Hölder’s Inequality II). Assume that ( M ) is a
— finite measure space, [1 ] are conjugate exponents and let S denote the

set of simple functions on such that ( 6= 0) For : C measurable
such that 1 for all S 18 let

(9.29) ( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: S with k k = 1

¾

If ( ) then and ( ) = k k
Proof. Let M be sets such that ( ) and as

Suppose that = 1 and hence = Choose simple functions on such that
| | 1 and sgn( ) = lim in the pointwise sense. Then 1 S and
therefore

¯

¯

¯

¯

Z

1

¯

¯

¯

¯

( )

for all By assumption 1 1( ) and therefore by the dominated conver-
gence theorem we may let in this equation to find

Z

1 | | ( )

for all The monotone convergence theorem then implies that
Z

| | = lim

Z

1 | | ( )

showing 1( ) and k k1 ( ) Since Holder’s inequality implies that
( ) k k1 we have proved the theorem in case = 1
For 1 we will begin by assuming that ( ) Since [1 ) we know

that S is a dense subspace of ( ) and therefore, using is continuous on ( )

( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: ( ) with k k = 1

¾

= k k

where the last equality follows by Proposition 9.26.
So it remains to show that if 1 for all S and ( ) then

( ) For N let 1 1| | Then ( ) in fact k k
( )1 So by the previous paragraph,

k k = ( ) = sup

½
¯

¯

¯

¯

Z

1 1| |

¯

¯

¯

¯

: ( ) with k k = 1

¾

( )
°

° 1 1| |
°

° ( ) · 1 = ( )

wherein the second to last inequality we have made use of the definition of ( )
and the fact that 1 1| | S If (1 ) an application of the monotone
convergence theorem (or Fatou’s Lemma) along with the continuity of the norm,
k·k implies

k k = lim k k ( )

If = then k k ( ) for all implies | | ( ) a.e. which
then implies that | | ( ) a.e. since | | = lim | | That is ( ) and
k k ( )

18This is equivalent to requiring 1 1( ) for all M such that ( )
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9.5. Uniform Integrability. This section will address the question as to what
extra conditions are needed in order that an 0 — convergent sequence is —
convergent.

Notation 9.30. For 1( ) and M let

( : ) :=

Z

and more generally if M let

( : ) :=

Z

Lemma 9.31. Suppose 1( ) then for any 0 there exist a 0 such that
(| | : ) whenever ( )

Proof. If the Lemma is false, there would exist 0 and sets such that
( ) 0 while (| | : ) for all Since |1 | | | 1 and for any
(0 1) (1 | | ) ( ) 0 as the dominated convergence theorem
of Corollary 9.17 implies lim (| | : ) = 0 This contradicts (| | : )
for all and the proof is complete.
Suppose that { } =1 is a sequence of measurable functions which converge in
1( ) to a function Then for M and N

| ( : )| | ( : )|+ | ( : )| k k1 + | ( : )|
Let := sup k k1 then 0 as and

(9.30) sup | ( : )| sup | ( : )| ( + | ( : )|) + ( : )

where = | | +P =1 | | 1 From Lemma 9.31 and Eq. (9.30) one easily
concludes,

(9.31) 0 0 3 sup | ( : )| when ( )

Definition 9.32. Functions { } =1
1( ) satisfying Eq. (9.31) are said to be

uniformly integrable.

Remark 9.33. Let { } be real functions satisfying Eq. (9.31), be a set where
( ) and = { 0} Then ( ) so that ( + : ) = ( :
) and similarly ( : ) Therefore if Eq. (9.31) holds then

(9.32) sup (| | : ) 2 when ( )

Similar arguments work for the complex case by looking at the real and imaginary
parts of Therefore { } =1

1( ) is uniformly integrable i

(9.33) 0 0 3 sup (| | : ) when ( )

Lemma 9.34. Assume that ( ) then { } is uniformly bounded in 1( )
(i.e. = sup k k1 ) and { } is uniformly integrable i
(9.34) lim sup (| | : | | ) = 0
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Proof. Since { } is uniformly bounded in 1( ) (| | ) So
if (9.33) holds and 0 is given, we may choose su ceintly large so that
(| | ) ( ) for all and therefore,

sup (| | : | | )

Since is arbitrary, we concluded that Eq. (9.34) must hold.
Conversely, suppose that Eq. (9.34) holds, then automatically = sup (| |)
because

(| |) = (| | : | | ) + (| | : | | )

sup (| | : | | ) + ( )

Moreover,

(| | : ) = (| | : | | ) + (| | : | | )

sup (| | : | | ) + ( )

So given 0 choose so large that sup (| | : | | ) 2 and then take
= (2 )

Remark 9.35. It is not in general true that if { } 1( ) is uniformly integrable
then sup (| |) For example take = { } and ({ }) = 1 Let ( ) =
Since for 1 a set such that ( ) is in fact the empty set, we see
that Eq. (9.32) holds in this example. However, for finite measure spaces with out
“atoms”, for every 0 we may find a finite partition of by sets { } =1 with
( ) Then if Eq. (9.32) holds with 2 = 1, then

(| |) =
X

=1

(| | : )

showing that (| |) for all

The following Lemmas gives a concrete necessary and su cient conditions for
verifying a sequence of functions is uniformly bounded and uniformly integrable.

Lemma 9.36. Suppose that ( ) and 0( ) is a collection of functions.

(1) If there exists a non decreasing function : R+ R+ such that
lim ( ) = and

(9.35) := sup ( (| |))

then

(9.36) lim sup
¡| | 1| |

¢

= 0

(2) Conversely if Eq. (9.36) holds, there exists a non-decreasing continuous
function : R+ R+ such that (0) = 0 lim ( ) = and Eq.
(9.35) is valid.
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Proof. 1. Let be as in item 1. above and set := sup ( ) 0 as
by assumption. Then for

(| | : | | ) = (
| |
(| |) (| |) : | | ) ( (| |) : | | )

( (| |))
and hence

lim sup
¡| | 1| |

¢

lim = 0

2. By assumption, := sup
¡| | 1| |

¢

0 as Therefore we
may choose such that

X

=0

( + 1)

where by convention 0 := 0 Now define so that (0) = 0 and

0( ) =
X

=0

( + 1) 1( +1]( )

i.e.

( ) =

Z

0

0( ) =
X

=0

( + 1) ( +1 )

By construction is continuous, (0) = 0 0( ) is increasing (so is convex)
and 0( ) ( + 1) for In particular

( ) ( ) + ( + 1)
+ 1 for

from which we conclude lim ( ) = We also have 0( ) ( + 1) on
[0 +1] and therefore

( ) ( + 1) for +1

So for

( (| |)) =
X

=0

¡

(| |)1( +1](| |)
¢

X

=0

( + 1)
¡| | 1( +1](| |)

¢

X

=0

( + 1)
¡| | 1| |

¢

X

=0

( + 1)

and hence

sup ( (| |))
X

=0

( + 1)

Theorem 9.37 (Vitali Convergence Theorem). (Folland 6.15) Suppose that 1
A sequence { } is Cauchy i

(1) { } is 0 — Cauchy,
(2) {| | } — is uniformly integrable.
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(3) For all 0 there exists a set M such that ( ) and
R | | for all (This condition is vacuous when ( ) )

Proof. (= ) Suppose { } is Cauchy. Then (1) { } is 0 — Cauchy by
Lemma 9.14. (2) By completeness of , there exists such that k k
0 as By the mean value theorem,

|| | | | | (max(| | | |)) 1 || | | || (| |+ | |) 1 || | | ||
and therefore by Hölder’s inequality,
Z

|| | | | |
Z

(| |+ | |) 1 || | | ||
Z

(| |+ | |) 1| |

k k k(| |+ | |) 1k = k| |+ | |k k k
(k k + k k ) k k

where := ( 1) This shows that
R || | | | | 0 as 19 By the

remarks prior to Definition 9.32, {| | } is uniformly integrable.
To verify (3), for 0 and N let = {| | } and ( ) = {| |
} Then ( ) 1 k || and by the dominated convergence theorem,

Z

| | =

Z

| | 1| | 0 as 0

Moreover,

(9.37)
°

° 1
°

°

°

° 1
°

° +
°

°( )1
°

°

°

° 1
°

° + k k
So given 0, choose su ciently large such that for all k k .
Then choose su ciently small such that

R | | and
R

( )
| |

for all = 1 2 1. Letting (1) · · · ( 1) we have

( )

Z

| | for 1

and by Eq. (9.37)
Z

| | ( 1 + 1 ) 2 for

Therefore we have found M such that ( ) and

sup

Z

| | 2

which verifies (3) since 0 was arbitrary.
( =) Now suppose{ } satisfies conditions (1) - (3). Let 0 be as

in (3) and
{ | ( ) ( )| }

Then
k( ) 1 k k 1 k + k 1 k 2 1

19Here is an alternative proof. Let || | | | | | | + | | =: 1 and 2| | .
Then 0 and

R R

Therefore by the dominated convergence theorem in
Corollary 9.17, lim

R

= 0
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and

k k = k( )1 k + k( )1 \ k
+ k( )1 k
k( )1 \ k + k( )1 k + 2 1(9.38)

Using properties (1) and (3) and 1 {| | }| | 1 1 the
dominated convergence theorem in Corollary 9.17 implies

k( ) 1 \ k =

Z

1 {| | } | | 0

which combined with Eq. (9.38) implies

lim sup k k lim sup k( )1 k + 2 1

Finally
k( )1 k k 1 k + k 1 k 2 ( )

where
( ) sup sup{ k 1 k : M 3 ( ) }

By property (2), ( ) 0 as 0. Therefore

lim sup k k 2 1 + 0 + 2 ( ) 0 as 0

and therefore { } is -Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 9.38 (Vitali Convergence Theorem). (This is problem 9 on p. 133 in
Rudin.) Assume that ( ) { } is uniformly integrable, a.e. and
| | a.e., then 1( ) and in 1( )

Proof. Let 0 be given and choose 0 as in the Eq. (9.32). Now use
Egoro ’s Theorem 9.18 to choose a set where { } converges uniformly on
and ( ) By uniform convergence on there is an integer such that
| | 1 on for all Letting we learn that

| | 1 on

Therefore | | | |+ 1 on and hence

(| |) = (| | : ) + (| | : )

(| |) + ( ) + (| | : )

Now by Fatou’s lemma,

(| | : ) lim inf (| | : ) 2

by Eq. (9.32). This shows that 1 Finally

(| |) = (| | : ) + (| | : )

(| | : ) + (| |+ | | : )

(| | : ) + 4

and so by the Dominated convergence theorem we learn that

lim sup (| |) 4
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Since 0 was arbitrary this completes the proof.

Theorem 9.39 (Vitali again). Suppose that in measure and Eq. (9.34)
holds, then in 1

Proof. This could of course be proved using 9.38 after passing to subsequences
to get { } to converge a.s. However I wish to give another proof.
First o , by Fatou’s lemma, 1( ) Now let

( ) = 1| | + 1| |

then ( ) ( ) because | ( ) ( )| | | and since
| | | ( )|+ | ( ) ( )|+ | ( ) |

we have that

| | | ( )|+ | ( ) ( )|+ | ( ) |
= (| | : | | ) + | ( ) ( )|+ (| | : | | )

Therefore by the dominated convergence theorem

lim sup | | (| | : | | ) + lim sup (| | : | | )

This last expression goes to zero as by uniform integrability.

9.6. Exercises.

Definition 9.40. The essential range of essran( ) consists of those C
such that (| | ) 0 for all 0

Definition 9.41. Let ( ) be a topological space and be a measure on B =
( ) The support of supp( ), consists of those such that ( ) 0 for
all open neighborhoods, of

Exercise 9.3. Let ( ) be a second countable topological space and be a
measure on B — the Borel — algebra on Show

(1) supp( ) is a closed set. (This is true on all topological spaces.)
(2) ( \ supp( )) = 0 and use this to conclude that := \ supp( ) is the

largest open set in such that ( ) = 0 Hint: U be a countable
base for the topology Show that may be written as a union of elements
from V with the property that ( ) = 0

Exercise 9.4. Prove the following facts about essran( )
(1) Let = := 1 — a Borel measure on C Show essran( ) = supp( )
(2) essran( ) is a closed set and ( ) essran( ) for almost every i.e. (

essran( )) = 0
(3) If C is a closed set such that ( ) for almost every then

essran( ) So essran( ) is the smallest closed set such that ( )
for almost every

(4) k k = sup {| | : essran( )}
Exercise 9.5. Let for some Show k k = lim k k
If we further assume ( ) show k k = lim k k for all measurable
functions : C In particular, i lim k k
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Exercise 9.6. Prove Eq. (9.20) in Corollary 9.23. (Part of Folland 6.3 on p. 186.)
Hint: Use Lemma 2.27 applied to the right side of Eq. (9.19).

Exercise 9.7. Complete the proof of Proposition 9.22 by showing ( + k·k)
is a Banach space. (Part of Folland 6.4 on p. 186.)

Exercise 9.8. Folland 6.5 on p. 186.

Exercise 9.9. Folland 6.6 on p. 186.

Exercise 9.10. Folland 6.9 on p. 186.

Exercise 9.11. Folland 6.10 on p. 186. Use the strong form of Theorem 7.38.

Exercise 9.12. Let ( M ) and ( N ) be -finite measure spaces, 2( )
and 2( ) Show

Z

| ( ) ( )| ( ) for — a.e.

Let ( ) :=
R

( ) ( ) ( ) when the integral is defined. Show 2( )

and : 2( ) 2( ) is a bounded operator with k k k k 2( )

Exercise 9.13. Folland 6.27 on p. 196.

Exercise 9.14. Folland 2.32 on p. 63.

Exercise 9.15. Folland 2.38 on p. 63.
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10. Locally Compact Hausdorff Spaces

In this section will always be a topological space with topology We are now
interested in restrictions on in order to insure there are “plenty” of continuous
functions. One such restriction is to assume = — is the topology induced from
a metric on The following two results shows that ( ) has lots of continuous
functions. Recall for ( ) = inf{ ( ) : }
Lemma 10.1 (Urysohn’s Lemma for Metric Spaces). Let ( ) be a metric space,

and @ such that Then

(10.1) ( ) =
( )

( ) + ( )
for

defines a continuous function, : [0 1] such that ( ) = 1 for and
( ) = 0 if (This may also be stated as follows. Let ( = ) and
( = ) be two disjoint closed subsets of then there exists ( [0 1]) such
that = 1 on and = 0 on )

Proof. By Lemma 3.5, and are continuous functions on Since and
are closed, ( ) 0 if and ( ) 0 if Since =

( )+ ( ) 0 for all and ( + )
1 is continuous as well. The remaining

assertions about are all easy to verify.

Theorem 10.2 (Metric Space Tietze Extension Theorem). Let ( ) be a metric
space, be a closed subset of and ( [ ]) (Here we
are viewing as a topological space with the relative topology, see Definition
3.17.) Then there exists ( [ ]) such that | =

Proof.
(1) By scaling and translation (i.e. by replacing by ), it su ces to prove

Theorem 10.2 with = 0 and = 1
(2) Suppose (0 1] and : [0 ] is continuous function. Let :=

1([0 1
3 ]) and := 1([23 1]) By Lemma 10.1 there exists a function

˜ ( [0 3]) such that ˜ = 0 on and ˜ = 1 on Letting := 3 ˜
we have ( [0 3]) such that = 0 on and = 3 on Further
notice that

0 ( ) ( )
2

3
for all

(3) Now suppose : [0 1] is a continuous function as in step 1. Let
1 ( [0 1 3]) be as in step 2. with = 1 and let 1 := 1|
( [0 2 3]) Apply step 2. with = 2 3 and = 1 to find 2

( [0 1
3
2
3 ]) such that 2 := ( 1 + 2) | ( [0

¡

2
3

¢2
]) Continue

this way inductively to find ( [0 1
3

¡

2
3

¢ 1
]) such that

(10.2)
X

=1

| =: ( [0

µ

2

3

¶

])

(4) Define :=
P

=1 Since

X

=1

k k
X

=1

1

3

µ

2

3

¶ 1

=
1

3

1

1 2
3

= 1
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the series defining is uniformly convergent so ( [0 1]) Passing
to the limit in Eq. (10.2) shows = |

The main thrust of this section is to study locally compact (and — compact)
Hausdor spaces as defined below. We will see again that this class of topological
spaces have an ample supply of continuous functions. We will start out with the
notion of a Hausdor topology. The following example shows a pathology which
occurs when there are not enough open sets in a topology.

Example 10.3. Let = {1 2 3} and = { {1 2} {2 3} {2}} and = 2
for all Then for every !

Definition 10.4 (Hausdor Topology). A topological space, ( ) is Hausdor
if for each pair of distinct points, there exists disjoint open neighborhoods,
and of and respectively. (Metric spaces are typical examples of Hausdor

spaces.)

Remark 10.5. When is Hausdor the “pathologies” appearing in Example 10.3
do not occur. Indeed if and \ { } we may choose and

such that = Then a.a. implies for all but a finite
number of and hence 9 so limits are unique.

Proposition 10.6. Suppose that ( ) is a Hausdor space, @@ and
Then there exists such that = and In particular
is closed. (So compact subsets of Hausdor topological spaces are closed.) More

generally if and are two disjoint compact subsets of there exist disjoint
open sets such that and

Proof. Because is Hausdor , for all there exists and
such that = The cover { } of has a finite subcover, { } for
some Let = and = then satisfy

and = This shows that is open and hence that is closed.
Suppose that and are two disjoint compact subsets of For each

there exists disjoint open sets and such that and Since
{ } is an open cover of there exists a finite subset of such that
:= The proof is completed by defining :=

Exercise 10.1. Show any finite set admits exactly one Hausdor topology

Exercise 10.2. Let ( ) and ( ) be topological spaces.

(1) Show is Hausdor i := {( ) : } is a closed in × equipped
with the product topology

(2) Suppose is Hausdor and : are continuous maps. If

{ = } = then = Hint: make use of the map × : ×
defined by ( × ) ( ) = ( ( ) ( ))

Exercise 10.3. Given an example of a topological space which has a non-closed
compact subset.

Proposition 10.7. Suppose that is a compact topological space, is a Hausdor
topological space, and : is a continuous bijection then is a homeomor-
phism, i.e. 1 : is continuous as well.
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Proof. Since closed subsets of compact sets are compact, continuous images of
compact subsets are compact and compact subsets of Hausdor spaces are closed,
it follows that

¡

1
¢ 1

( ) = ( ) is closed in for all closed subsets of
Thus 1 is continuous.

Definition 10.8 (Local and — compactness). Let ( ) be a topological space.
(1) ( ) is locally compact if for all there exists an open neigh-

borhood of such that ¯ is compact. (Alternatively, in light of
Definition 3.19, this is equivalent to requiring that to each there
exists a compact neighborhood of )

(2) ( ) is — compact if there exists compact sets such that =

=1 (Notice that we may assume, by replacing by 1 2 · · ·
if necessary, that )

Example 10.9. Any open subset of R is a locally compact and — compact
metric space (and hence Hausdor ). The proof of local compactness is easy and is
left to the reader. To see that is — compact, for N let

:= { : | | and ( ) 1 }
Then is a closed and bounded subset of R and hence compact. Moreover

as since20

{ : | | and ( ) 1 } as

Exercise 10.4. Every separable locally compact metric space is — compact.
Hint: Let { } =1 be a countable dense subset of and define

=
1

2
sup { 0 : ( ) is compact} 1

Exercise 10.5. Every — compact metric space is separable. Therefore a locally
compact metric space is separable i it is — compact.

Exercise 10.6. Suppose that ( ) is a metric space and is an open subset.
(1) If is locally compact then ( ) is locally compact.
(2) If is — compact then ( ) is — compact. Hint: Mimick Example

10.9, replacing 0( ) by compact set @@ such that

Lemma 10.10. Let ( ) be a locally compact and — compact topological space.
Then there exists compact sets such that +1 +1 for all

Proof. Suppose that is a compact set. For each let be
an open neighborhood of such that ¯ is compact. Then so there
exists such that

¯ =:

Then is a compact set, being a finite union of compact subsets of and

Now let be compact sets such that as Let 1 = 1

and then choose a compact set 2 such that 2 2 Similarly, choose a compact
set 3 such that 2 3 3 and continue inductively to find compact sets
such that +1 +1 for all Then { } =1 is the desired sequence.

20In fact this is an equality, but we will not need this here.
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Remark 10.11. Lemma 10.10 may also be stated as saying there exists precompact
open sets { } =1 such that ¯

+1 for all and as
Indeed if { } =1 are as above, let := ¯ and if { } =1 are as in Lemma
10.10, let :=

The following result is a Corollary of Lemma 10.10 and Theorem 3.59.

Corollary 10.12 (Locally compact form of Ascoli-Arzela Theorem ). Let ( )
be a locally compact and — compact topological space and { } ( ) be a
pointwise bounded sequence of functions such that { | } is equicontinuous for any
compact subset Then there exists a subsequence { } { } such that
{ := } =1 ( ) is a sequence which is uniformly convergent on compact
subsets of

Proof. Let { } =1 be the compact subsets of constructed in Lemma 10.10.
We may now apply Theorem 3.59 repeatedly to find a nested family of subsequences

{ } { 1 } { 2 } { 3 }
such that the sequence { } =1 ( ) is uniformly convergent on Using
Cantor’s trick, define the subsequence { } of { } by Then { } is
uniformly convergent on for each N Now if is an arbitrary compact
set, there exists such that and therefore { } is uniformly
convergent on as well.
The next two results shows that locally compact Hausdor spaces have plenty

of open sets and plenty of continuous functions.

Proposition 10.13. Suppose is a locally compact Hausdor space and
and @@ Then there exists such that and ¯ is
compact.

Proof. By local compactness, for all there exists such that ¯

is compact. Since is compact, there exists such that { } is a cover
of The set = ( ) is an open set such that and
is precompact since ¯ is a closed subset of the compact set ¯ ( ¯ is
compact because it is a finite union of compact sets.) So by replacing by if
necessary, we may assume that ¯ is compact.
Since ¯ is compact and = ¯ is a closed subset of ¯ is compact.

Because it follows that = so by Proposition 10.6, there exists
disjoint open sets and such that and By replacing by

if necessary we may further assume that see Figure 19.
Because ¯ is a closed set containing and ¯ = =

¯ ¯ = ¯

Since ¯ is compact it follows that ¯ is compact and the proof is complete.

Exercise 10.7. Give a “simpler” proof of Proposition 10.13 under the additional
assumption that is a metric space. Hint: show for each there exists

:= ( ) with 0 such that ( ) ( ) with ( ) being
compact. Recall that ( ) is the closed ball of radius about

Definition 10.14. Let be an open subset of a topological space ( ) We will
write to mean a function ( [0 1]) such that supp( ) := { 6= 0}
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Figure 19. The construction of

Lemma 10.15 (Locally Compact Version of Urysohn’s Lemma). Let be a locally
compact Hausdor space and @@ Then there exists such that
= 1 on In particular, if is compact and is closed in such that =

there exists ( [0 1]) such that = 1 on and = 0 on

Proof. For notational ease later it is more convenient to construct := 1
rather than To motivate the proof, suppose ( [0 1]) such that = 0
on and = 1 on For 0 let = { } Then for 0 1

{ } and since { } is closed this implies
¯ { }

Therefore associated to the function is the collection open sets { } 0 with
the property that ¯ for all 0 1 and = if

1 Finally let us notice that we may recover the function from the sequence
{ } 0 by the formula

(10.3) ( ) = inf{ 0 : }
The idea of the proof to follow is to turn these remarks around and define by Eq.
(10.3).
Step 1. (Construction of the ) Let

D
©

2 : = 1 2 2 1 = 1 2
ª

be the dyadic rationales in (0 1] Use Proposition 10.13 to find a precompact open
set 1 such that 1

¯
1 Apply Proposition 10.13 again to construct an

open set 1 2 such that

1 2
¯
1 2 1

and similarly use Proposition 10.13 to find open sets 1 2 3 4 such that

1 4
¯
1 4 1 2

¯
1 2 3 4

¯
3 4 1

Likewise there exists open set 1 8 3 8 5 8 7 8 such that

1 8
¯
1 8 1 4

¯
1 4 3 8

¯
3 8 1 2

¯
1 2 5 8

¯
5 8 3 4

¯
3 4 7 8

¯
7 8 1
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Continuing this way inductively, one shows there exists precompact open sets
{ } D such that

1
¯
1

for all D with 0 1
Step 2. Let if 1 and define

( ) = inf{ D (1 ) : }
see Figure 20. Then ( ) [0 1] for all ( ) = 0 for since

Figure 20. Determining from { }

for all D If 1 then for all D and hence ( ) = 1 Therefore
:= 1 is a function such that = 1 on and { 6= 0} = { 6= 1} 1

¯
1

so that supp( ) = { 6= 0} ¯
1 is a compact subset of Thus it only remains

to show or equivalently is continuous.
Since E = {( ) ( ) : R} generates the standard topology on R to

prove is continuous it su ces to show { } and { } are open sets for all
R But ( ) i there exists D (1 ) with such that

Therefore

{ } =
[

{ : D (1 ) 3 }
which is open in If 1 { } = and if 0 { } = If (0 1)
then ( ) i there exists D such that and Now if and

then for D ( ) ¯ Thus we have shown that

{ } =
[

n

¡ ¢

: D 3
o

which is again an open subset of

Exercise 10.8. mGive a simpler proof of Lemma 10.15 under the additional as-
sumption that is a metric space.
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Theorem 10.16 (Locally Compact Tietz Extension Theorem). Let ( ) be a
locally compact Hausdor space, @@ ( R) = min ( ) and
= max ( ) Then there exists ( [ ]) such that | = Moreover

given [ ] can be chosen so that supp( ) = { 6= }
The proof of this theorem is similar to Theorem 10.2 and will be left to the

reader, see Exercise 10.11.

Lemma 10.17. Suppose that ( ) is a locally compact second countable Hausdor
space. (For example any separable locally compact metric space and in particular
any open subsets of R ) Then:

(1) every open subset is — compact.
(2) If is a closed set, there exist open sets such that as

(3) To each open set there exists such that lim = 1
(4) The — algebra generated by ( ) is the Borel — algebra, B
Proof.

(1) Let be an open subset of V be a countable base for and

V := { V : ¯ and ¯ is compact}
For each by Proposition 10.13, there exists an open neighborhood
of such that ¯ and ¯ is compact. Since V is a base for the topology
there exists V such that Because ¯ ¯ it follows

that ¯ is compact and hence V As was arbitrary, = V
Let { } =1 be an enumeration of V and set := =1

¯ Then
as and is compact for each

(2) Let { } =1 be compact subsets of such that as and
set := = \ Then and by Proposition 10.6, is open
for each

(3) Let be an open set and { } =1 be compact subsets of such
that By Lemma 10.15, there exist such that = 1 on
These functions satisfy, 1 = lim

(4) By Item 3., 1 is ( ( R)) — measurable for all Hence
( ( R)) and therefore B = ( ) ( ( R)) The converse inclu-
sion always holds since continuous functions are always Borel measurable.

Corollary 10.18. Suppose that ( ) is a second countable locally compact Haus-
dor space, B = ( ) is the Borel — algebra on and H is a subspace of
( R) which is closed under bounded convergence and contains ( R) Then

H contains all bounded B — measurable real valued functions on

Proof. Since H is closed under bounded convergence and ( R) H it
follows by Item 3. of Lemma 10.17 that 1 H for all Since is a — class
the corollary follows by an application of Theorem 8.12.

10.1. Locally compact form of Urysohn Metrization Theorem.
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Notation 10.19. Let := [0 1]N denote the (infinite dimensional) unit cube in
RN For let

(10.4) ( ) :=
X

=1

1

2
| |

The metric introduced in Exercise 3.27 would be defined, in this context, as
(̃ ) :=

P

=1
1
2

| |
1+| | Since 1 1+| | 2 it follows that ˜ 2

So the metrics and ˜ are equivalent and in particular the topologies induced by
and ˜ are the same. By Exercises 6.15, the — topology on is the same as the

product topology and by Exercise 3.27, ( ) is a compact metric space.

Theorem 10.20 (Urysohn Metrization Theorem). Every second countable locally
compact Hausdor space, ( ) is metrizable, i.e. there is a metric on such
that = Moreover, may be chosen so that is isometric to a subset 0

equipped with the metric in Eq. (10.4). In this metric is totally bounded and
hence the completion of (which is isometric to ¯0 ) is compact.

Proof. Let B be a countable base for and set

{( ) B × B | ¯ and ¯ is compact}
To each and there exist ( ) such that
Indeed, since B is a basis for there exists B such that Now
apply Proposition 10.13 to find 0 such that 0 ¯ 0 with ¯ 0

being compact. Since B is a basis for there exists B such that 0

and since ¯ ¯ 0 ¯ is compact so ( ) In particular this shows that
B0 := { B : ( ) for some B} is still a base for
If is a finite, then B0 is finite and only has a finite number of elements as

well. Since ( ) is Hausdor , it follows that is a finite set. Letting { } =1 be
an enumeration of define : by ( ) = for = 1 2 where
= (0 0 0 1 0 ) with the 1 ocurring in the th spot. Then ( ) :=

( ( ) ( )) for is the desired metric. So we may now assume that is
an infinite set and let {( )} =1 be an enumeration of
By Urysohn’s Lemma 10.15 there exists ( [0 1]) such that = 0

on ¯ and = 1 on . Let F { | ( ) } and set := — an
enumeration of F We will now show that

( ) :=
X

=1

1

2
| ( ) ( )|

is the desired metric on The proof will involve a number of steps.

(1) ( is a metric on ) It is routine to show satisfies the triangle inequal-
ity and is symmetric. If are distinct points then there exists
(

0 0
) such that

0
and

0
:= { } Since

0
( ) = 0

and 0( ) = 1 it follows that ( ) 2 0 0
(2) (Let 0 = ( : N) then = 0 = ) As usual we have 0

Since, for each ( ) is 0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that ( ) :=
{ : ( ) } 0 for all and 0 Thus 0

Suppose that and Let ( 0 0) be such that 0

and 0 Then 0( ) = 0 and 0 = 1 on Therefore if and
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0( ) 1 then so { 0 1} This shows that may be
written as a union of elements from 0 and therefore 0 So 0 and
hence = 0 Moreover, if (2 0) then 2 0 ( ) 2 0

0( )
and therefore (2 0) { 0 1} This shows is — open
and hence 0

(3) ( is isometric to some 0 ) Let : be defined by ( ) =
( 1( ) 2( ) ( ) ) Then is an isometry by the very definitions
of and and therefore is isometric to 0 := ( ) Since 0 is a subset
of the compact metric space ( ) 0 is totally bounded and therefore
is totally bounded.

10.2. Partitions of Unity.

Definition 10.21. Let ( ) be a topological space and 0 be a set. A
collection of sets { } 2 is locally finite on 0 if for all 0 there is
an open neighborhood of such that #{ : 6= }
Lemma 10.22. Let ( ) be a locally compact Hausdor space.

(1) A subset is closed i is closed for all @@
(2) Let { } be a locally finite collection of closed subsets of then =

is closed in (Recall that in general closed sets are only closed
under finite unions.)

Proof. Item 1. Since compact subsets of Hausdor spaces are closed,
is closed if is closed and is compact. Now suppose that is closed for
all compact subsets and let Since is locally compact, there
exists a precompact open neighborhood, of 21 By assumption ¯ is closed
so

¡

¯
¢

— an open subset of By Proposition 10.13 there exists an open
set such that ¯

¡

¯
¢

see Figure 21. Let := Since

Figure 21. Showing is open.

= ¯ =

21If were a metric space we could finish the proof as follows. If there does not exist an open
neighborhood of which is disjoint from then there would exists such that
Since ¯ is closed and ¯ for all large it follows (see Exercise 3.4) that ¯

and in particular that But we chose
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and is an open neighborhood of and was arbitrary, we have shown
is open hence is closed.
Item 2. Let be a compact subset of and for each let be an

open neighborhood of such that #{ : 6= } Since
is compact, there exists a finite subset such that Letting
0 := { : 6= } then

#( 0)
X

#{ : 6= }

and hence ( ) = ( 0 ) The set ( 0 ) is a finite union
of closed sets and hence closed. Therefore, ( ) is closed and by Item (1)
it follows that is closed as well.

Definition 10.23. Suppose that U is an open cover of 0 A collection
{ } =1 ( [0 1]) ( = is allowed here) is a partition of unity on 0

subordinate to the cover U if:
(1) for all there is a U such that supp( )
(2) the collection of sets, {supp( )} =1 is locally finite on 0 and
(3)

P

=1 = 1 on 0 (Notice by (2), that for each 0 there is a neigh-
borhood such that | is not identically zero for only a finite number
of terms. So the sum is well defined and we say the sum is locally finite.)

Proposition 10.24 (Partitions of Unity: The Compact Case). Suppose that is
a locally compact Hausdor space, is a compact set and U = { } =1 is
an open cover of Then there exists a partition of unity { } =1 of such that

for all = 1 2

Proof. For all choose a precompact open neighborhood, of such
that Since is compact, there exists a finite subset, of such that

S

Let

=
©

¯ : and
ª

Then is compact, for all and =1 By Urysohn’s Lemma
10.15 there exists such that = 1 on We will now give two methods
to finish the proof.
Method 1. Let 1 = 1 2 = 2(1 1) = 2(1 1)

3 = 3(1 1 2) = 3(1 1 (1 1) 2) = 3(1 1)(1 2)

and continue on inductively to define

(10.5) = (1 1 · · · 1) = ·
1

Y

=1

(1 ) = 2 3

and to show

(10.6) (1 1 · · · ) =
Y

=1

(1 )

From these equations it clearly follows that ( [0 1]) and that supp( )
supp( ) i.e. Since

Q

=1(1 ) = 0 on
P

=1 = 1 on and
{ } =1 is the desired partition of unity.
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Method 2. Let :=
P

=1
( ) Then 1 on and hence { 1

2}
Choose ( [0 1]) such that = 1 on and supp( ) { 1

2} and define
0 1 Then 0 = 0 on 0 = 1 if 1

2 and therefore,

0 + 1 + · · ·+ = 0 + 0

on The desired partition of unity may be constructed as

( ) =
( )

0( ) + · · ·+ ( )

Indeed supp ( ) = supp ( ) ( [0 1]) and on

1 + · · ·+ =
1 + · · ·+

0 + 1 + · · ·+ =
1 + · · ·+
1 + · · ·+ = 1

Proposition 10.25. Let ( ) be a locally compact and — compact Hausdor
space. Suppose that U is an open cover of Then we may construct two
locally finite open covers V = { } =1 and W = { } =1 of ( = is allowed
here) such that:

(1) ¯ ¯ and ¯ is compact for all
(2) For each there exist U such that ¯
Proof. By Remark 10.11, there exists an open cover of G = { } =1 of such

that ¯
+1 Then = =1(

¯ \ ¯ 1) where by convention 1 =

0 = For the moment fix 1 For each ¯ \ 1 let U be chosen so
that and by Proposition 10.13 choose an open neighborhood of such
that ¯ ( +1\ ¯ 2) see Figure 22 below. Since { } ¯ \ 1

is an open

Figure 22. Constructing the { } =1
cover of the compact set ¯ \ 1 there exist a finite subset { } ¯ \ 1

which also covers ¯ \ 1 By construction, for each there is a U
such that ¯ ( +1 \ ¯ 2) Apply Proposition 10.13 one more time to find,
for each an open set such that ¯ ¯ ( +1 \ ¯ 2)
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We now choose and enumeration { } =1 of the countable open cover =1 of
and define = Then the collection { } =1 and { } =1 are easily checked

to satisfy all the conclusions of the proposition. In particular notice that for each
that the set of ’s such that 6= is finite.

Theorem 10.26 (Partitions of Unity in locally and — compact spaces). Let ( )
be a locally compact and — compact Hausdor space and U be an open cover
of Then there exists a partition of unity of { } =1 ( = is allowed here)
subordinate to the cover U such that supp( ) is compact for all

Proof. Let V = { } =1 and W = { } =1 be open covers of with the
properties described in Proposition 10.25. By Urysohn’s Lemma 10.15, there exists

such that = 1 on ¯ for each
As in the proof of Proposition 10.24 there are two methods to finish the proof.
Method 1. Define 1 = 1 by Eq. (10.5) for all other Then as in Eq.

(10.6)

1
X

=1

=
Y

=1

(1 ) = 0

since for ( ) = 1 for some As in the proof of Proposition 10.24, it is
easily checked that { } =1 is the desired partition of unity.
Method 2. Let

P

=1 a locally finite sum, so that ( ) Since
{ } =1 is a cover of 1 on so that 1 ( )) as well. The functions

for = 1 2 give the desired partition of unity.

Corollary 10.27. Let ( ) be a locally compact and — compact Hausdor space
and U = { } be an open cover of Then there exists a partition of unity
of { } subordinate to the cover U such that supp( ) for all
(Notice that we do not assert that has compact support. However if ¯ is
compact then supp( ) will be compact.)

Proof. By the — compactness of we may choose a countable subset, { }
( = allowed here), of such that { } is still an open cover of Let
{ } be a partition of unity subordinate to the cover { } as in Theorem

10.26. Define ˜ { : supp( ) } and := ˜ \
³

1
=1
˜
´

, where by

convention ˜0 = Then

{ N : }=
[

=1

˜ =
a

=1

If = let 0 otherwise let :=
P

a locally finite sum. Then
P

=1 =
P

=1 = 1 and the sum
P

=1 is still locally finite. (Why?) Now
for = { } =1 let := and for { } =1 let 0 Since

{ 6= 0} = { 6= 0} supp( )

and, by Item 2. of Lemma 10.22, supp( ) is closed, we see that

supp( ) = { 6= 0} supp( )

Therefore { } is the desired partition of unity.
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Corollary 10.28. Let ( ) be a locally compact and — compact Hausdor space
and be disjoint closed subsets of Then there exists ( [0 1]) such
that = 1 on and = 0 on In fact can be chosen so that supp( )

Proof. Let 1 = and 2 = then { 1 2} is an open cover of By
Corollary 10.27 there exists 1 2 ( [0 1]) such that supp( ) for = 1 2
and 1 + 2 = 1 on The function = 2 satisfies the desired properties.

10.3. 0( ) and the Alexanderov Compactification.

Definition 10.29. Let ( ) be a topological space. A continuous function :
C is said to vanish at infinity if {| | } is compact in for all 0

The functions, ( ) vanishing at infinity will be denoted by 0( )

Proposition 10.30. Let be a topological space, ( ) be the space of bounded
continuous functions on with the supremum norm topology. Then

(1) 0( ) is a closed subspace of ( )
(2) If we further assume that is a locally compact Hausdor space, then

0( ) = ( )

Proof.

(1) If 0( ) 1 := {| | 1} is a compact subset of and therefore ( 1)
is a compact and hence bounded subset of C and so := sup

1
| ( )|

Therefore k k 1 showing ( )
Now suppose 0( ) and in ( ) Let 0 be given

and choose su ciently large so that k k 2 Since

| | | |+ | | | |+ k k | |+ 2

{| | } {| |+ 2 } = {| | 2}
Because {| | } is a closed subset of the compact set {| | 2}
{| | } is compact and we have shown 0( )

(2) Since 0( ) is a closed subspace of ( ) and ( ) 0( ) we always
have ( ) 0( ) Now suppose that 0( ) and let {| |
1 } @@ By Lemma 10.15 we may choose ( [0 1]) such that

1 on Define ( ) Then

k k = k(1 ) k 1
0 as

This shows that ( )

Proposition 10.31 (Alexanderov Compactification). Suppose that ( ) is a non-
compact locally compact Hausdor space. Let = { } where { } is a new
symbol not in The collection of sets,

= { \ : @@ } P( )

is a topology on and ( ) is a compact Hausdor space. Moreover ( )
extends continuously to i = + with 0( ) and C in which case
the extension is given by ( ) =
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Proof. 1. ( is a topology.) Let F := { : \ } i.e. F i
is a compact subset of or = 0 { } with 0 being a closed subset of

Since the finite union of compact (closed) subsets is compact (closed), it is easily
seen that F is closed under finite unions. Because arbitrary intersections of closed
subsets of are closed and closed subsets of compact subsets of are compact,
it is also easily checked that F is closed under arbitrary intersections. Therefore F
satisfies the axioms of the closed subsets associated to a topology and hence is
a topology.
2. (( ) is a Hausdor space.) It su ces to show any point can be

separated from To do this use Proposition 10.13 to find an open precompact
neighborhood, of Then and := \ ¯ are disjoint open subsets of
such that and
3. (( ) is compact.) Suppose that U is an open cover of Since U

covers there exists a compact set such that \ U Clearly is
covered by U0 := { \ { } : U} and by the definition of (or using ( )
is Hausdor ), U0 is an open cover of In particular U0 is an open cover of and
since is compact there exists U such that { \ { } : } It is
now easily checked that { \ } U is a finite subcover of
4. (Continuous functions on ( ) statements.) Let : be the inclusion

map. Then is continuous and open, i.e. ( ) is open in for all open in
If ( ) then = | ( ) = ( ) is continuous on Moreover,
for all 0 there exists an open neighborhood of such that

| ( )| = | ( ) ( )| for all

Since is an open neighborhood of there exists a compact subset, such
that = \ By the previous equation we see that { : | ( )| }
so {| | } is compact and we have shown vanishes at
Conversely if 0( ) extend to by setting ( ) = 0 Given 0 the

set = {| | } is compact, hence \ is open in Since ( \ ) ( )
we have shown that is continuous at Since is also continuous at all points
in it follows that is continuous on Now it = + with C and

0( ) it follows by what we just proved that defining ( ) = extends to
a continuous function on

10.4. More on Separation Axioms: Normal Spaces. (The reader may skip
to Definition 10.34 if he/she wishes. The following material will not be used in the
rest of the book.)

Definition 10.32 ( 0 — 2 Separation Axioms). Let ( ) be a topological space.
The topology is said to be:

(1) 0 if for 6= in there exists such that and or
such that but

(2) 1 if for every with 6= there exists such that and
Equivalently, is 1 i all one point subsets of are closed.22

(3) 2 if it is Hausdor .

22If one point subsets are closed and 6= in then := { } is an open set containing
but not Conversely if is 1 and there exists such that and for
all 6= Therefore, { } = 6=
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Note 2 implies 1 which implies 0 The topology in Example 10.3 is 0 but
not 1 If is a finite set and is a 1 — topology on then = 2 To prove this
let be fixed. Then for every 6= in there exists such that
while Thus { } = 6= showing contains all one point subsets of
and therefore all subsets of So we have to look to infinite sets for an example

of 1 topology which is not 2

Example 10.33. Let be any infinite set and let = { : #( ) } { }
— the so called cofinite topology. This topology is 1 because if 6= in then
= { } with while This topology however is not 2 Indeed if

are open sets such that and = then But
this implies #( ) which is impossible unless = which is impossible since

The uniqueness of limits of sequences which occurs for Hausdor topologies (see
Remark 10.5) need not occur for 1 — spaces. For example, let = N and be
the cofinite topology on as in Example 10.33. Then = is a sequence in
such that as for all N For the most part we will avoid these
pathologies in the future by only considering Hausdor topologies.

Definition 10.34 (Normal Spaces: 4 — Separation Axiom). A topological space
( ) is said to be normal or 4 if:

(1) is Hausdor and
(2) if for any two closed disjoint subsets there exists disjoint open

sets such that and

Example 10.35. By Lemma 10.1 and Corollary 10.28 it follows that metric space
and locally compact and — compact Hausdor space (in particular compact Haus-
dor spaces) are normal. Indeed, in each case if are disjoint closed subsets of

there exists ( [0 1]) such that = 1 on and = 0 on Now let
=
©

1
2

ª

and = { 1
2}

Remark 10.36. A topological space, ( ) is normal i for any with
being closed and being open there exists an open set such that

¯

To prove this first suppose is normal. Since is closed and =
there exists disjoint open sets and such that and Therefore

and since is closed, ¯

For the converse direction suppose and are disjoint closed subsets of
Then and is open, and so by assumption there exists such
that ¯ and by the same token there exists such that
¯ ¯ Taking complements of the last expression implies

¯ ¯

Let = ¯ Then and =

Theorem 10.37 (Urysohn’s Lemma for Normal Spaces). Let be a normal space.
Assume are disjoint closed subsets of . Then there exists ( [0 1])
such that = 0 on and = 1 on

Proof. To make the notation match Lemma 10.15, let = and =
Then and it su ces to produce a function ( [0 1]) such that = 1

ANALYSIS TOOLS WITH APPLICATIONS 193

on and supp( ) The proof is now identical to that for Lemma 10.15 except
we now use Remark 10.36 in place of Proposition 10.13.

Theorem 10.38 (Tietze Extension Theorem). Let ( ) be a normal space, be
a closed subset of and ( [ ]) Then there exists

( [ ]) such that | =

Proof. The proof is identical to that of Theorem 10.2 except we now use The-
orem 10.37 in place of Lemma 10.1.

Corollary 10.39. Suppose that is a normal topological space, is closed,
( R) Then there exists ( ) such that | =

Proof. Let = arctan( ) ( ( 2 2 )) Then by the Tietze exten-
sion theorem, there exists ( [ 2 2 ]) such that | = Let

1({ 2 2 }) @ then = By Urysohn’s lemma (Theorem 10.37) there
exists ( [0 1]) such that 1 on and = 0 on and in particular

( ( 2 2 )) and ( ) | = The function tan( ) ( ) is an
extension of

Theorem 10.40 (Urysohn Metrization Theorem). Every second countable normal
space, ( ) is metrizable, i.e. there is a metric on such that = More-
over, may be chosen so that is isometric to a subset 0 equipped with
the metric in Eq. (10.4). In this metric is totally bounded and hence the
completion of (which is isometric to ¯0 ) is compact.

Proof. Let B be a countable base for and set

{( ) B × B | ¯ }
To each and there exist ( ) such that
Indeed, since B is a basis for there exists B such that Because
{ } = there exists disjoint open sets e and such that e

and e = Choose B such that e Since e

and hence ( ) See Figure 23 below. In particular this shows

Figure 23. Constructing ( )

that { B : ( ) for some B} is still a base for
If is a finite set, the previous comment shows that only has a finite number

of elements as well. Since ( ) is Hausdor , it follows that is a finite set.
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Letting { } =1 be an enumeration of define : by ( ) = for
= 1 2 where = (0 0 0 1 0 ) with the 1 ocurring in the th

spot. Then ( ) := ( ( ) ( )) for is the desired metric. So we may
now assume that is an infinite set and let {( )} =1 be an enumeration of
By Urysohn’s Lemma (Theorem 10.37) there exists ( [0 1]) such that
= 0 on ¯ and = 1 on . Let F { | ( ) } and set

:= — an enumeration of F We will now show that

( ) :=
X

=1

1

2
| ( ) ( )|

is the desired metric on The proof will involve a number of steps.

(1) ( is a metric on ) It is routine to show satisfies the triangle inequal-
ity and is symmetric. If are distinct points then there exists
( 0 0

) such that
0
and

0
:= { } Since

0
( ) = 0

and 0( ) = 1 it follows that ( ) 2 0 0
(2) (Let 0 = ( : N) then = 0 = ) As usual we have 0

Since, for each ( ) is 0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that ( ) :=
{ : ( ) } 0 for all and 0 Thus 0

Suppose that and Let ( 0 0) be such that 0

and 0 Then 0( ) = 0 and 0 = 1 on Therefore if and

0( ) 1 then so { 0 1} This shows that may be
written as a union of elements from 0 and therefore 0 So 0 and
hence = 0 Moreover, if (2 0) then 2 0 ( ) 2 0

0( )
and therefore (2 0) { 0 1} This shows is — open
and hence 0

(3) ( is isometric to some 0 ) Let : be defined by ( ) =
( 1( ) 2( ) ( ) ) Then is an isometry by the very definitions
of and and therefore is isometric to 0 := ( ) Since 0 is a subset
of the compact metric space ( ) 0 is totally bounded and therefore
is totally bounded.

10.5. Exercises.

Exercise 10.9. Let ( ) be a topological space, : be the
inclusion map and := 1( ) be the relative topology on Verify = { :

} and show is closed in ( ) i there exists a closed set
such that = (If you get stuck, see the remarks after Definition 3.17 where
this has already been proved.)

Exercise 10.10. Let ( ) and ( 0) be a topological spaces, : be a
function, U be an open cover of and { } =1 be a finite cover of by closed
sets.

(1) If is any set and : is ( 0) — continuous then | :
is ( 0) — continuous.

(2) Show : is ( 0) — continuous i | : is ( 0) —
continuous for all U
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(3) Show : is ( 0) — continuous i | : is ( 0) —
continuous for all = 1 2

(4) (A baby form of the Tietze extension Theorem.) Suppose and
: C is a continuous function such supp( ) then : C

defined by

( ) =

½

( ) if
0 otherwise

is continuous.

Exercise 10.11. Prove Theorem 10.16. Hints:
(1) By Proposition 10.13, there exists a precompact open set such that

¯ Now suppose that : [0 ] is continuous with (0 1]
and let := 1([0 1

3 ]) and := 1([23 1]) Appeal to Lemma 10.15
to find a function ( [0 3]) such that = 3 on and supp( )
\

(2) Now follow the argument in the proof of Theorem 10.2 to construct
( [ ]) such that | =

(3) For [ ] choose such that = 1 on and replace by
:= + (1 )

Exercise 10.12 (Sterographic Projection). Let = R := { } be the
one point compactification of := { R +1 : | | = 1} be the unit sphere
in R +1 and = (0 0 1) R +1 Define : by ( ) = and
for \ { } let ( ) = R be the unique point such that ( 0) is on
the line containing and see Figure 24 below. Find a formula for and show
: is a homeomorphism. (So the one point compactification of R is

homeomorphic to the sphere.)

N

-N

(b,0)

z

1

y

Figure 24. Sterographic projection and the one point compacti-
fication of R

Exercise 10.13. Let ( ) be a locally compact Hausdor space. Show ( ) is
separable i ( ) is separable.

Exercise 10.14. Show by example that there exists a locally compact metric
space ( ) such that the one point compactification, ( := { } ) is
not metrizable. Hint: use exercise 10.13.
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Exercise 10.15. Suppose ( ) is a locally compact and — compact metric
space. Show the one point compactification, ( := { } ) is metrizable.
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11. Approximation Theorems and Convolutions

Let ( M ) be a measure space, A M an algebra.

Notation 11.1. Let S (A ) denote those simple functions : C such that
1({ }) A for all C and ( 6= 0)
For S (A ) and [1 ) | | =P 6=0 | | 1{ = } and hence

Z

| | =
X

6=0
| | ( = )

so that S (A ) ( )

Lemma 11.2 (Simple Functions are Dense). The simple functions, S (M ) form
a dense subspace of ( ) for all 1

Proof. Let { } =1 be the simple functions in the approximation Theorem
7.12. Since | | | | for all S (M ) (verify!) and

| | (| |+ | |) 2 | | 1

Therefore, by the dominated convergence theorem,

lim

Z

| | =

Z

lim | | = 0

Theorem 11.3 (Separable Algebras implies Separability of — Spaces). Suppose
1 and A M is an algebra such that (A) = M and is -finite on
A Then S (A ) is dense in ( ) Moreover, if A is countable, then ( ) is
separable and

D = {
X

1 : Q+ Q A with ( ) }
is a countable dense subset.

Proof. First Proof. Let A be sets such that ( ) and as
For N let H denote those boundedM — measurable functions, on

such that 1 S (A )
( )

It is easily seen that H is a vector space closed
under bounded convergence and this subspace contains 1 for all A Therefore
by Theorem 8.12, H is the set of all boundedM — measurable functions on
For ( ) the dominated convergence theorem implies 1 {| | }

in ( ) as We have just proved 1 {| | } S (A )
( )

for all

and hence it follows that S (A )
( )

The last assertion of the theorem is
a consequence of the easily verified fact that D is dense in S (A ) relative to the
( ) — norm.
Second Proof. Given 0 by Corollary 8.42, for all M such that
( ) there exists A such that ( 4 ) Therefore

(11.1)
Z

|1 1 | = ( 4 )

This equation shows that any simple function in S (M ) may be approximated
arbitrary well by an element from D and hence D is also dense in ( )
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Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that 1(R ) then

lim
±

Z

R
( ) ( ) = 0

Proof. Let A denote the algebra on R generated by the half open intervals, i.e.
A consists of sets of the form

a

=1

( ] R

where R̄ By Theorem 11.3given 0 there exists =
P

=1 1( ]

with R such that
Z

R
| |

Notice that
Z

R
( ) ( ) =

Z

R

X

=1

1( ]( ) ( )

=
X

=1

Z

( ) =
X

=1

1 |

= 1
X

=1

¡ ¢

0 as | |

Combining these two equations with
¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

¯

¯

¯

¯

Z

R
( ( ) ( )) ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

Z

R
| | +

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

we learn that

lim sup
| |

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

+ lim sup
| |

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

=

Since 0 is arbitrary, we have proven the lemma.

Theorem 11.5 (Continuous Functions are Dense). Let ( ) be a metric space,
be the topology on generated by and B = ( ) be the Borel — algebra.

Suppose : B [0 ] is a measure which is — finite on and let ( )
denote the bounded continuous functions on such that ( 6= 0) Then

( ) is a dense subspace of ( ) for any [1 )

Proof. First Proof. Let be open sets such that and ( )
Let and be positive integers and set

( ) = min(1 · ( )) = ( ( ))

and notice that 1 0 = 1 as see Figure 25 below.
Then ( ) and { 6= 0} Let H denote those bounded

M — measurable functions, : R such that ( )
( )

It is
easily seen that H is a vector space closed under bounded convergence and this
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21.510.50

1

0.75

0.5

0.25

0

x

y

x

y

Figure 25. The plot of for = 1 2 and 4 Notice that 1(0 )

subspace contains ( R) By Corollary 8.13, H is the set of all bounded real

valuedM — measurable functions on i.e. ( )
( )
for all bounded

measurable and N Let be a bounded measurable function, by the
dominated convergence theorem, 1 in ( ) as therefore

1 ( )
( )

It now follows as in the first proof of Theorem 11.3 that

( )
( )
= ( )

Second Proof. Since S (M ) is dense in ( ) it su ces to show any
S (M ) may be well approximated by ( ) Moreover, to prove this it
su ces to show for M with ( ) that 1 may be well approximated
by an ( ) By Exercises 8.4 and 8.5, for any 0 there exists a closed
set and an open set such that and ( \ ) (Notice that
( ) ( ) + ) Let be as in Eq. (10.1), then ( ) and since
|1 | 1 \

(11.2)
Z

|1 |
Z

1 \ = ( \ )

or equivalently
k1 k 1

Since 0 is arbitrary, we have shown that 1 can be approximated in ( )
arbitrarily well by functions from ( ))

Proposition 11.6. Let ( ) be a second countable locally compact Hausdor
space, B = ( ) be the Borel — algebra and : B [0 ] be a measure
such that ( ) when is a compact subset of Then ( ) (the space of
continuous functions with compact support) is dense in ( ) for all [1 )

Proof. First Proof. Let { } =1 be a sequence of compact sets as in Lemma
10.10 and set = Using Item 3. of Lemma 10.17, there exists { } =1
( ) such that supp( ) and lim = 1 As in the first proof of

Theorem 11.5, let H denote those bounded B — measurable functions, : R

such that ( )
( )

It is easily seen that H is a vector space closed
under bounded convergence and this subspace contains ( R) By Corollary
10.18, H is the set of all bounded real valued B — measurable functions on i.e.
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( )
( )
for all bounded measurable and N Let be a bounded

measurable function, by the dominated convergence theorem, 1 in

( ) as therefore 1 ( )
( )

It now follows as in the first proof

of Theorem 11.3 that ( )
( )
= ( )

Second Proof. Following the second proof of Theorem 11.5, let M with
( ) Since lim ||1 1 || = 0 it su ces to assume for
some Given 0 by Item 2. of Lemma 10.17 and Exercises 8.4 there exists a
closed set and an open set such that and ( \ ) Replacing
by we may assume that The function defined in Eq.

(10.1) is now in ( ) The remainder of the proof now follows as in the second
proof of Theorem 11.5.

Lemma 11.7. Let ( ) be a second countable locally compact Hausdor space,
B = ( ) be the Borel — algebra and : B [0 ] be a measure such that
( ) when is a compact subset of If 1 ( ) is a function such that

(11.3)
Z

= 0 for all ( )

then ( ) = 0 for — a.e.

Proof. First Proof. Let ( ) = | ( )| then is a measure on such
that ( ) for all compact subsets and hence ( ) is dense in 1( )
by Proposition 11.6. Notice that

(11.4)
Z

· sgn( ) =

Z

= 0 for all ( )

Let { } =1 be a sequence of compact sets such that as in Lemma 10.10.
Then 1 sgn( ) 1( ) and therefore there exists ( ) such that
1 sgn( ) in 1( ) So by Eq. (11.4),

( ) =

Z

1 = lim

Z

sgn( ) = 0

Since as 0 = ( ) =
R | | i.e. ( ) = 0 for — a.e.

Second Proof. Let be as above and use Lemma 10.15 to find
( [0 1]) such that = 1 on Let H denote the set of bounded measur-

able real valued functions on such that
R

= 0 Then it is easily checked
that H is linear subspace closed under bounded convergence which contains ( )
Therefore by Corollary 10.18, 0 =

R

for all bounded measurable functions
: R and then by linearity for all bounded measurable functions : C

Taking = sgn( ) then implies

0 =

Z

| |
Z

| |

and hence by the monotone convergence theorem,

0 = lim

Z

| | =

Z

| |
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Corollary 11.8. Suppose R is an open set, B is the Borel — algebra on
and is a measure on ( B ) which is finite on compact sets. Then ( ) is

dense in ( ) for all [1 )

11.1. Convolution and Young’s Inequalities.

Definition 11.9. Let : R C be measurable functions. We define

( ) =

Z

R
( ) ( )

whenever the integral is defined, i.e. either ( ·) (·) 1(R ) or ( ·) (·)
0 Notice that the condition that ( ·) (·) 1(R ) is equivalent to writing
| | | | ( )
Notation 11.10. Given a multi-index Z+ let | | = 1 + · · ·+

:=
Y

=1

and =

µ ¶

:=
Y

=1

µ ¶

Remark 11.11 (The Significance of Convolution). Suppose that =
P

| | is
a constant coe cient di erential operator and suppose that we can solve (uniquely)
the equation = in the form

( ) = ( ) :=

Z

R
( ) ( )

where ( ) is an “integral kernel.” (This is a natural sort of assumption since, in
view of the fundamental theorem of calculus, integration is the inverse operation to
di erentiation.) Since = for all R (this is another way to characterize
constant coe cient di erential operators) and 1 = we should have =
Writing out this equation then says

Z

R
( ) ( ) = ( ) ( ) = ( ) = ( ) ( )

=

Z

R
( ) ( ) =

Z

R
( + ) ( )

Since is arbitrary we conclude that ( ) = ( + ) Taking = 0 then
gives

( ) = ( 0) =: ( )

We thus find that = Hence we expect the convolution operation to
appear naturally when solving constant coe cient partial di erential equations.
More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality for
integrals, Theorem 9.27.

Proposition 11.12. Suppose [1 ] 1 and then ( ) exists
for almost every and

k k k k1 k k
For R and : R C let : R C be defined by ( ) = ( )

Proposition 11.13. Suppose that [1 ) then : is an isometric
isomorphism and for R is continuous.
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Proof. The assertion that : is an isometric isomorphism follows
from translation invariance of Lebesgue measure and the fact that =
For the continuity assertion, observe that

k k = k ( )k = k k
from which it follows that it is enough to show in as 0 R
When (R ) uniformly and since the := | | 1supp( ) is

compact, it follows by the dominated convergence theorem that in as
0 R For general and (R )

k k k k + k k + k k = k k + 2 k k
and thus

lim sup
0
k k lim sup

0
k k + 2 k k = 2 k k

Because (R ) is dense in the term k k may be made as small as we
please.

Definition 11.14. Suppose that ( ) is a topological space and is a measure
on B = ( ) For a measurable function : C we define the essential support
of by
(11.5)
supp ( ) = { : ({ : ( ) 6= 0}}) 0 for all neighborhoods of }
It is not hard to show that if supp( ) = (see Definition 9.41) and ( )

then supp ( ) = supp( ) := { 6= 0} see Exercise 11.5.

Lemma 11.15. Suppose ( ) is second countable and : C is a measurable
function and is a measure on B Then := \ supp ( ) may be described
as the largest open set such that 1 ( ) = 0 for — a.e. Equivalently put,
:= supp ( ) is the smallest closed subset of such that = 1 a.e.

Proof. To verify that the two descriptions of supp ( ) are equivalent, suppose
supp ( ) is defined as in Eq. (11.5) and := \ supp ( ) Then

= { : ({ : ( ) 6= 0}}) = 0 for some neighborhood of }
= { : ( 1 6= 0) = 0}
= { : 1 = 0 for — a.e.}

So to finish the argument it su ces to show ( 1 6= 0) = 0 To to this let U be
a countable base for and set

U := { U : 1 = 0 a.e.}
Then it is easily seen that = U and since U is countable ( 1 6= 0)
P

U ( 1 6= 0) = 0
Lemma 11.16. Suppose : R C are measurable functions and assume
that is a point in R such that | | | | ( ) and | | (| | | |) ( ) then

(1) ( ) = ( )
(2) ( )( ) = ( ) ( )
(3) If R and (| | | |)( ) = | | | | ( ) then

( )( ) = ( ) = ( )
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(4) If supp ( )+supp ( ) then ( ) = 0 and in particular, supp (

) supp ( ) + supp ( ) where in defining supp ( ) we will use the
convention that “ ( ) 6= 0” when | | | | ( ) =

Proof. For item 1.,

| | | | ( ) =
Z

R
| | ( ) | | ( ) =

Z

R
| | ( ) | | ( ) = | | | | ( )

where in the second equality we made use of the fact that Lebesgue measure in-
variant under the transformation Similar computations prove all of the
remaining assertions of the first three items of the lemma.
Item 4. Since ( ) = ˜ ˜( ) if = ˜ and = ˜ a.e. we may,

by replacing by 1supp ( ) and by 1supp ( ) if necessary, assume that
{ 6= 0} supp ( ) and { 6= 0} supp ( ) So if (supp ( ) + supp ( ))
then ({ 6= 0}+ { 6= 0}) and for all R either { 6= 0} or

{ 6= 0} That is to say either { = 0} or { = 0} and hence
( ) ( ) = 0 for all and therefore ( ) = 0 This shows that = 0 on

R \
³

supp ( ) + supp ( )
´

and therefore

R \
³

supp ( ) + supp ( )
´

R \ supp ( )

i.e. supp ( ) supp ( ) + supp ( )

Remark 11.17. Let be closed sets of R it is not necessarily true that +
is still closed. For example, take

= {( ) : 0 and 1 } and = {( ) : 0 and 1 | |}
then every point of + has a positive - component and hence is not zero. On
the other hand, for 0 we have ( 1 ) + ( 1 ) = (0 2 ) + for all
and hence 0 + showing + is not closed. Nevertheless if one of the

sets or is compact, then + is closed again. Indeed, if is compact and
= + + and R then by passing to a subsequence if

necessary we may assume lim = exists. In this case

lim = lim ( ) =

exists as well, showing = + +

Proposition 11.18. Suppose that [1 ] and and are conjugate expo-
nents, and then (R ) k k k k k k and if

(1 ) then 0(R )

Proof. The existence of ( ) and the estimate | | ( ) k k k k for all
R is a simple consequence of Holders inequality and the translation invariance

of Lebesgue measure. In particular this shows k k k k k k By relabeling
and if necessary we may assume that [1 ) Since

k ( ) k = k k k k k k 0 as 0

it follows that is uniformly continuous. Finally if (1 ) we learn
from Lemma 11.16 and what we have just proved that (R ) where
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= 1| | and = 1| | Moreover,

k k k k + k k
k k k k + k k k k
k k k k + k k k k 0 as

showing, with the aid of Proposition 10.30, 0(R )

Theorem 11.19 (Young’s Inequality). Let [1 ] satisfy

(11.6)
1
+
1
= 1 +

1

If and then | | | | ( ) for — a.e. and

(11.7) k k k k k k
In particular 1 is closed under convolution. (The space ( 1 ) is an example of a
“Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq. (11.6)
by the following scaling argument. For 0 let ( ) := ( ) then after a few
simple change of variables we find

k k = 1 k k and ( ) =

Therefore if Eq. (11.7) holds for some [1 ] we would also have

k k = 1 k( ) k 1 k k k k = (1+1 1 1 ) k k k k
for all 0 This is only possible if Eq. (11.6) holds.

Proof. Let [0 1] and 1 2 [0 ] satisfy 1
1 + 1

2 + 1 = 1 Then
by Hölder’s inequality, Corollary 9.3,

| ( )| =
¯

¯

¯

¯

Z

( ) ( )

¯

¯

¯

¯

Z

| ( )|(1 ) | ( )|(1 ) | ( )| | ( )|
µ
Z

| ( )|(1 ) | ( )|(1 )

¶1 µ
Z

| ( )| 1

¶1 1
µ
Z

| ( )| 2

¶1 2

=

µ
Z

| ( )|(1 ) | ( )|(1 )

¶1

k k
1
k k

2

Taking the th power of this equation and integrating on gives

k k
Z
µ
Z

| ( )|(1 ) | ( )|(1 )

¶

· k k
1
k k

2

= k k(1 )
(1 ) k k(1 )

(1 ) k k 1
k k

2
(11.8)

Let us now suppose, (1 ) = 1 and (1 ) = 2 in which case Eq. (11.8)
becomes,

k k k k
1
k k

2

which is Eq. (11.7) with

(11.9) := (1 ) = 1 and := (1 ) = 2

So to finish the proof, it su ces to show and are arbitrary indices in [1 ]
satisfying 1 + 1 = 1 + 1
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If 1 2 satisfy the relations above, then

=
+ 1

and =
+ 2

and
1
+
1
=
1

1

+ 1
+
1

2

+ 2
=
1

1
+
1

2
+
2
= 1 +

1

Conversely, if satisfy Eq. (11.6), then let and satisfy = (1 ) and
= (1 ) i.e.

:= = 1 1 and = = 1 1

From Eq. (11.6), = (1 1) 0 and = (1 1 ) 0 so that [0 1] We
then define 1 := and 2 := then

1

1
+
1

2
+
1
=

1
+

1
+
1
=
1 1

+
1 1

+
1
= 1

as desired.

Theorem 11.21 (Approximate — functions). Let [1 ] 1(R ) :=
R

R ( ) and for 0 let ( ) = ( ) Then

(1) If with then in as 0
(2) If (R ) and is uniformly continuous then k k 0 as

0
(3) If and is continuous on R then uniformly on

compact subsets of as 0

Proof. Making the change of variables = implies

( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

so that

( ) ( ) =

Z

R
[ ( ) ( )] ( )

=

Z

R
[ ( ) ( )] ( )(11.10)

Hence by Minkowski’s inequality for integrals (Theorem 9.27), Proposition 11.13
and the dominated convergence theorem,

k k
Z

R
k k | ( )| 0 as 0

Item 2. is proved similarly. Indeed, form Eq. (11.10)

k k
Z

R
k k | ( )|

which again tends to zero by the dominated convergence theorem because
lim 0 k k = 0 uniformly in by the uniform continuity of
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Item 3. Let = (0 ) be a large ball in R and @@ then

sup | ( ) ( )|
¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

+

¯

¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

¯

Z

| ( )| · sup | ( ) ( )|+ 2 k k
Z

| ( )|

k k1 · sup | ( ) ( )|+ 2 k k
Z

| |
| ( )|

so that using the uniform continuity of on compact subsets of

lim sup
0
sup | ( ) ( )| 2 k k

Z

| |
| ( )| 0 as

See Theorem 8.15 if Folland for a statement about almost everywhere conver-
gence.

Exercise 11.1. Let

( ) =

½

1 if 0
0 if 0

Show (R [0 1])

Lemma 11.22. There exists (R [0 )) such that (0) 0 supp( )
¯(0 1) and

R

R ( ) = 1

Proof. Define ( ) = (1 ) ( + 1) where is as in Exercise 11.1. Then
(R [0 1]) supp( ) [ 1 1] and (0) = 2 0 Define =

R

R (| |2)
Then ( ) = 1 (| |2) is the desired function.
Definition 11.23. Let R be an open set. A Radon measure on B is a
measure which is finite on compact subsets of For a Radon measure we let
1 ( ) consists of those measurable functions : C such that

R | |
for all compact subsets

The reader asked to prove the following proposition in Exercise 11.6 below.

Proposition 11.24. Suppose that 1 (R ) and 1(R ) then
1(R ) and ( ) = Moreover if (R ) then (R )

Corollary 11.25 ( — Uryhson’s Lemma). Given @@ R there exists
(R [0 1]) such that supp( ) and = 1 on

Proof. Let be as in Lemma 11.22, ( ) = ( ) be as in Theorem 11.21,
be the standard metric on R and = ( ) Since is compact and is

closed, 0 Let = { R : ( ) } and = 3 1
3
then

supp( ) supp( 3) + 3 2̄ 3

Since 2̄ 3 is closed and bounded, ( ) and for

( ) =

Z

R
1 ( ) 3 · 3( ) =

Z

R
3( ) = 1

The proof will be finished after the reader (easily) verifies 0 1
Here is an application of this corollary whose proof is left to the reader, Exercise

11.7.
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Lemma 11.26 (Integration by Parts). Suppose and are measurable functions
on R such that ( 1 1 +1 ) and ( 1 1 +1 )
are continuously di erentiable functions on R for each fixed = ( 1 ) R
Moreover assume · · and · are in 1(R ) Then

Z

R
· =

Z

R
·

With this result we may give another proof of the Riemann Lebesgue Lemma.

Lemma 11.27. For 1(R ) let

(̂ ) := (2 ) 2

Z

R
( ) · ( )

be the Fourier transform of Then ˆ
0(R ) and

°

°

°

ˆ
°

°

°
(2 ) 2 k k1 (The

choice of the normalization factor, (2 ) 2 in ˆ is for later convenience.)

Proof. The fact that ˆ is continuous is a simple application of the dominated
convergence theorem. Moreover,

¯

¯

¯
(̂ )
¯

¯

¯

Z

| ( )| ( ) (2 ) 2 k k1
so it only remains to see that (̂ ) 0 as | |
First suppose that (R ) and let =

P

=1

2

2 be the Laplacian on R

Notice that · = · and · = | |2 · Using Lemma 11.26
repeatedly,
Z

( ) · ( ) =

Z

( ) · ( ) = | |2
Z

( ) · ( )

= (2 ) 2 | |2 (̂ )

for any N Hence (2 ) 2
¯

¯

¯
(̂ )
¯

¯

¯
| | 2 °

°

°

°

1
0 as | | and

ˆ
0(R ) Suppose that 1( ) and (R ) is a sequence such that

lim k k1 = 0 then lim
°

°

°

ˆ ˆ
°

°

°
= 0 Hence ˆ 0(R ) by an

application of Proposition 10.30.

Corollary 11.28. Let R be an open set and be a Radon measure on B
(1) Then ( ) is dense in ( ) for all 1
(2) If 1 ( ) satisfies

(11.11)
Z

= 0 for all ( )

then ( ) = 0 for — a.e.

Proof. Let ( ) be as in Lemma 11.22, be as in Theorem 11.21 and
set := ( 1 ) Then by Proposition 11.24 ( ) and by Lemma 11.16
there exists a compact set such that supp( ) for all su ciently
small. By Theorem 11.21, uniformly on as 0

(1) The dominated convergence theorem (with dominating function being
k k 1 ) shows in ( ) as 0 This proves Item 1., since
Proposition 11.6 guarantees that ( ) is dense in ( )
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(2) Keeping the same notation as above, the dominated convergence theorem
(with dominating function being k k | | 1 ) implies

0 = lim
0

Z

=

Z

lim
0

=

Z

The proof is now finished by an application of Lemma 11.7.

11.1.1. Smooth Partitions of Unity. We have the following smooth variants of
Proposition 10.24, Theorem 10.26 and Corollary 10.27. The proofs of these re-
sults are the same as their continuous counterparts. One simply uses the smooth
version of Urysohn’s Lemma of Corollary 11.25 in place of Lemma 10.15.

Proposition 11.29 (Smooth Partitions of Unity for Compacts). Suppose that
is an open subset of R is a compact set and U = { } =1 is an open
cover of Then there exists a smooth (i.e. ( [0 1])) partition of unity
{ } =1 of such that for all = 1 2

Theorem 11.30 (Locally Compact Partitions of Unity). Suppose that is an open
subset of R and U is an open cover of Then there exists a smooth partition of
unity of { } =1 ( = is allowed here) subordinate to the cover U such that
supp( ) is compact for all

Corollary 11.31. Suppose that is an open subset of R and U = { }
is an open cover of Then there exists a smooth partition of unity of { }
subordinate to the cover U such that supp( ) for all Moreover if ¯

is compact for each we may choose so that

11.2. Classical Weierstrass Approximation Theorem. Let Z+ := N {0}
Notation 11.32. For R and Z+ let =

Q

=1 and | | = P =1

A polynomial on R is a function : R C of the form

( ) =
X

:| |
with C and Z+

If 6= 0 for some such that | | = then we define deg( ) := to be the
degree of The function has a natural extension to C namely ( ) =
P

:| | where =
Q

=1

Remark 11.33. The mapping ( ) R ×R = + C is an isomorphism
of vector spaces. Letting ¯ = as usual, we have = +¯

2 and = ¯
2

Therefore under this identification any polynomial ( ) on R ×R may be written
as a polynomial in ( ¯) namely

( ¯) = (
+ ¯

2

¯

2
)

Conversely a polynomial in ( ¯) may be thought of as a polynomial in ( )
namely ( ) = ( + )

Theorem 11.34 (Weierstrass Approximation Theorem). Let R with
(i.e. for = 1 2 ) and set [ ] := [ 1 1] × · · · × [ ] Then for

([ ] C) there exists polynomials on R such that uniformly on
[ ]
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We will give two proofs of this theorem below. The first proof is based on the
“weak law of large numbers,” while the second is base on using a certain sequence
of approximate — functions.

Corollary 11.35. Suppose that R is a compact set and ( C) Then
there exists polynomials on R such that uniformly on

Proof. Choose R such that and ( ) := ( 1 1)×· · ·×( )

Let ˜ : ( ) C be the continuous function defined by |̃ = and
|̃( ) 0 Then by the Tietze extension Theorem (either of Theorems 10.2 or
10.16 will do) there exists (R C) such that ˜ = | ( ) Apply the
Weierstrass Approximation Theorem 11.34 to |[ ] to find polynomials on R
such that uniformly on [ ] Clearly we also have uniformly on

Corollary 11.36 (Complex Weierstrass Approximation Theorem). Suppose that
C is a compact set and ( C) Then there exists polynomials ( ¯)

for C such that sup | ( ¯) ( )| 0 as

Proof. This is an immediate consequence of Remark 11.33 and Corollary 11.35.

Example 11.37. Let = 1 = { C : | | = 1} and A be the set of polynomials
in ( ¯) restricted to 1 Then A is dense in ( 1) 23 Since ¯ = 1 on 1 we have
shown polynomials in and 1 are dense in ( 1) This example generalizes in
an obvious way to =

¡

1
¢

C

11.2.1. First proof of the Weierstrass Approximation Theorem 11.34. Proof. Let
0 : = (0 0 0) and 1 : = (1 1 1) By considering the real and imaginary
parts of separately, it su ces to assume is real valued. By replacing by
( ) = ( 1 + 1( 1 1) + ( )) for [0 1] it su ces to prove
the theorem for ([0 1])
For [0 1] let be the measure on {0 1} such that ({0}) = 1 and
({1}) = Then

Z

{0 1}
( ) = 0 · (1 ) + 1 · = and(11.12)

Z

{0 1}
( )2 ( ) = 2(1 ) + (1 )2 · = (1 )(11.13)

For [0 1] let = 1 · · · be the product of 1 on := {0 1}
Alternatively the measure may be described by

(11.14) ({ }) =
Y

=1

(1 )1

for Notice that ({ }) is a degree polynomial in for each For
N and [0 1] let denote the — fold product of with itself on

( ) = R for and let

= ( 1 ) := ( 1 + 2 + · · ·+ )

23Note that it is easy to extend ( 1) to a function (C) by setting ( ) = ( | | )
for 6= 0 and (0) = 0 So this special case does not require the Tietze extension theorem.
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so : R The reader is asked to verify (Exercise 11.2) that

(11.15)
Z

=

µ
Z

1

Z
¶

= ( 1 ) =

and

(11.16)
Z

| |2 =
1X

=1

(1 )

From these equations it follows that is concentrating near as a
manifestation of the law of large numbers. Therefore it is reasonable to expect

(11.17) ( ) :=

Z

( )

should approach ( ) as
Let 0 be given, = sup {| ( )| : [0 1]} and

= sup {| ( ) ( )| : [0 1] and | | }
By uniform continuity of on [0 1] lim 0 = 0 Using these definitions and the
fact that ( ) = 1

| ( ) ( )| =
¯

¯

¯

¯

Z

( ( ) ( ))

¯

¯

¯

¯

Z

| ( ) ( )|
Z

{| | }
| ( ) ( )| +

Z

{| | }
| ( ) ( )|

2 (| | ) +(11.18)

By Chebyshev’s inequality,

(| | )
1
2

Z

( )2 =
2

and therefore, Eq. (11.18) yields the estimate

k k 2
2
+

and hence

lim sup k k 0 as 0

This completes the proof since, using Eq. (11.14),

( ) =
X

( ( )) ({ }) =
X

( ( ))
Y

=1

({ })

is an — degree polynomial in R )

Exercise 11.2. Verify Eqs. (11.15) and (11.16). This is most easily done using
Eqs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course Fubini’s
theorem here is over kill since these are only finite sums after all. Nevertheless it
is convenient to use this formulation.)
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11.2.2. Second proof of the Weierstrass Approximation Theorem 11.34. For the
second proof we will first need two lemmas.

Lemma 11.38 (Approximate — sequences). Suppose that { } =1 is a sequence
of positive functions on R such that

Z

R
( ) = 1 and(11.19)

lim

Z

| |

( ) = 0 for all 0(11.20)

For (R ) converges to uniformly on compact subsets of R

Proof. Let R then because of Eq. (11.19),

| ( ) ( )| =
¯

¯

¯

¯

Z

R
( ) ( ( ) ( ))

¯

¯

¯

¯

Z

R
( ) | ( ) ( )|

Let = sup
©| ( )| : R

ª

and 0 then by and Eq. (11.19)

| ( ) ( )|
Z

| |
( ) | ( ) ( )|

+

Z

| |
( ) | ( ) ( )|

sup
| |

| ( + ) ( )|+ 2
Z

| |
( )

Let be a compact subset of R then

sup | ( ) ( )| sup
| |

| ( + ) ( )|+ 2
Z

| |
( )

and hence by Eq. (11.20),

lim sup sup | ( ) ( )| sup
| |

| ( + ) ( )|

This finishes the proof since the right member of this equation tends to 0 as 0
by uniform continuity of on compact subsets of R
Let : R [0 ) be defined by

(11.21) ( )
1
(1 2) 1| | 1where :=

Z 1

1

(1 2)

Figure 26 displays the key features of the functions
Define

(11.22) : R [0 ) by ( ) = ( 1) ( )

Lemma 11.39. The sequence { } =1 is an approximate — sequence, i.e. they
satisfy Eqs. (11.19) and (11.20).

Proof. The fact that integrates to one is an easy consequence of Tonelli’s
theorem and the definition of Since all norms on R are equivalent, we may
assume that | | = max {| | : = 1 2 } when proving Eq. (11.20). With this
norm

©

R : | | ª

= =1

©

R : | | ª
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10.50-0.5-1

5

3.75

2.5

1.25

0

x

y

x

y

Figure 26. A plot of 1 50 and 100 The most peaked curve is
100 and the least is 1 The total area under each of these curves
is one.

and therefore by Tonelli’s theorem and the definition of

Z

{| | }

( )
X

=1

Z

{| | }

( ) =

Z

{ R| | }

( )

Since

Z

| |
( ) =

2
R 1
(1 2)

2
R

0
(1 2) + 2

R 1
(1 2)

R 1
(1 2)

R

0
(1 2)

=
(1 2) +1|1
(1 2) +1|0

=
(1 2) +1

1 (1 2) +1
0 as

the proof is complete.
We will now prove Corollary 11.35 which clearly implies Theorem 11.34.
Proof. Proof of Corollary 11.35. As in the beginning of the proof already given

for Corollary 11.35, we may assume that = [ ] for some and = |
where (R C) is a function such that | 0 Moreover, by replacing ( )
by ( ) = ( 1 + 1( 1 1) + ( )) for R we may further
assume = [0 1]
Let ( ) be defined as in Eq. (11.22). Then by Lemma 11.39 and 11.38,
( ) := ( )( ) ( ) uniformly for [0 1] as So to finish the
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proof it only remains to show ( ) is a polynomial when [0 1] For [0 1]

( ) =

Z

R
( ) ( )

=
1
Z

[0 1]

( )
Y

=1

£

1(1 ( )2) 1| | 1

¤

=
1
Z

[0 1]

( )
Y

=1

£

1(1 ( )2)
¤

Since the product in the above integrand is a polynomial if ( ) R × R it
follows easily that ( ) is polynomial in

11.3. Stone-Weierstrass Theorem. We now wish to generalize Theorem 11.34
to more general topological spaces. We will first need some definitions.

Definition 11.40. Let be a topological space and A ( ) = ( R) or
( C) be a collection of functions. Then

(1) A is said to separate points if for all distinct points there exists
A such that ( ) 6= ( )

(2) A is an algebra if A is a vector subspace of ( ) which is closed under
pointwise multiplication.

(3) A is called a lattice if := max( ) and = min( ) A for all
A

(4) A ( ) is closed under conjugation if ¯ A whenever A 24

Remark 11.41. If is a topological space such that ( R) separates points then
is Hausdor . Indeed if and ( R) such that ( ) 6= ( ) then
1( ) and 1( ) are disjoint open sets containing and respectively when

and are disjoint intervals containing ( ) and ( ) respectively.

Lemma 11.42. If A ( R) is a closed algebra then | | A for all A and
A is a lattice.

Proof. Let A and let = sup | ( )| Using Theorem 11.34 or Exercise

11.8, there are polynomials ( ) such that

lim sup
| |

|| | ( )| = 0

By replacing by (0) if necessary we may assume that (0) = 0 Since
A is an algebra, it follows that = ( ) A and | | A because | | is the
uniform limit of the ’s. Since

=
1

2
( + + | |) and

=
1

2
( + | |)

we have shown A is a lattice.

24This is of course no restriction when ( ) = ( R)
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Lemma 11.43. Let A ( R) be an algebra which separates points and
be distinct points such that

(11.23) A 3 ( ) 6= 0 and ( ) 6= 0
Then

(11.24) := {( ( ) ( )) : A}= R2

Proof. It is clear that is a non-zero subspace of R2 If dim( ) = 1 then =
span( ) with 6= 0 and 6= 0 by the assumption in Eq. (11.23). Since ( ) =
( ( ) ( )) for some A and 2 A it follows that ( 2 2) = ( 2( ) 2( ))
as well. Since dim = 1 ( ) and ( 2 2) are linearly dependent and therefore

0 = det

µ

2

2

¶

= 2 2 = ( )

which implies that = But this the implies that ( ) = ( ) for all A
violating the assumption that A separates points. Therefore we conclude that
dim( ) = 2 i.e. = R2

Theorem 11.44 (Stone-Weierstrass Theorem). ppose is a compact Hausdor
space and A ( R) is a closed subalgebra which separates points. For
let

A { ( ) : A} and
I = { ( R) : ( ) = 0}

Then either one of the following two cases hold.
(1) A = R for all i.e. for all there exists A such that

( ) 6= 0 25
(2) There exists a unique point 0 such that A

0
= {0}

Moreover in case (1) A = ( R) and in case (2) A = I 0 = { ( R) :
( 0) = 0}
Proof. If there exists 0 such that A 0 = {0} ( 0 is unique since A separates

points) then A I 0 If such an 0 exists let C = I 0 and if A = R for all set
C = ( R) Let C then by Lemma 11.43, for all such that 6=
there exists A such that = on { } 26 The basic idea of the proof is
contained in the following identity,

(11.25) ( ) = inf sup ( ) for all

To prove this identity, let := sup and notice that since ( ) =
( ) for all Moreover, ( ) = ( ) for all since ( ) = ( ) for all
Therefore,

inf sup = inf =

The rest of the proof is devoted to replacing the inf and the sup above by min and
max over finite sets at the expense of Eq. (11.25) becoming only an approximate
identity.

25If A contains the constant function 1 then this hypothesis holds.
26If A 0 = {0} and = 0 or = 0 then exists merely by the fact that A separates

points.
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Claim 2. Given 0 and there exists A such that ( ) = ( ) and
+ on

To prove the claim, let be an open neighborhood of such that | |
on so in particular + on By compactness, there exists
such that =

S

Set

( ) = max{ ( ) : }
then for any + + on and therefore + on
Moreover, by construction ( ) = ( ) see Figure 27 below.

Figure 27. Constructing the funtions

We now will finish the proof of the theorem. For each let be a
neighborhood of such that | | on Choose such that
=
S

and define

= min{ : } A
Then + on and for + on and hence + on
Since =

S

we conclude

+ and + on

i.e. | | on Since 0 is arbitrary it follows that Ā = A
Theorem 11.45 (Complex Stone-Weierstrass Theorem). Let be a compact
Hausdor space. Suppose A ( C) is closed in the uniform topology, sep-
arates points, and is closed under conjugation. Then either A = ( C) or
A = IC

0
:= { ( C) : ( 0) = 0} for some 0

Proof. Since

Re =
+ ¯

2
and Im =

¯

2
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Re and Im are both in A Therefore

AR = {Re Im : A}
is a real sub-algebra of ( R) which separates points. Therefore either AR =
( R) or AR = I 0 ( R) for some 0 and hence A = ( C) or IC

0

respectively.
As an easy application, Theorems 11.44 and 11.45 imply Corollaries 11.35 and

11.36 respectively.

Corollary 11.46. Suppose that is a compact subset of R and is a finite
measure on ( B ) then polynomials are dense in ( ) for all 1

Proof. Consider to be a metric space with usual metric induced from R
Then is a locally compact separable metric space and therefore ( C) =
( C) is dense in ( ) for all [1 ) Since, by the dominated convergence

theorem, uniform convergence implies ( ) — convergence, it follows from the
Stone - Weierstrass theorem that polynomials are also dense in ( )
Here are a couple of more applications.

Example 11.47. Let ([ ]) be a positive function which is injective. Then
functions of the form

P

=1 with C and N are dense in ([ ])
For example if = 1 and = 2 then one may take ( ) = for any 6= 0 or
( ) = etc.

Exercise 11.3. Let ( ) be a separable compact metric space. Show that ( )
is also separable. Hint: Let be a countable dense set and then consider the
algebra, A ( ) generated by { ( ·)}
11.4. Locally Compact Version of Stone-Weierstrass Theorem.

Theorem 11.48. Let be non-compact locally compact Hausdor space. If A is
a closed subalgebra of 0( R) which separates points. Then either A = 0( R)
or there exists 0 such that A = { 0( R) : ( 0) = 0}
Proof. There are two cases to consider.
Case 1. There is no point 0 such that A { 0( R) : ( 0) = 0}

In this case let = { } be the one point compactification of Because of
Proposition 10.31 to each A there exists a unique extension ˜ ( R)
such that = |̃ and moreover this extension is given by (̃ ) = 0 Let
eA := { ˜ ( R) : A} Then eA is a closed (you check) sub-algebra
of ( R) which separates points. An application of Theorem 11.44 implies
eA = { ( R) 3 ( ) = 0} and therefore by Proposition 10.31 A = { | :

eA} = 0( R)
Case 2. There exists 0 such A { 0( R) : ( 0) = 0} In this

case let := \ { 0} and A := { | : A} Since is locally compact,
one easily checks A 0( R) is a closed subalgebra which separates points.
By Case 1. it follows that A = 0( R) So if 0( R) and ( 0) = 0
| 0( R) =A i.e. there exists A such that | = | Since ( 0) =
( 0) = 0 it follows that = A and therefore A = { 0( R) : ( 0) = 0}

Example 11.49. Let = [0 ) 0 be fixed, A be the algebra generated by
So the general element A is of the form ( ) = ( ) where ( )
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is a polynomial. Since A 0( R) separates points and A is pointwise
positive, Ā = 0( R)

As an application of this example, we will show that the Laplace transform is
injective.

Theorem 11.50. For 1([0 ) ) the Laplace transform of is defined by

L ( )

Z

0

( ) for all 0

If L ( ) 0 then ( ) = 0 for -a.e.

Proof. Suppose that 1([0 ) ) such that L ( ) 0 Let
0([0 ) R) and 0 be given. Choose { } 0 such that#({ 0 : 6= 0})
and

| ( )
X

0

| for all 0

Then
¯

¯

¯

¯

Z

0

( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

Z

0

Ã

( )
X

0

!

( )

¯

¯

¯

¯

¯

Z

0

¯

¯

¯

¯

¯

( )
X

0

¯

¯

¯

¯

¯

| ( )| k k1

Since 0 is arbitrary, it follows that
R

0
( ) ( ) = 0 for all 0([0 ) R)

The proof is finished by an application of Lemma 11.7.

11.5. Dynkin’s Multiplicative System Theorem. This section is devoted to
an extension of Theorem 8.12 based on the Weierstrass approximation theorem. In
this section is a set.

Definition 11.51 (Multiplicative System). A collection of real valued functions
on a set is a multiplicative system provided · whenever

Theorem 11.52 (Dynkin’s Multiplicative System Theorem). Let H be a linear sub-
space of ( R) which contains the constant functions and is closed under bounded
convergence. If H is multiplicative system, then H contains all bounded real
valued ( )-measurable functions.

Theorem 11.53 (Complex Multiplicative System Theorem). Let H be a complex
linear subspace of ( C) such that: 1 H H is closed under complex conjugation,
and H is closed under bounded convergence. If H is multiplicative system
which is closed under conjugation, then H contains all bounded complex valued
( )-measurable functions.

Proof. Let F be R or C Let C be the family of all sets of the form:
(11.26) := { : 1( ) 1 ( ) }
where = 1 2 and for = 1 2 and is an open interval if
F = R or is an open rectangle in C if F = C The family C is easily seen to be
a — system such that ( ) = (C) So By Theorem 8.12, to finish the proof it
su ces to show 1 H for all C
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It is easy to construct, for each a uniformly bounded sequence of continuous
functions

© ª

=1
on F converging to the characteristic function 1 By Weier-

strass’ theorem, there exists polynomials ( ) such that
¯

¯ ( ) ( )
¯

¯ 1

for | | k k in the real case and polynomials ( ¯) in and ¯ such that
¯

¯ ( ¯) ( )
¯

¯ 1 for | | k k in the complex case. The functions

:= 1 ( 1)
2 ( 2) ( ) (real case)

:= 1 ( 1 1̄)
2 ( 2 2̄) ( ¯ ) (complex case)

on are uniformly bounded, belong to H and converge pointwise to 1 as ,
where is the set in Eq. (11.26). Thus 1 H and the proof is complete.

Remark 11.54. Given any collection of bounded real valued functions F on
let H(F) be the subspace of ( R) generated by F i.e. H(F) is the smallest
subspace of ( R) which is closed under bounded convergence and contains F
With this notation, Theorem 11.52 may be stated as follows. If F is a multiplicative
system then H(F) = (F)( R) — the space of bounded (F) — measurable real
valued functions on

11.6. Exercises.

Exercise 11.4. Let ( ) be a topological space, a measure on B = ( ) and
: C be a measurable function. Letting be the measure, = | | show

supp( ) = supp ( ) where supp( ) is defined in Definition 9.41).

Exercise 11.5. Let ( ) be a topological space, a measure on B = ( ) such
that supp( ) = (see Definition 9.41). Show supp ( ) = supp( ) = { 6= 0} for
all ( )

Exercise 11.6. Prove Proposition 11.24 by appealing to Corollary 7.43.

Exercise 11.7 (Integration by Parts). Suppose that ( ) R×R 1 ( )
C and ( ) R×R 1 ( ) C are measurable functions such that for each
fixed R 1 ( ) and ( ) are continuously di erentiable. Also
assume · · and · are integrable relative to Lebesgue measure on
R×R 1 where ( ) := ( + )| =0 Show

(11.27)
Z

R×R 1

( ) · ( ) =

Z

R×R 1

( ) · ( )

(Note: this result and Fubini’s theorem proves Lemma 11.26.)
Hints: Let (R) be a function which is 1 in a neighborhood of 0 R and

set ( ) = ( ) First verify Eq. (11.27) with ( ) replaced by ( ) ( ) by
doing the — integral first. Then use the dominated convergence theorem to prove
Eq. (11.27) by passing to the limit, 0

Exercise 11.8. Let show there are polynomials ( ) such that

lim sup
| |

|| | ( )| = 0

as follows. Let ( ) = 1 for | | 1 By Taylor’s theorem with integral re-
mainder (see Eq. A.15 of Appendix A) or by analytic function theory, there are
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constants27 0 for N such that 1 = 1
P

=1 for all | | 1
Use this to prove

P

=1 = 1 and therefore ( ) := 1
P

=1

lim sup
| | 1

| 1 ( )| = 0

Let 1 = 2 2 i.e. = 1 2 2 then

lim sup
| |

¯

¯

¯

¯

| |
(1 2 2)

¯

¯

¯

¯

= 0

so that ( ) := (1 2 2) are the desired polynomials.

Exercise 11.9. Given a continuous function : R C which is 2 -periodic and

0 Show there exists a trigonometric polynomial, ( ) =
P

=

such that

| ( ) ( )| for all R Hint: show that there exists a unique function
( 1) such that ( ) = ( ) for all R

Remark 11.55. Exercise 11.9 generalizes to 2 — periodic functions on R i.e. func-
tions such that ( +2 ) = ( ) for all = 1 2 where { } =1 is the standard
basis for R A trigonometric polynomial ( ) is a function of R of the form

( ) =
X ·

where is a finite subset of Z The assertion is again that these trigonometric
polynomials are dense in the 2 — periodic functions relative to the supremum
norm.

Exercise 11.10. Let be a finite measure on BR then D := span{ · : R }
is a dense subspace of ( ) for all 1 Hints: By Proposition 11.6, (R )
is a dense subspace of ( ) For (R ) and N let

( ) :=
X

Z

( + 2 )

Show (R ) and ( ) is 2 — periodic, so by Exercise 11.9,
( ) can be approximated uniformly by trigonometric polynomials. Use this

fact to conclude that D̄ ( ) After this show in ( )

Exercise 11.11. Suppose that and are two finite measures on R such that

(11.28)
Z

R

· ( ) =

Z

R

· ( )

for all R Show =
Hint: Perhaps the easiest way to do this is to use Exercise 11.10 with the

measure being replaced by + Alternatively, use the method of proof of Exercise
11.9 to show Eq. (11.28) implies

R

R ( ) =
R

R ( ) for all (R )

Exercise 11.12. Again let be a finite measure on BR Further assume that
:=

R

R
| | ( ) for all (0 ) Let P(R ) be the space of

polynomials, ( ) =
P

| | with C on R (Notice that | ( )|
( ) | | so that P(R ) ( ) for all 1 ) Show P(R ) is dense

in ( ) for all 1 Here is a possible outline.

27In fact :=
(2 3)!!
2 !

but this is not needed.
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Outline: For R and N let ( ) = ( · ) !

(1) Use calculus to verify sup 0 = ( ) for all 0 where
(0 )

0
:= 1 Use this estimate along with the identity

| · | | | | | =
³

| | | |
´

| | | |

to find an estimate on k k
(2) Use your estimate on k k to show

P

=0 k k and conclude

lim

°

°

°

°

°

·(·) X

=0

°

°

°

°

°

= 0

(3) Now finish by appealing to Exercise 11.10.

Exercise 11.13. Again let be a finite measure on BR but now assume there
exists an 0 such that :=

R

R
| | ( ) Also let 1 and ( )

be a function such that
R

R ( ) ( ) = 0 for all N0 (As mentioned in
Exercise 11.13, P(R ) ( ) for all 1 so ( ) is in 1( ) )
Show ( ) = 0 for — a.e. using the following outline.
Outline: For R and N let ( ) = ( · ) ! and let = ( 1)

be the conjugate exponent to
(1) Use calculus to verify sup 0 = ( ) for all 0 where

(0 )
0
:= 1 Use this estimate along with the identity

| · | | | | | =
³

| | | |
´

| | | |

to find an estimate on
°

°

°

°

(2) Use your estimate on
°

°

°

° to show there exists 0 such that
P

=0

°

°

°

° when | | and conclude for | | that · = ( )—
P

=0 ( ) Conclude from this that
Z

R
( ) · ( ) = 0 when | |

(3) Let R (| | not necessarily small) and set ( ) :=
R

R
· ( ) ( )

for R Show (R) and

( )( ) =

Z

R
( · ) · ( ) ( ) for all N

(4) Let = sup{ 0 : |[0 ] 0} By Step 2., If then

0 = ( )( ) =

Z

R
( · ) · ( ) ( ) for all N

Use Step 3. with replaced by · ( ) to conclude

( + ) =

Z

R

( + ) · ( ) ( ) = 0 for all | |
This violates the definition of and therefore = and in particular we
may take = 1 to learn

Z

R
( ) · ( ) = 0 for all R
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(5) Use Exercise 11.10 to conclude that
Z

R
( ) ( ) ( ) = 0

for all ( ) Now choose judiciously to finish the proof.
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12. Hilbert Spaces

12.1. Hilbert Spaces Basics.

Definition 12.1. Let be a complex vector space. An inner product on is a
function, h· ·i : × C such that

(1) h + i = h i+ h i i.e. h i is linear.
(2) h i = h i.
(3) k k2 h i 0 with equality k k2 = 0 i = 0

Notice that combining properties (1) and (2) that h i is anti-linear for
fixed i.e.

h + i = ¯h i+¯h i
We will often find the following formula useful:

k + k2 = h + + i = k k2 + k k2 + h i+ h i
= k k2 + k k2 + 2Reh i(12.1)

Theorem 12.2 (Schwarz Inequality). Let ( h· ·i) be an inner product space, then
for all

|h i| k kk k
and equality holds i and are linearly dependent.

Proof. If = 0 the result holds trivially. So assume that 6= 0 First o notice
that if = for some C then h i = k k2 and hence

|h i| = | | k k2 = k kk k
Moreover, in this case := h i

k k2
Now suppose that is arbitrary, let k k 2h i (So is the

“orthogonal projection” of onto see Figure 28.) Then

Figure 28. The picture behind the proof.

0 k k2 =
°

°

°

°

h i
k k2

°

°

°

°

2

= k k2 + |h i|2
k k4 k k2 2Reh h i

k k2 i

= k k2 |h i|2
k k2

from which it follows that 0 k k2k k2 |h i|2 with equality i = 0 or
equivalently i = k k 2h i
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Corollary 12.3. Let ( h· ·i) be an inner product space and k k :=ph i Then
k · k is a norm on Moreover h· ·i is continuous on × where is viewed as
the normed space ( k·k)
Proof. The only non-trivial thing to verify that k·k is a norm is the triangle

inequality:

k + k2 = k k2 + k k2 + 2Reh i k k2 + k k2 + 2k k k k
= (k k+ k k)2

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows k + k k k+ k k For the continuity assertion:

|h i h 0 0i| = |h 0 i+ h 0 0i|
k kk 0k+ k 0kk 0k
k kk 0k+ (k k+ k 0k) k 0k

= k kk 0k+ k kk 0k+ k 0kk 0k
from which it follows that h· ·i is continuous.
Definition 12.4. Let ( h· ·i) be an inner product space, we say are
orthogonal and write i h i = 0 More generally if is a set,

is orthogonal to and write i h i = 0 for all Let
= { : } be the set of vectors orthogonal to We also say that a

set is orthogonal if for all such that 6= If further
satisfies, k k = 1 for all then is said to be orthonormal.

Proposition 12.5. Let ( h· ·i) be an inner product space then
(1) (Parallelogram Law)

(12.2) k + k2 + k k2 = 2k k2 + 2k k2
for all

(2) (Pythagorean Theorem) If is a finite orthonormal set, then

(12.3) k
X

k2 =
X

k k2

(3) If is a set, then is a closed linear subspace of

Remark 12.6. See Proposition 12.40 in the appendix below for the “converse” of
the parallelogram law.

Proof. I will assume that is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

k + k2 + k k2 = k k2 + k k2 + 2Reh i+ k k2 + k k2 2Reh i
= 2k k2 + 2k k2

and

k
X

k2 = h
X X

i =
X

h i

=
X

h i =
X

k k2
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Item 3. is a consequence of the continuity of h· ·i and the fact that
= ker(h· i)

where ker(h· i) = { : h i = 0} — a closed subspace of
Definition 12.7. A Hilbert space is an inner product space ( h· ·i) such that
the induced Hilbertian norm is complete.

Example 12.8. Let ( M ) be a measure space then := 2( M ) with
inner product

( ) =

Z

· ¯

is a Hilbert space. In Exercise 12.6 you will show every Hilbert space is “equiv-
alent” to a Hilbert space of this form.

Definition 12.9. A subset of a vector space is said to be convex if for all
the line segment [ ] := { + (1 ) : 0 1} joining to is

contained in as well. (Notice that any vector subspace of is convex.)

Theorem 12.10. Suppose that is a Hilbert space and be a closed convex
subset of Then for any there exists a unique such that

k k = ( ) = inf k k

Moreover, if is a vector subspace of then the point may also be characterized
as the unique point in such that ( )

Proof. By replacing by := { : } we may assume = 0
Let := (0 ) = inf k k and see Figure 29.

Figure 29. The geometry of convex sets.

By the parallelogram law and the convexity of

(12.4) 2k k2+2k k2 = k + k2+k k2 = 4k +

2
||2+k k2 4 2+k k2

Hence if k k = k k = then 2 2 + 2 2 4 2 + k k2 so that k k2 = 0
Therefore, if a minimizer for (0 ·)| exists, it is unique.
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Existence. Let be chosen such that k k = (0 ) Taking
= and = in Eq. (12.4) shows 2 2 + 2 2 4 2 + k k2 Passing to

the limit in this equation implies,

2 2 + 2 2 4 2 + lim sup k k2

Therefore { } =1 is Cauchy and hence convergent. Because is closed, :=
lim and because k·k is continuous,

k k = lim k k = = (0 )

So is the desired point in which is closest to 0
Now for the second assertion we further assume that is a closed subspace of
and Let be the closest point in to Then for the

function

( ) k ( + )k2 = k k2 2 Reh i+ 2k k2

has a minimum at = 0 Therefore 0 = 0(0) = 2Reh i Since is
arbitrary, this implies that ( ) Finally suppose is any point such
that ( ) Then for by Pythagorean’s theorem,

k k2 = k + k2 = k k2 + k k2 k k2

which shows ( )2 k k2 That is to say is the point in closest to

Definition 12.11. Suppose that : is a bounded operator. The adjoint
of denote is the unique operator : such that h i = h i
(The proof that exists and is unique will be given in Proposition 12.16 below.)
A bounded operator : is self - adjoint or Hermitian if =

Definition 12.12. Let be a Hilbert space and be a closed subspace.
The orthogonal projection of onto is the function : such that for

( ) is the unique element in such that ( ( )) .

Proposition 12.13. Let be a Hilbert space and be a closed subspace.
The orthogonal projection satisfies:

(1) is linear (and hence we will write rather than ( )
(2) 2 = ( is a projection).
(3) = ( is self-adjoint).
(4) Ran( ) = and ker( ) =

Proof.

(1) Let 1 2 and F then 1 + 2 and

1 + 2 ( 1 + 2) = [ 1 1 + ( 2 2)]

showing 1 + 2 = ( 1 + 2) i.e. is linear.
(2) Obviously Ran( ) = and = for all . Therefore 2 =

.
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(3) Let then since ( ) and ( ) are in

h i = h + i
= h i
= h + ( ) i
= h i

(4) It is clear that Ran( ) Moreover, if then = implies
that Ran( ) = Now ker( ) i = 0 i = 0

Corollary 12.14. Suppose that is a proper closed subspace of a Hilbert
space then =

Proof. Given let = so that Then = + ( )

+ If then , i.e. k k2 = h i = 0 So = {0}

Proposition 12.15 (Riesz Theorem). Let be the dual space of (Notation
3.63). The map

(12.5) h· i
is a conjugate linear isometric isomorphism.

Proof. The map is conjugate linear by the axioms of the inner products.
Moreover, for

|h i| k k k k for all
with equality when = This implies that k k = kh· ik = k k Therefore
is isometric and this shows that is injective. To finish the proof we must show

that is surjective. So let which we assume with out loss of generality is
non-zero. Then = ker( ) — a closed proper subspace of Since, by Corollary
12.14, = : = F is a linear isomorphism. This
shows that dim( ) = 1 and hence = F 0 where 0 \ {0} 28

Choose = 0 such that ( 0) = h 0 i (So = (̄ 0) k 0k2 ) Then for
= + 0 with and F

( ) = ( 0) = h 0 i = h 0 i = h + 0 i = h i
which shows that =

Proposition 12.16 (Adjoints). Let and be Hilbert spaces and :
be a bounded operator. Then there exists a unique bounded operator :
such that

(12.6) h i = h i for all and

Moreover ( + ) = + ¯ := ( ) = k k = k k and k k =
k k2 for all ( ) and C

28Alternatively, choose 0 \{0} such that ( 0) = 1 For we have ( 0) = 0
provided that := ( ) Therefore 0 = {0} i.e. = 0 This again shows
that is spanned by 0
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Proof. For each then map h i is in and therefore there
exists by Proposition 12.15 a unique vector such that

h i = h i for all

This shows there is a unique map : such that h i = h ( )i
for all and To finish the proof, we need only show is linear and
bounded. To see is linear, let 1 2 and C then for any

h 1 + 2i = h 1i + ¯h 2i
= h ( 1)i + ¯h ( 2)i
= h ( 1) + ( 2)i

and by the uniqueness of ( 1 + 2) we find

( 1 + 2) = ( 1) + ( 2)

This shows is linear and so we will now write instead of ( ) Since

h i = h i = h i = h i
it follows that = he assertion that ( + ) = + ¯ is left to the
reader, see Exercise 12.1.
The following arguments prove the assertions about norms of and :

k k = sup
:k k=1

k k = sup
:k k=1

sup
:k k=1

|h i|

= sup
:k k=1

sup
:k k=1

|h i| = sup
:k k=1

k k = k k

k k k k k k = k k2 and
k k2 = sup

:k k=1
|h i| = sup

:k k=1
|h i|

sup
:k k=1

k k = k k

Exercise 12.1. Let be Hilbert space, ( ) ( ) and
C Show ( + ) = + ¯ and ( ) = ( )

Exercise 12.2. Let = C and = C equipped with the usual inner products,
i.e. h i = · ¯ for Let be an × matrix thought of as a linear
operator from to Show the matrix associated to : is the conjugate
transpose of

Exercise 12.3. Let : 2( ) 2( ) be the operator defined in Exercise 9.12.
Show : 2( ) 2( ) is the operator given by

( ) =

Z

¯( ) ( ) ( )

Definition 12.17. { } is an orthonormal set if for all 6=
and k k = 1.
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Proposition 12.18 (Bessel’s Inequality). Let { } be an orthonormal set, then

(12.7)
X

|h i|2 k k2 for all

In particular the set { : h i 6= 0} is at most countable for all
Proof. Let be any finite set. Then

0 k
X

h i k2 = k k2 2Re
X

h i h i+
X

|h i|2

= k k2
X

|h i|2

showing that
X

|h i|2 k k2

Taking the supremum of this equation of then proves Eq. (12.7).

Proposition 12.19. Suppose is an orthogonal set. Then =
P

exists in i
P k k2 (In particular must be at most a countable set.)

Moreover, if
P k k2 then

(1) k k2 =P k k2 and
(2) h i =P h i for all
Similarly if { } =1 is an orthogonal set, then =

P

=1
exists in i

P

=1
k k2 In particular if

P

=1
exists, then it is independent of rearrange-

ments of { } =1

Proof. Suppose =
P

exists. Then there exists such that

X

k k2 =
°

°

°

°

°

X

°

°

°

°

°

2

1

for all \ ,wherein the first inequality we have used Pythagorean’s theorem.
Taking the supremum over such shows that

P

\ k k2 1 and therefore
X

k k2 1 +
X

k k2

Conversely, suppose that
P k k2 Then for all 0 there exists

such that if \

(12.8)

°

°

°

°

°

X

°

°

°

°

°

2

=
X

k k2 2

Hence by Lemma 3.72,
P

exists.
For item 1, let be as above and set :=

P

Then

|k k k k| k k
and by Eq. (12.8),

0
X

k k2 k k2 =
X

k k2 2
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Letting 0 we deduce from the previous two equations that k k k k and
k k2 P k k2 as 0 and therefore k k2 =P k k2
Item 2. is a special case of Lemma 3.72.

For the final assertion, let
P

=1
and suppose that lim = exists

in and in particular { } =1 is Cauchy. So for

X

= +1

k k2 = k k2 0 as

which shows that
P

=1
k k2 is convergent, i.e. P

=1
k k2

Remark: We could use the last result to prove Item 1. Indeed, if
P k k2

then is countable and so we may writer = { } =1 Then = lim
with as above. Since the norm k·k is continuous on we have

k k2 = lim k k2 = lim

°

°

°

°

°

X

=1

°

°

°

°

°

2

= lim
X

=1

k k2 =
X

=1

k k2 =
X

k k2

Corollary 12.20. Suppose is a Hilbert space, is an orthonormal set and
= span Then

=
X

h i(12.9)

X

|h i|2 = k k2 and(12.10)

X

h ih i = h i(12.11)

for all

Proof. By Bessel’s inequality,
P |h i|2 k k2 for all and hence

by Proposition 12.18, :=
P h i exists in and for all

(12.12) h i =
X

hh i i =
X

h ih i

Taking in Eq. (12.12) gives h i = h i i.e. that h i = 0
for all So ( ) span and by continuity we also have ( )

= span Since is also in it follows from the definition of that
= proving Eq. (12.9). Equations (12.10) and (12.11) now follow from

(12.12), Proposition 12.19 and the fact that h i = h 2 i = h i
for all

12.2. Hilbert Space Basis.

Definition 12.21 (Basis). Let be a Hilbert space. A basis of is a maximal
orthonormal subset

Proposition 12.22. Every Hilbert space has an orthonormal basis.
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Proof. Let F be the collection of all orthonormal subsets of ordered by
inclusion. If F is linearly ordered then is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element F
An orthonormal set is said to be complete if = {0} That is to say

if h i = 0 for all then = 0

Lemma 12.23. Let be an orthonormal subset of then the following are equiv-
alent:

(1) is a basis,
(2) is complete and
(3) span =

Proof. If is not complete, then there exists a unit vector \ {0}
The set { } is an orthonormal set properly containing so is not maximal.
Conversely, if is not maximal, there exists an orthonormal set 1 such that
& 1 Then if 1 \ we have h i = 0 for all showing is not

complete. This proves the equivalence of (1) and (2). If is not complete and
\ {0} then span which is a proper subspace of Conversely

if span is a proper subspace of = span is a non-trivial subspace by
Corollary 12.14 and is not complete. This shows that (2) and (3) are equivalent.

Theorem 12.24. Let be an orthonormal set. Then the following are
equivalent:

(1) is complete or equivalently a basis.
(2) =

P h i for all .

(3) h i = P h i h i for all
(4) k k2 = P |h i|2 for all

Proof. Let = span and =
(1) (2) By Corollary 12.20,

P h i = Therefore

X

h i = = = {0}

(2) (3) is a consequence of Proposition 12.19.
(3) (4) is obvious, just take =
(4) (1) If then by 4), k k = 0 i.e. = 0 This shows that is

complete.

Proposition 12.25. A Hilbert space is separable i has a countable ortho-
normal basis Moreover, if is separable, all orthonormal bases of are
countable.

Proof. Let D be a countable dense set D = { } =1. By Gram-Schmidt
process there exists = { } =1 an orthonormal set such that span{ : =
1 2 } span{ : = 1 2 } So if h i = 0 for all then h i = 0
for all Since D is dense we may choose { } D such that = lim
and therefore h i = lim h i = 0 That is to say = 0 and is complete.
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Conversely if is a countable orthonormal basis, then the countable set

D =
X

: Q+ Q : #{ : 6= 0}

is dense in
Finally let = { } =1 be an orthonormal basis and 1 be another ortho-

normal basis. Then the sets

= { 1 : h i 6= 0}
are countable for each N and hence :=

S

=1
is a countable subset of 1

Suppose there exists 1 \ then h i = 0 for all and since = { } =1

is an orthonormal basis, this implies = 0 which is impossible since k k = 1
Therefore 1 \ = and hence 1 = is countable.

Definition 12.26. A linear map : is an isometry if k k = k k
for all and is unitary if is also surjective.

Exercise 12.4. Let : be a linear map, show the following are equivalent:
(1) : is an isometry,
(2) h 0i = h 0i for all 0 (see Eq. (12.21) below)
(3) =

Exercise 12.5. Let : be a linear map, show the following are equivalent:
(1) : is unitary
(2) = and =
(3) is invertible and 1 =

Exercise 12.6. Let be a Hilbert space. Use Theorem 12.24 to show there exists
a set and a unitary map : 2( ) Moreover, if is separable and
dim( ) = then can be taken to be N so that is unitarily equivalent to
2 = 2(N)

Remark 12.27. Suppose that { } =1 is a total subset of i.e. span{ } = .
Let { } =1 be the vectors found by performing Gram-Schmidt on the set { } =1.
Then { } =1 is an orthonormal basis for .

Example 12.28. (1) Let = 2([ ] ) = 2(( ) ) and
( ) = 1

2
for Z Simple computations show := { } Z is an

orthonormal set. We now claim that is an orthonormal basis. To see this
recall that (( )) is dense in 2(( ) ) Any (( ))
may be extended to be a continuous 2 — periodic function on R and hence
by Exercise 11.9), may uniformly (and hence in 2) be approximated by
a trigonometric polynomial. Therefore is a total orthonormal set, i.e.
is an orthonormal basis. The expansion of in this basis is the well known
Fourier series expansion of

(2) Let = 2([ 1 1] ) and := {1 2 3 } Then is total in
by the Stone-Weierstrass theorem and a similar argument as in the first

example or directly from Exercise 11.12. The result of doing Gram-Schmidt
on this set gives an orthonormal basis of consisting of the “Legendre
Polynomials.”
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(3) Let = 2(R
1
2

2

) Exercise 11.12 implies := {1 2 3 } is
total in and the result of doing Gram-Schmidt on now gives an ortho-
normal basis for consisting of “Hermite Polynomials.”

Remark 12.29 (An Interesting Phenomena). Let = 2([ 1 1] ) and :=
{1 3 6 9 } Then again is total in by the same argument as in item 2.
Example 12.28. This is true even though is a proper subset of Notice that
is an algebraic basis for the polynomials on [ 1 1] while is not! The following
computations may help relieve some of the reader’s anxiety. Let 2([ 1 1] )
then, making the change of variables = 1 3 shows that

(12.13)
Z 1

1

| ( )|2 =

Z 1

1

¯

¯

¯
( 1 3)

¯

¯

¯

2 1

3
2 3 =

Z 1

1

¯

¯

¯
( 1 3)

¯

¯

¯

2

( )

where ( ) = 1
3

2 3 Since ([ 1 1]) = ([ 1 1]) = 2 is a finite mea-
sure on [ 1 1] and hence by Exercise 11.12 := {1 2 3 } is a total in
2([ 1 1] ) In particular for any 0 there exists a polynomial ( ) such that

Z 1

1

¯

¯

¯
( 1 3) ( )

¯

¯

¯

2

( ) 2

However, by Eq. (12.13) we have

2

Z 1

1

¯

¯

¯
( 1 3) ( )

¯

¯

¯

2

( ) =

Z 1

1

¯

¯ ( ) ( 3)
¯

¯

2

Alternatively, if ([ 1 1]) then ( ) = ( 1 3) is back in ([ 1 1]) There-
fore for any 0 there exists a polynomial ( ) such that

k k = sup {| ( ) ( )| : [ 1 1]}
= sup

©
¯

¯ ( 3) ( 3)
¯

¯ : [ 1 1]
ª

= sup
©
¯

¯ ( ) ( 3)
¯

¯ : [ 1 1]
ª

This gives another proof the polynomials in 3 are dense in ([ 1 1]) and hence
in 2([ 1 1])

12.3. Fourier Series Considerations. (BRUCE: This needs work and some stu
from Section 18.1 should be moved to here.) In this section we will examine item
1. of Example 12.28 in more detail. In the process we will give a direct and
constructive proof of the result in Exercise 11.9.
For C let ( ) :=

P

= Since ( ) ( ) = +1

( ) :=
X

=

=
+1

1

with the convention that
+1

1
| =1 = lim

1

+1

1
= 2 + 1 =

X

=

1

Writing = we find

( ) := ( ) =
( +1)

1
=

( +1 2) ( +1 2)

2 2

=
sin( + 1

2 )

sin 12
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Definition 12.30. The function

(12.14) ( ) :=
sin( + 1

2)

sin 12
=
X

=

is called the Dirichlet kernel.

By the 2 — theory of the Fourier series (or other methods) one may shows that
0 as when acting on smooth periodic functions of However this

kernel is not positive. In order to get a positive approximate — function sequence,
we might try squaring to find

2 ( ) =
sin2( + 1

2)

sin2 12
=

"

X

=

#2

=
X

=

=
X

=

+

=
2
X

= 2

X

=

1 + = [ ] =
2
X

= 2

X

=

1| |

=
2
X

= 2

[ + 1 + | |] =
2
X

= 2

[2 + 1 | |]

=
2
X

= 2

[2 + 1 | |]

In particular this implies

(12.15)
1

2 + 1

sin2( + 1
2)

sin2 12
=

2
X

= 2

·

1
| |
2 + 1

¸

We will show in Lemma 12.32 below that Eq. (12.15) is valid for 1
2N

Definition 12.31. The function

(12.16) ( ) :=
1

+ 1

sin2( +1
2 )

sin2 12
is called the Fejér kernel.

Lemma 12.32. The Fejér kernel satisfies:
(1)

(12.17) ( ) :=
X

=

·

1
| |
+ 1

¸

(2) ( ) 0
(3) 1

2

R

( ) = 1

(4) sup | | ( ) 0 as for all 0 see Figure 12.3
(5) For any continuous 2 — periodic function on R

( ) =
1

2

Z

( ) ( )

=
X

=

·

1
| |
+ 1

¸µ

1

2

Z

( )

¶

(12.18)

and ( ) ( ) uniformly in as
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2.51.250-1.25-2.5

12.5

10

7.5

5

2.5

0

x

y

x

y

Plots of ( ) for = 2 7 and 13

Proof. 1. Using

sin2
1

2
=

·

2 2

2

¸2

=
2 +

4
=
2

4

we find

4 ( + 1) sin2
1

2

X

=

·

1
| |
+ 1

¸

=
¡

2
¢

X

1| | [ + 1 | |]

=
X

½

21| | [ + 1 | |] 1| 1| [ + 1 | 1|]
1| +1| [ + 1 | + 1|]

¾

=
X

{0 1 +1}

½

21| | [ + 1 | |] 1| 1| [ + 1 | 1|]
1| +1| [ + 1 | + 1|]

¾

= 2 ( +1) ( +1) = 4 sin2(
+ 1

2
)

which verifies item 1.
2.- 4. Clearly ( ) 0 being the square of a function and item 3. follows by

integrating the formula in Eq. (12.17). Item 4. is elementary to check and is clearly
indicated in Figure 12.3.
5. Items 2-4 show that ( ) has the classic properties of an approximate
— function when acting on 2 — periodic functions. Hence it is standard that

( ) ( ) uniformly in as Eq. (12.18) is a consequence of the
simple computation,

( ) =
1

2

Z

( ) ( )

=
X

=

·

1
| |
+ 1

¸µ

1

2

Z

( )

¶

12.4. Weak Convergence. Suppose is an infinite dimensional Hilbert space
and { } =1 is an orthonormal subset of Then, by Eq. (12.1), k k2 = 2
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for all 6= and in particular, { } =1 has no convergent subsequences. From
this we conclude that := { : k k 1} the closed unit ball in is not
compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on having the property that is compact.

Definition 12.33. Let ( k·k) be a Banach space and be its continuous dual.
The weak topology, on is the topology generated by If { } =1

is a sequence we will write as to mean that in the weak
topology.

Because = ( ) k·k := ({k ·k : } it is harder for a function
: F to be continuous in the — topology than in the norm topology, k·k

In particular if : F is a linear functional which is — continuous, then is
k·k — continuous and hence

Proposition 12.34. Let { } =1 be a sequence, then as
i ( ) = lim ( ) for all

Proof. By definition of we have i for all and 0
there exists an N such that | ( ) ( )| for all and
This later condition is easily seen to be equivalent to ( ) = lim ( ) for all

The topological space ( ) is still Hausdor , however to prove this one needs
to make use of the Hahn Banach Theorem 18.16 below. For the moment we will
concentrate on the special case where = is a Hilbert space in which case

= { := h· i : } see Propositions 12.15. If and := 6= 0
then

0 := k k2 = ( ) = ( ) ( )

Thus := { : | ( ) ( )| 2} and := { : | ( ) ( )| 2}
are disjoint sets from which contain and respectively. This shows that ( )
is a Hausdor space. In particular, this shows that weak limits are unique if they
exist.

Remark 12.35. Suppose that is an infinite dimensional Hilbert space { } =1 is
an orthonormal subset of Then Bessel’s inequality (Proposition 12.18) implies

0 as This points out the fact that if as it
is no longer necessarily true that k k = lim k k However we do always have
k k lim inf k k because,

k k2 = lim h i lim inf [k k k k] = k k lim inf k k
Proposition 12.36. Let be a Hilbert space, be an orthonormal basis for
and { } =1 be a bounded sequence, then the following are equivalent:

(1) as
(2) h i = lim h i for all
(3) h i = lim h i for all
Moreover, if := lim h i exists for all then

P | |2 and

:=
P

as

Proof. 1. = 2. This is a consequence of Propositions 12.15 and 12.34. 2. =
3. is trivial.
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3. = 1. Let := sup k k and 0 denote the algebraic span of Then for
and 0

|h i| |h i|+ |h i| |h i|+ 2 k k
Passing to the limit in this equation implies lim sup |h i| 2 k k
which shows lim sup |h i| = 0 since 0 is dense in
To prove the last assertion, let Then by Bessel’s inequality (Proposition

12.18),
X

| |2 = lim
X

|h i|2 lim inf k k2 2

Since was arbitrary, we conclude that
P | |2 and hence we

may define :=
P

By construction we have

h i = = lim h i for all

and hence as by what we have just proved.

Theorem 12.37. Suppose that { } =1 is a bounded sequence. Then there
exists a subsequence := of { } =1 and such that as

Proof. This is a consequence of Proposition 12.36 and a Cantor’s diagonalization
argument which is left to the reader, see Exercise 12.14.

Theorem 12.38 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that is a
separable Hilbert space, := { : k k 1} is the closed unit ball in and
{ } =1 is an orthonormal basis for Then

(12.19) ( ) :=
X

=1

1

2
|h i|

defines a metric on which is compatible with the weak topology on :=
( ) = { : } Moreover ( ) is a compact metric space.

Proof. The routine check that is a metric is left to the reader. Let be
the topology on induced by For any and N the map
h i = h i h i is continuous and since the sum in Eq. (12.19) is
uniformly convergent for it follows that ( ) is — continuous.
This implies the open balls relative to are contained in and therefore

For the converse inclusion, let ( ) = h i be an element of
and for N let :=

P

=1h i Then =
P

=1h i is
continuous, being a finite linear combination of the which are easily seen to be
— continuous. Because as it follows that

sup | ( ) ( )| = k k 0 as

Therefore | is — continuous as well and hence = ( | : )
The last assertion follows directly from Theorem 12.37 and the fact that sequen-

tial compactness is equivalent to compactness for metric spaces.

Theorem 12.39 (Weak and Strong Di erentiability). Suppose that 2(R )
and R \ {0} Then the following are equivalent:
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(1) There exists { } =1 R\ {0} such that lim = 0 and

sup

°

°

°

°

(·+ ) (·)°°
°

°

2

(2) There exists 2(R ) such that h i = h i for all (R )

(3) There exists 2(R ) and (R ) such that
2

and
2

as
(4) There exists 2 such that

(·+ ) (·) 2

as 0

(See Theorem 19.18 for the generalization of this theorem.)

Proof. 1. = 2. We may assume, using Theorem 12.37 and passing to a
subsequence if necessary, that (·+ ) (·) for some 2(R ) Now for

(R )

h i = lim h (·+ ) (·) i = lim h (· ) (·) i

= h lim
(· ) (·) i = h i

wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.
2. = 3. Let (R R) such that

R

R ( ) = 1 and let ( ) =
( ) then by Proposition 11.24, := (R ) for all and

( ) = ( ) =

Z

R
( ) ( ) = h [ ( ·)]i

= h ( ·)i = ( )

By Theorem 11.21, 2(R ) and = in 2(R ) as
This shows 3. holds except for the fact that need not have compact

support. To fix this let (R [0 1]) such that = 1 in a neighborhood of 0
and let ( ) = ( ) and ( ) ( ) := ( ) ( ) Then

( ) = + = ( ) +

so that in 2 and ( ) in 2 as 0 Let =
where is chosen to be greater than zero but small enough so that

k k2 + k ( ) k2 1

Then (R ) and in 2 as
3. = 4. By the fundamental theorem of calculus

( ) ( )
=

( + ) ( )

=
1
Z 1

0

( + ) =

Z 1

0

( ) ( + )(12.20)

Let

( ) :=

Z 1

0

( ) =

Z 1

0

( + )



238 BRUCE K. DRIVER†

which is defined for almost every and is in 2(R ) by Minkowski’s inequality for
integrals, Theorem 9.27. Therefore

( ) ( )
( ) =

Z 1

0

[( ) ( + ) ( + )]

and hence again by Minkowski’s inequality for integrals,
°

°

°

°

°

°

°

°

2

Z 1

0

k ( ) k2 =

Z 1

0

k k2
Letting in this equation implies ( ) = a.e. Finally one more
application of Minkowski’s inequality for integrals implies,

°

°

°

°

°

°

°

°

2

= k k2 =
°

°

°

°

Z 1

0

( )

°

°

°

°

2
Z 1

0

k k2
By the dominated convergence theorem and Proposition 11.13, the latter term tends
to 0 as 0 and this proves 4. The proof is now complete since 4. = 1. is trivial.

12.5. Supplement 1: Converse of the Parallelogram Law.

Proposition 12.40 (Parallelogram Law Converse). If ( k·k) is a normed space
such that Eq. (12.2) holds for all then there exists a unique inner product
on h· ·i such that k k := ph i for all In this case we say that k·k is a
Hilbertian norm.

Proof. If k·k is going to come from an inner product h· ·i it follows from Eq.
(12.1) that

2Reh i = k + k2 k k2 k k2
and

2Reh i = k k2 k k2 k k2
Subtracting these two equations gives the “polarization identity,”

4Reh i = k + k2 k k2
Replacing by in this equation then implies that

4Imh i = k + k2 k k2
from which we find

(12.21) h i = 1

4

X

k + k2

where = {±1 ± } — a cyclic subgroup of 1 C Hence if h· ·i is going to exists
we must define it by Eq. (12.21).
Notice that

h i = 1

4

X

k + k2 = k k2 + k + k2 k k2

= k k2 + ¯

¯1 + |2¯¯ k k2 ¯

¯1 |2¯¯ k k2 = k k2
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So to finish the proof of (4) we must show that h i in Eq. (12.21) is an inner
product. Since

4h i =
X

k + k2 =
X

k ( + ) k2

=
X

k + 2 k2

= k + k2 + k + k2 + k k2 k k2
= k + k2 + k k2 + k k2 k + k2
= 4h i

it su ces to show h i is linear for all (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity from
Eq. (12.2). To do this we make use of Eq. (12.2) three times to find

k + + k2 = k + k2 + 2k + k2 + 2k k2
= k k2 2k k2 2k k2 + 2k + k2 + 2k k2
= k + k2 2k k2 2k k2 + 2k + k2 + 2k k2
= k + + k2 + 2k + k2 + 2k k2 2k k2 2k k2 + 2k + k2 + 2k k2

Solving this equation for k + + k2 gives
(12.22) k + + k2 = k + k2 + k + k2 k k2 + k k2 + k k2 k k2
Using Eq. (12.22), for

4Reh + i = k + + k2 k + k2
= k + k2 + k + k2 k k2 + k k2 + k k2 k k2
¡k k2 + k k2 k k2 + k k2 + k k2 k k2¢

= k + k2 k k2 + k + k2 k k2
= 4Reh i+ 4Reh i(12.23)

Now suppose that then since | | = 1
4h i = 1

4

X

k + k2 = 1

4

X

k + 1 k2

=
1

4

X

k + k2 = 4 h i(12.24)

where in the third inequality, the substitution was made in the sum. So Eq.
(12.24) says h± i = ± h i and h i = h i Therefore

Imh i = Re ( h i) = Reh i
which combined with Eq. (12.23) shows

Imh + i = Reh i = Reh i+Reh i
= Imh i+ Imh i

and therefore (again in combination with Eq. (12.23)),

h + i = h i+ h i for all
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Because of this equation and Eq. (12.24) to finish the proof that h i is
linear, it su ces to show h i = h i for all 0 Now if = N then

h i = h + ( 1) i = h i+ h( 1) i
so that by induction h i = h i Replacing by then shows that
h i = h 1 i so that h 1 i = 1h i and so if N we find

h i = h 1 i = h i
so that h i = h i for all 0 and Q By continuity, it now follows that
h i = h i for all 0

12.6. Supplement 2. Non-complete inner product spaces. Part of Theorem
12.24 goes through when is a not necessarily complete inner product space. We
have the following proposition.

Proposition 12.41. Let ( h· ·i) be a not necessarily complete inner product space
and be an orthonormal set. Then the following two conditions are equivalent:

(1) =
P h i for all

(2) k k2 = P |h i|2 for all .

Moreover, either of these two conditions implies that is a maximal ortho-
normal set. However being a maximal orthonormal set is not su cient to
conditions for 1) and 2) hold!

Proof. As in the proof of Theorem 12.24, 1) implies 2). For 2) implies 1) let
and consider

°

°

°

°

°

X

h i
°

°

°

°

°

2

= k k2 2
X

|h i|2 +
X

|h i|2

= k k2
X

|h i|2

Since k k2 = P |h i|2 it follows that for every 0 there exists such

that for all such that
°

°

°

°

°

X

h i
°

°

°

°

°

2

= k k2
X

|h i|2

showing that =
P h i

Suppose = ( 1 2 ) If 2) is valid then k k2 = 0 i.e. = 0 So
is maximal. Let us now construct a counter example to prove the last assertion.
Take = Span{ } =1 2 and let ˜ = 1 ( +1) +1 for = 1 2 Apply-

ing Gramn-Schmidt to {˜ } =1 we construct an orthonormal set = { } =1

I now claim that is maximal. Indeed if = ( 1 2 ) then
for all i.e.

0 = ( ˜ ) = 1 ( + 1) +1

Therefore +1 = ( + 1)
1

1 for all Since Span{ } =1 = 0 for some
su ciently large and therefore 1 = 0 which in turn implies that = 0 for all

ANALYSIS TOOLS WITH APPLICATIONS 241

So = 0 and hence is maximal in On the other hand, is not maximal
in 2 In fact the above argument shows that in 2 is given by the span of =
(1 1

2
1
3

1
4

1
5 ) Let be the orthogonal projection of 2 onto the Span( ) =

Then
X

=1

h i = =
h i
k k2

so that
P

=1
h i = i Span( ) = 2 For example if =

(1 0 0 ) (or more generally for = for any ) and hence
P

=1

h i 6=

12.7. Supplement 3: Conditional Expectation. In this section let ( F )
be a probability space, i.e. ( F ) is a measure space and ( ) = 1 Let G F
be a sub — sigma algebra of F and write G if : C is bounded and is
(G BC) — measurable. In this section we will write

:=

Z

Definition 12.42 (Conditional Expectation). Let G : 2( F ) 2( G )
denote orthogonal projection of 2( F ) onto the closed subspace 2( G )
For 2( G ) we say that G 2( F ) is the conditional expecta-
tion of

Theorem 12.43. Let ( F ) and G F be as above and 2( F )

(1) If 0 — a.e. then G 0 — a.e.
(2) If — a.e. there G G — a.e.
(3) | G | G | | — a.e.
(4) k G k 1 k k 1 for all 2 So by the B.L.T. Theorem 4.1, G extends

uniquely to a bounded linear map from 1( F ) to 1( G ) which we
will still denote by G

(5) If 1( F ) then = G 1( G ) i

( ) = ( ) for all G
(6) If G and 1( F ) then G( ) = · G — a.e.

Proof. By the definition of orthogonal projection for G
( ) = ( · G ) = ( G · )

So if 0 then 0 ( ) ( G · ) and since this holds for all 0 in G
G 0 — a.e. This proves (1). Item (2) follows by applying item (1). to
If is real, ± | | and so by Item (2), ± G G | | i.e. | G | G | | —
a.e. For complex let 0 be a bounded and G — measurable function. Then

[| G | ] =
h

G · sgn ( G )
i

=
h

· sgn ( G )
i

[| | ] = [ G | | · ]
Since is arbitrary, it follows that | G | G | | — a.e. Integrating this
inequality implies

k G k 1 | G | [ G | | · 1] = [| |] = k k 1
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Item (5). Suppose 1( F ) and G Let 2( F ) be a
sequence of functions such that in 1( F ) Then

( G · ) = ( lim G · ) = lim ( G · )
= lim ( · ) = ( · )(12.25)

This equation uniquely determines G for if 1( G ) also satisfies ( · ) =
( · ) for all G then taking = sgn ( G ) in Eq. (12.25) gives

0 = (( G ) ) = (| G |)
This shows = G — a.e. Item (6) is now an easy consequence of this charac-
terization, since if G

[( G ) ] = [ G · ] = [ · ] = [ · ] = [ G ( ) · ]
Thus G ( ) = · G — a.e.

Proposition 12.44. If G0 G1 F . Then
(12.26) G0 G1 = G1 G0 = G0

Proof. Equation (12.26) holds on 2( F ) by the basic properties of or-
thogonal projections. It then hold on 1( F ) by continuity and the density of
2( F ) in 1( F )

Example 12.45. Suppose that ( M ) and ( N ) are two — finite measure
spaces. Let = × F = M N and ( ) = ( ) ( ) ( ) where

1( F ) is a positive function such that
R

× ( ) = 1 Let
: be the projection map, ( ) = and

G := ( ) = 1(M) = { × : M}
Then : R is G — measurable i = for some function : R
which is N — measurable, see Lemma 6.62. For 1( F ) we will now show
G = where

( ) =
1

(̄ )
1(0 )( (̄ )) ·

Z

( ) ( ) ( )

(̄ ) :=
R

( ) ( ) (By convention,
R

( ) ( ) ( ) := 0 if
R | ( )| ( ) ( ) =

)
By Tonelli’s theorem, the set

:= { : (̄ ) = }
½

:

Z

| ( )| ( ) ( ) =

¾

is a — null set. Since

[| |] =
Z

( )

Z

( ) | ( )| ( ) =

Z

( ) | ( )| (̄ )

=

Z

( )

¯

¯

¯

¯

Z

( ) ( ) ( )

¯

¯

¯

¯

Z

( )

Z

( ) | ( )| ( )
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1( G ) Let = be a bounded G — measurable function, then
[ · ] =

Z

( )

Z

( ) ( ) ( ) ( )

=

Z

( ) ( ) ( ) (̄ )

=

Z

( ) ( )

Z

( ) ( ) ( )

= [ ]

and hence G = as claimed.

This example shows that conditional expectation is a generalization of the notion
of performing integration over a partial subset of the variables in the integrand.
Whereas to compute the expectation, one should integrate over all of the variables.
See also Exercise 12.8 to gain more intuition about conditional expectations.

Theorem 12.46 (Jensen’s inequality). Let ( F ) be a probability space and
: R R be a convex function. Assume 1( F ;R) is a function such

that (for simplicity) ( ) 1( F ;R) then ( G ) G [ ( )] — a.e.

Proof. Let us first assume that is 1 and is bounded. In this case

(12.27) ( ) ( 0)
0( 0)( 0) for all 0 R

Taking 0 = G and = in this inequality implies

( ) ( G ) 0( G )( G )

and then applying G to this inequality gives

G [ ( )] ( G ) = G [ ( ) ( G )] 0( G )( G G G ) = 0

The same proof works for general one need only use Proposition 9.7 to replace
Eq. (12.27) by

( ) ( 0)
0 ( 0)( 0) for all 0 R

where 0 ( 0) is the left hand derivative of at 0

If is not bounded, apply what we have just proved to = 1| | to find

(12.28) G
£

( )
¤

( G )

Since G : 1( F ;R) 1( F ;R) is a bounded operator and
and ( ) ( ) in 1( F ;R) as there exists { } =1 such that

and and ( ) ( ) — a.e. So passing to the limit in Eq.
(12.28) shows G [ ( )] ( G ) — a.e.

12.8. Exercises.

Exercise 12.7. Let ( M ) be a measure space and := 2( M ) Given
( ) let : be the multiplication operator defined by =

Show 2 = i there exists M such that = 1 a.e.

Exercise 12.8. Suppose ( F ) is a probability space and A := { } =1 F
is a partition of (Recall this means =

`

=1 ) Let G be the — algebra
generated by A Show:

(1) G i = for some N
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(2) : R is G — measurable i =
P

=1 1 for some R
(3) For 1( F ) let ( | ) := [1 ] ( ) if ( ) 6= 0 and

( | ) = 0 otherwise. Show

G =
X

=1

( | )1

Exercise 12.9. Folland 5.60 on p. 177.

Exercise 12.10. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 12.11. Folland 5.67 on p. 178 regarding the mean ergodic theorem.

Exercise 12.12 (Haar Basis). In this problem, let 2 denote 2([0 1] ) with the
standard inner product,

( ) = 1[0 1 2)( ) 1[1 2 1)( )

and for N0 := N {0} with 0 2 let

( ) := 2 2 (2 )

The following pictures shows the graphs of 00 1 0 1 1 2 1 2 2 and 2 3 re-
spectively.
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(1) Show := {1} ©

: 0 and 0 2
ª

is an orthonormal set, 1
denotes the constant function 1

(2) For N let := span
¡{1} ©

: 0 and 0 2
ª¢

Show

= span
¡{1[ 2 ( +1)2 ) : and 0 2

¢

(3) Show =1 is a dense subspace of 2 and therefore is an orthonormal
basis for 2 Hint: see Theorem 11.3.

(4) For 2 let

:= h 1i1+
1

X

=0

2 1
X

=0

h i

Show (compare with Exercise 12.8)

=
2 1
X

=0

Ã

2

Z ( +1)2

2

( )

!

1[ 2 ( +1)2 )

and use this to show k k 0 as for all ([0 1])

Exercise 12.13. Let ( ) be the orthogonal groups consisting of × real
orthogonal matrices i.e. = For ( ) and 2(R ) let

( ) = ( 1 ) Show
(1) is well defined, namely if = a.e. then = a.e.
(2) : 2(R ) 2(R ) is unitary and satisfies 1 2 = 1 2 for all

1 2 ( ) That is to say the map ( ) U( 2(R )) — the
unitary operators on 2(R ) is a group homomorphism, i.e. a “unitary
representation” of ( )

(3) For each 2(R ) the map ( ) 2(R ) is continuous.
Take the topology on ( ) to be that inherited from the Euclidean topology
on the vector space of all × matrices. Hint: see the proof of Proposition
11.13.

Exercise 12.14. Prove Theorem 12.37. Hint: Let 0 := span { : N} —
a separable Hilbert subspace of Let { } =1 0 be an orthonormal basis
and use Cantor’s diagonalization argument to find a subsequence := such
that := lim h i exists for all N Finish the proof by appealing to
Proposition 12.36.

Exercise 12.15. Suppose that { } =1 and as Show
as (i.e. lim k k = 0) i lim k k = k k

Exercise 12.16. Show the vector space operations of are continuous in the weak
topology. More explicitly show
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(1) ( ) × + is ( ) — continuous and
(2) ( ) F× is ( F ) — continuous.

Exercise 12.17. Euclidean group representation and its infinitesimal generators
including momentum and angular momentum operators.

Exercise 12.18. Spherical Harmonics.

Exercise 12.19. The gradient and the Laplacian in spherical coordinates.

Exercise 12.20. Legendre polynomials.

Exercise 12.21. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be more
precise, suppose is an infinite dimensional Hilbert space and is a count-
ably additive measure on B which is invariant under translations and satisfies,
( 0( )) 0 for all 0 Show ( ) = for all non-empty open subsets

12.9. Fourier Series Exercises.

Notation 12.47. Let (R ) denote the 2 — periodic functions in (R )

(R ) :=
©

(R ) : ( + 2 ) = ( ) for all R and = 1 2
ª

Also let h· ·i denote the inner product on the Hilbert space := 2([ ] ) given
by

h i :=
µ

1

2

¶
Z

[ ]

( )¯( )

Recall that
©

( ) := · : Z
ª

is an orthonormal basis for in particular
for

(12.29) =
X

Z

h i

where the convergence takes place in 2([ ] ) For 1([ ] ) we will
write (̃ ) for the Fourier coe cient,

(12.30) (̃ ) := h i =
µ

1

2

¶
Z

[ ]

( ) ·

Lemma 12.48. Let 0 then the following are equivalent,

(12.31)
X

Z

1

(1 + | |)
X

Z

1

(1 + | |2) 2
and

Proof. Let := (0 1] and Z For = + ( + )

2 + | | = 2 + | | 2 + | |+ | | 3 + | | and
2 + | | = 2 + | | 2 + | | | | | |+ 1

and therefore for 0

1

(3 + | |)
1

(2 + | |)
1

(1 + | |)
Thus we have shown

1

(3 + | |)
X

Z

1

(2 + | |) 1 + ( )
1

(1 + | |) for all R
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Integrating this equation then shows
Z

R

1

(3 + | |)
X

Z

1

(2 + | |)
Z

R

1

(1 + | |)

from which we conclude that

(12.32)
X

Z

1

(2 + | |) i

Because the functions 1+ 2+ and 1 + 2 all behave like as the sums
in Eq. (12.31) may be compared with the one in Eq. (12.32) to finish the proof.

Exercise 12.22 (Riemann Lebesgue Lemma for Fourier Series). Show for
1([ ] ) that ˜ 0(Z ) i.e. ˜ : Z C and lim (̃ ) = 0 Hint: If

this follows form Bessel’s inequality. Now use a density argument.

Exercise 12.23. Suppose 1([ ] ) is a function such that ˜ 1(Z ) and
set

( ) :=
X

Z

(̃ ) · (pointwise).

(1) Show (R )

(2) Show ( ) = ( ) for — a.e. in [ ] Hint: Show ˜( ) = (̃ ) and
then use approximation arguments to show
Z

[ ]

( ) ( ) =

Z

[ ]

( ) ( ) ([ ] )

(3) Conclude that 1([ ] ) ([ ] ) and in particular
([ ] ) for all [1 ]

Exercise 12.24. Suppose N0 is a multi-index such that | | 2 and
2 (R )29.

(1) Using integration by parts, show

( ) (̃ ) = h i

Note: This equality implies

¯

¯

¯
(̃ )
¯

¯

¯

1 k k 1 k k

(2) Now let =
P

=1
2 2 Working as in part 1) show

(12.33) h(1 ) i = (1 + | |2) (̃ )

29We view (R) as a subspace of by identifying (R) with |[ ]
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Remark 12.49. Suppose that is an even integer, is a multi-index and
+| |

(R ) then

X

Z

| |
¯

¯

¯
(̃ )
¯

¯

¯

2

=
X

Z

|h i| (1 + | |2) 2(1 + | |2) 2

2

=
X

Z

¯

¯

¯
h(1 ) 2 i

¯

¯

¯
(1 + | |2) 2

2

X

Z

¯

¯

¯
h(1 ) 2 i

¯

¯

¯

2

·
X

Z

(1 + | |2)

=
°

°

°
(1 ) 2

°

°

°

2

where :=
P

Z (1 + | |2) i 2 So the smoother is the faster
˜ decays at infinity. The next problem is the converse of this assertion and hence
smoothness of corresponds to decay of ˜ at infinity and visa-versa.

Exercise 12.25. Suppose R and
©

C : Z
ª

are coe cients such that
X

Z

| |2 (1 + | |2)

Show if 2 + the function defined by

( ) =
X

Z

·

is in (R ) Hint: Work as in the above remark to show
X

Z

| | | | for all | |

Exercise 12.26 (Poisson Summation Formula). Let 1(R )

:= R :
X

Z

| ( + 2 )| =

and set

ˆ( ) := (2 ) 2
Z

R
( ) ·

Further assume ˆ 1(Z )

(1) Show ( ) = 0 and + 2 = for all Z Hint: Compute
R

[ ]

P

Z | ( + 2 )|
(2) Let

( ) :=

½
P

Z ( + 2 ) for
0 if

Show 1([ ] ) and (̃ ) = (2 ) 2 ˆ( )
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(3) Using item 2) and the assumptions on show 1([ ] )
([ ] ) and

( ) =
X

Z

(̃ ) · =
X

Z

(2 )
2 ˆ( ) · for — a.e.

i.e.

(12.34)
X

Z

( + 2 ) = (2 ) 2
X

Z

ˆ( ) · for — a.e.

(4) Suppose we now assume that (R ) and satisfies 1) | ( )| (1+

| |) for some and and 2) ˆ 1(Z ) then show Eq. (12.34)
holds for all R and in particular

X

Z

(2 ) = (2 )
2
X

Z

ˆ( )

For simplicity, in the remaining problems we will assume that = 1

Exercise 12.27 (Heat Equation 1.). Let ( ) [0 )×R ( ) be a contin-
uous function such that ( ·) (R) for all 0 ˙ := and exists
and are continuous when 0 Further assume that satisfies the heat equation
˙ = 1

2 Let ˜( ) := h ( ·) i for Z Show for 0 and Z that
˜( ) is di erentiable in and ˜( ) = 2˜( ) 2 Use this result to show

(12.35) ( ) =
X

Z

2
2

(̃ )

where ( ) := (0 ) and as above

(̃ ) = h i = 1

2

Z

( )

Notice from Eq. (12.35) that ( ) ( ) is for 0

Exercise 12.28 (Heat Equation 2.). Let ( ) := 1
2

P

Z
2

2

Show that
Eq. (12.35) may be rewritten as

( ) =

Z

( ) ( )

and

( ) =
X

Z

( + 2 )

where ( ) := 1
2

1
2

2

Also show ( ) may be written as

( ) = ( ) :=

Z

R
( ) ( )

Hint: To show ( ) =
P

Z ( + 2 ) use the Poisson summation formula
along with the Gaussian integration formula

ˆ ( ) =
1

2

Z

R
( ) =

1

2
2

2
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Exercise 12.29 (Wave Equation). Let 2(R×R) be such that ( ·) (R)
for all R Further assume that solves the wave equation, = Let
( ) := (0 ) and ( ) = ˙ (0 ) Show ˜( ) := h ( ·) i for Z is twice
continuously di erentiable in and

2

2 ˜( ) = 2˜( ) Use this result to show

(12.36) ( ) =
X

Z

µ

(̃ ) cos( ) + ˜( )
sin

¶

with the sum converging absolutely. Also show that ( ) may be written as

(12.37) ( ) =
1

2
[ ( + ) + ( )] +

1

2

Z

( + )

Hint: To show Eq. (12.36) implies (12.37) use

cos =
+

2
and sin =

2

and
( + ) ( )

=

Z

( + )

12.10. Dirichlet Problems on .

Exercise 12.30 (Worked Example). Let := { C : | | 1} be the open
unit disk in C = R2 where we write = + = in the usual way. Also let
=

2

2 +
2

2 and recall that may be computed in polar coordinates by the
formula,

= 1
¡

1
¢

+
1
2

2

Suppose that ( ¯) 2( ) and ( ) = 0 for Let = | and

˜( ) :=
1

2

Z

( )

(We are identifying 1 = :=
©

¯ : | | = 1ª with [ ] ( ) by the
map [ ] 1 ) Let

(12.38) ˜( ) :=
1

2

Z

( )

then:

(1) ˜( ) satisfies the ordinary di erential equation

1 ( ˜( )) =
1
2

2˜( ) for (0 1)

(2) Recall the general solution to

(12.39) ( ( )) = 2 ( )

may be found by trying solutions of the form ( ) = which then implies
2 = 2 or = ± From this one sees that ˜( ) may be written as
˜( ) = | | + | | for some constants and when 6= 0 If
= 0 the solution to Eq. (12.39) is gotten by simple integration and the

result is ˜( 0) = 0 + 0 ln Since ˜( ) is bounded near the origin for
each it follows that = 0 for all Z
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(3) So we have shown

| | = ˜( ) =
1

2

Z

( )

and letting 1 in this equation implies

=
1

2

Z

( ) = ˜( )

Therefore,

(12.40) ( ) =
X

Z

˜( ) | |

for 1 or equivalently,

( ) =
X

N0

˜( ) +
X

N

˜( )¯

(4) Inserting the formula for ˜( ) into Eq. (12.40) gives

( ) =
1

2

Z

Ã

X

Z

| | ( )

!

( ) for all 1

Now by simple geometric series considerations we find, setting =
that
X

Z

| | =
X

=0

+
X

=0

1 = 2Re
X

=0

1

= Re

·

2
1

1
1

¸

= Re

·

1 +

1

¸

= Re

"

¡

1 +
¢ ¡

1
¢

|1 |2
#

= Re

·

1 2 + 2 sin

1 2 cos + 2

¸

(12.41)

=
1 2

1 2 cos + 2

Putting this altogether we have shown

( ) =
1

2

Z

( ) ( ) =: ( )

=
1

2
Re

Z

1 + ( )

1 ( )
( )(12.42)

where

( ) :=
1 2

1 2 cos + 2

is the so called Poisson kernel. (The fact that 1
2 Re

R

( ) = 1 follows
from the fact that

1

2

Z

( ) = Re
1

2

Z

X

Z

| |

= Re
1

2

X

Z

Z

| | = 1 )
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Writing = Eq. (12.42) may be rewritten as

( ) =
1

2
Re

Z

1 +

1
( )

which shows = Re where

( ) :=
1

2

Z

1 +

1
( )

Moreover it follows from Eq. (12.41) that

Im ( ) =
1
Im

Z

sin( )

1 2 cos( ) + 2
( )

=: ( )

where

( ) :=
sin( )

1 2 cos( ) + 2

From these remarks it follows that is the harmonic conjugate of and
˜ =

Exercise 12.31. Show
P

=1
2 = 2 6 by taking ( ) = on [ ] and

computing k k22 directly and then in terms of the Fourier Coe cients ˜ of
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13. Construction of Measures

Now that we have developed integration theory relative to a measure on a —
algebra, it is time to show how to construct the measures that we have been using.
This is a bit technical because there tends to be no “explicit” description of the
general element of the typical — algebras. On the other hand, we do know how
to explicitly describe algebras which are generated by some class of sets E P( )
Therefore, we might try to define measures on (E) by there restrictions to A(E)
Theorem 8.5 shows this is a plausible method.
So the strategy of this section is as follows: 1) construct finitely additive mea-

sure on an algebra, 2) construct “integrals” associated to such finitely additive
measures, 3) extend these integrals (Daniell’s method) when possible to a larger
class of functions, 4) construct a measure from the extended integral (Daniell —
Stone construction theorem).

13.1. Finitely Additive Measures and Associated Integrals.

Definition 13.1. Suppose that E P( ) is a collection of subsets of a set and
: E [0 ] is a function. Then

(1) is additive on E if ( ) =
P

=1 ( ) whenever =
`

=1 E with
E for = 1 2

(2) is — additive (or countable additive) on E if Item 1. holds even
when =

(3) is subadditive on E if ( )
P

=1 ( ) whenever =
`

=1 E
with E and N { }

(4) is — finite on E if there exist E such that = and
( )

The reader should check if E = A is an algebra and is additive on A then
is — finite on A i there exists A such that and ( ) for
all

Proposition 13.2. Suppose E P( ) is an elementary family (see Definition
6.11) and A = A(E) is the algebra generated by E Then every additive function
: E [0 ] extends uniquely to an additive measure (which we still denote by )

on A
Proof. Since by Proposition 6.12, every element A is of the form =

`

with E it is clear that if extends to a measure the extension is unique and
must be given by

(13.1) ( ) =
X

( )

To prove the existence of the extension, the main point is to show that defining
( ) by Eq. (13.1) is well defined, i.e. if we also have =

`

with E then
we must show

(13.2)
X

( ) =
X

( )
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But =
`

( ) and the property that is additive on E implies ( ) =
P

( ) and hence
X

( ) =
XX

( ) =
X

( )

By symmetry or an analogous argument,
X

( ) =
X

( )

which combined with the previous equation shows that Eq. (13.2) holds. It is now
easy to verify that extended to A as in Eq. (13.1) is an additive measure on A

Proposition 13.3. Let = R and E be the elementary class
E = {( ] R : }

and A = A(E) be the algebra of disjoint union of elements from E Suppose that
0 : A [0 ] is an additive measure such that 0(( ]) for all

Then there is a unique increasing function : R̄ R̄ such that (0) = 0
1({ }) { } 1({ }) { } and

(13.3) 0(( ] R) = ( ) ( ) in R̄

Conversely, given an increasing function : R̄ R̄ such that 1({ })
{ } 1({ }) { } there is a unique measure 0 = 0 on A such that
the relation in Eq. (13.3) holds.

So the finitely additive measures 0 on A(E) which are finite on bounded sets
are in one to one correspondence with increasing functions : R̄ R̄ such that
(0) = 0 1({ }) { } 1({ }) { }
Proof. If is going to exist, then

0((0 ] R) = ( ) (0) = ( ) if [0 ]

0(( 0]) = (0) ( ) = ( ) if [ 0]

from which we learn

( ) =

½

0(( 0]) if 0
0((0 ] R) if 0

Moreover, one easily checks using the additivity of 0 that Eq. (13.3) holds for this

Conversely, suppose : R̄ R̄ is an increasing function such that 1({ })
{ } 1({ }) { } Define 0 on E using the formula in Eq. (13.3). I claim
that 0 is additive on E and hence has a unique extension to A which will finish
the argument. Suppose that

( ] =
a

=1

( ]

By reordering ( ] if necessary, we may assume that

= 1 1 = 2 2 = 3 · · · =
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Therefore,

0(( ]) = ( ) ( ) =
X

=1

[ ( ) ( )] =
X

=1

0(( ])

as desired.

13.1.1. Integrals associated to finitely additive measures.

Definition 13.4. Let be a finitely additive measure on an algebra A P( )
S = S (A ) be the collection of simple functions defined in Notation 11.1 and for

S defined the integral ( ) = ( ) by

(13.4) ( ) =
X

R

( = )

The same proof used for Proposition 7.14 shows : S R is linear and positive,
i.e. ( ) 0 if 0 Taking absolute values of Eq. (13.4) gives

(13.5) | ( )|
X

R

| | ( = ) k k ( 6= 0)

where k k = sup | ( )| For A let S := { S : { 6= 0} } The
estimate in Eq. (13.5) implies

(13.6) | ( )| ( ) k k for all S

The B.L.T. Theorem 4.1 then implies that has a unique extension to S̄
( ) for any A such that ( ) The extension is still positive. Indeed,

let S̄ with 0 and let S be a sequence such that k k 0 as
Then 0 S and

k 0k k k 0 as

Therefore, ( ) = lim ( 0) 0
Suppose that A are sets such that ( )+ ( ) then S S S

and so S̄ S̄ S̄ Therefore ( ) = ( ) = ( ) for all S̄ S̄
The next proposition summarizes these remarks.

Proposition 13.5. Let (A = ) be as in Definition 13.4, then we may extend
to

S̃ := {S̄ : A with ( ) }
by defining ( ) = ( ) when S̄ with ( ) Moreover this extension is
still positive.

Notation 13.6. Suppose = R A=A(E) and 0 are as in Proposition 13.3.
For S̃ we will write ( ) as

R

or
R

( ) ( ) and refer to
R

as the Riemann Stieljtes integral of relative to

Lemma 13.7. Using the notation above, the map S̃
R

is linear,
positive and satisfies the estimate

(13.7)

¯

¯

¯

¯

Z

¯

¯

¯

¯

( ( ) ( )) k k

if supp( ) ( ) Moreover (R R) S̃
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Proof. The only new point of the lemma is to prove (R R) S̃ the remaining
assertions follow directly from Proposition 13.5. The fact that (R R) S̃ has
essentially already been done in Example 7.24. In more detail, let (R R)
and choose such that supp( ) ( ) Then define S as in Example
7.24, i.e.

( ) =

1
X

=0

min
©

( ) : +1

ª

1( +1]
( )

where = { = 0 1 · · · = } for = 1 2 3 is a sequence of
refining partitions such that mesh( ) 0 as Since supp( ) is compact
and is continuous, is uniformly continuous on R Therefore k k 0 as

showing S̃ Incidentally, for (R R) it follows that

(13.8)
Z

= lim

1
X

=0

min
©

( ) : +1

ª £

( +1) ( )
¤

The most important special case of a Riemann Stieljtes integral is when ( ) =
in which case

R

( ) ( ) =
R

( ) is the ordinary Riemann integral. The
following Exercise is an abstraction of Lemma 13.7.

Exercise 13.1. Continue the notation of Definition 13.4 and Proposition 13.5.
Further assume that is a metric space, there exists open sets such
that and for each N and 0 there exists a finite collection of
sets { } =1 A such that diam( ) ( ) and =1 Then
( R) S̃ and so is well defined on ( R)

Proposition 13.8. Suppose that ( ) is locally compact Hausdor space and
is a positive linear functional on ( R) Then for each compact subset
there is a constant such that | ( )| k k for all ( R) with
supp( ) Moreover, if ( [0 )) and 0 (pointwise) as
then ( ) 0 as

Proof. Let ( R) with supp( ) By Lemma 10.15 there exists
such that = 1 on Since k k ± 0

0 (k k ± ) = k k ( )± ( )

from which it follows that | ( )| ( ) k k So the first assertion holds with
= ( )
Now suppose that ( [0 )) and 0 as Let = supp( 1)

and notice that supp( ) for all By Dini’s Theorem (see Exercise 3.11),
k k 0 as and hence

0 ( ) k k 0 as

This result applies to the Riemann Stieljtes integral in Lemma 13.7 restricted to
(R R) However it is not generally true in this case that ( ) 0 for all S

such that 0 Proposition 13.10 below addresses this question.

Definition 13.9. A countably additive function on an algebra A 2 is called
a premeasure.
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As for measures (see Remark 7.2 and Proposition 7.3), one easily shows if is a
premeasure on A { } =1 A and if A then ( ) ( ) as
or if ( 1) and then ( ) 0 as Now suppose that in
Proposition 13.3 were a premeasure on A(E) Letting = ( ] with as

we learn,

( ) ( ) = (( ]) (( ]) = ( ) ( )

from which it follows that lim ( ) = ( ) i.e. is right continuous. We will
see below that in fact is a premeasure on A(E) i is right continuous.

Proposition 13.10. Let (A S = S (A ) = ) be as in Definition 13.4. If
is a premeasure on A then

(13.9) S with 0 = ( ) 0 as

Proof. Let 0 be given. Then

= 1 1 + 1 1 11 1 + 1

( ) ( 11 1) + ( 1) =
X

0

( 1 = ) + ( 1)

and hence

(13.10) lim sup ( )
X

0

lim sup ( 1 = ) + ( 1)

Because, for 0

A 3 { 1 = } := { 1 = } { } as

and ( 1 = ) lim sup ( 1 = ) = 0 Combining this with
Eq. (13.10) and making use of the fact that 0 is arbitrary we learn
lim sup ( ) = 0

13.2. The Daniell-Stone Construction Theorem.

Definition 13.11. A vector subspace S of real valued functions on a set is a
lattice if it is closed under the lattice operations; = max( ) and =
min( )

Remark 13.12. Notice that a lattice S is closed under the absolute value operation
since | | = 0 0 Furthermore if S is a vector space of real valued functions,
to show that S is a lattice it su ces to show + = 0 S for all S This is
because

| | = + + ( )+

=
1

2
( + + | |) and

=
1

2
( + | |)

Notation 13.13. Given a collection of extended real valued functions C on let
C+ := { C : 0} — denote the subset of positive functions C
Definition 13.14. A linear functional on S is said to be positive (i.e. non-
negative) if ( ) 0 for all S+ (This is equivalent to the statement the
( ) ( ) if S and )
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Definition 13.15 (Property (D)). A non-negative linear functional on S is said
to be continuous under monotone limits if ( ) 0 for all { } =1 S+ satisfying
(pointwise) 0 A positive linear functional on S satisfying property (D) is
called a Daniell integral on S We will also write S as ( ) — the domain of

Example 13.16. Let ( ) be a locally compact Hausdor space and be a
positive linear functional on S := ( R) It is easily checked that S is a lattice
and Proposition 13.8 shows is automatically a Daniell integral. In particular if
= R and is an increasing function on R then the corresponding Riemann

Stieljtes integral restricted to S := (R R) ( (R R)
R

R ) is a Daniell
integral.

Example 13.17. Let (A S = S (A ) = ) be as in Definition 13.4. It is
easily checked that S is a lattice. Proposition 13.10 guarantees that is a Daniell
integral on S when is a premeasure on A
Lemma 13.18. Let be a non-negative linear functional on a lattice S Then
property (D) is equivalent to either of the following two properties:

D1: If S satisfy; +1 for all and lim then
( ) lim ( )

D2: If S+ and S is such that
P

=1 then ( )
P

=1 ( )

Proof. (D) = (D1) Let S be as in D1 Then and ( )
0 which implies

( ) ( ) = ( ( )) 0

Hence

( ) = lim ( ) lim ( )

(D1) = (D2) Apply (D1) with =
P

=1

(D2) = (D) Suppose S with 0 and let = +1 Then
P

=1 = 1 +1 1 and hence

( 1)
X

=1

( ) = lim
X

=1

( ) = lim ( 1 +1) = ( 1) lim ( +1)

from which it follows that lim ( +1) 0 Since ( +1) 0 for all we
conclude that lim ( +1) = 0
In the remainder of this section, S will denote a lattice of bounded real valued

functions on a set and : S R will be a Daniell integral on S

Lemma 13.19. Suppose that { } { } S

(1) If and with : ( ] such that then

(13.11) lim ( ) lim ( )

(2) If and with : [ ) such that then Eq.
(13.11) still holds.

In particular, in either case if = then lim ( ) = lim ( )

Proof.
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(1) Fix N then as and and hence

( ) = lim ( ) lim ( )

Passing to the limit in this equation proves Eq. (13.11).
(2) Since ( ) and ( ) and ( ) what we just proved

shows

lim ( ) = lim ( ) lim ( ) = lim ( )

which is equivalent to Eq. (13.11).

Definition 13.20. Let

S = { : ( ] : S such that }
and for S let ( ) = lim ( ) ( ]

Lemma 13.19 shows this extension of to S is well defined and positive, i.e.
( ) ( ) if

Definition 13.21. Let S = { : [ ) : S such that } and
define ( ) = lim ( ) on S

Exercise 13.2. Show S = S and for S S that ( ) = ( ) R̄

We are now in a position to state the main construction theorem. The theorem
we state here is not as general as possible but it will su ce for our present purposes.
See Section 14 for a more general version and the full proof.

Theorem 13.22 (Daniell-Stone). Let S be a lattice of bounded functions on a set
such that 1 S and let be a Daniel integral on S Further assume there

exists S such that ( ) and ( ) 0 for all Then there exists a
unique measure onM := (S) such that

(13.12) ( ) =

Z

for all S

Moreover, for all 1( M )

(13.13) sup { ( ) : S 3 } =
Z

= inf { ( ) : S }

Proof. Only a sketch of the proof will be given here. Full details may be found
in Section 14 below.
Existence. For : R̄ define

(̄ ) := inf{ ( ) : S }
( ) := sup{ ( ) : S 3 }

and set
1( ) := { : R̄ : (̄ ) = ( ) R}

For 1( ) let (̂ ) = (̄ ) = ( ) Then, as shown in Proposition 14.10, 1( )

is a “extended” vector space and ˆ : 1( ) R is linear as defined in Definition
14.1 below. By Proposition 14.6, if S with ( ) then 1( )

Moreover, ˆ obeys the monotone convergence theorem, Fatou’s lemma, and the
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dominated convergence theorem, see Theorem 14.11, Lemma 14.12 and Theorem
14.15 respectively.
Let

R := © : 1 1( ) for all S
ª

and for R set ( ) := (̄1 ) It can then be shown: 1)R is a algebra (Lemma
14.23) containing (S) (Lemma 14.24), is a measure on R (Lemma 14.25), and
that Eq. (13.12) holds. In fact it is shown in Theorem 14.28 and Proposition 14.29
below that 1( M ) 1( ) and

(̂ ) =

Z

for all 1( M )

The assertion in Eq. (13.13) is a consequence of the definition of 1( ) and ˆ and
this last equation.
Uniqueness. Suppose that is another measure on (S) such that

( ) =

Z

for all S

By the monotone convergence theorem and the definition of on S

( ) =

Z

for all S

Therefore if (S) R
( ) = (̄1 ) = inf{ ( ) : 1 S }

= inf{
Z

: 1 S }
Z

1 = ( )

which shows If (S) R with ( ) then, by Remark 14.22 below,
1 1( ) and therefore

( ) = (̄1 ) = (̂1 ) = (1 ) = sup{ ( ) : S 3 1 }
= sup{

Z

: S 3 1 } ( )

Hence ( ) ( ) for all (S) and ( ) = ( ) when ( )
To prove ( ) = ( ) for all (S) let := { 1 } (S) Since

1

( ) =

Z

1

Z

= ( )

Since 0 on and therefore by continuity of and

( ) = lim ( ) = lim ( ) = ( )

for all (S)
The rest of this chapter is devoted to applications of the Daniell — Stone con-

struction theorem.

Remark 13.23. To check the hypothesis in Theorem 13.22 that there exists S
such that ( ) and ( ) 0 for all it su ces to find S+ such
that

P

=1 0 on To see this let := max (k k ( ) 1) and define
:=
P

=1
1
2 then S 0 1 and ( ) 1

ANALYSIS TOOLS WITH APPLICATIONS 261

13.3. Extensions of premeasures to measures I. In this section let be a
set, A be a subalgebra of 2 and 0 : A [0 ] be a premeasure on A
Definition 13.24. Let E be a collection of subsets of let E denote the collection
of subsets of which are finite or countable unions of sets from E Similarly let E
denote the collection of subsets of which are finite or countable intersections of
sets from E We also write E = (E ) and E = (E ) etc.

Remark 13.25. Let 0 be a premeasure on an algebra A Any = =1
0 A

with 0 A may be written as =
`

=1
with A by setting :=

0 \ ( 0
1 · · · 0

1) If we also have =
`

=1
with A then =

`

=1( ) and therefore because 0 is a premeasure,

0( ) =
X

=1

0( )

Summing this equation on shows,

X

=1

0( ) =
X

=1

X

=1

0( )

By symmetry (i.e. the same argument with the ’s and ’s interchanged) and
Fubini’s theorem for sums,

X

=1

0( ) =
X

=1

X

=1

0( ) =
X

=1

X

=1

0( )

and hence
P

=1 0( ) =
P

=1 0( ) Therefore we may extend 0 to A by
setting

0( ) :=
X

=1

0( )

if =
`

=1
with A In future we will tacitly assume this extension has

been made.

Theorem 13.26. Let be a set, A be a subalgebra of 2 and 0 be a premeasure
on A which is — finite on A i.e. there exists A such that 0( )
and as Then 0 has a unique extension to a measure, on
M := (A) Moreover, if M and 0 is given, there exists A such that

and ( \ ) In particular,

( ) = inf{ 0( ) : A }(13.14)

= inf{
X

=1

0( ) :
a

=1

with A}(13.15)

Proof. Let (A 0 = 0) be as in Definition 13.4. As mentioned in Example
13.17, is a Daniell integral on the lattice S = S (A 0) It is clear that 1 S
for all S Since 1 S+ and

P

=1 1 0 on by Remark 13.23 there
exists S such that ( ) and 0 So the hypothesis of Theorem 13.22
hold and hence there exists a unique measure onM such that ( ) =

R

for
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all S Taking = 1 with A and 0( ) shows ( ) = 0( ) For
general A we have

( ) = lim ( ) = lim 0( ) = 0( )

The fact that is the only extension of 0 to M follows from Theorem 8.5 or
Theorem 8.8. It is also can be proved using Theorem 13.22. Indeed, if is another
measure onM such that = on A then = on S Therefore by the uniqueness
assertion in Theorem 13.22, = onM
By Eq. (13.13), for M

( ) = (̄1 ) = inf { ( ) : S with 1 }

= inf

½
Z

: S with 1
¾

For the moment suppose ( ) and 0 is given. Choose S such that
1 and

(13.16)
Z

= ( ) ( ) +

Let S be a sequence such that as and for (0 1) set

:= { } = =1 { } A
Then { 1} and by Chebyshev’s inequality,

( ) 1

Z

= 1 ( )

which combined with Eq. (13.16) implies ( ) ( )+ for all su ciently close
to 1 For such we then have A and ( \ ) = ( ) ( )
For general A choose with A Then there exists A

such that ( \ ( )) 2 Define := =1 A Then

( \ ) = ( =1 ( \ ))
X

=1

(( \ ))

X

=1

(( \ ( ))

Eq. (13.14) is an easy consequence of this result and the fact that ( ) = 0( )

Corollary 13.27 (Regularity of ). Let A P( ) be an algebra of sets,M = (A)
and :M [0 ] be a measure onM which is — finite on A Then

(1) For all M
(13.17) ( ) = inf { ( ) : A }

(2) If M and 0 are given, there exists A such that and
( \ )

(3) For all M and 0 there exists A such that and
( \ )

(4) For any M there exists A and A such that
and ( \ ) = 0
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(5) The linear space S := S (A ) is dense in ( ) for all [1 ) briefly

put, S (A )
( )
= ( )

Proof. Items 1. and 2. follow by applying Theorem 13.26 to 0 = |A Items
3. and 4. follow from Items 1. and 2. as in the proof of Corollary 8.41 above.
Item 5. This has already been proved in Theorem 11.3 but we will give yet

another proof here. When = 1 and 1( ;R) there exists, by Eq. (13.13),
S such that and k k1 =

R

( ) Let { } =1 S be
chosen so that as Then by the dominated convergence theorem,
k k1 k k1 as Therefore for large we have S with

k k1 Since 0 is arbitrary this shows, S (A )
1( )

= 1( )
Now suppose 1 ( ;R) and A are sets such that and
( ) By the dominated convergence theorem, 1 · [( ) ( )] in
( ) as so it su ces to consider ( ;R) with { 6= 0} and

| | for some large N By Hölder’s inequality, such a is in 1( ) So if
0 by the = 1 case, we may find S such that k k1 By replacing

by ( ) ( ) S we may assume is bounded by as well and hence

k k =

Z

| | =

Z

| | 1 | |

(2 ) 1
Z

| | (2 ) 1

Since 0 was arbitrary, this shows S is dense in ( ;R)

Remark 13.28. If we drop the — finiteness assumption on 0 we may loose unique-
ness assertion in Theorem 13.26. For example, let = R BR and A be the algebra
generated by E := {( ] R : } Recall BR = (E) Let R
be a countable dense set and define ( ) := #( ) Then ( ) = for
all A such that 6= So if 0 R is another countable dense subset of R

0 = on A while 6= 0 on BR Also notice that is — finite on BR but
not on A
It is now possible to use Theorem 13.26 to give a proof of Theorem 7.8, see sub-

section 13.8 below. However rather than do this now let us give another application
of Theorem 13.26 based on Example 13.16 and use the result to prove Theorem 7.8.

13.4. Riesz Representation Theorem.

Definition 13.29. Given a second countable locally compact Hausdor space
( ) letM+ denote the collection of positive measures, on B := ( ) with the
property that ( ) for all compact subsets Such a measure will be
called a Radon measure on For M+ and ( R) let ( ) :=

R

Theorem 13.30 (Riesz Representation Theorem). Let ( ) be a second count-
able30 locally compact Hausdor space. Then the map taking M+ to positive
linear functionals on ( R) is bijective. Moreover every measure M+ has
the following properties:

30The second countability is assumed here in order to avoid certain technical issues. Recall from
Lemma 10.17 that under these assumptions, (S) = B Also recall from Uryshon’s metrizatoin
theorem that is metrizable. We will later remove the second countability assumption.
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(1) For all 0 and B there exists such that is open
and is closed and ( \ ) If ( ) may be taken to be a
compact subset of

(2) For all B there exists and ( is more conventionally
written as ) such that and ( \ ) = 0

(3) For all B
( ) = inf{ ( ) : and is open}(13.18)

= sup{ ( ) : and is compact}(13.19)

(4) For all open subsets,

(13.20) ( ) = sup{
Z

: } = sup{ ( ) : }

(5) For all compact subsets

(13.21) ( ) = inf{ ( ) : 1 }
(6) If k k denotes the dual norm on ( R) then k k = ( ) In partic-

ular is bounded i ( )
(7) ( R) is dense in ( ;R) for all 1

Proof. First notice that is a positive linear functional on S := ( R) for
all M+ and S is a lattice such that 1 S for all S Example 13.16
shows that any positive linear functional, on S := ( R) is a Daniell integral
on S By Lemma 10.10, there exists compact sets such that By
Urysohn’s lemma, there exists such that = 1 on Since S+

and
P

=1 0 on it follows from Remark 13.23 that there exists S such
that 0 on and ( ) So the hypothesis of the Daniell — Stone Theorem
13.22 hold and hence there exists a unique measure on (S) =B (Lemma 10.17)
such that = Hence the map taking M+ to positive linear functionals
on ( R) is bijective. We will now prove the remaining seven assertions of the
theorem.

(1) Suppose 0 and B satisfies ( ) Then 1 1( ) so there
exists functions ( R) such that 1 and

(13.22)
Z

= ( ) ( ) +

Let (0 1) and := { } =1 { } Since 1
{ 1} and by Chebyshev’s inequality, ( ) 1

R

=
1 ( ) Combining this estimate with Eq. (13.22) shows ( \ ) =
( ) ( ) for su ciently closet to 1
For general B by what we have just proved, there exists open sets

such that and ( \ ( )) 2 for all
Let = =1 then and

( \ ) = ( =1 ( \ ))
X

=1

( \ )

X

=1

( \ ( ))
X

=1

2 =
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Applying this result to shows there exists a closed set @ such
that and

( \ ) = ( \ )

So we have produced such that ( \ ) = ( \ )+ ( \ )
2
If ( ) using \ ( ) \ as we may choose

su ciently large so that ( \ ( )) Hence we may replace by
the compact set if necessary.

(2) Choose such is closed, is open and ( \ ) 1
Let = and := Then and

( \ ) ( \ )
1

0 as

(3) From Item 1, one easily concludes that

( ) = inf { ( ) : }
for all B and

( ) = sup { ( ) : @@ }
for all B with ( ) So now suppose B and ( ) =
Using the notation at the end of the proof of Item 1., we have ( ) = and
( ) as This shows sup { ( ) : @@ } = = ( )
as desired.

(4) For let

( ) := sup{ ( ) : }
It is evident that ( ) ( ) because implies 1 Let be a
compact subset of By Urysohn’s Lemma 10.15, there exists such
that = 1 on Therefore,

(13.23) ( )

Z

( )

and we have

(13.24) ( ) ( ) ( ) for all and @@

By Item 3.,

( ) = sup{ ( ) : @@ } ( ) ( )

which shows that ( ) = ( ) i.e. Eq. (13.20) holds.
(5) Now suppose is a compact subset of From Eq. (13.23),

( ) inf{ ( ) : 1 } ( )

for any open subset such that Consequently by Eq. (13.18),

( ) inf{ ( ) : 1 } inf{ ( ) : } = ( )

which proves Eq. (13.21).
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(6) For ( R)

(13.25) | ( )|
Z

| | k k (supp( )) k k ( )

which shows k k ( ) Let @@ and such that = 1 on
By Eq. (13.23),

( )

Z

= ( ) k k k k = k k

and therefore,

( ) = sup{ ( ) : @@ } k k
(7) This has already been proved by two methods in Proposition 11.6 but we

will give yet another proof here. When = 1 and 1( ;R) there
exists, by Eq. (13.13), S = ( R) such that and k k1 =
R

( ) Let { } =1 S = ( R) be chosen so that as
Then by the dominated convergence theorem (notice that | |

| 1|+ | |), k k1 k k1 as Therefore for large we
have ( R) with k k1 Since 0 is arbitrary this shows,

S (A )
1( )

= 1( )
Now suppose 1 ( ;R) and { } =1 are as above. By the

dominated convergence theorem, 1 ( ) ( ) in ( ) as
so it su ces to consider ( ;R) with supp( ) and | |

for some large N By Hölder’s inequality, such a is in 1( ) So if
0 by the = 1 case, there exists S such that k k1 By

replacing by ( ) ( ) S we may assume is bounded by in
which case

k k =

Z

| | =

Z

| | 1 | |

(2 )
1
Z

| | (2 )
1

Since 0 was arbitrary, this shows S is dense in ( ;R)

Remark 13.31. We may give a direct proof of the fact that is injective. In-
deed, suppose M+ satisfy ( ) = ( ) for all ( R) By Proposition
11.6, if B is a set such that ( ) + ( ) there exists ( R)
such that 1 in 1( + ) Since 1 in 1( ) and 1( )

( ) = lim ( ) = lim ( ) = ( )

For general B choose compact subsets such that Then

( ) = lim ( ) = lim ( ) = ( )

showing = Therefore the map is injective.

Theorem 13.32 (Lusin’s Theorem). Suppose ( ) is a locally compact and second
countable Hausdor space, B is the Borel — algebra on and is a measure on
( B ) which is finite on compact sets of Also let 0 be given. If : C
is a measurable function such that ( 6= 0) there exists a compact set
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{ 6= 0} such that | is continuous and ({ 6= 0} \ ) Moreover there
exists ( ) such that ( 6= ) and if is bounded the function may
be chosen so that k k k k := sup | ( )|
Proof. Suppose first that is bounded, in which case

Z

| | k k ( 6= 0)

By Proposition 11.6 or Item 7. of Theorem 13.30, there exists ( ) such
that in 1( ) as By passing to a subsequence if necessary, we may
assume k k1 12 for all and thus

¡| | 1
¢

2 for all
Let := =1

©| | 1
ª

so that ( ) On | | 1 i.e.
uniformly on and hence | is continuous.

Let := { 6= 0}\ By Theorem 13.30 (or see Exercises 8.4 and 8.5) there exists
a compact set and open set such that such that ( \ )
Notice that

({ 6= 0} \ ) ( \ ) + ( ) 2

By the Tietze extension Theorem 10.16, there exists ( ) such that =
| By Urysohn’s Lemma 10.15 there exists such that = 1 on So

letting = ( ) we have = on k k k k and since { 6= }
( \ ) ( 6= ) 3 This proves the assertions in the theorem when is

bounded.
Suppose that : C is (possibly) unbounded. By Lemmas 10.17 and

10.10, there exists compact sets { } =1 of such that Hence :=
{0 | | } { 6= 0} as Therefore if 0 is given there

exists an such that ({ 6= 0} \ ) We now apply what we have just
proved to 1 to find a compact set {1 6= 0} and open set and

( ) ( ) such that ( \ ) ({1 6= 0} \ ) and = on
The proof is now complete since

{ 6= } ({ 6= 0} \ ) ({1 6= 0} \ ) ( \ )

so that ( 6= ) 3
To illustrate Theorem 13.32, suppose that = (0 1) = is Lebesgue measure

and = 1(0 1) Q Then Lusin’s theorem asserts for any 0 there exists a compact
set (0 1) such that ((0 1)\ ) and | is continuous. To see this directly,
let { } =1 be an enumeration of the rationales in (0 1)

= ( 2 + 2 ) (0 1) and = =1

Then is an open subset of and ( ) Therefore := [1 1 1 ] \
is a compact subset of and ( \ ) 2 + ( ) Taking su ciently large
we have ( \ ) and | 0 is continuous.

13.4.1. The Riemann — Stieljtes — Lebesgue Integral.

Notation 13.33. Given an increasing function : R R let ( ) =
lim ( ) ( +) = lim ( ) and (± ) = lim ± ( ) R̄ Since
is increasing all of theses limits exists.

Theorem 13.34. Let : R R be increasing and define ( ) = ( +) Then
(1) The function is increasing and right continuous.
(2) For R ( ) = lim ( )
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(3) The set { R : ( +) ( )} is countable and for each 0 and
moreover,

(13.26)
X

( ]

[ ( +) ( )] ( ) ( )

Proof.
(1) The following observation shows is increasing: if then

(13.27) ( ) ( ) ( +) = ( ) ( ) ( ) ( +) = ( )

Since is increasing, ( ) ( +) If then ( +) ( ) and
hence ( +) ( +) = ( ) i.e. ( +) = ( )

(2) Since ( ) ( ) ( ) for all it follows that

( ) lim ( ) lim ( ) = ( )

showing ( ) = lim ( )
(3) By Eq. (13.27), if 6= then

( ( ) ( +)] ( ( ) ( +)] =

Therefore, {( ( ) ( +)]} R are disjoint possible empty intervals in R.
Let N and ( ) be a finite set, then

a

( ( ) ( +)] ( ( ) ( )]

and therefore,
X

[ ( +) ( )] ( ) ( )

Since this is true for all ( ] Eq. (13.26) holds. Eq. (13.26)
shows

:= { ( )| ( +) ( ) 0}
is countable and hence so is

:= { R| ( +) ( ) 0} = =1

Theorem 13.35. If : R R is an increasing function, there exists a unique
measure = on BR such that
(13.28)

Z

=

Z

R
for all (R R)

where
R

is as in Notation 13.6 above. This measure may also be character-
ized as the unique measure on BR such that
(13.29) (( ]) = ( +) ( +) for all

Moreover, if BR then

( ) = inf

(

X

=1

( ( +) ( +)) : =1( ]

)

= inf

(

X

=1

( ( +) ( +)) :
a

=1

( ]

)
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Proof. An application of Theorem 13.30 implies there exists a unique measure
on BR such Eq. (13.28) is valid. Let 0 be small and
( ) be the function defined in Figure 30, i.e. is one on [ + 2 + ] linearly

interpolates to zero on [ + +2 ] and on [ + +2 ] and is zero on ( +2 )

Figure 30. The function used to compute (( ])

Since 1( ] it follows by the dominated convergence theorem that

(13.30) (( ]) = lim
0

Z

R
= lim

0

Z

R

On the other hand we have 1( +2 + ] 1( + +2 ] and therefore,

( + ) ( + 2 ) =

Z

R
1( +2 + ]

Z

R

Z

R
1( + +2 ) = ( + 2 ) ( + )

Letting 0 in this equation and using Eq. (13.30) shows

( +) ( +) (( ]) ( +) ( +)

The last assertion in the theorem is now a consequence of Corollary 13.27.

Corollary 13.36. The positive linear functionals on (R R) are in one to one
correspondence with right continuous non-decreasing functions such that (0) =
0

13.5. Metric space regularity results resisted.

Proposition 13.37. Let ( ) be a metric space and be a measure onM = B
which is — finite on :=

(1) For all 0 and M there exists an open set and a closed set
such that and ( \ )

(2) For all M there exists and such that and
( \ ) = 0 Here denotes the collection of subsets of which may be
written as a countable union of closed sets and = is the collection of
subsets of which may be written as a countable intersection of open sets.

(3) The space ( ) of bounded continuous functions on such that ( 6=
0) is dense in ( )
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Proof. Let S := ( ) ( ) :=
R

for S and be chosen
so that ( ) and as Then 1 S for all S and
if = 1

¡ ¢

S+ then 1 as and so by Remark 13.23 there
exists S such that 0 on and ( ) Similarly if the function
:= 1

¡

( )

¢

S and 1 as showing (S) =B If S+

and 0 as it follows by the dominated convergence theorem that
( ) 0 as So the hypothesis of the Daniell — Stone Theorem 13.22 hold
and hence is the unique measure on B such that = and for B and

( ) = (̄1 ) = inf { ( ) : S with 1 }

= inf

½
Z

: S with 1
¾

Suppose 0 and B are given. There exists ( ) such that
1 and ( ) ( ) + The condition 1 implies 1 1{ 1}

and hence that

(13.31) ( ) ( 1) ( ) ( ) +

Moreover, letting := =1 { 1 1 } we have { 1}
hence ( ) ( 1) ( ) as Combining this observation with Eq.
(13.31), we may choose su ciently large so that and

( \ ) = ( ) ( )

Hence there exists such that and ( \ ) Applying this result
to shows there exists @ such that and

( \ ) = ( \ )

So we have produced such that ( \ ) = ( \ ) + ( \ ) 2
The second assertion is an easy consequence of the first and the third follows in

similar manner to any of the proofs of Item 7. in Theorem 13.30.

13.6. Measure on Products of Metric spaces. Let {( )} N be a se-
quence of compact metric spaces, for N let :=

Q

=1 and :
be the projection map ( ) = |{1 2 } Recall from Exercise 3.27 and Ex-
ercise 6.15 that there is a metric on :=

Q

N
such that = =1

(= ( : N) — the product topology on ) and is compact in this topology.
Also recall that compact metric spaces are second countable, Exercise 10.5.

Proposition 13.38. Continuing the notation above, suppose that { } N are
given probability measures31 on B := B satisfying the compatibility conditions,
( ) = for all Then there exists a unique measure on B =
( ) = ( : N) such that ( ) = for all N i.e.

(13.32)
Z

( ( )) ( ) =

Z

( ) ( )

for all N and : R bounded a measurable.

31A typical example of such measures, is to set := 1 · · · where is a
probablity measure on B for each N
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Proof. An application of the Stone Weierstrass Theorem 11.44 shows that

D = { ( ) : = with ( ) and N}
is dense in ( ) For = D let

( ) =

Z

( ) ( )

Let us verify that is well defined. Suppose that may also be expressed as
= with N and ( ) By interchanging and if necessary

we may assume By the compatibility assumption,
Z

( ) ( ) =

Z

( ) ( ) =

Z

[( ) ]

=

Z

Since | ( )| k k the B.L.T. Theorem 4.1 allows us to extend uniquely to
a continuous linear functional on ( ) which we still denote by Because was
positive on D it is easy to check that is positive on ( ) as well. So by the Riesz
Theorem 13.30, there exists a probability measure on B such that ( ) =

R

for all ( ) By the definition of in now follows that
Z

( ) =

Z

= ( ) =

Z

for all ( ) and N It now follows from Theorem 11.44he uniqueness
assertion in the Riesz theorem 13.30 (applied with replaced by ) that =

Corollary 13.39. Keeping the same assumptions from Proposition 13.38. Further
assume, for each N there exists measurable set such that ( ) = 1
with := 1 × · · · × Then ( ) = 1 where =

Q

=1

Proof. Since = =1
1( ) we have \ = =1

1( \ ) and
therefore,

( \ )
X

=1

¡

1( \ )
¢

=
X

=1

( \ ) = 0

Corollary 13.40. Suppose that { } N are probability measures on BR for all

N :=
¡

R
¢N
and B := =1 (BR ) Then there exists a unique measure

on ( B) such that
(13.33)

Z

( 1 2 ) ( ) =

Z

(R )

( 1 2 ) 1( 1) ( )

for all N and bounded measurable functions :
¡

R
¢

R

Proof. Let
¡

R
¢

denote the Alexandrov compactification of R Recall form
Exercise 10.12 that

¡

R
¢

is homeomorphic to and hence
¡

R
¢

is a compact
metric space. (Alternatively see Exercise 10.15.) Let ¯ := = 1 where
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: R
¡

R
¢

is the inclusion map. Then ¯ is a probability measure on B(R )

such that ¯ ({ }) = 0 An application of Proposition 13.38 and Corollary 13.39
completes the proof.

Exercise 13.3. Extend Corollary 13.40 to construct arbitrary (not necessarily
countable) products of R

13.7. Measures on general infinite product spaces. In this section we drop
the topological assumptions used in the last section.

Proposition 13.41. Let {( M )} be a collection of probability spaces,
that is ( ) = 1 for all Let

Q M = ( : ) and for

let :=
Q

and : be the projection map ( ) = |
and :=

Q

be product measure on M := M Then there exists a
unique measure onM such that ( ) = for all i.e. if : R
is a bounded measurable function then

(13.34)
Z

( ( )) ( ) =

Z

( ) ( )

Proof. Let S denote the collection of functions : R such that there exists
and a bounded measurable function : R such that =

For = S let ( ) =
R

Let us verify that is well defined. Suppose that may also be expressed as
= with and : R bounded and measurable. By replacing
by if necessary, we may assume that Making use of Fubini’s theorem

we learn
Z

( ) ( ) =

Z

× \
( ) ( ) \ ( )

=

Z

( ) ( ) ·
Z

\
\ ( )

= \
¡

\
¢ ·
Z

( ) ( ) =

Z

( ) ( )

wherein we have used the fact that ( ) = 1 for all since ( ) = 1
for all It is now easy to check that is a positive linear functional on the
lattice S We will now show that is a Daniel integral.
Suppose that S+ is a decreasing sequence such that inf ( ) = 0

We need to show := lim is not identically zero. As in the proof that is
well defined, there exists and bounded measurable functions :
[0 ) such that is increasing in and = for each For let

: [0 ) be the bounded measurable function

( ) =

Z

\
( × ) \ ( )

where × is defined by ( × ) ( ) = ( ) if and ( × ) ( ) = ( )
for \ By convention we set = Since is decreasing it follows
that +1 for all and and therefore := lim exists. By
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Fubini’s theorem,

( ) =

Z

\

+1( × )
+1\ ( ) when + 1

and hence letting in this equation shows

(13.35) ( ) =

Z

\

+1( × )
+1\ ( )

for all Now
Z

1

1( )
1
( ) = lim

Z

1

1( )
1
( ) = lim ( ) = 0

so there exists
1 1 such that

1( 1)

From Eq. (13.35) with = 1 and = 1 it follows that
Z

2\ 1

2( 1 × )
2\ 1

( )

and hence there exists

2 2\ 1
such that 2( 1 × 2)

Working this way inductively using Eq. (13.35) implies there exists

\ 1
such that ( 1 × 2 × · · · × )

for all Now for all and in particular for = thus

( 1 × 2 × · · · × ) = ( 1 × 2 × · · · × )

( 1 × 2 × · · · × )(13.36)

for all Let be any point such that

( ) = 1 × 2 × · · · ×
for all From Eq. (13.36) it follows that

( ) = ( ) = ( 1 × 2 × · · · × )

for all and therefore ( ) := lim ( ) showing is not zero.
Therefore, is a Daniel integral and there exists by Theorem 13.30 a unique

measure on ( (S) =M) such that

( ) =

Z

for all S

Taking = 1 in this equation implies

( ) = ( ) = 1( )

and the result is proved.

Remark 13.42. (Notion of kernel needs more explanation here.) The above theorem
may be Jazzed up as follows. Let {( M )} be a collection of measurable
spaces. Suppose for each pair there is a kernel ( ) for
and \ such that if then

( × ) = ( ) ( × )
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Then there exists a unique measure onM such that
Z

( ( )) ( ) =

Z

( ) ( )

for all and : R bounded and measurable. To prove this assertion,
just use the proof of Proposition 13.41 replacing \ ( ) by ( ) everywhere
in the proof.

13.8. Extensions of premeasures to measures II.

Proposition 13.43. Suppose that A P( ) is an algebra of sets and : A
[0 ] is a finitely additive measure on A Then if A and =

`

=1
we

have

(13.37)
X

=1

( ) ( )

Proof. Since

=

Ã

a

=1

! Ã

\
[

=1

!

we find using the finite additivity of that

( ) =
X

=1

( ) +

Ã

\
[

=1

!

X

=1

( )

Letting in this last expression shows that
P

=1
( ) ( )

Because of Proposition 13.43, in order to prove that is a premeasure on A it
su ces to show is subadditive on A namely

(13.38) ( )
X

=1

( )

whenever =
`

=1
with A and each { } =1 A

Proposition 13.44. Suppose that E P( ) is an elementary family (see Def-
inition 6.11), A = A(E) and : A [0 ] is an additive measure. Then the
following are equivalent:

(1) is a premeasure on A
(2) is subadditivity on E i.e. whenever E is of the form =

`

=1 E
with E then

(13.39) ( )
X

=1

( )

Proof. Item 1. trivially implies item 2. For the converse, it su ces to show,

by Proposition 13.43, that if =
`

=1
with A and each A then Eq.
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(13.38) holds. To prove this, write =
`

=1 with E and =
`

=1

with E Then

= =
a

=1

=
a

=1

a

=1

which is a countable union and hence by assumption,

( )
X

=1

X

=1

( )

Summing this equation on and using the additivity of shows that

( ) =
X

=1

( )
X

=1

X

=1

X

=1

( ) =
X

=1

X

=1

X

=1

( )

=
X

=1

X

=1

( ) =
X

=1

( )

as desired.
The following theorem summarizes the results of Proposition 13.3, Proposition

13.44 and Theorem 13.26 above.

Theorem 13.45. Suppose that E P( ) is an elementary family and 0 : E
[0 ] is a function.

(1) If 0 is additive on E then 0 has a unique extension to a finitely additive
measure 0 on A = A(E)

(2) If we further assume that 0 is countably subadditive on E then 0 is a
premeasure on A

(3) If we further assume that 0 is — finite on E then there exists a unique
measure on (E) such that |E = 0 Moreover, for (E)

( ) = inf{ 0( ) : A }

= inf{
X

=1

0( ) :
a

=1

with E}

13.8.1. “Radon” measures on (R BR) Revisited. Here we will use Theorem 13.45
to give another proof of Theorem 7.8. The main point is to show that to each
right continuous function : R R there exists a unique measure such that
(( ]) = ( ) ( ) for all We begin by extending

to a function from R̄ R̄ by defining (± ) := lim ± ( ) As above let
E = {( ] R : } and set 0 (( ]) = ( ) ( ) for all R̄
with The proof will be finished by Theorem 13.45 if we can show that 0 is
sub-additive on E
First suppose that = ( ] = ( ] such that

=
`

=1
We wish to show

(13.40) 0( )
X

=1

0( )
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To do this choose numbers ˜ ˜ and set = (˜ ] ˜ = ( ˜ ]

and ˜ = ( ˜ ) Since ¯ is compact and ¯
S

=1

˜ there exists

such that

¯
[

=1

˜
[

=1

˜

Hence by finite sub-additivity of 0

( ) (˜) = 0( )
X

=1

0( ˜ )
X

=1

0( ˜ )

Using the right continuity of and letting ˜ in the above inequality shows that

0(( ]) = ( ) ( )
X

=1

0

³

˜
´

=
X

=1

0 ( ) +
X

=1

0( ˜ \ )(13.41)

Given 0 we may use the right continuity of to choose ˜ so that

0( ˜ \ ) = (˜ ) ( ) 2

Using this in Eq. (13.41) show

0( ) = 0(( ])
X

=1

0 ( ) +

and since 0 we have verified Eq. (13.40).
We have now done the hard work. We still have to check the cases where =

or = or both. For example, suppose that = so that

= ( ) =
a

=1

with = ( ] R Then let := ( ] and notice that

= =
a

=1

So by what we have already proved,

( ) ( ) = 0( )
X

=1

0( )
X

=1

0( )

Now let in this last inequality to find that

0(( )) = ( ) ( )
X

=1

0( )

The other cases where = and R and = and = are handled
similarly.
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13.9. Supplement: Generalizations of Theorem 13.35 to R .

Theorem 13.46. Let A P( ) and B P( ) be algebras. Suppose that

: A× B C

is a function such that for each A the function

B ( × ) C

is an additive measure on B and for each B the function

A ( × ) C

is an additive measure on A Then extends uniquely to an additive measure on
the product algebra C generated by A×B
Proof. The collection

E = A×B = { × : A and B}
is an elementary family, see Exercise 6.2. Therefore, it su ces to show is additive
on E To check this suppose that × E and

× =
a

=1

( × )

with × E We wish to shows

( × ) =
X

=1

( × )

For this consider the finite algebras A0 P( ) and B0 P( ) generated by
{ } =1 and { } =1 respectively. Let B A0 and G B0 be partition of and
respectively as found Proposition 6.18. Then for each we may write

=
a

F
and =

a

G
Therefore,

( × ) = ( ×
[

) =
X

( × )

=
X

(

Ã

[

!

× ) =
X

( × )

so that
X

( × ) =
X X

( × ) =
X

( × )

=
X

( × ) = ( × )

as desired.

Proposition 13.47. Suppose that A P( ) is an algebra and for each R
: A C is a finitely additive measure. Let = ( ] R be a finite interval

and B P( ) denote the algebra generated by E := {( ] : ( ] } Then there
is a unique additive measure on C the algebra generated by A× B such that

( × ( ]) = ( ) ( ) ( ] E and A
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Proof. By Proposition 13.3, for each A, the function ( ] ( × ( ])
extends to a unique measure on B which we continue to denote by Now if B
then =

`

with E then

( × ) =
X

( × )

from which we learn that ( × ) is still finitely additive. The proof is
complete with an application of Theorem 13.46.
For R write ( ) if ( ) for all For let ( ]

denote the half open rectangle:

( ] = ( 1 1]× ( 2 2]× · · · × ( ]

E = {( ] : } {R }
and A (R ) P(R ) denote the algebra generated by E Suppose that : R C
is a function, we wish to define a finitely additive complex valued measure on
A(R ) associated to Intuitively the definition is to be

(( ]) =

Z

( ]

( 1 2 )

=

Z

( ]

( 1 2 ) ( 1 2 ) 1 2

=

Z

(˜ ˜]

( 1 2 1 ) ( 1 2 )| =
= 1 2 1

where
(˜ ˜] = ( 1 1]× ( 2 2]× · · · × ( 1 1]

Using this expression as motivation we are led to define by induction on For
= 1 let

(( ]) = ( ) ( )

and then inductively using

(( ]) = (· )((˜ ˜])| ==
Proposition 13.48. The function extends uniquely to an additive function on
A(R ) Moreover,

(13.42) (( ]) =
X

( 1)| | ( × )

where = {1 2 } and

( × ) ( ) =

½

( ) if
( ) if

Proof. Both statements of the proof will be by induction. For = 1 we
have (( ]) = ( ) ( ) so that Eq. (13.42) holds and we have already
seen that extends to a additive measure on A (R) For general notice that
A(R ) = A(R 1) A(R) For R and A(R 1) let

( ) = (· )( )

where (· ) is defined by the induction hypothesis. Then

( × ( ]) = ( ) ( )
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and by Proposition 13.47 has a unique extension to A(R 1) A(R) as a finitely
additive measure.
For = 1 Eq. (13.42) says that

(( ]) = ( ) ( )

where the first term corresponds to = and second to = {1} This agrees with
the definition of for = 1 Now for the induction step. Let = {1 2 1}
and suppose that R then

(( ]) = (· )((˜ ˜])| ==
=
X

( 1)| | (˜ × ˜ )| ==

=
X

( 1)| | (˜ × ˜ )
X

( 1)| | (˜ × ˜ )

=
X

:

( 1)| | ( × ) +
X

:

( 1)| | ( × )

=
X

( 1)| | ( × )

as desired.

13.10. Exercises.

Exercise 13.4. Let ( A ) be as in Definition 13.4 and Proposition 13.5, be a
Banach space and S( ) := S ( A ; ) be the collection of functions :
such that #( ( )) 1({ }) A for all and ( 6= 0) We may
define a linear functional : S( ) by

( ) =
X

( = )

Verify the following statements.

(1) Let k k = sup k ( )k be the sup norm on ( ) then for
S( )

k ( )k k k ( 6= 0)
Hence if ( ) extends to a bounded linear transformation from
S̄( ) ( ) to

(2) Assuming ( A ) satisfies the hypothesis in Exercise 13.1, then ( )
S̄( )

(3) Now assume the notation in Section 13.4.1, i.e. = [ ] for some
R and is determined by an increasing function Let { =

0 1 · · · = } denote a partition of := [ ] along with a
choice [ +1] for = 0 1 2 1 For ([ ] ) set

( 0)1[ 0 1] +
1

X

=1

( )1( +1]

Show that S and

k kF 0 as | | max{( +1 ) : = 0 1 2 1} 0
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Conclude from this that

( ) = lim
| | 0

1
X

=0

( )( ( +1) ( ))

As usual we will write this integral as
R

and as
R

( ) if ( ) =

Exercise 13.5. Folland problem 1.28.

Exercise 13.6. Suppose that 1(R) is an increasing function and is the
unique Borel measure on R such that (( ]) = ( ) ( ) for all Show
that = for some function 0 Find explicitly in terms of

Exercise 13.7. Suppose that ( ) = 1 3 + 1 7 and is the is the unique
Borel measure on R such that (( ]) = ( ) ( ) for all Give an
explicit description of the measure

Exercise 13.8. Let BR with ( ) 0 Then for any (0 1) there exists
an open interval R such that ( ) ( ) 32 Hints: 1. Reduce to
the case where ( ) (0 ) 2) Approximate from the outside by an open set

R 3. Make use of Exercise 3.43, which states that may be written as a
disjoint union of open intervals.

Exercise 13.9. Let ( ) be a second countable locally compact Hausdor space
and : 0( R) R be a positive linear functional. Show is necessarily bounded,
i.e. there exists a such that | ( )| k k for all 0( R) Hint:
Let be the measure on B coming from the Riesz Representation theorem and for
sake of contradiction suppose ( ) = k k = To reach a contradiction, construct
a function 0( R) such that ( ) =

Exercise 13.10. Suppose that : (R R) R is a positive linear functional.
Show

(1) For each compact subset @@ R there exists a constant such
that

| ( )| k k
whenever supp( )

(2) Show there exists a unique Radon measure on BR (the Borel — algebra
on R) such that ( ) =

R

R for all (R R)

13.10.1. The Laws of Large Number Exercises. For the rest of the problems of this
section, let be a probability measure on BR such that

R

R | | ( ) :=
for N and denote the infinite product measure as constructed in Corollary
13.40. So is the unique measure on ( := RN B := BRN) such that

(13.43)
Z

( 1 2 ) ( ) =

Z

R

( 1 2 ) ( 1) ( )

32See also the Lebesgue di erentiation Theorem 16.13 from which one may prove the much
stronger form of this theorem, namely for -a.e. there exits ( ) 0 such that (
( + )) (( + )) for all ( )
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for all N and bounded measurable functions : R R We will also use the
following notation:

( ) :=
1X

=1

for

:=

Z

R
( ) the average of

2 :=

Z

R
( )2 ( ) the variance of and

:=

Z

R
( )4 ( )

The variance may also be written as 2 =
R

R
2 ( ) 2

Exercise 13.11 (Weak Law of Large Numbers). Suppose further that 2

show
R

=

k k22 =
Z

( )
2

=
2

and (| | )
2

2 for all 0 and N

Exercise 13.12 (A simple form of the Strong Law of Large Numbers). Suppose
now that :=

R

R( )4 ( ) Show for all 0 and N that

k k44 =
Z

( )
4

=
1
4

¡

+ 3 ( 1) 4
¢

=
1
2

£

1 + 3
¡

1 1
¢

4
¤

and

(| | )
1 + 3

¡

1 1
¢

4

4 2

Conclude from the last estimate and the first Borel Cantelli Lemma 7.22 that
lim ( ) = for — a.e.

Exercise 13.13. Suppose :=
R

R( )4 ( ) and =
R

R( ) ( ) 6= 0
For 0 let : RN RN be defined by ( ) = ( 1 2 )
= 1 and

:= RN : lim
1X

=1

=

Show

( 0) = 0 =

½

1 if = 0

0 if 6= 0

and use this to show if 6= 1 then 6= for any measurable function :
RN [0 ]
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14. Daniell Integral Proofs

(This section follows the exposition in Royden and Loomis.) In this section we
let be a given set. We will be interested in certain spaces of extended real valued
functions : R̄ on
Convention: Given functions : R̄ let + denote the collection of

functions : R̄ such that ( ) = ( ) + ( ) for all for which ( ) + ( )
is well defined, i.e. not of the form For example, if = {1 2 3} and
(1) = (2) = 2 and (3) = 5 and (1) = (2) = and (3) = 4 then

+ i (2) = and (3) = 7 The value (1) may be chosen freely. More
generally if R and : R̄ we will write + for the collection
of functions : R̄ such that ( ) = ( ) + ( ) for those where
( ) + ( ) is well defined with the values of ( ) at the remaining points being

arbitrary. It will also be useful to have some explicit representatives for +
which we define, for R̄ by

(14.1) ( + ) ( ) =

½

( ) + ( ) when defined
otherwise.

We will make use of this definition with = 0 and = below.

Definition 14.1. A set, of extended real valued functions on is an extended
vector space (or a vector space for short) if is closed under scalar multiplication
and addition in the following sense: if and R then ( + ) A
vector space is said to be an extended lattice (or a lattice for short) if it is
also closed under the lattice operations; = max( ) and = min( )
A linear functional on is a function : R such that

(14.2) ( + ) = ( ) + ( ) for all and R

Eq. (14.2) is to be interpreted as ( ) = ( ) + ( ) for all ( + ) and
in particular is required to take the same value on all members of ( + ) A
linear functional is positive if ( ) 0 when + where + denotes the
non-negative elements of as in Notation 13.13.

Remark 14.2. Notice that an extended lattice is closed under the absolute value
operation since | | = 0 0 = ( ) Also if is positive on then
( ) ( ) when and Indeed, implies ( )0 0 so
0 = (0) = (( )0) = ( ) ( ) and hence ( ) ( )

In the remainder of this chapter we fix a lattice, S of bounded functions, :
R and a positive linear functional : S R satisfying Property (D) of

Definition 13.15.

14.1. Extension of Integrals.

Proposition 14.3. The set S and the extension of to S in Definition 13.20
satisfies:

(1) (Monotonicity) ( ) ( ) if S with
(2) S is closed under the lattice operations, i.e. if S then S

and S Moreover, if ( ) and ( ) then ( )
and ( )

(3) (Positive Linearity) ( + ) = ( ) + ( ) for all S and 0
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(4) S+ i there exists S+ such that =
P

=1 Moreover, ( ) =
P

=1 ( )

(5) If S+ then
P

=1 =: S+ and ( ) =
P

=1 ( )

Remark 14.4. Similar results hold for the extension of to S in Definition 13.21.

Proof.
(1) Monotonicity follows directly from Lemma 13.19.
(2) If S are chosen so that and then and

If we further assume that ( ) then and
hence ( ) ( ) In particular it follows that ( 0) ( 0]
for all S Combining this with the identity,

( ) = ( 0 + 0) = ( 0) + ( 0)

shows ( ) i ( 0) Since 0 + 0 if both
( ) and ( ) then

( ) ( 0) + ( 0)

(3) Let S be chosen so that and then ( + )
( + ) and therefore

( + ) = lim ( + ) = lim ( ) + lim ( )

= ( ) + ( )

(4) Let S+ and S be chosen so that By replacing by 0

if necessary we may assume that S+ Now set = 1 S for
= 1 2 3 with the convention that 0 = 0 S Then

P

=1 =
and

( ) = lim ( ) = lim (
X

=1

) = lim
X

=1

( ) =
X

=1

( )

Conversely, if =
P

=1 with S+ then :=
P

=1 as
and S+

(5) Using Item 4., =
P

=1 with S+ Thus

=
X

=1

X

=1

= lim
X

S

and

( ) = lim (
X

) = lim
X

( )

=
X

=1

X

=1

( ) =
X

=1

( )

Definition 14.5. Given an arbitrary function : R̄ let

(̄ ) = inf { ( ) : S } R̄ and

( ) = sup { ( ) : S 3 } R̄

with the convention that sup = and inf = +
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Proposition 14.6. Given functions : R̄ then:

(1) (̄ ) = (̄ ) for all 0
(2) (Chebyshev’s Inequality.) Suppose : [0 ] is a function and

(0 ) then (̄1{ }) 1 (̄ ) and if (̄ ) then (̄1{ = }) = 0
(3) ¯ is subadditive, i.e. if (̄ ) + (̄ ) is not of the form or +

then

(14.3) (̄ + ) (̄ ) + (̄ )

This inequality is to be interpreted to mean,

(̄ ) (̄ ) + (̄ ) for all ( + )

(4) ( ) = (̄ )
(5) ( ) (̄ )
(6) If then (̄ ) (̄ ) and ( ) ( )
(7) If S and ( ) or S and ( ) then ( ) = (̄ ) = ( )

Proof.
(1) Suppose that 0 (the = 0 case being trivial), then

(̄ ) = inf { ( ) : S } = inf © ( ) : 1 S
ª

= inf { ( ) : S } = inf { ( ) : S } = (̄ )

(2) For (0 ) 1{ } and therefore,

(̄1{ }) = (̄ 1{ }) (̄ )

Since 1{ = } for all (0 )

(̄1{ = }) = (̄ 1{ = }) (̄ )

So if (̄ ) this inequality implies (̄1{ = }) = 0 because is arbi-
trary.

(3) If (̄ ) + (̄ ) = the inequality is trivial so we may assume that
(̄ ) (̄ ) [ ) If (̄ ) + (̄ ) = then we may assume, by inter-
changing and if necessary, that (̄ ) = and (̄ ) By definition
of ¯ there exists S and S such that and and
( ) and ( ) (̄ ). Since + + S (i.e. +
for all ( + ) which holds because ) and

( + ) = ( ) + ( ) + (̄ ) =

it follows that (̄ + ) = i.e. (̄ ) = for all + Henceforth
we may assume (̄ ) (̄ ) R Let ( + ) and 1 S and

2 S Then 1 + 2 S because if (for example) ( ) =
and ( ) = then 1( ) = and 2( ) since 2 S Thus
1( ) + 2( ) = ( ) no matter the value of ( ) It now follows
from the definitions that (̄ ) ( 1) + ( 2) for all 1 S and

2 S Therefore,

(̄ ) inf { ( 1) + ( 2) : 1 S and 2 S }
= (̄ ) + (̄ )

and since ( + ) is arbitrary we have proven Eq. (14.3).
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(4) From the definitions and Exercise 13.2,

( ) = sup { ( ) : S } = sup { ( ) : S }
= sup { ( ) : S } = inf { ( ) : S } = (̄ )

(5) The assertion is trivially true if (̄ ) = ( ) = or (̄ ) = ( ) = So
we now assume that (̄ ) and ( ) are not both or Since 0 ( )
and (̄ ) (̄ ) + (̄ ) (by Item 1),

0 = (̄0) (̄ ) + (̄ ) = (̄ ) ( )

provided the right side is well defined which it is by assumption. So again
we deduce that ( ) (̄ )

(6) If then

(̄ ) = inf { ( ) : S } inf { ( ) : S } = (̄ )

and

( ) = sup { ( ) : S 3 } sup { ( ) : S 3 } = ( )

(7) Let S with ( ) and choose S such that Then

(̄ ) ( ) ( ) ( ) as

Combining this with

(̄ ) = inf { ( ) : S } = ( )

shows
(̄ ) ( ) ( ) = (̄ )

and hence ( ) = ( ) = (̄ ) If S and ( ) then by what we
have just proved,

( ) = ( ) = (̄ )

This finishes the proof since ( ) = (̄ ) and ( ) = ( )

Lemma 14.7. Let : [0 ] be a sequence of functions and :=
P

=1

Then

(14.4) (̄ ) = (̄
X

=1

)
X

=1

(̄ )

Proof. Suppose
P

=1 (̄ ) for otherwise the result is trivial. Let 0

be given and choose S+ such that and ( ) = (̄ ) + where
P

=1 (For example take 2 ) Then
P

=1 =: S+

and so

(̄ ) (̄ ) = ( ) =
X

=1

( ) =
X

=1

¡

(̄ ) +
¢

X

=1

(̄ ) +

Since 0 is arbitrary, the proof is complete.

Definition 14.8. A function : R̄ is integrable if ( ) = (̄ ) R Let
1( ) :=

©

: R̄ : ( ) = (̄ ) R
ª

and for 1( ) let (̂ ) denote the common value ( ) = (̄ )
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Remark 14.9. A function : R̄ is integrable i there exists S 1( ) and
S 1( )33 such that and ( ) Indeed if is integrable,

then ( ) = (̄ ) and there exists S 1( ) and S 1( ) such that
and 0 ( ) ( ) 2 and 0 ( ) (̄ ) 2 Adding these

two inequalities implies 0 ( ) ( ) = ( ) Conversely, if there exists
S 1( ) and S 1( ) such that and ( ) then

( ) = ( ) ( ) ( ) = ( ) and

( ) = (̄ ) (̄ ) (̄ ) = ( )

and therefore
0 (̄ ) ( ) ( ) ( ) = ( )

Since 0 is arbitrary, this shows (̄ ) = ( )

Proposition 14.10. The space 1( ) is an extended lattice and ˆ : 1( ) R is
linear in the sense of Definition 14.1.

Proof. Let us begin by showing that 1( ) is a vector space. Suppose that
1 2

1( ) and ( 1 + 2) Given 0 there exists S 1( ) and
S 1( ) such that and ( ) 2 Let us now show

(14.5) 1( ) + 2( ) ( ) 1( ) + 2( )

This is clear at points where 1( )+ 2( ) is well defined. The other case to
consider is where 1( ) = = 2( ) in which case 1( ) = and 2( ) =
while 2( ) and 1( ) because 2 S and 1 S Therefore,
1( ) + 2( ) = and 1( ) + 2( ) = so that Eq. (14.5) is valid no matter
how ( ) is chosen.
Since 1 + 2 S 1( ) 1 + 2 S 1( ) and

(̂ ) ( ) + 2 and 2 + ( ) (̂ )

we find

(̂ 1) + (̂ 2) ( 1) + ( 2) = ( 1 + 2) ( ) (̄ )

( 1 + 2) = ( 1) + ( 2) (̂ 1) + (̂ 2) +

Because 0 is arbitrary, we have shown that 1( ) and (̂ 1)+ (̂ 2) = (̂ )

i.e. (̂ 1 + 2) = (̂ 1) + (̂ 2)

It is a simple matter to show 1( ) and (̂ ) = (̂ ) for all 1( ) and
R For example if = 1 (the most interesting case), choose S 1( )

and S 1( ) such that and ( ) Therefore,

S 1( ) 3 S 1( )

with ( ( )) = ( ) and this shows that 1( ) and (̂ ) =

(̂ ) We have now shown that 1( ) is a vector space of extended real valued
functions and ˆ : 1( ) R is linear.
To show 1( ) is a lattice, let 1 2

1( ) and S 1( ) and
S 1( ) such that and ( ) 2 as above. Then using
Proposition 14.3 and Remark 14.4,

S 1( ) 3 1 2 1 2 1 2 S 1( )

33Equivalently, S with ( ) and S with ( )
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Moreover,
0 1 2 1 2 1 1 + 2 2

because, for example, if 1 2 = 1 and 1 2 = 2 then

1 2 1 2 = 1 2 2 2

Therefore,
( 1 2 1 2) ( 1 1 + 2 2)

and hence by Remark 14.9, 1 2
1( ) Similarly

0 1 2 1 2 1 1 + 2 2

because, for example, if 1 2 = 1 and 1 2 = 2 then

1 2 1 2 = 1 2 1 1

Therefore,
( 1 2 1 2) ( 1 1 + 2 2)

and hence by Remark 14.9, 1 2
1( )

Theorem 14.11 (Monotone convergence theorem). If 1( ) and then
1( ) i lim (̂ ) = sup (̂ ) in which case (̂ ) = lim (̂ )

Proof. If 1( ) then by monotonicity (̂ ) (̂ ) for all and therefore
lim (̂ ) (̂ ) Conversely, suppose := lim (̂ ) and let
:=
P

=1( +1 )0 The reader should check that ( 1 + ) ( 1 + )
So by Lemma 14.7,

(̄ ) (̄( 1 + ) ) (̄ 1) + (̄ )

(̄ 1) +
X

=1

¯(( +1 )0) = (̂ 1) +
X

=1

ˆ( +1 )

= (̂ 1) +
X

=1

h

(̂ +1) (̂ )
i

= (̂ 1) + (̂ 1) =(14.6)

Because it follows that (̂ ) = ( ) ( ) which upon passing to limit
implies ( ) This inequality and the one in Eq. (14.6) shows (̄ ) ( )

and therefore, 1( ) and (̂ ) = = lim (̂ )

Lemma 14.12 (Fatou’s Lemma). Suppose { } £

1( )
¤+

then inf 1( )

If lim inf (̂ ) then lim inf 1( ) and in this case

(̂lim inf ) lim inf (̂ )

Proof. Let := 1 · · · 1( ) then := inf Since
1( ) for all and (̂ ) (̂0) = 0 it follow from Theorem 14.11 that

1( ) and hence so is inf = 1( )
By what we have just proved, := inf 1( ) for all Notice that
lim inf and by monotonicity that (̂ ) (̂ ) for all Therefore,

lim (̂ ) = lim inf (̂ ) lim inf (̂ )

and by the monotone convergence Theorem 14.11, lim inf = lim
1( ) and

(̂lim inf ) = lim (̂ ) lim inf (̂ )
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Before stating the dominated convergence theorem, it is helpful to remove some
of the annoyances of dealing with extended real valued functions. As we have
done when studying integrals associated to a measure, we can do this by modifying
integrable functions by a “null” function.

Definition 14.13. A function : R̄ is a null function if (̄| |) = 0 A
subset is said to be a null set if 1 is a null function. Given two functions

: R̄ we will write = a.e. if { 6= } is a null set.
Here are some basic properties of null functions and null sets.

Proposition 14.14. Suppose that : R̄ is a null function and : R̄ is
an arbitrary function. Then

(1) 1( ) and (̂ ) = 0
(2) The function · is a null function.
(3) The set { : ( ) 6= 0} is a null set.
(4) If is a null set and 1( ) then 1 1( ) and (̂ ) = (̂1 )

(5) If 1( ) and = a.e. then 1( ) and (̂ ) = (̂ )
(6) If 1( ) then {| | = } is a null set.
Proof.
(1) If is null, using ± | | we find (̄± ) (̄| |) = 0 i.e. (̄ ) 0 and

( ) = (̄ ) 0 Thus it follows that (̄ ) 0 ( ) and therefore
1( ) with ˆ( ) = 0

(2) Since | · | · | | ¯(| · |) ¯( · | |) For N | | 1( )

and (̂ | |) = (| |) = 0 so | | is a null function. By the monotone
convergence Theorem 14.11 and the fact | | · | | 1( ) as
ˆ( · | |) = lim ˆ( | |) = 0 Therefore · | | is a null function and
hence so is ·

(3) Since 1{ 6=0} · 1{ 6=0} = · | | ¯
¡

1{ 6=0}
¢

¯( · | |) = 0 showing
{ 6= 0} is a null set.

(4) Since 1 1( ) and ˆ(1 ) = 0

1 = ( 1 )0 ( 1 ) 1( )

and (̂ 1 ) = (̂ ) (̂1 ) = (̂ )
(5) Letting be the null set { 6= } then 1 = 1 1( ) and 1 is a

null function and therefore, = 1 + 1 1( ) and

(̂ ) = (̂1 ) + (̂ 1 ) = (̂1 ) = (̂1 ) = (̂ )

(6) By Proposition 14.10, | | 1( ) and so by Chebyshev’s inequality (Item
2 of Proposition 14.6), {| | = } is a null set.

Theorem 14.15 (Dominated Convergence Theorem). Suppose that { : N}
1( ) such that := lim exists pointwise and there exists 1( ) such that
| | for all Then 1( ) and

lim (̂ ) = (̂ lim ) = (̂ )
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Proof. By Proposition 14.14, the set := { = } is a null set and (̂1 ) =

(̂ ) and (̂1 ) = (̂ ) Since

(̂1 ( ± )) 2 (̂1 ) = 2 (̂ )

we may apply Fatou’s Lemma 14.12 to find 1 ( ± ) 1( ) and

(̂1 ( ± )) lim inf (̂1 ( ± ))

= lim inf
n

(̂1 )± (̂1 )
o

= lim inf
n

(̂ )± (̂ )
o

Since = 1 a.e. and 1 = 1
21 ( + ( + )) 1( ) Proposition 14.14

implies 1( ) So the previous inequality may be written as

(̂ )± (̂ ) = (̂1 )± (̂1 )

= (̂1 ( ± )) (̂ ) +

½

lim inf (̂ )

lim sup (̂ )

wherein we have used lim inf ( ) = lim sup These two inequalities im-
ply lim sup (̂ ) (̂ ) lim inf (̂ ) which shows that lim (̂ )

exists and is equal to (̂ )

14.2. The Structure of 1( ). Let S denote the collections of functions :
R̄ for which there exists S 1( ) such that as and

lim (̂ ) Applying the monotone convergence theorem to 1 it
follows that 1

1( ) and hence 1( ) so that S 1( )

Lemma 14.16. Let : R̄ be a function. If (̄ ) R then there exists S
such that and (̄ ) = (̂ ) (Consequently, : [0 ) is a positive null
function i there exists S such that and (̂ ) = 0 ) Moreover, 1( )
i there exists S such that and = a.e.

Proof. By definition of (̄ ) we may choose a sequence of functions S
1( ) such that and (̂ ) (̄ ) By replacing by 1 · · · if necessary
( 1 · · · S 1( ) by Proposition 14.3), we may assume that is a decreasing
sequence. Then lim =: and, since lim (̂ ) = (̄ )

S By the monotone convergence theorem applied to 1

(̂ 1 ) = lim (̂ 1 ) = (̂ 1) (̄ )

so (̂ ) = (̄ )
Now suppose that 1( ) then ( )0 0 and

ˆ(( )0) = ˆ( ) (̂ ) = (̂ ) (̄ ) = 0

Therefore ( )0 is a null functions and hence so is · ( )0 Because

1{ 6= } = 1{ } · ( )0

{ 6= } is a null set so if 1( ) there exists S such that = a.e. The
converse statement has already been proved in Proposition 14.14.
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Proposition 14.17. Suppose that and S are as above and is another Daniell
integral on a vector lattice T such that S T and = |S (We abbreviate this by
writing ) Then 1( ) 1( ) and ˆ = ˆ on 1( ) or in abbreviated form:
if then ˆ ˆ

Proof. From the construction of the extensions, it follows that S T and the
= on S Similarly, it follows that S T and ˆ = ˆ on S From Lemma

14.16 we learn, if 0 is an — null function then there exists S T such
that and 0 = ( ) = ( ) This shows that is also a — null function and in
particular every — null set is a — null set. Again by Lemma 14.16, if 1( )
there exists S T such that { 6= } is an — null set and hence a — null
set. So by Proposition 14.14, 1( ) and ( ) = ( ) = ( ) = ( )

14.3. Relationship to Measure Theory.

Definition 14.18. A function : [0 ] is said to measurable if 1( )
for all 1( )

Lemma 14.19. The set of non-negative measurable functions is closed under pair-
wise minimums and maximums and pointwise limits.

Proof. Suppose that : [0 ] are measurable functions. The fact that
and are measurable (i.e. ( ) and ( ) are in 1( ) for all
1( )) follows from the identities

( ) = ( ) and ( ) = ( ) ( )

and the fact that 1( ) is a lattice. If : [0 ] is a sequence of measurable
functions such that = lim exists pointwise, then for 1( ) we have

By the dominated convergence theorem (using | | | |)
it follows that 1( ) Since 1( ) is arbitrary we conclude that is
measurable as well.

Lemma 14.20. A non-negative function on is measurable i 1( )
for all S.

Proof. Suppose : [0 ] is a function such that 1( ) for all
S and let S 1( ) Choose S such that as then

1( ) and by the monotone convergence Theorem 14.11,
1( ) Similarly, using the dominated convergence Theorem 14.15, it follows that

1( ) for all S Finally for any 1( ) there exists S such
that = a.e. and hence = a.e. and therefore by Proposition 14.14,

1( ) This completes the proof since the converse direction is trivial.

Definition 14.21. A set is measurable if 1 is measurable and inte-
grable if 1 1( ) Let R denote the collection of measurable subsets of

Remark 14.22. Suppose that 0 then 1( ) i is measurable and (̄ )
Indeed, if is measurable and (̄ ) there exists S 1( ) such that
Since is measurable, = 1( ) In particular if R then is

integrable i (̄1 )

Lemma 14.23. The set R is a ring which is a — algebra if 1 is measurable.
(Notice that 1 is measurable i 1 1( ) for all S This condition is
clearly implied by assuming 1 S for all S This will be the typical case in
applications.)
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Proof. Suppose that R then and are in R by Lemma 14.19
because

1 = 1 1 and 1 = 1 1

If R then the identities,

1
=1

= lim 1
=1

and 1
=1

= lim 1
=1

along with Lemma 14.19 shows that =1 and =1 are in R as well. Also if
R and S then

(14.7) 1 \ = 1 1 + 0 1( )

showing the \ R as well.34 Thus we have shown that R is a ring. If 1 = 1
is measurable it follows that R and R becomes a — algebra.

Lemma 14.24 (Chebyshev’s Inequality). Suppose that 1 is measurable.

(1) If
£

1( )
¤+
then, for all R the set { } is measurable. More-

over, if 0 then { } is integrable and (̂1{ }) 1 (̂ )
(2) (S) R
Proof.
(1) If 0 { } = R since 1 is measurable. So now assume that

0 If = 0 let = 1( ) and if 0 let = 1
¡

1
¢

1

(Notice that is a di erence of two 1( ) — functions and hence in 1( ) )

The function
£

1( )
¤+
has been manufactured so that { 0} = {

} Now let := ( ) 1
£

1( )
¤+
then 1{ } as showing

1{ } is measurable and hence that { } is measurable. Finally if
0

1{ } = 1{ }
¡

1
¢

1( )

showing the { } is integrable and
(̂1{ }) = (̂1{ }

¡

1
¢

) (̂ 1 ) = 1 (̂ )

(2) Since S+ is R measurable by (1) and S = S+ S+ it follows that any
S is R measurable, (S) R

Lemma 14.25. Let 1 be measurable. Define ± : R [0 ] by

+( ) = (̄1 ) and ( ) = (1 )

Then ± are measures on R such that + and ( ) = +( ) whenever
+( )

34Indeed, for \ and Eq. (14.7) evaluated at states, respectively,
that

0 = 1 1 + 0

1 = 1 0 + 0 and

0 = 0 0 + 0

all of which are true.
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Notice by Remark 14.22 that

+( ) =

½

(̂1 ) if is integrable
if R but is not integrable.

Proof. Since 1 = 0 ±( ) = (̂0) = 0 and if R then +( ) =
(̄1 ) (̄1 ) = +( ) and similarly, ( ) = (1 ) (1 ) = ( ) Hence
± are monotonic. By Remark 14.22 if +( ) then is integrable so

( ) = (1 ) = (̂1 ) = (̄1 ) = +( )

Now suppose that { } =1 R is a sequence of pairwise disjoint sets and let
:= =1 R If +( ) = for some then by monotonicity +( ) =

as well. If +( ) for all then :=
P

=1 1
£

1( )
¤+
with 1

Therefore, by the monotone convergence theorem, 1 is integrable i

lim (̂ ) =
X

=1

+( )

in which case 1 1( ) and lim (̂ ) = (̂1 ) = +( ) Thus we have
shown that + is a measure and ( ) = +( ) whenever +( ) The fact
the is a measure will be shown in the course of the proof of Theorem 14.28.

Example 14.26. Suppose is a set, S = {0} is the trivial vector space and
(0) = 0 Then clearly is a Daniel integral,

(̄ ) =

½

if ( ) 0 for some
0 if 0

and similarly,

( ) =

½

if ( ) 0 for some
0 if 0

Therefore, 1( ) = {0} and for any we have 1 0 = 0 S so that R = 2
Since 1 1( ) = {0} unless = set, the measure + in Lemma 14.25 is given
by +( ) = if 6= and +( ) = 0 i.e. +( ) = (̄1 ) while 0

Lemma 14.27. For R let

( ) := sup{ +( ) : R and +( ) }
then is a measure on R such that ( ) = +( ) whenever +( ) If
is any measure on R such that ( ) = +( ) when +( ) then
Moreover,

Proof. Clearly ( ) = +( ) whenever +( ) Now let = =1

with{ } =1 R being a collection of pairwise disjoint subsets. Let
with +( ) then := =1 and +( ) and hence

( ) +( ) =
X

=1

+( )

and since with +( ) is arbitrary it follows that ( )
P

=1 ( ) and hence letting implies ( )
P

=1 ( ) Conversely,
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if with +( ) then and +( ) Therefore,

+( ) =
X

=1

+( )
X

=1

( )

for all such and hence ( )
P

=1 ( )
Using the definition of and the assumption that ( ) = +( ) when +( )

( ) = sup{ ( ) : R and +( ) } ( )

showing Similarly,

( ) = sup{ (̂1 ) : R and +( ) }
= sup{ (1 ) : R and +( ) } (1 ) = ( )

Theorem 14.28 (Stone). Suppose that 1 is measurable and + and are as
defined in Lemma 14.25, then:

(1) 1( ) = 1( R +) =
1( +) and for integrable 1( +)

(14.8) (̂ ) =

Z

+

(2) If is any measure on R such that S 1( ) and

(14.9) (̂ ) =

Z

for all S

then ( ) ( ) +( ) for all R with ( ) = ( ) = +( )
whenever +( )

(3) Letting be as defined in Lemma 14.27, = and hence is a measure.
(So + is the maximal and is the minimal measure for which Eq. (14.9)
holds.)

(4) Conversely if is any measure on (S) such that ( ) = +( ) when
(S) and +( ) then Eq. (14.9) is valid.

Proof.
(1) Suppose that

£

1( )
¤+

then Lemma 14.24 implies that is R mea-
surable. Given N let

(14.10) :=
22
X

=1
2
1{ 2 +1

2 } = 2
22
X

=1

1{ 2 }

Then we know {2 } R and that 1{ 2 } = 1{ 2 }
¡

2
¢

1( )

i.e. +

¡

2

¢

Therefore
£

1( )
¤+
and Suppose that

is any measure such that ( ) = +( ) when +( ) then by the
monotone convergence theorems for ˆ and the Lebesgue integral,

(̂ ) = lim (̂ ) = lim 2
22
X

=1

(̂1{ 2 }) = lim 2
22
X

=1

+

µ

2

¶

= lim 2
22
X

=1

µ

2

¶

= lim

Z

=

Z

(14.11)
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This shows that
£

1( )
¤+
and that (̂ ) =

R

Since every
1( ) is of the form = + with ± £

1( )
¤+

it follows that
1( ) 1( +)

1( ) 1( ) and Eq. (14.9) holds for all 1( )

Conversely suppose that
£

1( +)
¤+

Define as in Eq. (14.10).
Chebyshev’s inequality implies that +(2 ) and hence {2 }
is — integrable. Again by the monotone convergence for Lebesgue integrals
and the computations in Eq. (14.11),

Z

+ = lim (̂ )

and therefore by the monotone convergence theorem for ˆ 1( ) and
Z

+ = lim (̂ ) = (̂ )

(2) Suppose that is any measure such that Eq. (14.9) holds. Then by the
monotone convergence theorem,

( ) =

Z

for all S S

Let R and assume that +( ) i.e. 1 1( ) Then there exists
S 1( ) such that 1 and integrating this inequality relative to

implies

( ) =

Z

1

Z

= (̂ )

Taking the infinum of this equation over those S such that 1
implies ( ) (̄1 ) = +( ) If +( ) = in this inequality holds
trivially.
Similarly, if R and S such that 0 1 then

( ) =

Z

1

Z

= (̂ )

Taking the supremum of this equation over those S such that 0
1 then implies ( ) ( ) So we have shown that +

(3) By Lemma 14.27, = is a measure as in (2) satisfying and
therefore and hence we have shown that = This also shows
that is a measure.

(4) This can be done by the same type of argument used in the proof of (1).

Proposition 14.29 (Uniqueness). Suppose that 1 is measurable and there exists a
function 1( ) such that ( ) 0 for all Then there is only one measure
on (S) such that

(̂ ) =

Z

for all S

Remark 14.30. The existence of a function 1( ) such that ( ) 0 for all is
equivalent to the existence of a function S such that (̂ ) and ( ) 0
for all Indeed by Lemma 14.16, if 1( ) there exists ˜ S 1( )
such ˜
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Proof. As in Remark 14.30, we may assume S 1( ) The sets :=

{ 1 } (S) R satisfy ( ) (̂ ) The proof is completed using
Theorem 14.28 to conclude, for any (S) that

+( ) = lim +( ) = lim ( ) = ( )

Since + = we see that = + =



296 BRUCE K. DRIVER†

15. Complex Measures, Radon-Nikodym Theorem and the Dual of

Definition 15.1. A signed measure on a measurable space ( M) is a function
:M R such that

(1) Either (M) ( ] or (M) [ )
(2) is countably additive, this is to say if =

`

=1 with M then

( ) =
P

=1
( ) 35

(3) ( ) = 0

If there exists M such that | ( )| and = =1 then is said
to be — finite and if (M) R then is said to be a finite signed measure.
Similarly, a countably additive set function :M C such that ( ) = 0 is called
a complex measure.

A finite signed measure is clearly a complex measure.

Example 15.2. Suppose that + and are two positive measures on M such
that either +( ) or ( ) then = + is a signed measure. If
both +( ) and ( ) are finite then is a finite signed measure.

Example 15.3. Suppose that : R is measurable and either
R

+ or
R

then

(15.1) ( ) =

Z

M

defines a signed measure. This is actually a special case of the last example with
±( )

R ± Notice that the measure ± in this example have the property
that they are concentrated on disjoint sets, namely + “lives” on { 0} and
“lives” on the set { 0}
Example 15.4. Suppose that is a positive measure on ( M) and 1( )
then given as in Eq. (15.1) is a complex measure on ( M) Also if

©

± ±
ª

is
any collection of four positive measures on ( M) then

(15.2) := + +
¡

+

¢

is a complex measure.

If is given as in Eq. 15.1, then may be written as in Eq. (15.2) with

± = (Re )± and ± = (Im )±

Definition 15.5. Let be a complex or signed measure on ( M) A set M is
a null set or precisely a — null set if ( ) = 0 for all M such that i.e.
|M = 0 Recall thatM := { : M} = 1 (M) is the “trace of on
.

35If ( ) R then the series
P

=1
( ) is absolutely convergent since it is independent of

rearrangements.
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15.1. Radon-Nikodym Theorem I. We will eventually show that every complex
and — finite signed measure may be described as in Eq. (15.1). The next theorem
is the first result in this direction.

Theorem 15.6. Suppose ( M) is a measurable space, is a positive finite mea-
sure on M and is a complex measure on M such that | ( )| ( ) for all

M Then = where | | 1 Moreover if is a positive measure, then
0 1

Proof. For a simple function, S( M) let ( ) :=
P

C ( = ) Then

| ( )|
X

C

| | | ( = )|
X

C

| | ( = ) =

Z

| |

So, by the B.L.T. Theorem 4.1, extends to a continuous linear functional on 1( )
satisfying the bounds

| ( )|
Z

| |
p

( ) k k 2( ) for all
1( )

The Riesz representation Theorem (Proposition 12.15) then implies there exists a
unique 2( ) such that

( ) =

Z

for all 2( )

Taking = sgn( )1 in this equation shows
Z

| | = (sgn( )1 ) ( ) =

Z

1

from which it follows that | | 1 — a.e. If is a positive measure, then for real
0 = Im [ ( )] =

R

Im and taking = Im shows 0 =
R

[Im ]
2 i.e.

Im( ( )) = 0 for — a.e. and we have shown is real a.e. Similarly,

0 (Re 0) =

Z

{Re 0}
0

shows 0 a.e.

Definition 15.7. Let and be two signed or complex measures on ( M) Then
and are mutually singular (written as ) if there exists M such

that is a — null set and is a — null set. The measure is absolutely
continuous relative to (written as ¿ ) provided ( ) = 0 whenever is a
— null set, i.e. all — null sets are — null sets as well.

Remark 15.8. If 1 2 and are signed measures on ( M) such that 1 and
2 and 1 + 2 is well defined, then ( 1 + 2) If { } =1 is a sequence of
positive measures such that for all then =

P

=1 as well.

Proof. In both cases, choose M such that is — null and is -null
for all Then by Lemma 15.17, := is still a —null set. Since

= for all

we see that is a - null set for all and is therefore a null set for =
P

=1

This shows that
Throughout the remainder of this section will be always be a positive measure.
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Definition 15.9 (Lebesgue Decomposition). Suppose that is a signed (complex)
measure and is a positive measure on ( M) Two signed (complex) measures
and form a Lebesgue decomposition of relative to if

(1) If = + where implicit in this statement is the assertion that if
takes on the value ( ) then and do not take on the value
( )

(2) ¿ and

Lemma 15.10. Let is a signed (complex) measure and is a positive measure on
( M) If there exists a Lebesgue decomposition of relative to then it is unique.
Moreover, if is a positive measure and = + is the Lebesgue decomposition
of relative to then:

(1) if is positive then and are positive.
(2) If is a — finite measure then so are and

Proof. Since there exists M such that ( ) = 0 and is —
null and because ¿ is also a null set for So for M ( ) = 0
and ( ) = 0 from which it follows that

( ) = ( ) + ( ) = ( ) + ( )

and hence,

( ) = ( ) = ( ) and

( ) = ( ) = ( )(15.3)

Item 1. is now obvious from Eq. (15.3). For Item 2., if is a — finite measure
then there exists M such that = =1 and | ( )| for all Since
( ) = ( ) + ( ) we must have ( ) R and ( ) R showing
and are — finite as well.
For the uniqueness assertion, if we have another decomposition = ˜ + ˜ with

˜ ˜ and ˜ ¿ ˜ we may choose ˜ M such that ( ˜) = 0 and ˜ is ˜ — null.
Letting = ˜ we have

( ) ( ) + ( ˜) = 0

and = ˜ is both a and a ˜ null set. Therefore by the same arguments
that proves Eqs. (15.3), for all M

( ) = ( ) = ˜ ( ) and

( ) = ( ) = ˜ ( )

Lemma 15.11. Suppose is a positive measure on ( M) and : R̄ are
extended integrable functions such that

(15.4)
Z

=

Z

for all M
R R

and the measures | | and | | are — finite.
Then ( ) = ( ) for — a.e.
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Proof. By assumption there exists M such that and
R | |

and
R | | for all Replacing by in Eq. (15.4) implies

Z

1 =

Z

=

Z

=

Z

1

for all M Since 1 and 1 are in 1( ) for all this equation implies
1 = 1 — a.e. Letting then shows that = — a.e.

Remark 15.12. Suppose that and are two positive measurable functions on
( M ) such that Eq. (15.4) holds. It is not in general true that = —
a.e. A trivial counter example is to takeM = P( ) ( ) = for all non-empty

M = 1 and = 2 · 1 Then Eq. (15.4) holds yet 6=
Theorem 15.13 (Radon Nikodym Theorem for Positive Measures). Suppose that

are — finite positive measures on ( M) Then has a unique Lebesgue
decomposition = + relative to and there exists a unique (modulo sets of
— measure 0) function : [0 ) such that = Moreover, = 0 i
¿
Proof. The uniqueness assertions follow directly from Lemmas 15.10 and 15.11.
Existence. (Von-Neumann’s Proof.) First suppose that and are finite

measures and let = + By Theorem 15.6, = with 0 1 and this
implies, for all non-negative measurable functions that

(15.5) ( ) = ( ) = ( ) + ( )

or equivalently

(15.6) ( (1 )) = ( )

Taking = 1{ =1} and = 1{ 1}(1 ) 1 with 0 in Eq. (15.6)

({ = 1}) = 0 and ( 1{ 1}) = ( 1{ 1}(1 ) 1 ) = ( )

where := 1{ 1} 1 and ( ) := ( 1{ =1}) This gives the desired decomposi-
tion36 since

( ) = ( 1{ =1}) + ( 1{ 1}) = ( ) + ( )

and
( 6= 1) = 0 while ( = 1) = ({ 6= 1} ) = 0

If ¿ then ( = 1) = 0 implies ( = 1) = 0 and hence that = 0 If
= 0 then = and so if ( ) = 0 then ( ) = ( 1 ) = 0 as well.

36Here is the motivation for this construction. Suppose that = + is the Radon-
Nikodym decompostion and =

`

such that ( ) = 0 and ( ) = 0 Then we find

( ) + ( ) = ( ) = ( ) = ( ) + ( )

Letting 1 then implies that

(1 ) = (1 )

which show that = 1 —a.e. on Also letting 1 implies that

( 1 (1 )) = (1 (1 )) = (1 ) = ( )

which shows that
(1 ) = 1 (1 ) = a.e.

This shows that =
1

— a.e.
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For the — finite case, write =
`

=1 where M are chosen so that
( ) and ( ) for all Let = 1 and = 1 Then
by what we have just proved there exists 1( ) and measure such that

= + with i.e. there exists M and ( ) = 0
and ( ) = 0 Define :=

P

=1 and :=
P

=1 1 then

=
X

=1

=
X

=1

( + ) =
X

=1

( 1 + ) = +

and letting := =1 and := =1 we have = and

( ) =
X

=1

( ) = 0 and ( ) =
X

=1

( ) = 0

Theorem 15.14 (Dual of — spaces). Let ( M ) be a — finite measure
space and suppose that [1 ] are conjugate exponents. Then for [1 )
the map ( ) is an isometric isomorphism of Banach spaces.
(Recall that ( ) :=

R

) We summarize this by writing ( ) = for all
1

Proof. The only point that we have not yet proved is the surjectivity of the
map ( ) When = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that ( ) in
which cased bounded functions are in ( ) for all So let ( ) We need
to find ( ) such that = When [1 2] 2( ) ( ) so that we
may restrict to 2( ) and again the result follows fairly easily from the Riesz
Theorem, see Exercise 15.1 below.
To handle general [1 ) define ( ) := (1 ) If =

`

=1 with
M then

k1
X

=1

1 k = k1
= +1

k =
£

( = +1 )
¤
1

0 as

Therefore

( ) = (1 ) =
X

1

(1 ) =
X

1

( )

showing is a complex measure.37

For M let | | ( ) be the “total variation” of defined by

| | ( ) := sup {| ( 1 )| : | | 1}
and notice that

(15.7) | ( )| | | ( ) k k( ) ( )1 for all M
You are asked to show in Exercise 15.2 that | | is a measure on ( M) (This can
also be deduced from Lemma 15.31 and Proposition 15.35 below.) By Eq. (15.7)
| | ¿ by Theorem 15.6 = | | for some | | 1 and by Theorem 15.13

37It is at this point that the proof breaks down when =
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| | = for some 1( ) Hence, letting = 1( ) = or
equivalently

(15.8) (1 ) =

Z

1 M

By linearity this equation implies

(15.9) ( ) =

Z

for all simple functions on Replacing by 1{| | } in Eq. (15.9) shows

( 1{| | }) =
Z

1{| | }

holds for all simple functions and then by continuity for all ( ) By the
converse to Holder’s inequality, (Proposition 9.26) we learn that
°

°1{| | }
°

° = sup
k k =1

¯

¯ ( 1{| | })
¯

¯ sup
k k =1

k k( )

°

° 1{| | }
°

° k k( )

Using the monotone convergence theorem we may let in the previous equa-
tion to learn k k k k( ) With this result, Eq. (15.9) extends by continuity to
hold for all ( ) and hence we have shown that =
Case 2. Now suppose that is — finite and M are sets such that ( )
and as We will identify ( ) with 1 ( )

and this way we may consider ( ) as a subspace of ( ) for all and
[1 ]
By Case 1. there exists ( ) such that

( ) =

Z

for all ( )

and

k k = sup
©| ( )| : ( ) and k k ( ) = 1

ª k k[ ( )]

It is easy to see that = a.e. on for all so that := lim
exists — a.e. By the above inequality and Fatou’s lemma, k k k k[ ( )]

and since ( ) =
R

for all ( ) and and =1 ( ) is dense
in ( ) it follows by continuity that ( ) =

R

for all ( ) i.e.
=

Example 15.15. Theorem 15.14 fails in general when = Consider = [0 1]
M = B and = Then ( ) 6= 1

Proof. Let := ([0 1])“ ” ([0 1] ) It is easily seen for that
k k = sup {| ( )| : [0 1]} for all Therefore is a closed subspace of

Define ( ) = (0) for all Then with norm 1 Appealing to
the Hahn-Banach Theorem 18.16 below, there exists an extension ( ) such
that = on and k k = 1 If 6= for some 1 i.e.

( ) = ( ) =

Z

[0 1]

for all
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then replacing by ( ) = (1 ) 1 1 and letting implies, (using the
dominated convergence theorem)

1 = lim ( ) = lim

Z

[0 1]

=

Z

{0}
= 0

From this contradiction, we conclude that 6= for any 1

15.2. Signed Measures.

Definition 15.16. Let be a signed measure on ( M) and M then
(1) is positive if for all M such that ( ) 0 i.e. |M 0
(2) is negative if for all M such that ( ) 0 i.e. |M 0

Lemma 15.17. Suppose that is a signed measure on ( M) Then
(1) Any subset of a positive set is positive.
(2) The countable union of positive (negative or null) sets is still positive (neg-

ative or null).
(3) Let us now further assume that (M) [ ) and M is a set

such that ( ) (0 ) Then there exists a positive set such that
( ) ( )

Proof. The first assertion is obvious. If M are positive sets, let =

S

=1
By replacing by the positive set \

Ã

1
S

=1

!

we may assume that

the { } =1 are pairwise disjoint so that =
`

=1
Now if and M

=
`

=1
( ) so ( ) =

P

=1 ( ) 0 which shows that is positive.

The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of negative

measure from . The set remaining from this procedure will be We now proceed
to the formal proof.
For all M let ( ) = 1 sup{ ( ) : } Since ( ) = 0 ( ) 0

and ( ) = 0 i is positive. Choose 0 such that ( 0)
1
2 ( ) and

set 1 = \ 0 then choose 1 1 such that ( 1)
1
2 ( 1) and set

2 = \ ( 0 1) Continue this procedure inductively, namely if 0 1

have been chosen let = \
³ 1̀

=0

´

and choose such that ( )

1
2 ( ) Let := \ `

=0

=
T

=0

then =
`

=0

and hence

(15.10) (0 ) 3 ( ) = ( ) +
X

=0

( ) = ( )
X

=0

( ) ( )

From Eq. (15.10) we learn that
P

=0 ( ) and in particular that
lim ( ( )) = 0 Since 0 1

2 ( ) ( ) this also implies
lim ( ) = 0 If then for all and so, for large so
that ( ) 1 we find ( ) ( ) Letting in this estimate shows
( ) 0 or equivalently ( ) 0 Since was arbitrary, we conclude that
is a positive set such that ( ) ( )
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15.2.1. Hahn Decomposition Theorem.

Definition 15.18. Suppose that is a signed measure on ( M) A Hahn de-
composition for is a partition { } of such that is positive and is
negative.

Theorem 15.19 (Hahn Decomposition Theorem). Every signed measure space
( M ) has a Hahn decomposition, { } Moreover, if { ˜ ˜} is another Hahn
decomposition, then ˜ = ˜ is a null set, so the decomposition is unique
modulo null sets.

Proof. With out loss of generality we may assume that (M) [ ). If
not just consider instead. Let us begin with the uniqueness assertion. Suppose
that M then

( ) = ( ) + ( ) ( ) ( )

and similarly ( ) ( ˜) for all M Therefore

( ) ( ˜) ( ˜) and ( ˜) ( ˜) ( )

which shows that

:= ( ˜) = ( ˜) = ( )

Since

= ( ˜) = ( ) + ( ˜) ( ˜) = 2 ( ˜)

we see that ( ˜) = and since

= ( ˜) = ( ˜) + ( ˜ )

it follows that ( ˜ ) = 0 Thus ˜ = ˜ is a positive set with zero measure,
i.e. ˜ = ˜ is a null set and this proves the uniqueness assertion.
Let

sup{ ( ) : M}
which is non-negative since ( ) = 0 If = 0 we are done since = and
= is the desired decomposition. So assume 0 and choose M such

that ( ) 0 and lim ( ) = By Lemma 15.17here exists positive sets
such that ( ) ( ). Then ( ) ( ) as

implies that = lim ( ) The set =1 is a positive set being the
union of positive sets and since for all

( ) ( ) as

This shows that ( ) and hence by the definition of = ( )
We now claim that = is a negative set and therefore, { } is the desired

Hahn decomposition. If were not negative, we could find = such that
( ) 0 We then would have

( ) = ( ) + ( ) = + ( )

which contradicts the definition of
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15.2.2. Jordan Decomposition.

Definition 15.20. Let = be a Hahn decomposition of and define

+( ) = ( ) and ( ) = ( ) M
Suppose = e e is another Hahn Decomposition and e± are define as above

with and replaced by e and e respectively. Then

e+( ) = ( e) = ( e ) + (( e ) = ( e )

since ˜ is both positive and negative and hence null. Similarly +( ) =

( e ) showing that + = e+ and therefore also that = e

Theorem 15.21 (Jordan Decomposition). There exists unique positive measure
± such that + and = +

Proof. Existence has been proved. For uniqueness suppose = + is a
Jordan Decomposition. Since + there exists = M such that
+( ) = 0 and ( ) = 0. Then clearly is positive for and is negative for
. Now ( ) = +( ) and ( ) = ( ). The uniqueness now follows
from the remarks after Definition 15.20.

Definition 15.22. | |( ) = +( ) + ( ) is called the total variation of . A
signed measure is called — finite provided that | | := + + is a finite
measure.

(BRUCE: Use Exercise 15.7 to prove the uniqueness of the Jordan decomposi-
tions, or make an exercise.)

Lemma 15.23. Let be a signed measure on ( M) and M If ( ) R
then ( ) R for all Moreover, ( ) R i | | ( ) In particular,
is finite i | | is — finite. Furthermore if M is a Hahn decomposition
for and = 1 1 then = | | i.e.

( ) =

Z

| | for all M

Proof. Suppose that and | ( )| = then since ( ) = ( )+ ( \ )
we must have | ( )| = Let M be a Hahn decomposition for then

( ) = ( ) + ( ) = | ( )| | ( )| and
| | ( ) = ( ) ( ) = | ( )|+ | ( )|(15.11)

Therefore ( ) R i ( ) R and ( ) R i | | ( ) Finally,

( ) = ( ) + ( )

= | |( ) | |( )

=

Z

(1 1 ) | |

which shows that = | |
Definition 15.24. Let be a signed measure on ( M) let

1( ) := 1( +) 1( ) = 1(| |)
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and for 1( ) we define
Z

=

Z

+

Z

Lemma 15.25. Let be a positive measure on ( M) be an extended integrable
function on ( M ) and = Then 1( ) = 1(| | ) and for 1( )

Z

=

Z

Proof. We have already seen that + = + = and | | = | |
so that 1( ) = 1(| |) = 1(| | ) and for 1( )

Z

=

Z

+

Z

=

Z

+

Z

=

Z

( + ) =

Z

Lemma 15.26. Suppose that is a positive measure on ( M) and : R
is an extended integrable function. If is the signed measure = then
± = ± and | | = | | We also have

(15.12) | |( ) = sup{
Z

: | | 1} for all M

Proof. The pair, = { 0} and = { 0} = is a Hahn decomposition
for Therefore

+( ) = ( ) =

Z

=

Z

1{ 0} =

Z

+

( ) = ( ) =

Z

=

Z

1{ 0} =

Z

and

| | ( ) = +( ) + ( ) =

Z

+

Z

=

Z

( + ) =

Z

| |

If M and | | 1 then
¯

¯

¯

¯

Z

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

+

Z

¯

¯

¯

¯

¯

¯

¯

¯

Z

+

¯

¯

¯

¯

+

¯

¯

¯

¯

Z

¯

¯

¯

¯

Z

| | + +

Z

| | =

Z

| | | | | | ( )

For the reverse inequality, let 1 1 then
Z

= ( ) ( ) = +( ) + ( ) = | |( )

Lemma 15.27. Suppose is a signed measure, is a positive measure and =
+ is a Lebesgue decomposition of relative to then | | = | |+ | |
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Proof. Let M be chosen so that is a null set for and is a null
set for Let = 0` 0 be a Hahn decomposition of |M and = ˜` ˜

be a Hahn decomposition of |M Let = 0 ˜ and = 0 ˜ Since for
M

( ) = ( 0) + ( ˜)

= ( 0) + ( ˜) 0

and

( ) = ( 0) + ( ˜)

= ( 0) + ( ˜) 0

we see that { } is a Hahn decomposition for It also easy to see that { }
is a Hahn decomposition for both and as well. Therefore,

| | ( ) = ( ) ( )

= ( ) ( ) + ( ) ( )

= | | ( ) + | | ( )

Lemma 15.28. 1) Let be a signed measure and be a positive measure on
( M) such that ¿ and then 0. 2) Suppose that =

P

=1

where are positive measures on ( M) such that ¿ then ¿ Also if 1

and 2 are two signed measure such that ¿ for = 1 2 and = 1+ 2 is well
defined, then ¿
Proof. (1) Because there exists M such that is a — null set and
= is a - null set. Since is — null and ¿ is also — null. This

shows by Lemma 15.17 that = is also — null, i.e. is the zero measure.
The proof of (2) is easy and is left to the reader.

Theorem 15.29 (Radon Nikodym Theorem for Signed Measures). Let be a —
finite signed measure and be a — finite positive measure on ( M) Then has
a unique Lebesgue decomposition = + relative to and there exists a unique
(modulo sets of — measure 0) extended integrable function : R such that

= Moreover, = 0 i ¿ i.e. = i ¿
Proof. Uniqueness. Is a direct consequence of Lemmas 15.10 and 15.11.
Existence. Let = + be the Jordan decomposition of Assume, without

loss of generality, that +( ) i.e. ( ) for all M By the Radon
Nikodym Theorem 15.13 for positive measures there exist functions ± : [0 )
and measures ± such that ± = ± + ± with ± Since

+( ) = +( ) + +( )

+
1( ) and +( ) so that = + is an extended integrable function,

:= and = + are signed measures. This finishes the existence proof
since

= + = + + +

¡

+
¢

= +

and = ( + ) by Remark 15.8.
For the final statement, if = 0 then = and hence ¿ Conversely

if ¿ then = ¿ so by Lemma 15.17, = 0 Alternatively just
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use the uniqueness of the Lebesgue decomposition to conclude = and = 0
Or more directly, choose M such that ( ) = 0 and is a — null set.
Since ¿ is also a — null set so that, for M

( ) = ( ) = ( ) + ( ) = ( )

Notation 15.30. The function is called the Radon-Nikodym derivative of
relative to and we will denote this function by

15.3. Complex Measures II. Suppose that is a complex measure on ( M)
let := Re := Im and := | | + | | Then is a finite positive measure
onM such that ¿ and ¿ By the Radon-Nikodym Theorem 15.29, there
exists real functions 1( ) such that = and = So letting
:= + 1( )

= ( + ) =

showing every complex measure may be written as in Eq. (15.1).

Lemma 15.31. Suppose that is a complex measure on ( M) and for = 1 2
let be a finite positive measure on ( M) such that = with 1( )
Then

Z

| 1| 1 =

Z

| 2| 2 for all M
In particular, we may define a positive measure | | on ( M) by

| | ( ) =

Z

| 1| 1 for all M

The finite positive measure | | is called the total variation measure of
Proof. Let = 1 + 2 so that ¿ Let = 0 and =

Since

( ) =

Z

=

Z

=

Z

for all M
1 = 2 —a.e. Therefore
Z

| 1| 1 =

Z

| 1| 1 =

Z

| 1| =

Z

| 2| =

Z

| 2| 2 =

Z

| 2| 2

Definition 15.32. Given a complex measure let = Re and = Im so
that and are finite signed measures such that

( ) = ( ) + ( ) for all M
Let 1( ) := 1( ) 1( ) and for 1( ) define

Z

:=

Z

+

Z

Example 15.33. Suppose that is a positive measure on ( M) 1( ) and
( ) =

R

as in Example 15.4, then 1( ) = 1(| | ) and for 1( )

(15.13)
Z

=

Z
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To check Eq. (15.13), notice that = Re and = Im so that
(using Lemma 15.25)

1( ) = 1(Re ) 1(Im ) = 1(|Re | ) 1(|Im | ) = 1(| | )

If 1( ) then
Z

:=

Z

Re +

Z

Im =

Z

Remark 15.34. Suppose that is a complex measure on ( M) such that =
and as above | | = | | Letting

= sgn( ) :=

½

| | if | | 6= 0
1 if | | = 0

we see that
= = | | = | |

and | | = 1 and is uniquely defined modulo | | — null sets. We will denote by
| | With this notation, it follows from Example 15.33 that 1( ) := 1 (| |)

and for 1( )
Z

=

Z

| | | |

Proposition 15.35 (Total Variation). Suppose A P( ) is an algebra, M =
(A) is a complex (or a signed measure which is — finite on A) on ( M)
and for M let

0( ) = sup

(

X

1

| ( )| : A 3 = = 1 2

)

1( ) = sup

(

X

1

| ( )| : M 3 = = 1 2

)

2( ) = sup

(

X

1

| ( )| : M 3 =

)

3( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: is measurable with | | 1

¾

4( ) = sup

½
¯

¯

¯

¯

Z

¯

¯

¯

¯

: S (A | |) with | | 1

¾

then 0 = 1 = 2 = 3 = 4 = | |
Proof. Let = | | and recall that | | = 1 | | — a.e. We will start by

showing | | = 3 = 4 If is measurable with | | 1 then
¯

¯

¯

¯

Z

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

| |
¯

¯

¯

¯

Z

| | | |
Z

1 | | = | |( )

from which we conclude that 4 3 | | Taking = ¯ above shows
¯

¯

¯

¯

Z

¯

¯

¯

¯

=

Z

¯ | | =
Z

1 | | = | | ( )

which shows that | | 3 and hence | | = 3 To show | | = 4 as well let A
be chosen so that | | ( ) and as By Theorem 11.3 of
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Corollary 13.27, there exists S (A ) such that 1 in 1(| |) and
each may be written in the form

(15.14) =
X

=1

1

where C and A and = if 6= I claim that we may assume
that | | 1 in Eq. (15.14) for if | | 1 and

| ( ) |
¯

¯

¯
( ) | | 1

¯

¯

¯

This is evident from Figure 31 and formally follows from the fact that
¯

¯

¯
( ) | | 1

¯

¯

¯

2

= 2
h

Re(| | 1 ( ))
i

0

when 1

Figure 31. Sliding points to the unit circle.

Therefore if we define

:=

½ | | 1 if | | 1
if | | 1

and ˜ =
P

=1

1 then

| ( ) ( )| | ( ) ˜ ( )|
and therefore ˜ 1 in 1(| |). So we now assume that is as in Eq. (15.14)
with | | 1.
Now

¯

¯

¯

¯

Z

¯

Z

¯1

¯

¯

¯

¯

¯

¯

¯

¯

Z

(¯ ¯1 ) | |
¯

¯

¯

¯

Z

|¯ ¯1 | | | 0 as

and hence

4( )

¯

¯

¯

¯

Z

1̄

¯

¯

¯

¯

= | | ( ) for all

Letting in this equation shows 4 | |
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We will now show 0 = 1 = 2 = | | Clearly 0 1 2 Suppose M
such that = then

X

| ( )| =
X

|
Z

| |
X

| |( ) = | |( ) | | ( )

which shows that 2 | | = 4 So it su ces to show 4 0 But if S (A | |)
with | | 1 then may be expressed as =

P

=1 1 with | | 1 and
= Therefore,

¯

¯

¯

¯

Z

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

X

=1

| | | ( )|
X

=1

| ( )| 0( )

Since this equation holds for all S (A | |) with | | 1 4 0 as claimed.

Theorem 15.36 (Radon Nikodym Theorem for Complex Measures). Let be a
complex measure and be a — finite positive measure on ( M) Then has a
unique Lebesgue decomposition = + relative to and there exists a unique
element 1( ) such that such that = Moreover, = 0 i ¿ i.e.
= i ¿
Proof. Uniqueness. Is a direct consequence of Lemmas 15.10 and 15.11.
Existence. Let : 1 C be a function such that = | | By

Theorem 15.13, there exists 1( ) and a positive measure | | such that | |
and | | = + | | Hence we have = + with := 1( ) and

:= | | This finishes the proof since, as is easily verified,

15.4. Absolute Continuity on an Algebra. The following results will be useful
in Section 16.4 below.

Lemma 15.37. Let be a complex or a signed measure on ( M) Then M
is a — null set i | | ( ) = 0 In particular if is a positive measure on ( M)
¿ i | | ¿
Proof. In all cases we have | ( )| | | ( ) for all M which clearly shows

that | | ( ) = 0 implies is a — null set. Conversely if is a — null set, then,
by definition, |M 0 so by Proposition 15.35

| | ( ) = sup

(

X

1

| ( )| : M 3 =

)

= 0

since implies ( ) = 0 and hence ( ) = 0
Alternate Proofs that is — null implies | | ( ) = 0
1) Suppose is a signed measure and { = } M is a Hahn decomposition

for Then
| | ( ) = ( ) ( ) = 0

Now suppose that is a complex measure. Then is a null set for both := Re
and := Im Therefore | | ( ) | | ( ) + | | ( ) = 0
2) Here is another proof in the complex case. Let = | | then by assumption

of being — null,

0 = ( ) =

Z

| | for all M
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This shows that 1 = 0 | | — a.e. and hence
| | ( ) =

Z

| | | | =
Z

1 | | | | = 0

Theorem 15.38 ( — Definition of Absolute Continuity). Let be a complex
measure and be a positive measure on ( M) Then ¿ i for all 0 there
exists a 0 such that | ( )| whenever M and ( )

Proof. ( =) If ( ) = 0 then | ( )| for all 0 which shows that
( ) = 0 i.e. ¿ .
(= ) Since ¿ i | | ¿ and | ( )| | |( ) for all M it su ces to

assume 0 with ( ) . Suppose for the sake of contradiction there exists
0 and M such that ( ) 0 while ( ) 1

2 . Let

= { i.o.} =
\

=1

[

so that

( ) = lim ( ) lim
X

=

( ) lim 2 ( 1) = 0

On the other hand,

( ) = lim ( ) lim inf ( ) 0

showing that is not absolutely continuous relative to

Corollary 15.39. Let be a positive measure on ( M) and 1( ). Then

for all 0 there exists 0 such that

¯

¯

¯

¯

R

¯

¯

¯

¯

for all M such that

( )

Proof. Apply theorem 15.38 to the signed measure ( ) =
R

for all M

Theorem 15.40 (Absolute Continuity on an Algebra). Let be a complex measure
and be a positive measure on ( M). Suppose that A M is an algebra such
that (A) =M and that is — finite on A Then ¿ i for all 0 there
exists a 0 such that | ( )| for all A with ( )

Proof. (= ) This implication is a consequence of Theorem 15.38.
( =) Let us begin by showing the hypothesis | ( )| for all A with
( ) implies | | ( ) 4 for all A with ( ) To prove this decompose
into its real and imaginary parts; = + and suppose that =

`

=1

with A Then

X

=1

| ( )| =
X

: ( ) 0

( )
X

: ( ) 0

( )

= ( : ( ) 0 ) ( : ( ) 0 )
¯

¯ ( : ( ) 0 )
¯

¯+
¯

¯ ( : ( ) 0 )
¯

¯

2
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using the hypothesis and the fact
¡

: ( ) 0

¢

( ) and
¡

: ( ) 0

¢

( ) Similarly,
P

=1 | ( )| 2 and therefore

X

=1

| ( )|
X

=1

| ( )|+
X

=1

| ( )| 4

Using Proposition 15.35, it follows that

| | ( ) = sup
X

=1

| ( )| : =
a

=1

with A and N 4

Because of this argument, we may now replace by | | and hence we may assume
that is a positive finite measure.
Let 0 and 0 be such that ( ) for all A with ( ) Suppose

that M with ( ) Use the regularity Theorem 8.40 or Corollary 13.27 to
find A such that and ( ) ( ) Write = with A.
By replacing by =1 if necessary we may assume that is increasing in
Then ( ) ( ) for each and hence by assumption ( ) . Since

= it follows that ( ) ( ) = lim ( ) Thus we have
shown that ( ) for all M such that ( )

15.5. Dual Spaces and the Complex Riesz Theorem.

Proposition 15.41. Let S be a vector lattice of bounded real functions on a set
We equip S with the sup-norm topology and suppose S Then there exists

± S which are positive such that then = +

Proof. For S+ let

+( ) := sup
©

( ) : S+ and
ª

One easily sees that | +( )| k k k k for all S+ and +( ) = +( ) for all
S+ and 0 Let 1 2 S+ Then for any S+ such that we have

S+ 3 1 + 2 1 + 2 and hence

( 1) + ( 2) = ( 1 + 2) +( 1 + 2)

Therefore,

(15.15) +( 1) + +( 2) = sup{ ( 1) + ( 2) : S+ 3 } +( 1 + 2)

For the opposite inequality, suppose S+ and 1 + 2 Let 1 = 1 then

0 2 := 1 = 1 =

½

0 if 1

1 if 1
½

0 if 1

1 + 2 1 if 1
2

Since = 1 + 2 with S+ 3
( ) = ( 1) + ( 2) +( 1) + +( 2)

and since S+ 3 1 + 2 was arbitrary, we may conclude

(15.16) +( 1 + 2) +( 1) + +( 2)

Combining Eqs. (15.15) and (15.16) shows that

(15.17) +( 1 + 2) = +( 1) + +( 2) for all S+
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We now extend + to S by defining, for S

+( ) = +( +) +( )

where + = 0 and = ( 0) = ( ) 0 (Notice that = + ) We
will now shows that + is linear.
If 0 we may use ( )± = ± to conclude that

+( ) = +( +) +( ) = +( +) +( ) = +( )

Similarly, using ( )± = it follows that +( ) = +( ) +( +) = +( )
Therefore we have shown

+( ) = +( ) for all R and S

If = with S+ then

+ + = + S+

and so by Eq. (15.17), +( ) + +( +) = +( ) + +( ) or equivalently

(15.18) +( ) = +( +) +( ) = +( ) +( )

Now if S, then

+( + ) = +( + + + ( + ))

= +( + + +) +( + )

= +( +) + +( +) +( ) +( )

= +( ) + +( )

wherein the second equality we used Eq. (15.18).
The last two paragraphs show + : S R is linear. Moreover,

| +( )| = | +( +) +( )| max (| +( +)| | +( )|)
k kmax (k +k k k) = k k k k

which shows that k +k k k That is + is a bounded positive linear functional
on S Let = + S Then by definition of +( ) ( ) = +( ) ( ) 0
for all S 3 0 Therefore = + with ± being positive linear functionals
on S

Corollary 15.42. Suppose is a second countable locally compact Hausdor space
and 0( R) then there exists = + where is a finite signed measure
on BR such that ( ) =

R

R for all 0( R) Similarly if 0( C)
there exists a complex measure such that ( ) =

R

R for all 0( C)
TODO Add in the isometry statement here.

Proof. Let = + be the decomposition given as above. Then we know
there exists finite measure ± such that

±( ) =
Z

± for all 0( R)

and therefore ( ) =
R

for all 0( R) where = + Moreover the
measure is unique. Indeed if ( ) =

R

for some finite signed measure then
the next result shows that ±( ) =

R

± where ± is the Hahn decomposition
of Now the measures ± are uniquely determined by ± The complex case is a
consequence of applying the real case just proved to Re and Im
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Proposition 15.43. Suppose that is a signed Radon measure and = Let +

and be the Radon measures associated to ± then = + is the Jordan
decomposition of

Proof. Let = where is a positive set for and is a negative set.
Then for B
(15.19) ( ) = +( ) ( ) +( ) +( )

To finish the proof we need only prove the reverse inequality. To this end let 0
and choose @@ such that | | ( \ ) Let ( [0 1])
with then

( ) = ( ) = ( : ) + ( : \ ) ( : ) + ( )

( ) + ( ) ( ) + ( )

Taking the supremum over all such we learn that +( ) ( ) + ( )
and then taking the supremum over all such shows that

+( ) ( ) + ( )

Taking the infimum over all such that shows that

(15.20) +( ) ( ) + ( )

From Eqs. (15.19) and (15.20) it follows that ( ) = +( ) Since

( ) = sup
0

( ) ( ) = sup
0

( ) = sup
0

( ) = sup
0

( )

the same argument applied to shows that

( ) = ( )

Since

( ) = ( ) + ( ) = +( ) ( ) and

( ) = +( ) ( )

it follows that
+( \ ) = ( \ ) = ( )

Taking = then shows that ( ) = 0 and taking = shows that +( ) =
0 and hence

( ) = +( ) = +( ) and

( ) = ( ) = ( )

as was to be proved.

15.6. Exercises.

Exercise 15.1. Prove Theorem 15.14 for [1 2] by directly applying the Riesz
theorem to | 2( )

Exercise 15.2. Show | | be defined as in Eq. (15.7) is a positive measure. Here is
an outline.

(1) Show

(15.21) | | ( ) + | | ( ) | | ( )

when are disjoint sets inM
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(2) If =
`

=1 with M then

(15.22) | | ( )
X

=1

| | ( )

(3) From Eqs. (15.21) and (15.22) it follows that is finitely additive, and
hence

| | ( ) =
X

=1

| | ( ) + | | ( )
X

=1

| | ( )

Letting in this inequality shows | | ( )
P

=1 | | ( ) which
combined with Eq. (15.22) shows | | is countable additive.

Exercise 15.3. Suppose are — finite positive measures on measurable
spaces, ( M ) for = 1 2 If ¿ for = 1 2 then 1 2 ¿ 1 2

and in fact
( 1 2)

( 1 2)
( 1 2) = 1 2( 1 2) := 1( 1) 2( 2)

where := for = 1 2

Exercise 15.4. Folland 3.13 on p. 92.

Exercise 15.5. Let be a — finite signed measure, 1(| |) and define
Z

=

Z

+

Z

Suppose that is a — finite measure and ¿ Show

(15.23)
Z

=

Z

Exercise 15.6. Suppose that is a signed or complex measure on ( M) and
M such that either or and ( 1) R then show ( ) =

lim ( )

Exercise 15.7. Suppose that and are positive measures and ( ) Let
:= then show + and

Exercise 15.8. Folland Exercise 3.5 on p. 88 showing | 1 + 2| | 1|+ | 2|
Exercise 15.9. Folland Exercise 3.7a on p. 88.

Exercise 15.10. Show Theorem 15.38 may fail if is not finite. (For a hint, see
problem 3.10 on p. 92 of Folland.)

Exercise 15.11. Folland 3.14 on p. 92.

Exercise 15.12. Folland 3.15 on p. 92.

Exercise 15.13. Folland 3.20 on p. 94.
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16. Lebesgue Differentiation and the Fundamental Theorem of
Calculus

Notation 16.1. In this chapter, let B = BR denote the Borel — algebra on R
and be Lebesgue measure on B If is an open subset of R let 1 ( ) :=
1 ( ) and simply write 1 for 1 (R ) We will also write | | for ( ) when
B

Definition 16.2. A collection of measurable sets { } 0 B is said to shrink
nicely to R if (i) ( ) for all 0 and (ii) there exists 0 such that
( ) ( ( )) We will abbreviate this by writing { } nicely. (Notice

that it is not required that for any 0

The main result of this chapter is the following theorem.

Theorem 16.3. Suppose that is a complex measure on (R B) then there exists
1(R ) and a complex measure such that = + and

for - a.e.

(16.1) ( ) = lim
0

( )

( )

for any collection of { } 0 B which shrink nicely to { }
Proof. The existence of and such that and = + is a

consequence of the Radon-Nikodym Theorem 15.36. Since

( )

( )
=

1

( )

Z

( ) ( ) +
( )

( )

Eq. (16.1) is a consequence of Theorem 16.13 and Corollary 16.15 below.
The rest of this chapter will be devoted to filling in the details of the proof of

this theorem.

16.1. A Covering Lemma and Averaging Operators.

Lemma 16.4 (Covering Lemma). Let E be a collection of open balls in R and
= E . If ( ), then there exists disjoint balls 1 E such that
3
P

=1
( )

Proof. Choose a compact set such that ( ) and then let E1 E
be a finite subcover of Choose 1 E1 to be a ball with largest diameter in E1
Let E2 = { E1 : 1 = } If E2 is not empty, choose 2 E2 to be a ball with
largest diameter in E2 Similarly let E3 = { E2 : 2 = } and if E3 is not
empty, choose 3 E3 to be a ball with largest diameter in E3 Continue choosing

E for = 1 2 this way until E +1 is empty, see Figure 32 below.
If = ( 0 ) R let = ( 0 3 ) R , that is is the ball concentric

with which has three times the radius of We will now show =1 For
each E1 there exists a first such that 6= In this case diam( )
diam( ) and . Therefore =1 and hence { : E1}
=1 Hence by subadditivity,

( )
X

=1

( ) 3
X

=1

( )
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Figure 32. Picking out the large disjoint balls.

Definition 16.5. For 1 R and 0 let

(16.2) ( )( ) =
1

| ( )|
Z

( )

where ( ) = ( ) R and | | := ( )

Lemma 16.6. Let 1 then for each R (0 )such that ( )( )
is continuous and for each 0 R such that ( ) ( ) is measurable.

Proof. Recall that | ( )| = ( 1) which is continuous in . Also
lim

0 1 ( )( ) = 1 ( 0)( ) if | | 6= 0 and since ({ : | | 6= 0}) = 0 (you
prove!), lim

0 1 ( )( ) = 1 ( 0)( ) for -a.e. . So by the dominated conver-
gence theorem,

lim
0

Z

( )

=

Z

( 0)

and therefore

( )( ) =
1

( 1)

Z

( )

is continuous in Let ( ) := 1 ( )( ) = 1| | Then is B B — mea-
surable (for example write it as a limit of continuous functions or just notice that
: R × R R defined by ( ) := | | is continuous) and so that by

Fubini’s theorem
Z

( )

=

Z

( )

( ) ( ) ( )

is B — measurable and hence so is ( ) ( )

16.2. Maximal Functions.

Definition 16.7. For 1( ) the Hardy - Littlewood maximal function is
defined by

( )( ) = sup
0

| |( )
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Lemma 16.6 allows us to write

( )( ) = sup
Q 0

| |( )

and then to concluded that is measurable.

Theorem 16.8 (Maximal Inequality). If 1( ) and 0 then

( )
3 k k 1

This should be compared with Chebyshev’s inequality which states that

(| | )
k k 1

Proof. Let { }. For all there exists such that
| |( ) i.e.

| ( )| 1
Z

( )

Since ( ) if ( ) ( ( )) then, using Lemma
16.4, there exists 1 and disjoint balls = ( ) for = 1 2
such that

X

=1

3 | |
X 3

Z

| | 3
Z

R
| | =

3 k k 1

This shows that 3 1k k 1 for all ( ) which proves ( )
3 1k k
Theorem 16.9. If 1 then lim

0
( )( ) = ( ) for — a.e. R

Proof. With out loss of generality we may assume 1( ) We now begin
with the special case where = 1( ) is also continuous. In this case we find:

|( )( ) ( )| 1

| ( )|
Z

( )

| ( ) ( )| ( )

sup
( )

| ( ) ( )| 0 as 0

In fact we have shown that ( )( ) ( ) as 0 uniformly for in compact
subsets of R
For general 1( )

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
= | ( )( )|+ | ( ) ( )|+ | ( ) ( )|

( )( ) + | ( ) ( )|+ | ( ) ( )|
and therefore,

lim
0
| ( ) ( )| ( )( ) + | ( ) ( )|

So if 0 then
½

lim
0
| ( ) ( )|

¾

n

( )
2

o n

| |
2

o
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and thus

( )
³

( )
2

´

+
³

| |
2

´

3

2
k k 1 +

1

2
k k 1

2(3 + 1) 1k k 1

where in the second inequality we have used the Maximal inequality (Theorem 16.8)
and Chebyshev’s inequality. Since this is true for all continuous (R ) 1( )
and this set is dense in 1( ) we may make k k 1 as small as we please. This
shows that

µ½

: lim
0
| ( ) ( )| 0

¾¶

= ( =1 1 )
X

=1

( 1 ) = 0

Corollary 16.10. If = with 1 then

( ( ))

| ( )| = ( ) ( ) for —

16.3. Lebesque Set.

Definition 16.11. For 1 ( ) the Lebesgue set of is

L := R : lim
0

1

| ( )|
Z

( )

| ( ) ( )| = 0

=

½

R : lim
0
( | (·) ( )|) ( ) = 0

¾

Theorem 16.12. Suppose 1 and ( ) then
³

R \ L
´

= 0

where

L := R : lim
0

1

| ( )|
Z

( )

| ( ) ( )| = 0

Proof. For C define ( ) = | ( ) | and { : lim 0 ( ) ( ) 6= ( )}
Then by Theorem 16.9 ( ) = 0 for all C and therefore ( ) = 0 where

=
[

Q+ Q

By definition of if then.

lim
0
( | (·) | )( ) = | ( ) |

for all Q+ Q Letting := 1 we have

| (·) ( )| (| (·) |+ | ( )|) 2 (| (·) | + | ( )| )
( | (·) ( )| )( ) 2 ( | (·) | ) ( ) + ( | ( )| ) ( )

= 2 ( | (·) | ) ( ) + 2 | ( )|
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and hence for

lim
0
( | (·) ( )| )( ) 2 | ( ) | + 2 | ( )| = 22 | ( ) |

Since this is true for all Q+ Q we see that

lim
0
( | (·) ( )| )( ) = 0 for all

i.e. L or equivalently
³

L
´

So
³

R \ L
´

( ) = 0

Theorem 16.13 (Lebesque Di erentiation Theorem). Suppose 1 for all
L (so in particular for — a.e. )

lim
0

1

( )

Z

| ( ) ( )| = 0

and

lim
0

1

( )

Z

( ) = ( )

when { } nicely.
Proof. For all L

¯

¯

¯

¯

1

( )

Z

( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

1

( )

Z

( ( ) ( ))

¯

¯

¯

¯

1

( )

Z

| ( ) ( )|
1

( ( ))

Z

( )

| ( ) ( )|

which tends to zero as 0 by Theorem 16.12. In the second inequality we have
used the fact that ( ( ) \ ( )) = 0
BRUCE: ADD an — version of this theorem.

Lemma 16.14. Suppose is positive — finite measure on B BR such that
Then for — a.e.

lim
0

( ( ))

( ( ))
= 0

Proof. Let B such that ( ) = 0 and ( ) = 0 By the regularity theorem
(Corollary 13.27 or Exercise 8.4), for all 0 there exists an open set R
such that and ( ) Let

½

: lim
0

( ( ))

( ( ))

1
¾

the for choose 0 such that ( ) (see Figure 33) and ( ( ))
( ( ))

1 i.e.

( ( )) ( ( ))

ANALYSIS TOOLS WITH APPLICATIONS 321

Figure 33. Covering a small set with balls.

Let E = { ( )} and
S

( ) Heuristically if all the balls

in E were disjoint and E were countable, then
( )

X

( ( ))
X

( ( ))

= ( ) ( )

Since 0 is arbitrary this would imply that ( ) = 0.
To fix the above argument, suppose that ( ) and use the covering lemma

to find disjoint balls 1 E such that

3
X

=1

( ) 3
X

=1

( )

3 ( ) 3 ( ) 3

Since ( ) is arbitrary we learn that ( ) ( ) 3 and in particular
that ( ) 3 Since 0 is arbitrary, this shows that ( ) = 0 and
therefore, ( ) = 0 where

½

: lim
0

( ( ))

( ( ))
0

¾

= =1

Since

{ R : lim
0

( ( ))

( ( ))
0}

and ( ) = 0 we have shown

({ R : lim
0

( ( ))

( ( ))
0}) = 0

Corollary 16.15. Let be a complex or a — finite signed measure such that
. Then for — a.e.

lim
0

( )

( )
= 0
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whenever { } nicely.
Proof. Recalling the implies | | Lemma 16.14 and the inequalities,

| ( )|
( )

| |( )

( ( ))

| |( ( ))

( ( ))

| |( (2 ))

2 ( (2 ))

proves the result.

Proposition 16.16. TODO Add in almost everywhere convergence result of con-
volutions by approximate — functions.

16.4. The Fundamental Theorem of Calculus. In this section we will restrict
the results above to the one dimensional setting. The following notation will be in
force for the rest of this chapter: denotes one dimensional Lebesgue measure on
B := BR A = A[ ] denote the algebra generated by sets of
the form ( ] [ ] with A denotes those sets in A which
are bounded, and B[ ] is the Borel — algebra on [ ] R

Notation 16.17. Given a function : R R̄ or : R C let ( ) =
lim ( ) ( +) = lim ( ) and (± ) = lim ± ( ) whenever the
limits exist. Notice that if is a monotone functions then (± ) and ( ±)
exist for all

Theorem 16.18. Let : R R be increasing and define ( ) = ( +) Then

(1) { R : ( +) ( )} is countable.
(2) The function increasing and right continuous.
(3) For — a.e. 0( ) and 0( ) exists and 0( ) = 0( )
(4) The function 0 is in 1 ( ) and there exists a unique positive measure

on (R BR) such that

( +) ( +) =

Z

0 + (( ]) for all

Moreover the measure is singular relative to

Proof. Properties (1) and (2) have already been proved in Theorem 13.34.
(3) Let denote the unique measure on B such that (( ]) = ( ) ( )

for all By Theorem 16.3, for - a.e. for all sequences { } 0 which
shrink nicely to { } lim

0
( ( ) ( )) exists and is independent of the choice

of sequence { } 0 shrinking to { } Since ( + ] { } and ( ] { }
nicely,

(16.3) lim
0

( + ])

(( + ])
= lim

0

( + ) ( )
=

+
( )

and
(16.4)

lim
0

(( ])

(( ])
= lim

0

( ) ( )
= lim

0

( ) ( )
= ( )

exist and are equal for - a.e. i.e. 0( ) exists for -a.e.
For R let

( ) ( ) ( ) = ( +) ( ) 0
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Since ( ) = ( ) ( ) the proof of (3) will be complete once we show 0( ) = 0
for — a.e.
From Theorem 13.34,

:= { R : ( +) ( )} { R : ( +) ( )}
is a countable set and

X

( )

( ) =
X

( )

( ( +) ( ))
X

( )

( ( +) ( ))

for all Therefore :=
P

R
( ) (i.e. ( ) :=

P

( ) for all BR)
defines a Radon measure on BR Since ( ) = 0 and ( ) = 0 the measure
By Corollary 16.15 for - a.e.
¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

| ( + )|+ | ( )|
| |

( + | |) + ( | |) + ( )

| |
2
([ | | + | |])

2 | |
and the last term goes to zero as 0 because {[ + ]} 0 shrinks nicely
to { } as 0 and ([ | | + | |]) = 2 | | Hence we conclude for — a.e.
that 0( ) = 0
(4) From Theorem 16.3, item (3) and Eqs. (16.3) and (16.4), 0 = 0 1 ( )

and = 0 + where is a positive measure such that Applying
this equation to an interval of the form ( ] gives

( +) ( +) = (( ]) =

Z

0 + (( ])

The uniqueness of such that this equation holds is a consequence of Theorem
8.8.
Our next goal is to prove an analogue of Theorem 16.18 for complex valued

Definition 16.19. For a partition P of [ ] is a finite subset
of [ ] R such that { } R P For P\ { } let + = min { P : }
and if = let + =

Proposition 16.20. Let be a complex measure on BR and let be a function
such that

( ) ( ) = (( ]) for all
for example let ( ) = (( ]) in which case ( ) = 0 The function is
right continuous and for

(16.5) | |( ] = sup
P

X

P

| ( +]| = sup
P

X

P

| ( +) ( )|

where supremum is over all partitions P of [ ] Moreover ¿ i for all 0
there exists 0 such that

(16.6)
X

=1

| (( ])| =
X

=1

| ( ) ( )|

whenever {( ) ( ]} =1 are disjoint open intervals in ( ] such that
P

=1
(

)
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Proof. Eq. (16.5) follows from Proposition 15.35 and the fact that B = (A)
where A is the algebra generated by ( ] R with R̄ Equation (16.6) is a
consequence of Theorem 15.40 with A being the algebra of half open intervals as
above. Notice that {( ) ( ]} =1 are disjoint intervals i {( ] ( ]} =1
are disjoint intervals,

P

=1
( ) = (( ] =1( ]) and the general element

A( ] is of the form = ( ] =1( ]

Definition 16.21. Given a function : R [ ] C let be the unique additive
measure on A such that (( ]) = ( ) ( ) for all [ ] with
and also define

([ ]) = sup
P

X

P

| ( +]| = sup
P

X

P

| ( +) ( )|

where supremum is over all partitions P of [ ] We will also abuse notation and
define ( ) := ([ ]) A function : R [ ] C is said to be of bounded
variation if ( ) := ([ ]) and we write ([ ]) If =
and = + we will simply denote ([ + ]) by

Definition 16.22. A function : R C is said to be of normalized bounded
variation if is right continuous and ( ) := lim ( ) = 0
We will abbreviate this by saying (The condition: ( ) = 0 is not
essential and plays no role in the discussion below.)

Definition 16.23. A function : R [ ] C is absolutely continuous if for
all 0 there exists 0 such that

(16.7)
X

=1

| ( ) ( )|

whenever {( )} =1 are disjoint open intervals in R [ ] such that
P

=1
( )

Lemma 16.24. Let : R [ ] C be any function and and with
R [ ] then

(1)

(16.8) ([ ]) = ([ ]) + ([ ])

(2) Letting = in this expression implies

(16.9) ( ) = ( ) + ([ ])

and in particular is monotone increasing.
(3) If ( ) for some R [ ] then

(16.10) ( +) ( ) lim sup | ( ) ( )|

for all R [ ) In particular is right continuous if is right
continuous.

(4) If = and ( ) for some ( ] R then ( ) :=
lim ( ) = 0
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Proof. (1 — 2) By the triangle inequality, if P and P0 are partition of [ ] such
that P P0 then

X

P

| ( +) ( )|
X

P0
| ( +) ( )|

So if P is a partition of [ ] then P P0 := P { } implies
X

P

| ( +) ( )|
X

P0
| ( +) ( )|

=
X

P0 [ ]

| ( +) ( )|+
X

P0 [ ]

| ( +) ( )|

([ ]) + ([ ])

Thus we see that ([ ]) ([ ]) + ([ ]) Similarly if P1 is a partition of
[ ] and P2 is a partition of [ ] then P = P1 P2 is a partition of [ ] and
X

P1

| ( +) ( )|+
X

P2

| ( +) ( )| =
X

P

| ( +) ( )| ([ ])

From this we conclude ([ ])+ ([ ]) ([ ]) which finishes the proof of
Eqs. (16.8) and (16.9).
(3) Let R [ ) and given 0 let P be a partition of [ ] such that

(16.11) ( ) ( ) = ([ ])
X

P

| ( +) ( )|+

Let ( +) then
X

P

| ( +) ( )|+
X

P { }
| ( +) ( )|+

= | ( ) ( )|+
X

P\{ }
| ( +) ( )|+

| ( ) ( )|+ ([ ]) +(16.12)

Combining Eqs. (16.11) and (16.12) shows

( ) ( ) + ([ ]) = ( ) ( )

| ( ) ( )|+ ([ ]) +

Since ( +) is arbitrary we conclude that

( +) ( ) = lim sup ( ) ( ) lim sup | ( ) ( )|+

Since 0 is arbitrary this proves Eq. (16.10).
(4) Suppose that ( ) and given 0 let P be a partition of [ ] such

that
( )

X

P

| ( +) ( )|+

Let 0 = minP then by the previous equation

( 0) + ([ 0 ]) = ( )
X

P

| ( +) ( )|+ ([ 0 ]) +

which shows, using the monotonicity of that ( ) ( 0) Since
0 we conclude that ( ) = 0
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The following lemma should help to clarify Proposition 16.20 and Definition
16.23.

Lemma 16.25. Let and be as in Proposition 16.20 and A be the algebra
generated by ( ] R with R̄ . Then the following are equivalent:

(1) ¿
(2) | | ¿
(3) For all 0 there exists a 0 such that ( ) whenever ( )
(4) For all 0 there exists a 0 such that | ( )| whenever ( )

Moreover, condition 4. shows that we could replace the last statement in Propo-
sition 16.20 by: ¿ i for all 0 there exists 0 such that

¯

¯

¯

¯

¯

X

=1

(( ])

¯

¯

¯

¯

¯

=

¯

¯

¯

¯

¯

X

=1

[ ( ) ( )]

¯

¯

¯

¯

¯

whenever {( ) ( ]} =1 are disjoint open intervals in ( ] such that
P

=1
(

)

Proof. This follows directly from Lemma 15.37 and Theorem 15.40.

Lemma 16.26.
(1) Monotone functions : R [ ] R are in ([ ])
(2) Linear combinations of functions in are in i.e. is a vector

space.
(3) If : R [ ] C is absolutely continuous then is continuous and

([ ])
(4) If and : R [ ] R is a di erentiable function

such that sup R | 0( )| = then is absolutely continuous and
([ ]) ( ) for all

(5) Let 1(R [ ] ) and set

(16.13) ( ) =

Z

( ]

for [ ] R Then : R [ ] C is absolutely continuous.

Proof.
(1) If is monotone increasing and P is a partition of ( ] then

X

P

| ( +) ( )| =
X

P

( ( +) ( )) = ( ) ( )

so that ([ ]) = ( ) ( ) Also note that i ( )
( )

(2) Item 2. follows from the triangle inequality.
(3) Since is absolutely continuous, there exists 0 such that whenever

+ and P is a partition of ( ]
X

P

| ( +) ( )| 1

This shows that ([ ]) 1 for all with Thus using Eq.
(16.8), it follows that ([ ]) if for an N.
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(4) Suppose that {( )} =1 ( ] are disjoint intervals, then by the mean
value theorem,

X

=1

| ( ) ( )|
X

=1

| 0( )| ( ) ( =1( ))

X

=1

( ) ( )

form which it clearly follows that is absolutely continuous. Moreover we
may conclude that ([ ]) ( )

(5) Let be the positive measure = | | on ( ] Let {( )} =1 ( ]
be disjoint intervals as above, then

X

=1

| ( ) ( )| =
X

=1

¯

¯

¯

¯

¯

Z

( ]

¯

¯

¯

¯

¯

X

=1

Z

( ]

| |

=

Z

=1( ]

| | = ( =1( ])(16.14)

Since is absolutely continuous relative to for all 0 there exist
0 such that ( ) if ( ) Taking = =1( ] in Eq.

(16.14) shows that is absolutely continuous. It is also easy to see from
Eq. (16.14) that ([ ])

R

( ]
| |

Theorem 16.27. Let : R C be a function, then

(1) i Re and Im
(2) If : R R is in then the functions ± := ( ± ) 2 are bounded

and increasing functions.
(3) : R R is in i = + where ± are bounded increasing

functions.
(4) If then ( ±) exist for all R̄ Let ( ) := ( +)
(5) then { : lim ( ) 6= ( )} is a countable set and in particular

( ) = ( +) for all but a countable number of R
(6) If then for — a.e. 0( ) and 0( ) exist and 0( ) = 0( )

Proof.

(1) Item 1. is a consequence of the inequalities

| ( ) ( )| |Re ( ) Re ( )|+ |Im ( ) Im ( )| 2 | ( ) ( )|
(2) By Lemma 16.24, for all

(16.15) ( ) ( ) = ([ ]) | ( ) ( )|
and therefore

( )± ( ) ( )± ( )
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which shows that ± are increasing. Moreover from Eq. (16.15), for 0
and 0

| ( )| | ( ) (0)|+ | (0)| (0 ] + | (0)|
(0 ) + | (0)|

and similarly
| ( )| | (0)|+ ( 0)

which shows that is bounded by | (0)|+ ( ) Therefore ± is bounded
as well.

(3) By Lemma 16.26 if = + then

([ ]) +([ ]) + ([ ]) = | +( ) +( )|+ | ( ) ( )|
which is bounded showing that Conversely if is bounded varia-
tion, then = + where ± are defined as in Item 2.

Items 4. — 6. follow from Items 1. — 3. and Theorem 16.18.

Theorem 16.28. Suppose that : R C is in then

(16.16) | ( +) ( )| | ( +) ( )|
for all R If we further assume that is right continuous then there exists a
unique measure on B = BR. such that
(16.17) (( ]) = ( ) ( ) for all R

Proof. Since ( +) exists for all R and hence Eq. (16.16) is a
consequence of Eq. (16.10). Now assume that is right continuous. In this case
Eq. (16.16) shows that ( ) is also right continuous. By considering the real
and imaginary parts of separately it su ces to prove there exists a unique finite
signed measure satisfying Eq. (16.17) in the case that is real valued. Now
let ± = ( ± ) 2 then ± are increasing right continuous bounded functions.
Hence there exists unique measure ± on B such that

±(( ]) = ±( ) ±( ) R

The finite signed measure + satisfies Eq. (16.17). So it only remains to
prove that is unique.
Suppose that ˜ is another such measure such that (16.17) holds with replaced

by ˜ Then for ( ]

| | ( ] = sup
P

X

P

| ( +) ( )| = |˜| ( ]

where the supremum is over all partition of ( ] This shows that | | = |˜| on
A B — the algebra generated by half open intervals and hence | | = |˜| It now
follows that | |+ and |˜|+ ˜ are finite positive measure on B such that

(| |+ ) (( ]) = | | (( ]) + ( ( ) ( ))

= |˜| (( ]) + ( ( ) ( ))

= (|˜|+ ˜) (( ])

from which we infer that | |+ = |˜|+ ˜ = | |+ ˜ on B Thus = ˜
Alternatively, one may prove the uniqueness by showing that C := { B :
( ) = e( )} is a monotone class which contains A or using the — theorem.
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Theorem 16.29. Suppose that and is the measure defined by Eq.
(16.17), then

(16.18) = 0 +

where and in particular for

(16.19) ( ) ( ) =

Z

0 + (( ])

Proof. By Theorem 16.3, there exists 1( ) and a complex measure
such that for -a.e.

(16.20) ( ) = lim
0

( )

( )

for any collection of { } 0 B which shrink nicely to { } and

= +

From Eq. (16.20) it follows that

lim
0

( + ) ( )
= lim

0

(( + ])
= ( ) and

lim
0

( ) ( )
= lim

0

(( ])
= ( )

for — a.e. i.e. + ( ) = ( ) = ( ) for —a.e. This implies that
is — a.e. di erentiable and 0( ) = ( ) for — a.e.

Corollary 16.30. Let : R C be in then
(1) i 0 = 0 a.e.
(2) ¿ i = 0 i

(16.21) (( ]) =

Z

( ]

0( ) ( ) for all

Proof.
(1) If 0( ) = 0 for a.e. then by Eq. (16.18), = . If

then by Eq. (16.18), 0 = and by Remark 15.8 0 =
0 i.e. 0 = 0 -a.e.

(2) If ¿ then = 0 ¿ which implies, by Lemma 15.28,
that = 0 Therefore Eq. (16.19) becomes (16.21). Now let

( ) :=

Z

0( ) ( ) for all B

Recall by the Radon - Nikodym theorem that
R

R | 0( )| ( ) so
that is a complex measure on B So if Eq. (16.21) holds, then = on
the algebra generated by half open intervals. Therefore = as in the
uniqueness part of the proof of Theorem 16.28. Therefore = 0 and
hence = 0

Theorem 16.31. Suppose that : [ ] C is a measurable function. Then the
following are equivalent:



330 BRUCE K. DRIVER†

(1) is absolutely continuous on [ ]
(2) There exists 1([ ]) ) such that

(16.22) ( ) ( ) =

Z

[ ]

(3) 0 exists a.e., 0 1([ ] ) and

(16.23) ( ) ( ) =

Z

0 [ ]

Proof. In order to apply the previous results, extend to R by ( ) = ( ) if
and ( ) = ( ) if

1. = 3. If is absolutely continuous then is continuous on [ ] and
( ) = ( ) by Lemma 16.26. By Proposition 16.20, ¿

and hence Item 3. is now a consequence of Item 2. of Corollary 16.30. The assertion
3. = 2. is trivial.
2. = 1. If 2. holds then is absolutely continuous on [ ] by Lemma 16.26.

Corollary 16.32 (Integration by parts). Suppose and :
[ ] C are two absoutely continuous functions. Then

Z

0 =

Z

0 + |

Proof. Suppose that {( )} =1 is a sequence of disjoint intervals in [ ] then

X

=1

| ( ) ( ) ( ) ( )|
X

=1

| ( )| | ( ) ( )|+
X

=1

| ( ) ( )| | ( )|

k k
X

=1

| ( ) ( )|+ k k
X

=1

| ( ) ( )|

From this inequality, one easily deduces the absolutely continuity of the product
from the absolutely continuity of and Therefore,

| =
Z

( )0 =

Z

( 0 + 0)

16.5. Alternative method to the Fundamental Theorem of Calculus. For
simplicity assume that = = and Let 0 = 0 be the finitely
additive set function on A such that 0(( ]) = ( ) ( ) for all

As in the real increasing case (Notation 13.6 above) we may define a linear
functional, : S (A) C by

( ) =
X

C

0( = )

If we write =
P

=1 1( ] with {( ]} =1 pairwise disjoint subsets of A
inside ( ] we learn
(16.24)

| ( )| =
¯

¯

¯

¯

¯

X

=1

( ( ) ( )

¯

¯

¯

¯

¯

X

=1

| | | ( ) ( )| k k (( ])
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In the usual way this estimate allows us to extend to the those compactly
supported functions S (A) in the closure of S (A) As usual we will still denote
the extension of to S (A) by and recall that S (A) contains (R C) The
estimate in Eq. (16.24) still holds for this extension and in particular we have
| ( )| ( ) · k k for all (R C) Therefore extends uniquely by conti-
nuity to an element of 0(R C) So by appealing to the complex Riesz Theorem
(Corollary 15.42) there exists a unique complex measure = such that

(16.25) ( ) =

Z

R
for all (R)

This leads to the following theorem.

Theorem 16.33. To each function there exists a unique measure =
on (R BR) such that Eq. (16.25) holds. Moreover, ( +) = lim ( ) exists for
all R and the measure satisfies

(16.26) (( ]) = ( +) ( +) for all

Remark 16.34. By applying Theorem 16.33 to the function ( ) one shows
every has left hand limits as well, i.e ( ) = lim ( ) exists for all

R

Proof. We must still prove ( +) exists for all R and Eq. (16.26) holds.
To prove let and be the functions shown in Figure 34 below. The reader
should check that S (A) Notice that

Figure 34. A couple of functions in S (A)

( + ) = ( + 1( + ]) = ( ) + ( + ) ( )
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and since k + k = 1

| ( ) ( + )| = | ( + )|
([ + + 2 ]) = ( + 2 ) ( + )

which implies ( ) := ( ) ( + ) 0 as 0 because is monotonic.
Therefore,

(16.27) ( ) = ( + ) + ( ) ( + ) = ( ) + ( + ) ( ) + ( )

Because converges boundedly to as 0 the dominated convergence theorem
implies

lim
0
( ) = lim

0

Z

R
=

Z

R
=

Z

R
+ (( ])

So we may let 0 in Eq. (16.27) to learn ( +) exists and
Z

R
+ (( ]) = ( ) + ( +) ( )

Similarly this equation holds with replaced by , i.e.
Z

R
+ (( ]) = ( ) + ( +) ( )

Subtracting the last two equations proves Eq. (16.26).

16.5.1. Proof of Theorem 16.29. Proof. Given Theorem 16.33 we may now prove
Theorem 16.29 in the same we proved Theorem 16.18.

16.6. Examples: These are taken from I. P. Natanson,“Theory of functions of a
real variable,” p.269. Note it is proved in Natanson or in Rudin that the fundamen-
tal theorem of calculus holds for ([0 1]) such that 0( ) exists for all [0 1]
and 0 1 Now we give a couple of examples.

Example 16.35. In each case ([ 1 1])

(1) Let ( ) = | |3 2
sin 1 with (0) = 0 then is everywhere di erentiable

but 0 is not bounded near zero. However, the function 0 1([ 1 1])
(2) Let ( ) = 2 cos 2 with (0) = 0 then is everywhere di erentiable but

0 1 ( ) Indeed, if 0 ( ) then
Z

0( ) = ( ) ( ) = 2 cos
2

2 cos
2

Now take :=
q

2
4 +1 and = 1 2 Then

Z

0( ) =
2

4 + 1
cos

(4 + 1)

2

1

2
cos 2 =

1

2

and noting that {( )} =1 are all disjoint, we find
R

0
| 0( )| =

Example 16.36. Let [0 1] denote the cantor set constructed as follows. Let
1 = [0 1] \ (1 3 2 3) 2 := 1 \ [(1 9 2 9) (7 9 8 9)] etc., so that we keep
removing the middle thirds at each stage in the construction. Then

:= =1 = =
X

=0

3 : {0 2}
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and

( ) = 1

µ

1

3
+
2

9
+
22

33
+

¶

= 1
1

3

X

=0

µ

2

3

¶

= 1
1

3

1

1 2 3
= 0

Associated to this set is the so called cantor function ( ) := lim ( ) where
the { } =1 are continuous non-decreasing functions such that (0) = 0 (1) = 1
with the pictured in Figure 35 below. From the pictures one sees that { } are

Figure 35. Constructing the Cantor function.

uniformly Cauchy, hence there exists ([0 1]) such that ( ) := lim ( )
The function has the following properties,

(1) is continuous and non-decreasing.
(2) 0( ) = 0 for — a.e. [0 1] because is flat on all of the middle third

open intervals used to construct the cantor set and the total measure of
these intervals is 1 as proved above.

(3) The measure on B[0 1] associated to namely ([0 ]) = ( ) is singular
relative to Lebesgue measure and ({ }) = 0 for all [0 1] Notice that
([0 1]) = 1

16.7. Exercises.

Exercise 16.1. Folland 3.22 on p. 100.

Exercise 16.2. Folland 3.24 on p. 100.
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Exercise 16.3. Folland 3.25 on p. 100.

Exercise 16.4. Folland 3.27 on p. 107.

Exercise 16.5. Folland 3.29 on p. 107.

Exercise 16.6. Folland 3.30 on p. 107.

Exercise 16.7. Folland 3.33 on p. 108.

Exercise 16.8. Folland 3.35 on p. 108.

Exercise 16.9. Folland 3.37 on p. 108.

Exercise 16.10. Folland 3.39 on p. 108.

Exercise 16.11. Folland 3.40 on p. 108.

Exercise 16.12. Folland 8.4 on p. 239.

Solution. 16.12Notice that

=
1

| 0( )|1 0( )

and there for ( ) 0(R ) for all 0 by Proposition 11.18. Since

( ) ( ) =
1

| 0( )|
Z

0( )

( + ) ( ) =
1

| 0( )|
Z

0( )

( ) ( )

it follows from Minikowski’s inequality for integrals (Theorem 9.27) that

k k 1

| 0( )|
Z

0( )

k k sup
| |

k k

and the latter goes to zero as 0 by assumption. In particular we learn that

k k k k + k k 0 as 0

showing { } 0 is uniformly Cauchy as 0 Therefore lim 0 ( ) = ( )
exists for all R and = a.e.
Solution.
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17. More Point Set Topology

17.1. Connectedness. The reader may wish to review the topological notions and
results introduced in Section 3.3 above before proceeding.

Definition 17.1. ( ) is disconnected if there exists non-empty open sets
and of such that = and = . We say { } is a disconnection
of . The topological space ( ) is called connected if it is not disconnected,
i.e. if there are no disconnection of If we say is connected i ( )
is connected where is the relative topology on Explicitly, is disconnected
in ( ) i there exists such that 6= 6= =
and

The reader should check that the following statement is an equivalent definition
of connectivity. A topological space ( ) is connected i the only sets
which are both open and closed are the sets and

Remark 17.2. Let Then is connected in i is connected in .

Proof. Since

{ : } = { : } = { : }
the relative topology on inherited from is the same as the relative topology on
inherited from . Since connectivity is a statement about the relative topologies

on is connected in i is connected in
The following elementary but important lemma is left as an exercise to the reader.

Lemma 17.3. Suppose that : is a continuous map between topological
spaces. Then ( ) is connected if is connected.

Here is a typical way these connectedness ideas are used.

Example 17.4. Suppose that : is a continuous map between topological
spaces, is connected, is Hausdor , and is locally constant, i.e. for all
there exists an open neighborhood of in such that | is constant. Then
is constant, i.e. ( ) = { 0} for some 0 To prove this, let 0 ( ) and
let := 1({ 0}) Since is Hausdor , { 0} is a closed set and since is
continuous is also closed. Since is locally constant, is open as well
and since is connected it follows that = i.e. ( ) = { 0}
Proposition 17.5. Let ( ) be a topological space.

(1) If is a connected set and is the disjoint union of two open sets
and then either or

(2) a. If is connected, then ¯ is connected.
b. More generally, if is connected and acc( ) then is

connected as well. (Recall that acc( ) — the set of accumulation points of
was defined in Definition 3.19 above.)

(3) If { } is a collection of connected sets such that
T 6= then

:=
S

is connected as well.
(4) Suppose are non-empty connected subsets of such that ¯ 6=

then is connected in
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(5) Every point is contained in a unique maximal connected subset of
and this subset is closed. The set is called the connected component

of

Proof.
(1) Since is the disjoint union of the relatively open sets and we

must have = or = for otherwise { } would
be a disconnection of

(2) a. Let = ¯ equipped with the relative topology from Suppose that
form a disconnection of = ¯ Then by 1. either or

Say that Since is both open an closed in it follows that
= ¯ Therefore = and we have a contradiction to the assumption

that { } is a disconnection of = ¯ Hence we must conclude that
= ¯ is connected as well.
b. Now let = with acc( ) then

¯ = ¯ = ( acc( )) =

Because is connected in by (2a) = = ¯ is also connected.
(3) Let :=

S

By Remark 17.2, we know that is connected in
for each If { } were a disconnection of by item (1), either

or for all Let = { : } then =
and = \ (Notice that neither or \ can be empty since
and are not empty.) Since

= =
[

( )
\

6=

we have reached a contradiction and hence no such disconnection exists.
(4) (A good example to keep in mind here is = R = (0 1) and = [1 2) )

For sake of contradiction suppose that { } were a disconnection of =
By item (1) either or say in which case

Since = we must have = and = and so we may conclude:
and are disjoint subsets of which are both open and closed. This

implies

= ¯ = ¯ = ¯ ( ) =
¡

¯
¢

and therefore
6= ¯ =

which gives us the desired contradiction.
(5) Let C denote the collection of connected subsets such that

Then by item 3., the set := C is also a connected subset of which
contains and clearly this is the unique maximal connected set containing
Since ¯ is also connected by item (2) and is maximal, = ¯ i.e.
is closed.

Theorem 17.6. The connected subsets of R are intervals.

Proof. Suppose that R is a connected subset and that with
If there exists ( ) such that then := ( ) and

:= ( ) would form a disconnection of Hence ( ) Let := inf( )
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and := sup( ) and choose such that and and
as By what we have just shown, ( ) for all and hence

( ) = =1( ) From this it follows that = ( ) [ ) ( ] or
[ ] i.e. is an interval.
Conversely suppose that is an interval, and for sake of contradiction, suppose

that { } is a disconnection of with After relabeling and
if necessary we may assume that Since is an interval [ ] Let
= sup ([ ] ) then because and are open, Now can not

be in for otherwise sup ([ ] ) and can not be in for otherwise
sup ([ ] ) From this it follows that and hence 6=

contradicting the assumption that { } is a disconnection.
Definition 17.7. A topological space is path connected if to every pair of
points { 0 1} there exists a continuous path ([0 1] ) such that
(0) = 0 and (1) = 1 The space is said to be locally path connected if for
each there is an open neighborhood of which is path connected.

Proposition 17.8. Let be a topological space.
(1) If is path connected then is connected.
(2) If is connected and locally path connected, then is path connected.
(3) If is any connected open subset of R then is path connected.

Proof. The reader is asked to prove this proposition in Exercises 17.1 — 17.3
below.

17.2. Product Spaces. Let {( )} be a collection of topological spaces
(we assume 6= ) and let =

Q

Recall that is a function

:
a

such that := ( ) for all An element is called a choice
function and the axiom of choice states that 6= provided that 6= for
each If each above is the same set we will denote =

Q

by

So is a function from to

Notation 17.9. For let : be the canonical projection map,
( ) = The product topology = is the smallest topology on

such that each projection is continuous. Explicitly, is the topology generated
by

(17.1) E = { 1( ) : }
A “basic” open set in this topology is of the form

(17.2) = { : ( ) for }
where is a finite subset of and for all We will sometimes write
above as

=
Y

×
Y

= × \

Proposition 17.10. Suppose is a topological space and : is a map.
Then is continuous i : is continuous for all
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Proof. If is continuous then is the composition of two continuous
functions and hence is continuous. Conversely if is continuous for all
the ( ) 1( ) = 1( 1( )) is open in for all and That
is to say, 1(E) consists of open sets, and therefore is continuous since E is a
sub-basis for the product topology.

Proposition 17.11. Suppose that ( ) is a topological space and { } is
a sequence. Then in the product topology of i ( ) ( ) for all

Proof. Since is continuous, if then ( ) = ( ) ( ) = ( )
for all Conversely, ( ) ( ) for all i ( ) ( ) for all

Therefore if = 1( ) E and then ( ) and ( )
a.a. and hence a.a.. This shows that as

Proposition 17.12. Let ( ) be topological spaces and be the product space
with the product topology.

(1) If is Hausdor for all then so is
(2) If each is connected for all then so is

Proof.
(1) Let be distinct points. Then there exists such that

( ) = 6= = ( ) Since is Hausdor , there exists disjoint open
sets such ( ) and ( ) Then 1( ) and 1( )
are disjoint open sets in containing and respectively.

(2) Let us begin with the case of two factors, namely assume that and are
connected topological spaces, then we will show that × is connected
as well. To do this let = ( 0 0) × and denote the connected
component of Since { 0}× is homeomorphic to { 0}× is connected
in × and therefore { 0} × i.e. ( 0 ) for all A
similar argument now shows that × { } for any that is to
× = By induction the theorem holds whenever is a finite set.
For the general case, again choose a point = and let =
be the connected component of in Recall that is closed and

therefore if is a proper subset of then \ is a non-empty
open set. By the definition of the product topology, this would imply that

\ contains an open set of the form

:= 1( ) = × \

where and for all We will now show that no such
can exist and hence = i.e. is connected.
Define : by ( ) = where

=

½

if
if

If ( ) = = ( ) and if \ then ( ) =
so that in every case : is continuous and therefore is
continuous.
Since is a product of a finite number of connected spaces it is con-

nected by step 1. above. Hence so is the continuous image, ( ) =
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× { } \ of Now ( ) and ( ) is connected implies
that ( ) On the other hand one easily sees that

6= ( )

contradicting the assumption that

17.3. Tychono ’s Theorem. The main theorem of this subsection is that the
product of compact spaces is compact. Before going to the general case an arbitrary
number of factors let us start with only two factors.

Proposition 17.13. Suppose that and are non-empty compact topological
spaces, then × is compact in the product topology.

Proof. Let U be an open cover of × Then for each ( ) ×
there exist U such that ( ) By definition of the product topology,
there also exist and such that × Therefore V :=
{ × : ( ) × } is also an open cover of × We will now show that
V has a finite sub-cover, say V0 V Assuming this is proved for the moment,
this implies that U also has a finite subcover because each V0 is contained in
some U So to complete the proof it su ces to show every cover V of the form
V = { × : } where and has a finite subcover.
Given let : × be the map ( ) = ( ) and notice that
is continuous since ( ) = and ( ) = are continuous maps.

From this we conclude that { } × = ( ) is compact. Similarly, it follows that
× { } is compact for all
Since V is a cover of { } × there exist such that { } ×
S

( × ) without loss of generality we may assume that is chosen so that

for all Let
T

and notice that

(17.3)
[

( × )
[

( × ) = ×

see Figure 36 below.
Since { } is now an open cover of and is compact, there exists

such that = The finite subcollection, V0 := { × : }
of V is the desired finite subcover. Indeed using Eq. (17.3),

V0 = ( × ) ( × ) = ×

The results of Exercises 3.27 and 6.15 prove Tychono ’s Theorem for a countable
product of compact metric spaces. We now state the general version of the theorem.

Theorem 17.14 (Tychono ’s Theorem). Let { } be a collection of non-
empty compact spaces. Then := =

Q

is compact in the product space

topology.

Proof. The proof requires Zorn’s lemma which is equivalent to the axiom of
choice, see Theorem B.7 of Appendix B below. For let denote the
projection map from to Suppose that F is a family of closed subsets of
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Figure 36. Constructing the open set

which has the finite intersection property, see Definition 3.25. By Proposition 3.26
the proof will be complete if we can show F 6=
The first step is to apply Zorn’s lemma to construct a maximal collection F0

of (not necessarily closed) subsets of with the finite intersection property. To
do this, let :=

©G 2 : F Gª equipped with the partial order, G1 G2 if
G1 G2 If is a linearly ordered subset of then G:= is an upper bound for
which still has the finite intersection property as the reader should check. So by

Zorn’s lemma, has a maximal element F0
The maximal F0 has the following properties.
(1) If { } =1 F0 then =1 F0 as well. Indeed, if we let (F0) denote

the collection of all finite intersections of elements from F0 then (F0) has
the finite intersection property and contains F0 Since F0 is maximal, this
implies (F0) = F0

(2) If and 6= for all F0 then F0 For if not F0
{ } would still satisfy the finite intersection property and would properly
contain F0 this would violate the maximallity of F0

(3) For each (F0) := { ( ) : F0} has the finite intersec-
tion property. Indeed, if { } =1 F0 then =1 ( ) ( =1 ) 6=

Since is compact, item 3. above along with Proposition 3.26 implies
F0 ( ) 6= Since this true for each using the axiom of choice,

there exists such that = ( ) F0 ( ) for all The
proof will be completed by showing F , hence F is not empty as desired.
Since

©

¯ : F0
ª F it su ces to show :=

©

¯ : F0
ª

For
this suppose that is an open neighborhood of in By the definition of the
product topology, there exists and open sets for all such
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that 1( ) Since F0 ( ) and for all
it follows that ( ) 6= for all F0 and all and this implies

1 ( ) 6= for all F0 and all By item 2. above we concluded
that 1 ( ) F0 for all and by then by item 1., 1 ( ) F0 In
particular 6= ¡

1 ( )
¢

for all F0 which shows ¯ for
each F0
17.4. Baire Category Theorem.

Definition 17.15. Let ( ) be a topological space. A set is said to be
nowhere dense if

¡

¯
¢

= i.e. ¯ has empty interior.

Notice that is nowhere dense is equivalent to

=
¡¡

¯
¢ ¢

=
¡

¯
¢

= ( )

That is to say is nowhere dense i has dense interior.

17.5. Baire Category Theorem.

Theorem 17.16 (Baire Category Theorem). Let ( ) be a complete metric space.

(1) If { } =1 is a sequence of dense open sets, then :=
T

=1
is dense in

(2) If { } =1 is a sequence of nowhere dense sets, then
S

=1
S

=1
¯ & and in particular 6= S =1

Proof. 1) We must shows that ¯ = which is equivalent to showing that
6= for all non-empty open sets Since 1 is dense, 1 6= and

hence there exists 1 and 1 0 such that

( 1 1) 1

Since 2 is dense, ( 1 1) 2 6= and hence there exists 2 and 2 0 such
that

( 2 2) ( 1 1) 2

Continuing this way inductively, we may choose { and 0} =1 such that

( ) ( 1 1)

Furthermore we can clearly do this construction in such a way that 0 as
Hence { } =1 is Cauchy sequence and = lim exists in since

is complete. Since ( ) is closed, ( ) so that for all
and hence Moreover, ( 1 1) 1 implies and hence

showing 6=
2) The second assertion is equivalently to showing

6=
Ã

[

=1

¯

!

=
\

=1

¡

¯
¢

=
\

=1

( )

As we have observed, is nowhere dense is equivalent to ( ) being a dense
open set, hence by part 1),

T

=1 ( ) is dense in and hence not empty.
Here is another version of the Baire Category theorem when is a locally

compact Hausdor space.

Proposition 17.17. Let be a locally compact Hausdor space.
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(1) If { } =1 is a sequence of dense open sets, then :=
T

=1
is dense in

(2) If { } =1 is a sequence of nowhere dense sets, then 6= S =1

Proof. As in the previous proof, the second assertion is a consequence of the
first. To finish the proof, if su ces to show 6= for all open sets
Since 1 is dense, there exists 1 1 and by Proposition 10.13 there exists
1 such that 1 1

¯
1 1 with ¯1 being compact. Similarly, there

exists a non-empty open set 2 such that 2
¯
2 1 2 Working inductively,

we may find non-empty open sets { } =1 such that ¯
1 Since

=1
¯ = ¯ 6= for all the finite intersection characterization of ¯1 being

compact implies that
6= =1

¯

Definition 17.18. A subset is meager or of the first category if =
S

=1
where each is nowhere dense. And a set is called residual if

is meager.

Remarks 17.19. The reader should think of meager as being the topological ana-
logue of sets of measure 0 and residual as being the topological analogue of sets of
full measure.

(1) is residual i contains a countable intersection of dense open sets.
Indeed if is a residual set, then there exists nowhere dense sets { }
such that

= =1 =1
¯

Taking complements of this equation shows that

=1
¯

i.e. contains a set of the form =1 with each (= ¯ ) being an
open dense subset of
Conversely, if =1 with each being an open dense subset of
then =1 and hence = =1 where each =

is a nowhere dense subset of
(2) A countable union of meager sets is meager and any subset of a meager set

is meager.
(3) A countable intersection of residual sets is residual.

Remarks 17.20. The Baire Category Theorems may now be stated as follows. If
is a complete metric space or is a locally compact Hausdor space, then

Remark 17.21. (1) all residual sets are dense in and
(2) is not meager.
It should also be remarked that incomplete metric spaces may be meager. For ex-

ample, let ([0 1]) be the subspace of polynomial functions on [0 1] equipped
with the supremum norm. Then = =1 where denotes the subspace
of polynomials of degree less than or equal to You are asked to show in Exercise
17.7 below that is nowhere dense for all Hence is meager and the empty
set is residual in
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Here is an application of Theorem 17.16.

Theorem 17.22. Let N ([0 1] R) be the set of nowhere di erentiable func-
tions. (Here a function is said to be di erentiable at 0 if 0(0) := lim 0

( ) (0)

exists and at 1 if 0(1) := lim 0
(1) ( )
1 exists.) Then N is a residual set so the

“generic” continuous functions is nowhere di erentiable.

Proof. If N then 0( 0) exists for some 0 [0 1] and by the defi-
nition of the derivative and compactness of [0 1] there exists N such that
| ( ) ( 0)| | 0| [0 1] Thus if we define

:= { ([0 1]) : 0 [0 1] 3 | ( ) ( 0)| | 0| [0 1]}
then we have just shown N := =1 So to finish the proof it su ces to
show (for each ) is a closed subset of ([0 1] R) with empty interior.
1) To prove is closed, let { } =1 be a sequence of functions such that

there exists ([0 1] R) such that k k 0 as Since
there exists [0 1] such that

(17.4) | ( ) ( )| | | [0 1]

Since [0 1] is a compact metric space, by passing to a subsequence if necessary, we
may assume 0 = lim [0 1] exists. Passing to the limit in Eq. (17.4),
making use of the uniform convergence of to show lim ( ) = ( 0)
implies

| ( ) ( 0)| | 0| [0 1]

and therefore that This shows is a closed subset of ([0 1] R)
2) To finish the proof, we will show 0 = by showing for each and
0 given, there exists ([0 1] R) \ such that k k We now

construct
Since [0 1] is compact and is continuous there exists N such that

| ( ) ( )| 2 whenever | | 1 Let denote the piecewise linear
function on [0 1] such that ( ) = ( ) for = 0 1 and 00( ) = 0 for

:= { : = 0 1 } Then it is easily seen that k k 2
and for ( +1) that

| 0( )| = | ( +1) ( )|
1 2

We now make “rougher” by adding a small wiggly function which we define
as follows. Let N be chosen so that 4 2 and define uniquely by
( ) = ( 1) 2 for = 0 1 and 00( ) = 0 for Then k k
and | 0( )| = 4 2 for See Figure 37 below.
Finally define := + Then

k k k k + k k 2 + 2 =

and
| 0( )| | 0( )| | 0 ( )| 2 =

It now follows from this last equation and the mean value theorem that for any
0 [0 1]

¯

¯

¯

¯

( ) ( 0)

0

¯

¯

¯

¯
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Figure 37. Constgructing a rough approximation, , to a contin-
uous function

for all [0 1] su ciently close to 0 This shows and so the proof is
complete.
Here is an application of the Baire Category Theorem in Proposition 17.17.

Proposition 17.23. Suppose that : R R is a function such that 0( ) exists
for all R Let

:= 0

(

R : sup
| |

| 0( + )|
)

Then is a dense open set. (It is not true that = R in general, see Example
16.35 above.)

Proof. It is easily seen from the definition of that is open. Let R be
an open subset of R For N let

:=

½

: | ( ) ( )| | | when | | 1
¾

=
\

:| | 1

{ : | ( + ) ( )| | |}

which is a closed subset of R since is continuous. Moreover, if and
= | 0( )| then

| ( ) ( )| = | 0( ) ( ) + ( )|
( + 1) | |

for close to (Here ( ) denotes a function such that lim ( ) ( ) =
0 ) In particular, this shows that for all su ciently large. Therefore
= =1 and since is not meager by the Baire category Theorem in Propo-

sition 17.17, some has non-empty interior. That is there exists 0

and 0 such that
:= ( 0 0 + )

For we have | ( + ) ( )| | | provided that | | 1 and therefore
that | 0( )| for Therefore 0 showing is dense.
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Remark 17.24. This proposition generalizes to functions : R R in an obvious
way.

For our next application of Theorem 17.16, let := (( 1 1)) denote the
set of smooth functions on ( 1 1) such that and all of its derivatives are
bounded. In the metric

( ) :=
X

=0

2

°

°

( ) ( )
°

°

1 +
°

°
( ) ( )

°

°

for

becomes a complete metric space.

Theorem 17.25. Given an increasing sequence of positive numbers { } =1 the
set

F :=
½

: lim sup

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1

¾

is dense in In particular, there is a dense set of such that the power
series expansion of at 0 has zero radius of convergence.

Proof. Step 1. Let N Choose (( 1 1)) such that k k 2
while 0(0) = 2 and define

( ) :=

Z

0
1

Z

1

0
2

Z

2

0
1 ( 1)

Then for

( )( ) =

Z

0
1

Z

1

0
2

Z

2

0
1 ( 1)

( )( ) = 0( ) ( )
(0) = 2 and ( ) satisfies
°

°

°

( )
°

°

°

2

( 1 )!
2 for

Consequently,

( 0) =
X

=0

2

°

°

°

( )
°

°

°

1 +
°

°

°

( )
°

°

°

1
X

=0

2 2 +
X

=

2 · 1 2
¡

2 + 2
¢

= 4 · 2

Thus we have constructed such that lim ( 0) = 0 while ( )
(0) =

2 for all
Step 2. The set

:=
n

:
¯

¯

¯

( )(0)
¯

¯

¯

o

is a dense open subset of The fact that is open is clear. To see that is
dense, let be given and define := + where := ( ( )(0))
Then

¯

¯

¯

( )(0)
¯

¯

¯
=
¯

¯

¯

( )(0)
¯

¯

¯
+
¯

¯

¯

( )(0)
¯

¯

¯
2 for all

Therefore, for all and since

( ) = ( 0) 0 as
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it follows that ¯

Step 3. By the Baire Category theorem, is a dense subset of This
completes the proof of the first assertion since

F =
½

: lim sup

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1

¾

= =1

½

:

¯

¯

¯

¯

( )(0)
¯

¯

¯

¯

1 for some
¾

=1

Step 4. Take = ( !)2 and recall that the power series expansion for near
0 is given by

P

=0
(0)
! This series can not converge for any F and any

6= 0 because

lim sup

¯

¯

¯

¯

(0)

!

¯

¯

¯

¯

= lim sup

¯

¯

¯

¯

¯

(0)

( !)
2 !

¯

¯

¯

¯

¯

= lim sup

¯

¯

¯

¯

¯

(0)

( !)
2

¯

¯

¯

¯

¯

· lim ! | | =

where we have used lim ! | | = and lim sup
¯

¯

¯

(0)

( !)2

¯

¯

¯
1

Remark 17.26. Given a sequence of real number { } =0 there always exists
such that ( )(0) = To construct such a function let ( 1 1) be a
function such that = 1 in a neighborhood of 0 and (0 1) be chosen so that

0 as and
P

=0 | | The desired function can then be defined
by

(17.5) ( ) =
X

=0
!

( ) =:
X

=0

( )

The fact that is well defined and continuous follows from the estimate:

| ( )| =
¯

¯

¯

!
( )

¯

¯

¯

k k
!
| |

and the assumption that
P

=0 | | The estimate

| 0 ( )| =
¯

¯

¯

¯ ( 1)!
1 ( ) +

!
0( )

¯

¯

¯

¯

k k
( 1)!

| | 1 +
k 0k

!
| |

(k k + k 0k ) | |
and the assumption that

P

=0 | | shows 1( 1 1) and 0( ) =
P

=0
0 ( ) Similar arguments show ( 1 1) and ( )( ) =

P

=0
( )
( )

for all and N This completes the proof since, using ( ) = 1 for in a
neighborhood of 0 ( )

(0) = and hence

( )(0) =
X

=0

( )(0) =

17.6. Exercises.

Exercise 17.1. Prove item 1. of Proposition 17.8. Hint: show is not connected
implies is not path connected.
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Exercise 17.2. Prove item 2. of Proposition 17.8. Hint: fix 0 and let
denote the set of such that there exists ([0 1] ) satisfying (0) = 0

and (1) = Then show is both open and closed.

Exercise 17.3. Prove item 3. of Proposition 17.8.

Exercise 17.4. Let

:=
©

( ) R2 : = sin( 1)
ª {(0 0)}

equipped with the relative topology induced from the standard topology on R2

Show is connected but not path connected.

Exercise 17.5. Prove the following strong version of item 3. of Proposition 17.8,
namely to every pair of points 0 1 in a connected open subset of R there
exists (R ) such that (0) = 0 and (1) = 1 Hint: Use a convolution
argument.

Exercise 17.6. Folland 5.27. Hint: Consider the generalized cantor sets discussed
on p. 39 of Folland.

Exercise 17.7. Let ( k·k) be an infinite dimensional normed space and
be a finite dimensional subspace. Show that is nowhere dense.

Exercise 17.8. Now suppose that ( k·k) is an infinite dimensional Banach space.
Show that can not have a countable algebraic basis. More explicitly, there is
no countable subset such that every element may be written as a
finite linear combination of elements from Hint: make use of Exercise 17.7 and
the Baire category theorem.
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18. Banach Spaces II

Theorem 18.1 (Open Mapping Theorem). Let be Banach spaces,
( ). If is surjective then is an open mapping, i.e. ( ) is open in
for all open subsets

Proof. For all 0 let = { : k k } =
{ : k k } and = ( ) The proof will be carried out
by proving the following three assertions.

(1) There exists 0 such that for all 0
(2) For the same 0 i.e. we may remove the closure in assertion

1.
(3) The last assertion implies is an open mapping.

1. Since =
S

1
, the Baire category Theorem 17.16 implies there exists

such that
0 6= , i.e. there exists and 0 such that ( )

Suppose k 0k then and + 0 are in ( ) hence there exists
0 such that k 0 ( + 0)k and k k may be made as small as we
please, which we abbreviate as follows

k 0 ( + 0)k 0 and k k 0

Hence by the triangle inequality,

k ( 0 ) 0k = k 0 ( + 0) ( )k
k 0 ( + 0)k+ k k 0

with 0
2 This shows that 0

2 which implies (0 ) 2 Since
the map : given by ( ) = 2 is a homeomorphism, ( 2 ) =

and ( (0 )) = (0 2 ) it follows that where 2 0

2. Let be as in assertion 1., and 1 (k k 1) Choose { } =2

(0 ) such that
P

=1 1 Since
1 1 =

¡

1

¢

by assertion 1.
there exists 1 1

such that k 1k 2 (Notice that k 1k can be
made as small as we please.) Similarly, since 1 2

¯
2 =

¡

2

¢

there
exists 2 2

such that k 1 2k 3 Continuing this way inductively,
there exists such that

(18.1) k
X

=1

k +1 for all N

Since
P

=1
k k P

=1
1

P

=1
exists and k k 1 i.e. 1 Passing

to the limit in Eq. (18.1) shows, k k = 0 and hence ( 1 ) = 1

Therefore we have shown 1 The same scaling argument as above then
shows for all 0
3. If and = we must show that contains a

ball ( ) = + for some 0 Now ( ) = + i
= ( ) Since is a neighborhood of 0 there exists

0 such that ( ) and hence by assertion 2., ( )
and therefore ( ) with :=

ANALYSIS TOOLS WITH APPLICATIONS 349

Corollary 18.2. If are Banach spaces and ( ) is invertible (i.e. a
bijective linear transformation) then the inverse map, 1, is bounded, i.e. 1

( ) (Note that 1 is automatically linear.)

Theorem 18.3 (Closed Graph Theorem). Let and be Banach space :
linear is continuous i is closed i.e. ( ) × is closed.

Proof. If continuous and ( ) ( ) × as then
= which implies ( ) = ( ) ( ).

Conversely: If is closed then the following diagram commutes

-

( )

¡
¡
¡
¡µ

2

@
@
@
@R

where ( ) := ( )
The map 2 : × is continuous and 1| ( ) : ( ) is continuous

bijection which implies 1| 1
( ) is bounded by the open mapping Theorem 18.1.

Hence = 2 1| 1
( ) is bounded, being the composition of bounded operators.

As an application we have the following proposition.

Proposition 18.4. Let be a Hilbert space. Suppose that : is a linear
(not necessarily bounded) map such that there exists : such that

h i = h i
Then is bounded.

Proof. It su ces to show is closed. To prove this suppose that such
that ( ) ( ) × . Then for any

h i = h i h i = h i as
On the other hand lim h i = h i as well and therefore h i = h i
for all This shows that = and proves that is closed.
Here is another example.

Example 18.5. Suppose that M 2([0 1] ) is a closed subspace such that
each element of M has a representative in ([0 1]) We will abuse notation and
simply writeM ([0 1]) Then

(1) There exists (0 ) such that k k k k 2 for all M
(2) For all [0 1] there exists M such that

( ) = h i for all M
Moreover we have k k

(3) The subspaceM is finite dimensional and dim(M) 2

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M k · k ) is a complete space. To prove this it su ces to show M
is a closed subspace of ([0 1]) So let { } M and ([0 1]) such that
k k 0 as Then k k 2 k k 0 as
and since M is closed in 2([0 1]) 2 lim = M By passing to a
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subsequence if necessary we know that ( ) = lim ( ) = ( ) for - a.e.
So = M
i)Let : (M k · k ) (M k · k2) be the identity map. Then is bounded and

bijective. By the open mapping theorem, = 1 is bounded as well. Hence there
exists such that k k = k ( )k k k2 for all M
ii) Let : (M k·k2) (M k·k ) be the identity map. We will shows that is

a closed operator and hence bounded by the closed graph theorem. Suppose that
M such that in 2 and = ( ) in ([0 1]) Then as in the

first paragraph, we conclude that = = ( ) a.e. showing is closed. Now finish
as in last line of proof i).
2) For [0 1] let :M C be the evaluation map ( ) = ( ) Then

| ( )| | ( )| k k k k 2

which shows that M Hence there exists a unique element M such that

( ) = ( ) = h i for all M
Moreover k k 2 = k kM
3) Let { } =1 be an

2 — orthonormal subset ofM Then

2 k k2M = k k2 2
X

=1

|h i|2 =
X

=1

| ( )|2

and integrating this equation over [0 1] implies that

2
X

=1

Z 1

0

| ( )|2 =
X

=1

1 =

which shows that 2 Hence dim(M) 2

Remark 18.6. Keeping the notation in Example 18.5, ( ) = ( ) for all
[0 1] Then

( ) = ( ) =

Z 1

0

( ) ( ) for all M
The function is called the reproducing kernel forM
The above example generalizes as follows.

Proposition 18.7. Suppose that ( M ) is a finite measure space, [1 )
and is a closed subspace of ( ) such that ( ) ( ) Then dim( )

Proof. With out loss of generality we may assume that ( ) = 1 As in Example
18.5, we shows that is a closed subspace of ( ) and hence by the open mapping
theorem, there exists a constant such that k k k k for all
Now if 1 2 then

k k k k k k2
and if (2 ) then k k k k22 k k 2 or equivalently,

k k k k22 k k1 2 k k22
³

k k
´1 2
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from which we learn that k k 1 2 k k2 and therefore that k k
1 2 k k2 so that in any case there exists a constant such that

k k k k2
Let { } =1 be an orthonormal subset of and =

P

=1 with C
then

°

°

°

°

°

X

=1

°

°

°

°

°

2

2
X

=1

| |2 2 | |2

where | |2 :=P =1 | |2 For each C there is an exception set such that
for

¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

2

2 | |2

Let D := (Q+ Q) and = D Then ( ) = 0 and for
¯

¯

¯

P

=1 ( )
¯

¯

¯

2 | |2 for all D By continuity it then follows for

that
¯

¯

¯

¯

¯

X

=1

( )

¯

¯

¯

¯

¯

2

2 | |2 for all C

Taking = ( ) in this inequality implies that
¯

¯

¯

¯

¯

X

=1

| ( )|2
¯

¯

¯

¯

¯

2

2
X

=1

| ( )|2 for all

and therefore that
X

=1

| ( )|2 2 for all

Integrating this equation over then implies that 2 i.e. dim( ) 2

Theorem 18.8 (Uniform Boundedness Principle). Let and be a normed vector
spaces, A ( ) be a collection of bounded linear operators from to

= A = { : sup
A
k k } and

= A = = { : sup
A
k k = }(18.2)

(1) If sup
A
k k then =

(2) If is not meager, then sup
A
k k

(3) If is a Banach space, is not meager i sup
A
k k In particular,

if sup
A
k k for all then sup

A
k k

(4) If is a Banach space, then sup
A
k k = i is residual. In particular

if sup
A
k k = then sup

A
k k = for in a dense subset of
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Proof. 1. If := sup
A
k k then sup

A
k k k k for all

showing =
2. For each N let be the closed sets given by

= { : sup
A
k k } =

\

A
{ : k k }

Then = =1 which is assumed to be non-meager and hence there exists
an N such that has non-empty interior. Let ( ) be a ball such that
( ) Then for with k k = we know ( ) so that
= ( ) and hence for any A

k k k k+ k ( )k + = 2

Hence it follows that k k 2 for all A i.e. sup
A
k k 2

3. If is a Banach space, = is not meager by the Baire Category Theorem
17.16. So item 3. follows from items 1. and 2 and the fact that = i
sup
A
k k for all

4. Item 3. is equivalent to is meager i sup
A
k k = Since = is

residual i is meager, so is residual i sup
A
k k =

Remarks 18.9. Let be the unit sphere in ( ) = for and
A
(1) The assertion sup

A
k k for all implies sup

A
k k may

be interpreted as follows. If sup A k ( )k for all then
sup
A
k k where k k := sup k ( )k = k k

(2) If dim( ) we may give a simple proof of this assertion. Indeed
if { } =1 is a basis for there is a constant 0 such that
°

°

°

P

=1

°

°

°

P

=1 | | and so the assumption sup A k ( )k
implies

sup
A
k k = sup

A
sup
6=0

°

°

°

P

=1

°

°

°

°

°

°

P

=1

°

°

°

sup
A
sup
6=0

P

=1 | | k k
P

=1 | |
1 sup

A
sup k k = 1 sup sup

A
k k

Notice that we have used the linearity of each A in a crucial way.
(3) If we drop the linearity assumption, so that ( ) for all A

— some index set, then it is no longer true that sup A k ( )k
for all then sup

A
k k The reader is invited to construct a

counter example when = R2 and = R by finding a sequence { } =1

of continuous functions on 1 such that lim ( ) = 0 for all 1

while lim k k ( 1) =

(4) The assumption that is a Banach space in item 3.of Theorem 18.8 can
not be dropped. For example, let ([0 1]) be the polynomial functions
on [0 1] equipped with the uniform norm k·k and for (0 1] let ( ) :=

( ( ) (0)) for all Then lim 0 ( ) = |0 ( ) and therefore
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sup (0 1] | ( )| for all If the conclusion of Theorem 18.8 (item
3.) were true we would have := sup (0 1] k k This would then
imply

¯

¯

¯

¯

( ) (0)
¯

¯

¯

¯

k k for all and (0 1]

Letting 0 in this equation gives, | ˙ (0)| k k for all But
taking ( ) = in this inequality shows =

Example 18.10. Suppose that { } =1 C is a sequence of numbers such that

lim
X

=1

exists in C for all 1

Then

Proof. Let
¡

1
¢

be given by ( ) =
P

=1 and set :=
max {| | : = 1 } Then

| ( )| k k 1

and by taking = with such = | | we learn that k k = Now by
assumption, lim ( ) exists for all 1 and in particular,

sup | ( )| for all 1

So by the Theorem 18.8,

sup k k = sup = sup {| | : = 1 2 3 }

18.1. Applications to Fourier Series. Let = 1 be the unit circle in 1 and
denote the normalized arc length measure on So if : [0 ) is measurable,
then

Z

( ) :=

Z

:=
1

2

Z

( )

Also let ( ) = for all Z Recall that { } Z is an orthonormal basis for
2( ) For N let

( ) :=
X

=

h i ( ) =
X

=

h i =
X

=

µ
Z

( ) ¯

¶

=

Z

( )

Ã

X

=

¯

!

=

Z

( ) ( ¯)

where ( ) :=
P

= Now ( ) ( ) = +1 so that

( ) :=
X

=

=
+1

1

with the convention that
+1

1
| =1 = lim

1

+1

1
= 2 + 1 =

X

=

1
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Writing = we find

( ) := ( ) =
( +1)

1
=

( +1 2) ( +1 2)

2 2

=
sin( + 1

2 )

sin 12

Recall by Hilbert space theory, 2( ) — lim ( ·) = for all 2( ) We
will now show that the convergence is not pointwise for all ( ) 2( )

Proposition 18.11. For each there exists a residual set ( ) such
that sup | ( )| = for all Recall that ( ) is a complete metric space,
hence is a dense subset of ( )

Proof. By symmetry considerations, it su ces to take = 1 Let :
( ) C be given by

:= ( 1) =

Z

( ) ( ¯)

From Corollary 15.42 we know that

k k = k k1 =
Z

| ( ¯)|

=
1

2

Z

¯

¯ ( )
¯

¯ =
1

2

Z

¯

¯

¯

¯

sin( + 1
2)

sin 12

¯

¯

¯

¯

(18.3)

which can also be proved directly as follows. Since

| | =
¯

¯

¯

¯

Z

( ) ( ¯)

¯

¯

¯

¯

Z

| ( ) ( ¯)| k k
Z

| ( ¯)|

we learn k k R | ( ¯)| Since ( ) is dense in 1( ) there exists
( R) such that ( ) sgn ( ¯) in 1 By replacing by ( 1) ( 1) we

may assume that k k 1 It now follows that

k k | |
k k

¯

¯

¯

¯

Z

( ) ( ¯)

¯

¯

¯

¯

and passing to the limit as implies that k k R | ( ¯)|
Since

sin =

Z

0

cos

Z

0

|cos |
for all 0 Since sin is odd, |sin | | | for all R Using this in Eq. (18.3)
implies that

k k 1

2

Z

¯

¯

¯

¯

sin( + 1
2)

1
2

¯

¯

¯

¯

=
2
Z

0

¯

¯

¯

¯

sin( +
1

2
)

¯

¯

¯

¯

=
2
Z

0

¯

¯

¯

¯

sin( +
1

2
)

¯

¯

¯

¯

=

Z ( + 1
2 )

0

|sin | as

and hence sup k k = So by Theorem 18.8,

1 = { ( ) : sup | | = }
is a residual set.
See Rudin Chapter 5 for more details.

ANALYSIS TOOLS WITH APPLICATIONS 355

Lemma 18.12. For 1( ) let

(̃ ) := h i =
Z

( ) ¯

Then ˜
0 := 0(Z) (i.e lim (̃ ) = 0) and the map 1( ) ˜

0 is
a one to one bounded linear transformation into but not onto 0

Proof. By Bessel’s inequality,
P

Z

¯

¯

¯
(̃ )
¯

¯

¯

2

for all 2( ) and in

particular lim| |
¯

¯

¯
(̃ )
¯

¯

¯
= 0 Given 1( ) and 2( ) we have

¯

¯

¯
(̃ ) ˆ( )

¯

¯

¯
=

¯

¯

¯

¯

Z

[ ( ) ( )] ¯

¯

¯

¯

¯

k k1
and hence

lim sup
¯

¯

¯
(̃ )
¯

¯

¯
= lim sup

¯

¯

¯
(̃ ) ˆ( )

¯

¯

¯
k k1

for all 2( ) Since 2( ) is dense in 1( ) it follows that lim sup
¯

¯

¯
(̃ )
¯

¯

¯
=

0 for all 1 i.e. ˜ 0

Since
¯

¯

¯
(̃ )
¯

¯

¯
k k1 we have

°

°

°

˜
°

°

°

0

k k1 showing that := ˜ is a bounded

linear transformation from 1( ) to 0

To see that is injective, suppose ˜ = 0 then
R

( ) ( ¯) = 0
for all polynomials in and ¯ By the Stone - Wierestrass and the dominated
convergence theorem, this implies that

Z

( ) ( ) = 0

for all ( ) Lemma 11.7 now implies = 0 a.e.
If were surjective, the open mapping theorem would imply that 1 : 0
1( ) is bounded. In particular this implies there exists such that

(18.4) k k 1

°

°

°

˜
°

°

°

0

for all 1( )

Taking = we find
°

°

°

˜
°

°

°

0

= 1 while lim k k 1 = contradicting Eq.

(18.4). Therefore Ran ) 6= 0

18.2. Hahn Banach Theorem. Our next goal is to show that continuous dual
of a Banach space is always large. This will be the content of the Hahn —

Banach Theorem 18.16 below.

Proposition 18.13. Let be a complex vector space over C. If and
= Re R then

(18.5) ( ) = ( ) ( )

Conversely if R and is defined by Eq. (18.5), then and k k
R
=

k k . More generally if is a semi-norm on then

| | i
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Proof. Let ( ) = Im ( ), then

( ) = Im ( ) = Im( ( )) = Re ( ) = ( )

Therefore

( ) = ( ) + ( ) = ( ) + ( ) = ( ) ( )

Conversely for R let ( ) = ( ) ( ) Then

(( + ) ) = ( + ) ( ) = ( ) + ( ) ( ( ) ( ))

while
( + ) ( ) = ( ) + ( ) + ( ( ) ( ))

So is complex linear.
Because | ( )| = |Re ( )| | ( )|, it follows that k k k k For choose

1 C such that | ( )| = ( ) so

| ( )| = ( ) = ( ) k k k k = k kk k
Since is arbitrary, this shows that k k k k so k k = k k.38
For the last assertion, it is clear that | | implies that | | | |

Conversely if and choose 1 C such that | ( )| = ( ) Then

| ( )| = ( ) = ( ) = ( ) ( ) = ( )

holds for all

Definition 18.14 (Minkowski functional). : R is a Minkowski functional if
(1) ( + ) ( ) + ( ) for all and
(2) ( ) = ( ) for all 0 and

Example 18.15. Suppose that = R and

( ) = inf { 0 : [ 1 2] = [ 2 ]}
Notice that if 0 then ( ) = 2 and if 0 then ( ) = i.e.

( ) =

½

2 if 0
| | if 0

From this formula it is clear that ( ) = ( ) for all 0 but not for 0
Moreover, satisfies the triangle inequality, indeed if ( ) = and ( ) = then

[ 1 2] and [ 1 2] so that

+ [ 1 2] + [ 1 2] ( + ) [ 1 2]

38

Proof. To understand better why k k = k k notice that

k k2 = sup
k k=1

| ( )|2 = sup
k k=1

(| ( )|2 + | ( )|2)

Supppose that = sup
k k=1

| ( )| and this supremum is attained at 0 with k 0k = 1

Replacing 0 by 0 if necessary, we may assume that ( 0) = Since has a maximum at
0

0 =

¯

¯

¯

¯

0

µ

0 + 0

k 0 + 0k
¶

=

¯

¯

¯

¯

0

½

1

|1 + | ( ( 0) + ( 0))

¾

= ( 0)

since |0|1 + | = |0 1 + 2 = 0 This explains why k k = k k.
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which shows that ( + ) + = ( ) + ( ) To check the last set inclusion
let [ 1 2] then

+ = ( + )

µ

+
+

+

¶

( + ) [ 1 2]

since [ 1 2] is a convex set and + + + = 1

TODO: Add in the relationship to convex sets and separation theorems, see Reed
and Simon Vol. 1. for example.

Theorem 18.16 (Hahn-Banach). Let be a real vector space, be a
subspace : R be a linear functional such that on . Then there
exists a linear functional : R such that | = and .

Proof. Step (1) We show for all \ there exists and extension to
R with the desired properties. If exists and = ( ) then for all

and R we must have ( )+ = ( + ) ( + ) i.e. ( + ) ( )
Equivalently put we must find R such that

( + ) ( )
for all and 0

( ) ( )
for all and 0

So if R is going to exist, we have to prove, for all and 0 that

( ) ( ) ( + ) ( )

or equivalently

( + ) ( + ) + ( )(18.6)

= ( + ) + ( )

But by assumtion and the triangle inequality for

( + ) ( + ) = ( + + )

( + ) + ( )

which shows that Eq. (18.6) is true and by working backwards, there exist an R
such that ( ) + ( + ) Therefore ( + ) := ( ) + is the desired
extension.
Step (2) Let us now write : R to mean is defined on a linear subspace
( ) and : ( ) R is linear. For : R we will say if
( ) ( ) and = | ( ) that is is an extension of Let

F = { : R : and on ( )}
Then (F ) is a partially ordered set. If F is a chain (i.e. a linearly ordered
subset of F) then has an upper bound F defined by ( ) =

S

( )

and ( ) = ( ) for ( ) Then it is easily checked that ( ) is a linear
subspace, F and for all We may now apply Zorn’s Lemma
(see Theorem B.7) to conclude there exists a maximal element F Necessarily,
( ) = for otherwise we could extend by step (1), violating the maximality

of Thus is the desired extension of
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The use of Zorn’s lemma in Step (2) above may be avoided in the case that
may be written as span( ) where := { } =1 is a countable subset of
In this case : R may be extended to a linear functional : R

with the desired properties by step (1) and induction. If ( ) is a norm on and
= span( ) with as above, then this function constructed above extends

by continuity to

Corollary 18.17. Suppose that is a complex vector space, : [0 ) is a
semi-norm, is a linear subspace, and : C is linear functional such
that | ( )| ( ) for all Then there exists 0 ( 0 is the algebraic
dual of ) such that | = and | |
Proof. Let = Re then on and hence by Theorem 18.16, there exists

0
R such that | = and on . Define ( ) = ( ) ( ) then

as in Proposition 18.13, = on and | |
Theorem 18.18. Let be a normed space be a closed subspace and

\ . Then there exists such that k k = 1 ( ) = = ( ) and
= 0 on .

Proof. Define : C C by ( + ) for all and C
Then

k k := sup
and 6=0

| |
k + k = sup

and 6=0 k + k = = 1

and by the Hahn-Banach theorem there exists such that | C = and
k k 1 Since 1 = k k k k 1 it follows that k k = 1
Corollary 18.19. The linear map ˆ where ˆ( ) = ( ) for all

is an isometry. (This isometry need not be surjective.)

Proof. Since |ˆ( )| = | ( )| k k k k for all it follows that
kˆk k k Now applying Theorem 18.18 with = {0} there exists
such that k k = 1 and |ˆ( )| = ( ) = k k which shows that kˆk k k
This shows that ˆ is an isometry. Since isometries are necessarily
injective, we are done.

Definition 18.20. A Banach space is reflexive if the map ˆ is
surjective.

Example 18.21. Every Hilbert space is reflexive. This is a consequence of the
Riesz Theorem, Proposition 12.15.

Example 18.22. Suppose that is a — finite measure on a measurable space
( M) then ( M ) is reflexive for all (1 ) see Theorem 15.14.

Example 18.23 (Following Riesz and Nagy, p. 214). The Banach space :=
([0 1]) is not reflexive. To prove this recall that may be identified with complex

measures on [0 1] which may be identified with right continuous functions of
bounded variation ( ) on [0 1] namely

(

Z

[0 1]

=

Z 1

0

)
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Define by

( ) =
X

[0 1]

({ }) =
X

[0 1]

( ( ) ( ))

so ( ) is the sum of the “atoms” of Suppose there existed an such that
( ) =

R

[0 1]
for all Choosing = for some (0 1) would then

imply that

( ) =

Z

[0 1]

= ( ) = 1

showing would have to be the constant function,1 which clearly can not work.

Example 18.24. The Banach space := 1([0 1] ) is not reflexive. As we
have seen in Theorem 15.14, = ([0 1] ) The argument in Example 15.15
shows ( ([0 1] )) À 1([0 1] ) Recall in that example, we show there exists

= ( ([0 1] )) such that ( ) = (0) for all in the closed subspace,
([0 1]) of If there were to exist a such that ˆ = we would have

(18.7) (0) = ( ) = ˆ( ) = ( ) :=

Z 1

0

( ) ( )

for all ([0 1]) ([0 1] ) Taking ((0 1]) in this equation and
making use of Lemma 11.7, it would follow that ( ) = 0 for a.e. (0 1] But
this is clearly inconsistent with Eq. (18.7).

18.3. Weak and Strong Topologies.

Definition 18.25. Let and be be a normed vector spaces and ( ) the
normed space of bounded linear transformations from to

(1) The weak topology on is the topology generated by , i.e. sets of
the form

= =1{ : | ( ) ( 0)| }
where and 0 form a neighborhood base for the weak topology
on at 0

(2) The weak- topology on is the topology generated by i.e.

=1{ : | ( ) ( )| }
where and 0 forms a neighborhood base for the weak— topology
on at

(3) The strong operator topology on ( ) is the smallest topology such
that ( ) is continuous for all

(4) The weak operator topology on ( ) is the smallest topology such
that ( ) ( ) C is continuous for all and

Theorem 18.26 (Alaoglu’s Theorem). If is a normed space the unit ball in
is weak - compact.

Proof. For all let = { C : | | k k} Then C is a
compact set and so by Tychono ’s Theorem

Q

is compact in the product

topology. If := { : k k 1} | ( )| k k k k k k which implies
that ( ) for all i.e. The topology on inherited from
the weak— topology on is the same as that relative topology coming from the
product topology on So to finish the proof it su ces to show is a closed
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subset of the compact space To prove this let ( ) = ( ) be the projection
maps. Then

= { : is linear}
= { : ( + ) ( ) ( ) = 0 for all and C}
=

\ \

C

{ : ( + ) ( ) ( ) = 0}

=
\ \

C

( + )
1
({0})

which is closed because ( + ) : C is continuous.

Theorem 18.27 (Alaoglu’s Theorem for separable spaces). Suppose that is a
separable Banach space, := { : k k 1} is the closed unit ball in and
{ } =1 is an countable dense subset of := { : k k 1} Then

(18.8) ( ) :=
X

=1

1

2
| ( ) ( )|

defines a metric on which is compatible with the weak topology on :=
( ) = { : } Moreover ( ) is a compact metric space.

Proof. The routine check that is a metric is left to the reader. Let be
the topology on induced by For any and N the map
( ( ) ( )) C is continuous and since the sum in Eq. (18.8) is uniformly
convergent for it follows that ( ) is — continuous. This implies
the open balls relative to are contained in and therefore
We now wish to prove Since is the topology generated by

{ˆ| : } it su ces to show ˆ is — continuous for all But given
there exists a subsequence := of { } =1 such that such that = lim
Since

sup |ˆ( ) ˆ ( )| = sup | ( )| k k 0 as

ˆ ˆ uniformly on and using ˆ is — continuous for all (as is easily
checked) we learn ˆ is also continuous. Hence = (ˆ| : )
The compactness assertion follows from Theorem 18.26. The compactness as-

sertion may also be verified directly using: 1) sequential compactness is equivalent
to compactness for metric spaces and 2) a Cantor’s diagonalization argument as in
the proof of Theorem 12.38. (See Proposition 19.16 below.)

18.4. Weak Convergence Results. The following is an application of theorem
3.48 characterizing compact sets in metric spaces.

Proposition 18.28. Suppose that ( ) is a complete separable metric space and
is a probability measure on B = ( ) Then for all 0 there exists @@

such that ( ) 1

Proof. Let { } =1 be a countable dense subset of Then = (1 )
for all N Hence by continuity of there exists, for all N such
that ( ) 1 2 where := =1 (1 ) Let := =1 then

( \ ) = ( =1 )
X

=1

( ) =
X

=1

(1 ( ))
X

=1

2 =
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so that ( ) 1 Moreover is compact since is closed and totally bounded;
for all and each is 1 — bounded.

Definition 18.29. A sequence of probability measures { } =1 is said to converge
to a probability if for every ( ) ( ) ( ) This is actually weak-*
convergence when viewing ( )

Proposition 18.30. The following are equivalent:
(1) as
(2) ( ) ( ) for every ( ) which is uniformly continuous.
(3) lim sup ( ) ( ) for all @
(4) lim inf ( ) ( ) for all
(5) lim ( ) = ( ) for all B such that (bd( )) = 0

Proof. 1. = 2. is obvious. For 2. = 3.,

(18.9) ( ) :=
1 if 0

1 if 0 1
0 if 1

and let ( ) := ( ( )) Then ( [0 1]) is uniformly continuous,
0 1 for all and 1 as Passing to the limit in the
equation

0 ( ) ( )

gives
0 lim sup ( ) ( )

and then letting in this inequality implies item 3.
3. 4. Assuming item 3., let = then

1 lim inf ( ) = lim sup (1 ( )) = lim sup ( )

( ) = 1 ( )

which implies 4 Similarly 4 = 3
3. 5. Recall that bd( ) = ¯ \ so if (bd( )) = 0 and 3 (and hence

also 4. holds) we have

lim sup ( ) lim sup ( ¯) ( ¯) = ( ) and

lim inf ( ) lim inf ( ) ( ) = ( )

from which it follows that lim ( ) = ( ) Conversely, let @ and set
:= { : ( ) } Then

bd( ) \ { : ( ) } = { : ( ) = } =:
Since { } 0 are all disjoint, we must have

X

0

( ) ( ) 1

and in particular the set := { 0 : ( ) 0} is at most countable. Let
be chosen so that 0 as then

( ) = lim ( ) lim sup ( )

Let this equation to conclude ( ) lim sup ( ) as desired.
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To finish the proof we will now show 3 = 1. By an a ne change of variables
it su ces to consider ( (0 1)) in which case we have

(18.10)
X

=1

( 1)
1{ ( 1) }

X

=1

1{ ( 1) }

Let :=
© ª

and notice that = then we for any probability that

(18.11)
X

=1

( 1)
[ ( 1) ( )] ( )

X

=1

[ ( 1) ( )]

Now

X

=1

( 1)
[ ( 1) ( )] =

X

=1

( 1)
( 1)

X

=1

( 1)
( )

=
1

X

=1

( )
X

=1

1
( ) =

1
1

X

=1

( )

and

X

=1

[ ( 1) ( )] =
X

=1

1
[ ( 1) ( )] +

X

=1

1
[ ( 1) ( )]

=
1

X

=1

( ) +
1

so that Eq. (18.11) becomes,

1
1

X

=1

( ) ( )
1

1
X

=1

( ) + 1

Using this equation with = and then with = we find

lim sup ( ) lim sup

"

1
1

X

=1

( ) + 1

#

1
1

X

=1

( ) + 1 ( ) + 1

Since is arbitary,
lim sup ( ) ( )

This inequality also hold for 1 and this implies lim inf ( ) ( ) and
hence lim ( ) = ( ) as claimed.
Let := [0 1]N and for let

( ) :=
X

=1

1

2
| |

as in Notation 10.19 and recall that in this metric ( ) is a complete metric space
that is the product topology on see Exercises 3.27 and 6.15.
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Theorem 18.31. To every separable metric space ( ) there exists a continuous
injective map : such that : ( ) is a homeomorphism. In
short, any separable metrizable space is homeomorphic to a subset of ( )

Remark 18.32. Notice that if we let 0( ) := ( ( ) ( )) then 0 induces the
same topology on as and : ( 0) ( ) is isometric.

Proof. Let = { } =1 be a countable dense subset of and for N let

( ) := 1 ( ( ))

where is as in Eq. (18.9). Then = 0 if ( ) 1 and = 1 if
( ) 2 Let { } =1 be an enumeration of { : N} and define
: by

( ) = ( 1( ) 2( ) )

We will now show : ( ) is a homeomorphism. To show is injective
suppose and ( ) = 1 In this case we may find such that
( ) 1

2 ( ) 1
2

1
2 and hence 4 ( ) = 1 while 4 ( ) = 0

From this it follows that ( ) 6= ( ) if 6= and hence is injective.
The continuity of is a consequence of the continuity of each of the components
of So it only remains to show 1 : ( ) is continuous. Given
= ( ) ( ) and 0 choose N and such that ( )
1
2 2 Then ( ) = 0 and for ( 2 ) ( ) = 1 So if is chosen so
that = we have shown that for

( ( ) ( )) 2 for ( 2 )

or equivalently put, if

( ( ) ( )) 2 then ( 2 ) ( 1 ) ( )

This shows that if ( ) is su ciently close to ( ) then ( ) i.e. 1 is
continuous at = ( )

Definition 18.33. Let be a topological space. A collection of probability mea-
sures on ( B ) is said to be tight if for every 0 there exists a compact set

B such that ( ) 1 for all

Theorem 18.34. Suppose is a separable metrizable space and = { } =1

is a tight sequence of probability measures on B Then there exists a subsequence
{ } =1 which is weakly convergent to a probability measure on B
Proof. First suppose that is compact. In this case ( ) is a Banach space

which is separable by the Stone — Weirstrass theorem. By the Riesz theorem,
Corollary 15.42, we know that ( ) is in one to one correspondence with complex
measure on ( B ) We have also seen that ( ) is metrizable and the unit ball
in ( ) is weak - * compact. Hence there exists a subsequence { } =1 which is
weak -* convergent to a probability measure on Alternatively, use the cantor’s
diagonalization procedure on a countable dense set ( ) so find { } =1 such
that ( ) := lim ( ) exists for all Then for ( ) and
we have

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|+ | ( ) ( )|
2 k k + | ( ) ( )|
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which shows

lim sup | ( ) ( )| 2 k k

Letting tend to in ( ) shows lim sup | ( ) ( )| = 0 and
hence ( ) := lim ( ) for all ( ) It is now clear that ( ) 0 for all

0 so that is a positive linear functional on and thus there is a probability
measure such that ( ) = ( )
For the general case, by Theorem 18.31 we may assume that is a subset of

a compact metric space which we will denote by ¯ We now extend to ¯ by
setting ¯ ( ) := ¯ ( ¯) for all B ¯ By what we have just proved, there
is a subsequence

©

¯0 := ¯
ª

=1
such that ¯0 converges weakly to a probability

measure ¯ on ¯ The main thing we now have to prove is that “ ¯( ) = 1 ” this
is where the tightness assuption is going to be used.
Given 0 let be a compact set such that ¯ ( ) 1 for all

Since is compact in it is compact in ¯ as well and in particular a closesd
subset of ¯ Therefore by Proposition 18.30

¯( ) lim sup ¯0 ( ) = 1

Since 0 is arbitary, this shows with 0 := =1 1 satisfies ¯( 0) = 1

Because 0 B B ¯ we may view ¯ as a measure on B by letting ( ) :=
¯( 0) for all B
Given a closed subset choose ˜ @ ¯ such that = ˜ Then

lim sup 0 ( ) = lim sup ¯0 ( ˜) ¯( ˜) = ¯( ˜ 0) = ( )

which shows 0

18.5. Supplement: Quotient spaces, adjoints, and more reflexivity.

Definition 18.35. Let and be Banach spaces and : be a linear
operator. The transpose of is the linear operator † : defined by
¡ † ¢ ( ) = ( ) for and The null space of is the subspace
Nul( ) := { : = 0} For and let

0 := { : | = 0} and
:= { : ( ) = 0 for all }

Proposition 18.36 (Basic Properties). (1) k k = °

°

†°
° and ††ˆ = c for

all
(2) 0 and are always closed subspace of and respectively.
(3)

¡

0
¢

= ¯

(4) ¯
¡ ¢0

with equality when is reflexive.
(5) Nul( ) = Ran †) and Nul( †) = Ran( )0 Moreover, Ran( ) =

Nul( †) and if is reflexive, then Ran( †) = Nul( )0

(6) is reflexive i is reflexive. More generally = c ˆ0

Proof.
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(1)

k k = sup
k k=1

k k = sup
k k=1

sup
k k=1

| ( )|

= sup
k k=1

sup
k k=1

¯

¯

† ( )
¯

¯ = sup
k k=1

°

°

† °
° =

°

°

†°
°

(2) This is an easy consequence of the assumed continuity o all linear func-
tionals involved.

(3) If then ( ) = 0 for all 0 so that
¡

0
¢

Therefore
¯

¡

0
¢

If ¯ then there exists such that | = 0 while

( ) 6= 0 i.e. 0 yet ( ) 6= 0 This shows
¡

0
¢

and we have

shown
¡

0
¢

¯

(4) It is again simple to show
¡ ¢0

and therefore ¯
¡ ¢0

Moreover,
as above if ¯ there exists such that | ¯ = 0 while ( ) 6= 0
If is reflexive, = ˆ for some and since ( ) = ( ) = 0 for
all ¯ we have On the other hand, ( ) = ( ) 6= 0 so

¡ ¢0
Thus again

¡ ¢0 ¯

(5)

Nul( ) = { : = 0} = { : ( ) = 0 }
=
©

: † ( ) = 0
ª

=
©

: ( ) = 0 Ran( †)
ª

= Ran( †)

Similarly,

Nul( †) =
©

: † = 0
ª

=
©

: ( † )( ) = 0
ª

= { : ( ) = 0 }
=
©

: |Ran( ) = 0
ª

= Ran( )0

(6) Let and define by ( ) = (ˆ) for all and set
0 := ˆ For (so ˆ ) we have

0(ˆ) = (ˆ) ˆ (ˆ) = ( ) ˆ( ) = ( ) ( ) = 0

This shows 0 ˆ0 and we have shown = c + ˆ0 If c ˆ0

then = ˆ for some and 0 = (̂ˆ) = ˆ( ) = ( ) for all
i.e. = 0 so = 0 Therefore = c ˆ0 as claimed. If is
reflexive, then ˆ = and so ˆ0 = {0} showing = c i.e.
is reflexive. Conversely if is reflexive we conclude that ˆ0 = {0} and
therefore = {0} =

³

ˆ0
´

= ˆ so that is reflexive.

Alternative proof. Notice that = † where : is given
by = ˆ and the composition

ˆ ˆ
† † ˆ

is the identity map since
³

† ˆ
´

( ) = (̂ ) = (̂ˆ) = ˆ( ) = ( ) for all

Thus it follows that ˆ is invertible i † is its inverse
which can happen i Nul( †) = {0} But as above Nul( †) = Ran )0
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which will be zero i Ran( ) = and since is an isometry this is
equivalent to saying Ran ) = So we have again shown is reflexive
i is reflexive.

Theorem 18.37. Let be a Banach space, be a proper closed subspace,
the quotient space, : the projection map ( ) = + for
and define the quotient norm on by

k ( )k = k + k = inf k + k
Then

(1) k·k is a norm on
(2) The projection map : has norm 1 k k = 1
(3) ( k·k ) is a Banach space.
(4) If is another normed space and : is a bounded linear transfor-

mation such that Nul( ) then there exists a unique linear transfor-
mation : such that = and moreover k k = k k

Proof. 1) Clearly k + k 0 and if k + k = 0 then there exists
such that k + k 0 as i.e. = lim ¯ = Since

+ = 0 If C\ {0} then

k + k = inf k + k = | | inf k + k = | | k + k

because runs through as runs through Let 1 2 and 1 2

then

k 1 + 2 + k k 1 + 2 + 1 + 2k k 1 + 1k+ k 2 + 2k
Taking infinums over 1 2 then implies

k 1 + 2 + k k 1 + k+ k 2 + k
and we have completed the proof the ( k · k) is a normed space.
2) Since k ( )k = inf k + k k k for all k k 1 To see k k = 1

let \ so that ( ) 6= 0 Given (0 1) there exists such that

k + k 1 k ( )k
Therefore,

k ( + )k
k + k =

k ( )k
k + k

k + k
k + k =

which shows k k Since (0 1) is arbitrary we conclude that k ( )k = 1
3) Let ( ) be a sequence such that

P k ( )k As above there
exists such that k ( )k 1

2k + k and hence P k + k
2
P k ( )k Since is complete, :=

P

=1
( + ) exists in and therefore

by the continuity of

( ) =
X

=1

( + ) =
X

=1

( )

showing is complete.
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4) The existence of is guaranteed by the “factor theorem” from linear algebra.
Moreover k k = k k because

k k = k k k k k k = k k
and

k k = sup
k ( ( ))k
k ( )k = sup

k k
k ( )k

sup
k k
k k = sup

6=0
k k
k k = k k

Theorem 18.38. Let be a Banach space. Then

(1) Identifying with ˆ the weak — topology on induces the
weak topology on More explicitly, the map ˆ ˆ is a homeo-
morphism when is equipped with its weak topology and ˆ with the relative
topology coming from the weak- topology on

(2) ˆ is dense in the weak- topology on
(3) Letting and be the closed unit balls in and respectively, then

ˆ := {ˆ : } is dense in in the weak — topology on
(4) is reflexive i is weakly compact.

Proof.
(1) The weak — topology on is generated by

n

ˆ :
o

= { ( ) : }
So the induced topology on is generated by

{ ˆ ˆ( ) = ( ) : } =
and so the induced topology on is precisely the weak topology.

(2) A basic weak - neighborhood of a point is of the form

(18.12) N := =1 { : | ( ) ( )| }
for some { } =1 and 0 be given. We must now find such
that ˆ N or equivalently so that

(18.13) |ˆ( ) ( )| = | ( ) ( )| for = 1 2

In fact we will show there exists such that ( ) = ( ) for
= 1 2 To prove this stronger assertion we may, by discard-

ing some of the ’s if necessary, assume that { } =1 is a linearly in-
dependent set. Since the { } =1 are linearly independent, the map

( 1( ) ( )) C is surjective (why) and hence there
exists such that

(18.14) ( 1( ) ( )) = = ( ( 1) ( ))

as desired.
(3) Let and N be the weak - open neighborhood of as

in Eq. (18.12). Working as before, given 0 we need to find
such that Eq. (18.13). It will be left to the reader to verify that it su ces
again to assume { } =1 is a linearly independent set. (Hint: Suppose that



368 BRUCE K. DRIVER†

{ 1 } were a maximal linearly dependent subset of { } =1 then
each with may be written as a linear combination { 1 } )
As in the proof of item 2., there exists such that Eq. (18.14)
holds. The problem is that may not be in To remedy this, let :=

=1Nul( ) = Nul( ) : = C be the projection map and ¯

( ) be chosen so that = ¯ for = 1 2 Then we have
produced such that

( ( 1) ( )) = ( 1( ) ( )) = ( 1̄( ( )) ¯ ( ( )))

Since
©

1̄
¯
ª

is a basis for ( ) we find

k ( )k = sup
C \{0}

¯

¯

P

=1
¯( ( ))

¯

¯

°

°

P

=1
¯
°

°

= sup
C \{0}

|P =1 ( )|
kP =1 k

= sup
C \{0}

| (P =1 )|
kP =1 k k k sup

C \{0}

kP =1 k
kP =1 k = 1

Hence we have shown k ( )k 1 and therefore for any 1 there
exists = + such that k k and ( ( 1) ( )) =
( 1( ) ( )) Hence

| ( ) ( )| ¯

¯ ( ) 1 ( )
¯

¯ (1 1) | ( )|
which can be arbitrarily small (i.e. less than ) by choosing su ciently
close to 1

(4) Let ˆ := {ˆ : } If is reflexive, ˆ = is weak
- compact and hence by item 1., is weakly compact in Conversely
if is weakly compact, then ˆ is weak — compact being the
continuous image of a continuous map. Since the weak — topology on

is Hausdor , it follows that ˆ is weak — closed and so by item 3,

= ˆ
weak—

= ˆ So if k k = ˆ i.e. there exists
such that ˆ = k k This shows = (k k )

ˆ and therefore
ˆ =

18.6. Exercises.

18.6.1. More Examples of Banach Spaces.

Exercise 18.1. Let ( M) be a measurable space and ( ) denote the space
of complex measures on ( M) and for ( ) let k k | k( ) Show
( ( ) k·k) is a Banach space. (Move to Section 16.)
Exercise 18.2. Folland 5.9, p. 155.

Exercise 18.3. Folland 5.10, p. 155.

Exercise 18.4. Folland 5.11, p. 155.
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18.6.2. Hahn-Banach Theorem Problems.

Exercise 18.5. Folland 5.17, p. 159.

Exercise 18.6. Folland 5.18, p. 159.

Exercise 18.7. Folland 5.19, p. 160.

Exercise 18.8. Folland 5.20, p. 160.

Exercise 18.9. Folland 5.21, p. 160.

Exercise 18.10. Let be a Banach space such that is separable. Show
is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e. suppose

\{0} is a countable dense subset of for choose such that
k k = 1 and | ( )| 1

2k k
Exercise 18.11. Folland 5.26.

Exercise 18.12. Give another proof Corollary 4.10 based on Remark 4.8. Hint:
the Hahn Banach theorem implies

k ( ) ( )k = sup
6=0
| ( ( )) ( ( ))|

k k
18.6.3. Baire Category Result Problems.

Exercise 18.13. Folland 5.29, p. 164.

Exercise 18.14. Folland 5.30, p. 164.

Exercise 18.15. Folland 5.31, p. 164.

Exercise 18.16. Folland 5.32, p. 164.

Exercise 18.17. Folland 5.33, p. 164.

Exercise 18.18. Folland 5.34, p. 164.

Exercise 18.19. Folland 5.35, p. 164.

Exercise 18.20. Folland 5.36, p. 164.

Exercise 18.21. Folland 5.37, p. 165.

Exercise 18.22. Folland 5.38, p. 165.

Exercise 18.23. Folland 5.39, p. 165.

Exercise 18.24. Folland 5.40, p. 165.

Exercise 18.25. Folland 5.41, p. 165.

18.6.4. Weak Topology and Convergence Problems.

Exercise 18.26. Folland 5.47, p. 171.

Definition 18.39. A sequence { } =1 is weakly Cauchy if for all
such that 0 for all su ciently large. Similarly a sequence
{ } =1 is weak— Cauchy if for all such that 0
for all su ciently large.
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Remark 18.40. These conditions are equivalent to { ( )} =1 being Cauchy for all
and { ( )} =1 being Cauchy for all respectively.

Exercise 18.27. Folland 5.48, p. 171.

Exercise 18.28. Folland 5.49, p. 171.

Exercise 18.29. land 5.50, p. 172.

Exercise 18.30. Let be a Banach space. Show every weakly compact subset of
is norm bounded and every weak— compact subset of is norm bounded.

Exercise 18.31. Folland 5.51, p. 172.

Exercise 18.32. Folland 5.53, p. 172.
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19. Weak and Strong Derivatives

For this section, let be an open subset of R [1 ] ( ) =
( B ) and ( ) = ( B ) where is Lebesgue measure on BR

and B is the Borel — algebra on If = R we will simply write and
for (R ) and (R ) respectively. Also let

h i :=
Z

for any pair of measurable functions : C such that 1( ) For
example, by Hölder’s inequality, if h i is defined for ( ) and ( )
when = 1

Definition 19.1. A sequence { } =1 ( ) is said to converge to ( )
if lim k k ( ) = 0 for all compact subsets

The following simple but useful remark will be used (typically without further
comment) in the sequel.

Remark 19.2. Suppose [1 ] are such that 1 = 1 + 1 and
in ( ) and in ( ) as 0 then in ( ) Indeed,

k k = k( ) + ( )k
k k k k + k k k k 0 as 0

19.1. Basic Definitions and Properties.

Definition 19.3 (Weak Di erentiability). Let R and ( ) ( ( ))
then is said to exist weakly in ( ) ( ( )) if there exists a function

( ) ( ( )) such that

(19.1) h i = h i for all ( )

The function if it exists will be denoted by ( ) Similarly if N0 and is
as in Notation 11.10, we say exists weakly in ( ) ( ( )) i there exists

( ) ( ( )) such that

h i = ( 1)| |h i for all ( )

More generally if ( ) =
P

| | is a polynomial in R then ( ) exists
weakly in ( ) ( ( )) i there exists ( ) ( ( )) such that

(19.2) h ( ) i = h i for all ( )

and we denote by w ( )

By Corollary 11.28, there is at most one 1 ( ) such that Eq. (19.2) holds,
so w ( ) is well defined.

Lemma 19.4. Let ( ) be a polynomial on R = deg ( ) N and 1 ( )
such that ( ) exists weakly in 1 ( ) Then

(1) supp (w ( ) ) supp ( ) where supp ( ) is the essential support of
relative to Lebesgue measure, see Definition 11.14.

(2) If deg = and | ( C) for some open set then w ( ) =
( ) a.e. on

Proof.
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(1) Since

hw ( ) i = h ( ) i = 0 for all ( \ supp ( ))

an application of Corollary 11.28 shows w ( ) = 0 a.e. on \
supp ( ) So by Lemma 11.15, \ supp ( ) \ supp (w ( ) ) i.e.
supp (w ( ) ) supp ( )

(2) Suppose that | is and let ( ) (We view as a function
in (R ) by setting 0 on R \ ) By Corollary 11.25, there exists

( ) such that 0 1 and = 1 in a neighborhood of supp( )
Then by setting = 0 on R \ supp( ) we may view (R ) and
so by standard integration by parts (see Lemma 11.26) and the ordinary
product rule,

hw ( ) i = h ( ) i = h ( ) i
= h ( ) ( ) i = h ( ) i(19.3)

wherein the last equality we have is constant on supp( ) Since Eq.
(19.3) is true for all ( ) an application of Corollary 11.28 with
= w ( ) ( ) and = shows w ( ) = ( ) a.e. on

Notation 19.5. In light of Lemma 19.4 there is no danger in simply writing ( )
for w ( ) So in the sequel we will always interpret ( ) in the weak or “dis-
tributional” sense.

Example 19.6. Suppose ( ) = | | for R then ( ) = sgn( ) in 1 (R)
while 2 ( ) = 2 ( ) so 2 ( ) does not exist weakly in 1 (R)

Example 19.7. Suppose = 2 and ( ) = 1 Then 1
¡

R2
¢

while
1 = ( ) and 1 = ( ) and so that neither or exists

weakly. On the other hand ( + ) = 0 weakly. To prove these assertions,
notice

¡

R2 \ ¢

where =
©

( ) : R2
ª

So by Lemma 19.4, for any
polynomial ( ) without constant term, if ( ) exists weakly then ( ) = 0
However,

h i =
Z

( ) =

Z

R
( )

h i =
Z

( ) =

Z

R
( ) and

h ( + ) i = 0
from which it follows that and can not be zero while ( + ) = 0
On the other hand if ( ) and ( ) are two polynomials and 1 ( ) is a

function such that ( ) exists weakly in 1 ( ) and ( ) [ ( ) ] exists weakly
in 1 ( ) then ( ) ( ) exists weakly in 1 ( ) This is because

h ( ) ( ) i = h ( ) ( ) i
= h ( ) ( ) i = h ( ) ( ) i for all ( )

Example 19.8. Let ( ) = 1 0 + 1 0 in 1
¡

R2
¢

Then ( ) = ( )

and ( ) = ( ) so ( ) and ( ) do not exist weakly in 1
¡

R2
¢

However does exists weakly and is the zero function. This shows may
exists weakly despite the fact both and do not exists weakly in 1

¡

R2
¢
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Lemma 19.9. Suppose 1 ( ) and ( ) is a polynomial of degree such that
( ) exists weakly in 1 ( ) then

(19.4) h ( ) i = h ( ) i for all ( )

Note: The point here is that Eq. (19.4) holds for all ( ) not just
( )

Proof. Let ( ) and choose ( (0 1)) such that
R

R ( ) = 1

and let ( ) := ( ) Then ( ) for su ciently small and
( ) [ ] = ( ) ( ) and uniformly on compact
sets as 0 Therefore by the dominated convergence theorem,

h ( ) i = lim
0
h ( ) i = lim

0
h ( ) ( )i = h ( ) i

Lemma 19.10 (Product Rule). Let 1 ( ) R and 1( ) If ( )

exists in 1 ( ) then ( )
( ) exists in 1 ( ) and

( ) ( ) = · + ( ) a.e.

Moreover if 1( ) and := 1 (here we define on R by setting = 0

on R \ ), then ( ) = · +
( ) exists weakly in 1(R )

Proof. Let ( ) then using Lemma 19.9,

h i = h i = h ( ) · i = h ( ) i+ h · i
= h ( ) i+ h · i

This proves the first assertion. To prove the second assertion let ( ) such
that 0 1 and = 1 on a neighborhood of supp( ) So for (R ) using

= 0 on supp( ) and ( ) we find

h i = h i = h i = h( ) ( ) · i
= h( ) ( )i = h ( ) ( ) ( )i
= h · + ( ) i = h · + ( ) i

This show ( )
= · +

( ) as desired.

Lemma 19.11. Suppose [1 ) ( ) is a polynomial in R and ( )
If there exists { } =1 ( ) such that ( ) exists in ( ) for all
and there exists ( ) such that for all ( )

lim h i = h i and lim h ( ) i = h i

then ( ) exists in ( ) and ( ) =

Proof. Since

h ( ) i = lim h ( ) i = lim h ( ) i = h i

for all ( ) ( ) exists and is equal to ( )
Conversely we have the following proposition.
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Proposition 19.12 (Mollification). Suppose [1 ) 1( ) ( ) is a col-
lection of polynomials in R and ( ) such that ( ) exists weakly in

( ) for = 1 2 Then there exists ( ) such that in
( ) and ( ) ( ) in ( ) for = 1 2

Proof. Let ( (0 1)) such that
R

R = 1 and ( ) := ( )

be as in the proof of Lemma 19.9. For any function 1 ( ) 0 and
:= { : dist( ) } let

( ) := ( ) := 1 ( ) =

Z

( ) ( )

Notice that ( ) and as 0
Given a compact set let := { : dist( ) } Then as
0 there exists 0 0 such that 0 := 0 is a compact subset of 0 := 0

(see Figure 38) and for

( ) :=

Z

( ) ( ) =

Z

( ) ( )

Therefore, using Theorem 11.21,

Figure 38. The geomentry of 0 0

k k ( ) = k(1 0 ) 1 0 k ( ) k(1 0 ) 1 0 k (R ) 0 as 0

Hence, for all ( ) ( ) and

(19.5) lim
0
k k ( ) = 0

Now let ( ) be a polynomial on R ( ) such that ( ) ( ) and
:= ( ) as above. Then for and 0

( ) ( ) =

Z

( ) ( ) ( ) =

Z

( ) ( ) ( )

=

Z

( ) ( ) ( ) = h ( ) ( ·)i
= h ( ) ( ·)i = ( ( ) ) ( )(19.6)
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From Eq. (19.6) we may now apply Eq. (19.5) with = and = ( ) for
1 to find

k k ( ) +
X

=1

k ( ) ( ) k ( ) 0 as 0

For N let

:= { : | | and ( ) 1 }
(so +1 +1 for all and as or see Lemma 10.10)
and choose ( +1 [0 1]) using Corollary 11.25, so that = 1 on a
neighborhood of Choose 0 such that +1 and

k k ( ) +
X

=1

k ( ) ( ) k ( ) 1

Then := · ( ) and since = on we still have

(19.7) k k ( ) +
X

=1

k ( ) ( ) k ( ) 1

Since any compact set is contained in for all su ciently large, Eq.
(19.7) implies

lim

"

k k ( ) +
X

=1

k ( ) ( ) k ( )

#

= 0

The following proposition is another variant of Proposition 19.12 which the
reader is asked to prove in Exercise 19.2 below.

Proposition 19.13. Suppose [1 ) 1( ) ( ) is a collection of poly-
nomials in R and =

¡

R
¢

such that ( ) for = 1 2

Then there exists
¡

R
¢

such that

lim

"

k k +
X

=1

k ( ) ( ) k
#

= 0

Notation 19.14 (Di erence quotients). For R and R\{0} and a function
: C let

( ) :=
( + ) ( )

for those such that + When is one of the standard basis elements,
for 1 we will write ( ) rather than ( ) Also let

( ) :=
¡

1 ( ) ( )
¢

be the di erence quotient approximation to the gradient.

Definition 19.15 (Strong Di erentiability). Let R and then is
said to exist strongly in if the lim 0 exists in We will denote the limit
by ( )
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It is easily verified that if R and ( ) exists then ( ) exists
and ( )

=
( ) The key to checking this assetion is the identity,

h i =
Z

R

( + ) ( )
( )

=

Z

R
( )

( ) ( )
= h i(19.8)

Hence if ( )
= lim 0 exists in and (R ) then

h ( ) i = lim
0
h i = lim

0
h i = |0h (· )i = h i

wherein Corollary 7.43 has been used in the last equality to bring the derivative
past the integral. This shows ( ) exists and is equal to ( ) What is somewhat
more surprising is that the converse assertion that if ( ) exists then so does
( ) Theorem 19.18 is a generalization of Theorem 12.39 from 2 to For the
reader’s convenience, let us give a self-contained proof of the version of the Banach
- Alaoglu’s Theorem which will be used in the proof of Theorem 19.18. (This is the
same as Theorem 18.27 above.)

Proposition 19.16 (Weak- Compactness: Banach - Alaoglu’s Theorem). Let
be a separable Banach space and { } be a bounded sequence, then there exist
a subsequence { ˜ } { } such that lim ( ) = ( ) for all with

Proof. Let be a countable linearly independent subset of such
that span( ) = Using Cantor’s diagonal trick, choose { ˜ } { } such that
:= lim ˜ ( ) exist for all Define : span( ) R by the formula

(
X

) =
X

where by assumption #({ : 6= 0}) Then : span( ) R is linear
and moreover ˜ ( ) ( ) for all span( ) Now

| ( )| = lim | ˜ ( )| lim sup k ˜ k k k k k for all span( )

Hence by the B.L.T. Theorem 4.1, extends uniquely to a bounded linear functional
on We still denote the extension of by Finally, if and
span( )

| ( ) ˜ ( )| | ( ) ( )|+ | ( ) ˜ ( )|+ | ˜ ( ) ˜ ( )|
k k k k+ k ˜ k k k+ | ( ) ˜ ( )k
2 k k+ | ( ) ˜ ( )| 2 k k as

Therefore lim sup | ( ) ˜ ( )| 2 k k 0 as

Corollary 19.17. Let (1 ] and = 1 Then to every bounded sequence
{ } =1 ( ) there is a subsequence {˜ } =1 and an element ( ) such
that

lim h˜ i = h i for all ( )
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Proof. By Theorem 15.14, the map

( ) h ·i ( ( ))

is an isometric isomorphism of Banach spaces. By Theorem 11.3, ( ) is separable
for all [1 ) and hence the result now follows from Proposition 19.16.

Theorem 19.18 (Weak and Strong Di erentiability). Suppose [1 )
(R ) and R \ {0} Then the following are equivalent:
(1) There exists (R ) and { } =1 R\ {0} such that lim = 0

and
lim h i = h i for all (R )

(2) ( ) exists and is equal to (R ) i.e. h i = h i for all
(R )

(3) There exists (R ) and (R ) such that and
as

(4) ( ) exists and is is equal to (R ) i.e. in as 0

Moreover if (1 ) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.

10. There exists { } =1 R\ {0} such that lim = 0 and sup
°

°

°

°

Proof. 4. = 1. is simply the assertion that strong convergence implies weak
convergence.
1. = 2. For (R ) Eq. (19.8) and the dominated convergence theorem

implies
h i = lim h i = lim h i = h i

2. = 3. Let (R R) such that
R

R ( ) = 1 and let ( ) =

( ) then by Proposition 11.24, := (R ) for all and

( ) = ( ) =

Z

R
( ) ( ) = h [ ( ·)]i

= h ( ·)i = ( )

By Theorem 11.21, (R ) and = in (R ) as
This shows 3. holds except for the fact that need not have compact support.
To fix this let (R [0 1]) such that = 1 in a neighborhood of 0 and let
( ) = ( ) and ( ) ( ) := ( ) ( ) Then

( ) = + = ( ) +

so that in and ( ) in as 0 Let =
where is chosen to be greater than zero but small enough so that

k k + k ( ) k 1

Then (R ) and in as
3. = 4. By the fundamental theorem of calculus

( ) =
( + ) ( )

=
1
Z 1

0

( + ) =

Z 1

0

( ) ( + )(19.9)
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and therefore,

( ) ( ) =

Z 1

0

[( ) ( + ) ( )]

So by Minkowski’s inequality for integrals, Theorem 9.27,
°

° ( )
°

°

Z 1

0

k( ) (·+ ) k
and letting in this equation then implies

°

°

°

°

Z 1

0

k (·+ ) k
By the dominated convergence theorem and Proposition 11.13, the right member
of this equation tends to zero as 0 and this shows item 4. holds.
(10. = 1. when 1) This is a consequence of Corollary 19.17 (or see Theorem

18.27 above) which asserts, by passing to a subsequence if necessary, that
for some (R )

Example 19.19. The fact that (10) does not imply the equivalent conditions 1 —
4 in Theorem 19.18 when = 1 is demonstrated by the following example. Let
:= 1[0 1] then

Z

R

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

=
1

| |
Z

R

¯

¯1[ 1 ]( ) 1[0 1]( )
¯

¯ = 2

for | | 1 On the other hand the distributional derivative of is ( ) = ( )
( 1) which is not in 1

Alternatively, if there exists 1(R ) such that

lim
( + ) ( )

= ( ) in 1

for some sequence { } =1 as above. Then for (R) we would have on one
hand,

Z

R

( + ) ( )
( ) =

Z

R

( ) ( )
( )

Z 1

0

0( ) = ( (0) (1)) as

while on the other hand,
Z

R

( + ) ( )
( )

Z

R
( ) ( )

These two equations imply

(19.10)
Z

R
( ) ( ) = (0) (1) for all (R)

and in particular that
R

R ( ) ( ) = 0 for all (R\ {0 1}) By Corollary
11.28, ( ) = 0 for — a.e. R\ {0 1} and hence ( ) = 0 for — a.e. R
But this clearly contradicts Eq. (19.10). This example also shows that the unit ball
in 1(R ) is not weakly sequentially compact. Compare with Example 18.24.

Corollary 19.20. If 1 such that then
°

°

°

°

k k for all 6= 0 and R
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Proof. By Minkowski’s inequality for integrals, Theorem 9.27, we may let
in Eq. (19.9) to find

( ) =

Z 1

0

( ) ( + ) for a.e. R

and
°

°

°

°

Z 1

0

k( ) (·+ )k = k k

Proposition 19.21 (A weak form of Weyls Lemma). If 2(R ) such that
:= 4 2(R ) then 2

¡

R
¢

for | | 2 Furthermore if N0 and
2
¡

R
¢

for all | | then 2
¡

R
¢

for | | + 2

Proof. By Proposition 19.13, there exists
¡

R
¢

such that and
= in 2

¡

R
¢

By integration by parts we find
Z

R
| ( )|2 = ( ( ) ( )) 2 ( ) = 0 as

and hence by item 3. of Theorem 19.18, 2 for each Since

k k2 2 = lim

Z

R
| |2 = ( ) 2 ( ) as

we also learn that

(19.11) k k2 2 = ( ) k k 2 · k k 2

Let us now consider

X

=1

Z

R
| |2 =

X

=1

Z

R

2

=
X

=1

Z

R
=
X

=1

Z

R

2

=

Z

R
| |2 = k k2 2

Replacing by in this calculation shows

X

=1

Z

R
| ( )|2 = k ( )k2 2 0 as

and therefore by Lemma 19.4 (also see Exercise 19.4), 2
¡

R
¢

for all
and

(19.12)
X

=1

Z

R
| |2 = k k2 2 = k k2 2

Combining Eqs. (19.11) and (19.12) gives the estimate
X

| | 2

k k2 2 k k2 2 + k k 2 · k k 2 + k k2 2

= k k2 2 + k k 2 · k k 2 + k k2 2(19.13)
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Let us now further assume = 2
¡

R
¢

Then for R \ {0}
2(R ) and = = 2(R ) and hence by Eq. (19.13) and

what we have just proved, = 2 and
X

| | 2

°

°

°

°

2
2(R )

°

°

°

°

2
2 +

°

°

°

°

2 ·
°

°

°

°

2 +
°

°

°

°

2
2

k k2 2 + k k 2 · k k 2 + k k2 2
where the last inequality follows from Corollary 19.20. Therefore applying Theorem
19.18 again we learn that 2(R ) for all | | 2 and

X

| | 2

k k2 2(R ) k k2 2 + k k 2 · k k 2 + k k2 2

k k2 2 + k k 2 · k k 2 + k k2 2
k k 2 · k k 2 + k k 2 ·

q

k k 2 · k k 2 + k k2 2
The remainder of the proof, which is now an induction argument using the above
ideas, is left as an exercise to the reader.

Theorem 19.22. Suppose that is a precompact open subset of R and is an
open precompact subset of

(1) If 1 ( ) and ( ) then k k ( ) k k ( )

for all 0 | | 1
2dist( )

(2) Suppose that 1 ( ) and assume there exists a constants
and (0 1

2dist( )) such that

k k ( ) for all 0 | |
Then ( ) and k k ( ) Moreover if := sup
then in fact ( ) and k k ( )

Proof. 1. Let such that ¯ and ¯ is a compact subset of For
1 ( ) ( ) and 0 | | 1

2dist( )

( ) =
( + ) ( )

=

Z 1

0

( + )

and in particular,

| ( )|
Z 1

0

| ( + )|

Therefore by Minikowski’s inequality for integrals,

(19.14) k k ( )

Z 1

0

k (·+ )k ( ) k k ( )

For general ( ) with ( ) by Proposition 19.12, there exists
( ) such that and in ( ) Therefore we may

replace by in Eq. (19.14) and then pass to the limit to find

k k ( ) k k ( ) k k ( )
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2. If k k ( ) for all su ciently small then by Corollary 19.17 there
exists 0 such that ( ) Hence if ( )

Z

= lim

Z

= lim

Z

=

Z

=

Z

Therefore = ( ) and k k ( ) k k ( ) Finally if :=
sup then by the dominated convergence theorem,

k k ( ) = lim k k ( )

We will now give a couple of applications of Theorem 19.18.

Lemma 19.23. Let R

(1) If 1 and exists in 1 then
R

R ( ) = 0

(2) If [1 ) satisfy 1 = 1+ 1 and are functions
such that and exists in and respectively, then ( ) exists in
and ( ) = · + · Moreover if = 1 we have the integration

by parts formula,

(19.15) h i = h i
(3) If = 1 exists in 1 and 1(R ) (i.e. 1(R ) with and

its first derivatives being bounded) then ( ) exists in 1 and ( ) =
· + · and again Eq. (19.15) holds.

Proof. 1) By item 3. of Theorem 19.18 there exists (R ) such that
and in 1 Then
Z

R
( ) = |0

Z

R
( + ) = |0

Z

R
( ) = 0

and letting proves the first assertion.
2) Similarly there exists (R ) such that and in
and and in as So by the standard product rule

and Remark 19.2, as and

( ) = · + · · + · in as

It now follows from another application of Theorem 19.18 that ( ) exists in
and ( ) = · + · Eq. (19.15) follows from this product rule and item
1. when = 1
3) Let (R ) such that and in 1 as Then

as above, in 1 and ( ) · + in 1 as In
particular if (R ) then

h i = lim h i = lim h ( ) i
= lim h · + i = h · + i

This shows ( ) exists (weakly) and ( ) = · + · Again Eq. (19.15)
holds in this case by item 1. already proved.
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Lemma 19.24. Let [1 ] satisfy 1 + 1 = 1 + 1

and R

(1) If exists strongly in then ( ) exists strongly in and

( ) = ( )

(2) If exists strongly in then ( ) exists strongly in and

( ) =

(3) If exists weakly in and (R ) then (R ) ( )
exists strongly in and

( ) = = ( )

Proof. Items 1 and 2. By Young’s inequality (Theorem 11.19) and simple
computations:

°

°

°

°

( )
( )

°

°

°

°

=

°

°

°

°

( )

°

°

°

°

=

°

°

°

°

·

( )

¸
°

°

°

°

°

°

°

°

( )

°

°

°

°

k k

which tends to zero as 0 The second item is proved analogously, or just make
use of the fact that = and apply Item 1.
Using the fact that ( ·) (R ) and the definition of the weak derivative,

( ) =

Z

R
( ) ( ) ( ) =

Z

R
( ) ( ( ·)) ( )

=

Z

R
( ) ( ) = ( )

Item 3. is a consequence of this equality and items 1. and 2.

19.2. The connection of Weak and pointwise derivatives.

Proposition 19.25. Let = ( ) R be an open interval and 1 ( ) such
that ( ) = 0 in 1 ( ) Then there exists C such that = a.e. More
generally, suppose : ( ) C is a linear functional such that ( 0) = 0 for
all ( ) where 0( ) = ( ) then there exists C such that

(19.16) ( ) = h i =
Z

( ) for all ( )

Proof. Before giving a proof of the second assertion, let us show it includes the
first. Indeed, if ( ) :=

R

and ( ) = 0 then ( 0) = 0 for all ( )
and therefore there exists C such that

Z

= ( ) = h 1i =
Z

But this implies = a.e. So it only remains to prove the second assertion.
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Let ( ) such that
R

= 1 Given ( ) (R) let
( ) =

R

( ( ) ( )h 1i) Then 0( ) = ( ) ( )h 1i and ( )
as the reader should check. Therefore,

0 = ( ) = ( h i ) = ( ) h 1i ( )

which shows Eq. (19.16) holds with = ( ) This concludes the proof, however
it will be instructive to give another proof of the first assertion.
Alternative proof of first assertion. Suppose 1 ( ) and ( ) = 0

and := as is in the proof of Lemma 19.9. Then 0 = ( ) = 0
so = for some constant C By Theorem 11.21, in 1 ( ) and
therefore if = [ ] is a compact subinterval of

| | = 1
Z

| | 0 as

So { } =1 is a Cauchy sequence and therefore := lim exists and =
lim = a.e.

Theorem 19.26. Suppose 1 ( ) Then there exists a complex measure on
B such that

(19.17) h 0i = ( ) :=

Z

for all ( )

i there exists a right continuous function of bounded variation such that =
a.e. In this case = i.e. (( ]) = ( ) ( ) for all

Proof. Suppose = a.e. where is as above and let = be the
associated measure on B Let ( ) = ( ) ( ) = (( ]) then using
Fubini’s theorem and the fundamental theorem of calculus,

h 0i = h 0i = h 0i =
Z

0( )
·
Z

1( ]( ) ( )

¸

=

Z Z

0( )1( ]( ) ( ) =

Z

( ) ( ) = ( )

Conversely if Eq. (19.17) holds for some measure let ( ) := (( ]) then
working backwards from above,

h 0i = ( ) =

Z

( ) ( ) =

Z Z

0( )1( ]( ) ( ) =

Z

0( ) ( )

This shows ( ) ( ) = 0 and therefore by Proposition 19.25, = + a.e. for
some constant C Since + is right continuous with bounded variation, the
proof is complete.

Proposition 19.27. Let R be an open interval and 1 ( ) Then
exists in 1 ( ) i has a continuous version ˜ which is absolutely continuous on
all compact subintervals of Moreover, = 0̃ a.e., where 0̃( ) is the usual
pointwise derivative.

Proof. If is locally absolutely continuous and ( ) with supp( )
[ ] then by integration by parts, Corollary 16.32,

Z

0 =

Z

0 =

Z

0 + | =
Z

0
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This shows exists and = 0 1 ( )
Now suppose that exists in 1 ( ) and Define ( ) by
( ) :=

R

( ) Then is absolutely continuous on compacts and therefore
by fundamental theorem of calculus for absolutely continuous functions (Theorem
16.31), 0( ) exists and is equal to ( ) for a.e. Moreover, by the first
part of the argument, exists and = and so by Proposition 19.25
there is a constant such that

(̃ ) := ( ) + = ( ) for a.e.

Definition 19.28. Let and be metric spaces. A function : is said
to be Lipschitz if there exists such that

( ( ) ( 0)) ( 0) for all 0

and said to be locally Lipschitz if for all compact subsets there exists
such that

( ( ) ( 0)) ( 0) for all 0

Proposition 19.29. Let 1 ( ) Then there exists a locally Lipschitz function
˜ : C such that ˜ = a.e. i 1 ( ) exists and is locally (essentially)
bounded for = 1 2

Proof. Suppose = ˜ a.e. and ˜ is Lipschitz and let (1 ) and be
a precompact open set such that ¯ and let :=

©

: dist( ¯ )
ª

Then for dist( ¯ ) and therefore there is constant ( ) such
that |˜( ) ˜( )| ( ) | | for all So for 0 | | 1 and R
with | | = 1

Z

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

=

Z

¯

¯

¯

¯

˜( + ) ˜( )
¯

¯

¯

¯

( ) | |

Therefore Theorem 19.18 may be applied to conclude exists in and moreover,

lim
0

˜( + ) ˜( )
= ( ) for — a.e.

Since there exists { } =1 R\ {0} such that lim = 0 and

| ( )| = lim

¯

¯

¯

¯

˜( + ) ˜( )
¯

¯

¯

¯

( ) for a.e.

it follows that k k ( ) where ( ) := lim 0 ( )
Conversely, let := { : dist( ) } and ( (0 1) [0 )) such

that
R

R ( ) = 1 ( ) = ( ) and := as in the proof of
Theorem 19.18. Suppose with ¯ and is su ciently small. Then

( ) = | ( )| k k ( 1 )
=: ( ) and

therefore for ¯ with | |

| ( ) ( )| =
¯

¯

¯

¯

Z 1

0

( + ( ))

¯

¯

¯

¯

=

¯

¯

¯

¯

Z 1

0

( ) · ( + ( ))

¯

¯

¯

¯

Z 1

0

| | · | ( + ( ))| ( ) | |(19.18)
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By passing to a subsequence if necessary, we may assume that lim ( ) =
( ) for — a.e. ¯ and then letting in Eq. (19.18) implies

(19.19) | ( ) ( )| ( ) | | for all \ and | |
where ¯ is a — null set. Define ˜ : ¯ C by ˜ = on ¯ \ and
˜ ( ) = lim ( ) if Then clearly ˜ = a.e. on ¯ and it is easy to

show ˜ is well defined and ˜ : ¯ C is continuous and still satisfies

|˜ ( ) ˜ ( )| | | for ¯ with | |
Since ˜ is continuous on ¯ there exists such that |˜ | on ¯

Hence if ¯ with | | we find

|˜ ( ) ˜ ( )|
| |

2

and hence

|˜ ( ) ˜ ( )| max

½

2
¾

| | for ¯

showing ˜ is Lipschitz on ¯ To complete the proof, choose precompact open sets
such that ¯

+1 for all and for let ˜( ) := ˜ ( )
Here is an alternative way to construct the function ˜ above. For \

| ( ) ( )| =
¯

¯

¯

¯

Z

( ) ( ) ( )

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

Z

| ( ) ( )| ( )
Z

| | ( )

wherein the last equality we have used Eq. (19.19) with replaced by for some
small 0 Letting :=

R | | ( ) we have shown

k k 0 as

and consequently

k k = k k 2 0 as

Therefore, converges uniformly to a continuous function ˜
The next theorem is from Chapter 1. of Maz’ja [2].

Theorem 19.30. Let 1 and be an open subset of R R be written as
= ( ) R 1 ×R

:=
©

R 1 : ({ } ×R) 6= ª

and ( ) Then exists weakly in ( ) i there is a version ˜ of such that
for a.e. the function ˜( ) is absolutely continuous, ( ) = ˜( )

a.e., and
°

°

˜
°

°

( )

Proof. For the proof of Theorem 19.30, it su ces to consider the case where
= (0 1) Write as = ( ) × (0 1) = (0 1) 1 × (0 1) and for

the weak derivative By assumption
Z

| ( )| = k k1 k k
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and so by Fubini’s theorem there exists a set of full measure, 0 such that
Z 1

0

| ( )| for 0

So for 0 the function ( ) :=
R

0
( ) is well defined and absolutely

continuous in with ( ) = ( ) for a.e. (0 1) Let ( ) and
((0 1)) then integration by parts for absolutely functions implies

Z 1

0

( ) ˙( ) =

Z 1

0

( ) ( ) for all 0

Multiplying both sides of this equation by ( ) and integrating in shows
Z

( ) ˙( ) ( ) =

Z

( ) ( ) ( ) =

Z

( ) ( ) ( )

Using the definition of the weak derivative, this equation may be written as
Z

( ) ˙( ) ( ) =

Z

( ) ( ) ( )

and comparing the last two equations shows
Z

[ ( ) ( )] ˙( ) ( ) = 0

Since ( ) is arbitrary, this implies there exists a set 1 0 of full measure
such that

Z

[ ( ) ( )] ˙( ) = 0 for all 1

from which we conclude, using Proposition 19.25, that ( ) = ( ) + ( ) for
where 1 ( ) = 1 here denotes — dimensional Lebesgue measure.

In conclusion we have shown that

(19.20) ( ) = ˜( ) :=

Z

0

( ) + ( ) for all 1 and

We can be more precise about the formula for ˜( ) by integrating both sides
of Eq. (19.20) on we learn

( ) =

Z 1

0

Z

0

( )

Z 1

0

( ) =

Z 1

0

(1 ) ( )

Z 1

0

( )

=

Z 1

0

[(1 ) ( ) ( )]

and hence

˜( ) :=

Z

0

( ) +

Z 1

0

[(1 ) ( ) ( )]

which is well defined for 0

For the converse suppose that such a ˜ exists, then for ( )
Z

( ) ( ) =

Z

˜( ) ( ) =

Z

˜( )
( )

wherein we have used integration by parts for absolutely continuous functions. From
this equation we learn the weak derivative ( ) exists and is given by ˜( )

a.e.
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19.3. Exercises.

Exercise 19.1. Give another proof of Lemma 19.10 base on Proposition 19.12.

Exercise 19.2. Prove Proposition 19.13. Hints: 1. Use as defined in the proof
of Proposition 19.12 to show it su ces to consider the case where

¡

R
¢

¡

R
¢

with
¡

R
¢

for all N0 2. Then let ( (0 1) [0 1])
such that = 1 on a neighborhood of 0 and let ( ) := ( ) ( )

Exercise 19.3. Suppose ( ) is a polynomial in R (1 ) := 1

such that ( ) and such that ( ) Show h ( ) i =
h ( ) i
Exercise 19.4. Let [1 ) be a multi index (if = 0 let 0 be the identity
operator on )

( ) := { (R ) : exists weakly in (R )}
and for ( ) (the domain of ) let denote the — weak derivative of
(See Definition 19.3.)

(1) Show is a densely defined operator on i.e. ( ) is a dense linear
subspace of and : ( ) is a linear transformation.

(2) Show : ( ) is a closed operator, i.e. the graph,

( ) := {( ) × : ( )}
is a closed subspace of ×

(3) Show : ( ) is not bounded unless = 0 (The norm on
( ) is taken to be the — norm.)

Exercise 19.5. Let [1 ) and be a multi index. Show exists
weakly (see Definition 19.3) in i there exists (R ) and such
that and in as Hints: See exercises 19.2 and 19.4.

Exercise 19.6. Folland 8.8 on p. 246.

Exercise 19.7. Assume = 1 and let = 1 where 1 = (1) R1 = R
(1) Let ( ) = | | show exists weakly in 1 (R) and ( ) = sgn( ) for

— a.e.
(2) Show ( ) does not exists weakly in 1 (R)
(3) Generalize item 1. as follows. Suppose (R R) and there exists a finite

set := { 1 2 · · · } R such that 1(R \ R) Assuming
1 (R) show exists weakly and ( ) ( ) = ( ) for — a.e.

Exercise 19.8. Suppose that 1 ( ) and R and { } =1 is the standard
basis for R If := exists weakly in 1 ( ) for all = 1 2 then
exists weakly in 1 ( ) and =

P

=1

Exercise 19.9. Suppose 1 (R ) and exists weakly and = 0 in
1 (R ) for all R Then there exists C such that ( ) = for — a.e.
R Hint: See steps 1. and 2. in the outline given in Exercise 19.10 below.

Exercise 19.10 (A generalization of Exercise 19.9). Suppose is a connected
open subset of R and 1 ( ) If = 0 weakly for Z+ with | | = +1
then ( ) = ( ) for — a.e. where ( ) is a polynomial of degree at most
Here is an outline.
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(1) Suppose 0 and 0 such that := 0( ) and let be a
sequence of approximate — functions such supp( ) 0(1 ) for all
Then for large enough, ( ) = ( ) on for | | = +1 Now
use Taylor’s theorem to conclude there exists a polynomial of degree at
most such that = on

(2) Show := lim exists on and then let in step 1. to show
there exists a polynomial of degree at most such that = a.e. on

(3) Use Taylor’s theorem to show if and are two polynomials on R which
agree on an open set then =

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 19.11. Suppose R and R Assume 1 ( ) and that
exists weakly in 1 ( ), show also exists weakly and =

Exercise 19.12. Let = 2 and ( ) = 1 0 Show (1 1) = 0 weakly in 1

despite the fact that 1 does not exist weakly in 1 !
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20. Fourier Transform

The underlying space in this section is R with Lebesgue measure. The Fourier
inversion formula is going to state that

(20.1) ( ) =

µ

1

2

¶
Z

R

Z

R
( )

If we let = 2 this may be written as

( ) =

Z

R

2

Z

R
( ) 2

and we have removed the multiplicative factor of
¡

1
2

¢

in Eq. (20.1) at the expense
of placing factors of 2 in the arguments of the exponential. Another way to avoid
writing the 2 ’s altogether is to redefine and and this is what we will do here.

Notation 20.1. Let be Lebesgue measure on R and define:

d =

µ

1

2

¶

( ) and d
µ

1

2

¶

( )

To be consistent with this new normalization of Lebesgue measure we will redefine
k k and h i as

k k =

µ
Z

R
| ( )| d

¶1

=

Ã

µ

1

2

¶ 2 Z

R
| ( )| ( )

!1

and

h i :=
Z

R
( ) ( )d when 1

Similarly we will define the convolution relative to these normalizations by Fg :=
¡

1
2

¢ 2
i.e.

F ( ) =

Z

R
( ) ( )d =

Z

R
( ) ( )

µ

1

2

¶ 2

( )

The following notation will also be convenient; given a multi-index Z+ let
| | = 1 + · · ·+

:=
Y

=1

=

µ ¶

:=
Y

=1

µ ¶

and

=

µ

1
¶| |µ ¶

=

µ

1
¶

Also let

h i := (1 + | |2)1 2

and for R let

( ) = (1 + | |)
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20.1. Fourier Transform.

Definition 20.2 (Fourier Transform). For 1 let

(̂ ) = F ( ) :=

Z

R

· ( )d(20.2)

( ) = F 1 ( ) =

Z

R

· ( )d = F ( )(20.3)

The next theorem summarizes some more basic properties of the Fourier trans-
form.

Theorem 20.3. Suppose that 1 Then

(1) ˆ 0(R ) and
°

°

°

ˆ
°

°

°
k k1

(2) For R ( ) ˆ( ) = · (̂ ) where, as usual, ( ) := ( )

(3) The Fourier transform takes convolution to products, i.e. ( F )ˆ = ˆ̂

(4) For 1 h ˆ i = h ˆi
(5) If : R R is an invertible linear transformation, then

( ) ( ) = |det | 1
(̂
¡

1
¢

) and

( ) ( ) = |det | 1
(
¡

1
¢

)

(6) If (1+ | |) ( ) 1 then ˆ and ˆ
0 for all | | Moreover,

(20.4) (̂ ) = F [( ) ( )] ( )

for all | |
(7) If and 1 for all | | then (1 + | |) (̂ ) 0 and

(20.5) ( )ˆ ( ) = ( ) (̂ )

for all | |
(8) Suppose 1(R ) and 1(R ) and = i.e.

( ) = ( 1 ) ( +1 )

then ˆ= ˆ ˆ

Proof. Item 1. is the Riemann Lebesgue Lemma 11.27. Items 2. — 5. are
proved by the following straight forward computations:

( ) ˆ( ) =

Z

R

· ( )d =

Z

R

( + )· ( )d = · (̂ )

h ˆ i =
Z

R
(̂ ) ( )d =

Z

R
d ( )

Z

R
d · ( )

=

Z

R ×R
d d · ( ) ( ) =

Z

R ×R
d ˆ( ) ( ) = h ˆi

( F )
ˆ
( ) =

Z

R

· F ( )d =

Z

R

·
µ
Z

R
( ) ( )d

¶

d

=

Z

R
d

Z

R
d · ( ) ( ) =

Z

R
d

Z

R
d ( + )· ( ) ( )

=

Z

R
d · ( )

Z

R
d · ( ) = (̂ )ˆ( )
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and letting = so that d = |det | 1 d

( )ˆ ( ) =

Z

R

· ( )d =

Z

R

1 · ( ) |det | 1 d

= |det | 1
(̂
¡

1
¢

)

Item 6. is simply a matter of di erentiating under the integral sign which is easily
justified because (1 + | |) ( ) 1

Item 7. follows by using Lemma 11.26 repeatedly (i.e. integration by parts) to
find

( )ˆ ( ) =

Z

R
( ) · d = ( 1)| |

Z

R
( ) · d

= ( 1)| |
Z

R
( )( ) · d = ( ) (̂ )

Since 1 for all | | it follows that ( ) (̂ ) = ( )
ˆ
( ) 0 for all

| | Since

(1 + | |)
Ã

1 +
X

=1

| |
!

=
X

| |
| |

where 0
¯

¯

¯
(1 + | |) (̂ )

¯

¯

¯

X

| |

¯

¯

¯
(̂ )
¯

¯

¯
0 as

Item 8. is a simple application of Fubini’s theorem.

Example 20.4. If ( ) = | |2 2 then (̂ ) = | |2 2 in short

(20.6) F | |2 2 = | |2 2 and F 1 | |2 2 = | |2 2

More generally, for 0 let

(20.7) ( ) := 2 1
2 | |2

then

(20.8) b ( ) = 2 | |2 and (b ) ( ) = ( )

By Item 8. of Theorem 20.3, to prove Eq. (20.6) it su ces to consider the 1 —

dimensional case because | |2 2 =
Q

=1

2 2 Let ( ) :=
³

F 2 2
´

( ) then

by Eq. (20.4) and Eq. (20.5),
(20.9)
0( ) = F

h

( )
2 2
i

( ) = F
·

2 2

¸

( ) = ( )F
h

2 2
i

( ) = ( )

Lemma 8.36 implies

(0) =

Z

R

2 2d =
1

2

Z

R

2 2 ( ) = 1

and so solving Eq. (20.9) with (0) = 1 gives F
h

2 2
i

( ) = ( ) =
2 2 as

desired. The assertion that F 1 | |2 2 = | |2 2 follows similarly or by using Eq.
(20.3) to conclude,

F 1
h

| |2 2
i

( ) = F
h

| |2 2
i

( ) = F
h

| |2 2
i

( ) = | |2 2
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The results in Eq. (20.8) now follow from Eq. (20.6) and item 5 of Theorem 20.3.
For example, since ( ) = 2

1( )

(b )( ) = 2
³ ´

1̂( ) = 2 | |2

This may also be written as (b )( ) = 2
1 ( ) Using this and the fact that

is an even function,

(b ) ( ) = Fb ( ) = 2F 1 ( ) = 2 2 ( ) = ( )

20.2. Schwartz Test Functions.

Definition 20.5. A function (R C) is said to have rapid decay or rapid
decrease if

sup
R
(1 + | |) | ( )| for = 1 2

Equivalently, for each N there exists constants such that | ( )|
(1 + | |) for all R A function (R C) is said to have (at most)

polynomial growth if there exists such

sup (1 + | |) | ( )|
i.e. there exists N and such that | ( )| (1 + | |) for all R

Definition 20.6 (Schwartz Test Functions). Let S denote the space of functions
(R ) such that and all of its partial derivatives have rapid decay and let

k k = sup
R

¯

¯(1 + | |) ( )
¯

¯

so that
S =

n

(R ) : k k for all and
o

Also let P denote those functions (R ) such that and all of its derivatives
have at most polynomial growth, i.e. (R ) is in P i for all multi-indices
there exists such

sup (1 + | |) | ( )|
(Notice that any polynomial function on R is in P )
Remark 20.7. Since (R ) S 2 (R ) it follows that S is dense in 2(R )

Exercise 20.1. Let

(20.10) =
X

| |
( )

with P Show (S) S and in particular and are back in S for all
multi-indices

Notation 20.8. Suppose that ( ) = | | ( ) where each function ( )
is a smooth function. We then set

( ) := | | ( )

and if each ( ) is also a polynomial in we will let

( ) := | | ( )

where is the operation of multiplication by
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Proposition 20.9. Let ( ) be as above and assume each ( ) is a polynomial
in Then for S
(20.11) ( ( ) ) ( ) = ( ) ˆ( )

and

(20.12) ( ) (̂ ) = [ ( ) ( )] ( )

Proof. The identities ( ) · = · and · = · imply,
for any polynomial function on R

(20.13) ( ) · = ( ) · and ( ) · = ( ) ·

Therefore using Eq. (20.13) repeatedly,

( ( ) ) ( ) =

Z

R

X

| |
( ) ( ) · · d

=

Z

R

X

| |
( ) · ( ) · d

=

Z

R
( )

X

| |
( )

£

( ) · ¤d

=

Z

R
( )

X

| |
( )

£ · ¤d = ( ) ˆ( )

wherein the third inequality we have used Lemma 11.26 to do repeated integration
by parts, the fact that mixed partial derivatives commute in the fourth, and in the
last we have repeatedly used Corollary 7.43 to di erentiate under the integral. The
proof of Eq. (20.12) is similar:

( ) (̂ ) = ( )

Z

R
( ) · d =

Z

R
( ) ( ) · d

=
X

| |

Z

R
( )( ) ( ) · d =

X

| |

Z

R
( )( ) ( ) · d

=
X

| |

Z

R

· ( ) [( ) ( )]d = [ ( ) ( )] ( )

Corollary 20.10. The Fourier transform preserves the space S i.e. F(S) S
Proof. Let ( ) = | | ( ) with each ( ) being a polynomial func-

tion in If S then ( ) S 1 and so by Eq. (20.12), ( ) (̂ )
is bounded in i.e.

sup
R
| ( ) (̂ )| ( )

Taking ( ) = (1 + | |2) with Z+ in this estimate shows (̂ ) and all of
its derivatives have rapid decay, i.e. ˆ is in S
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20.3. Fourier Inversion Formula .

Theorem 20.11 (Fourier Inversion Theorem). Suppose that 1 and ˆ 1

then
(1) there exists 0 0(R ) such that = 0 a.e.
(2) 0 = F 1F and 0 = FF 1

(3) and ˆ are in 1 and

(4) k k2 =
°

°

°

ˆ
°

°

°

2

In particular, F : S S is a linear isomorphism of vector spaces.

Proof. First notice that ˆ 0 (R ) and ˆ 1 by assumption, so that
ˆ 1 Let ( ) 2 1

2 | |2 be as in Example 20.4 so that b ( ) = 2 | |2

and b = Define 0 := ˆ
0 then

0( ) = ( )̂ ( ) =

Z

R
(̂ ) · d = lim

0

Z

R
(̂ ) ·

b ( )d

= lim
0

Z

R

Z

R
( ) ·( )

b ( )d d

= lim
0

Z

R
( ) ( )d = ( ) a.e.

wherein we have used Theorem 11.21 in the last equality along with the observations
that ( ) = 1( ) and

R

R 1( )d = 1 In particular this shows that
1 A similar argument shows that F 1F = 0 as well.
Let us now compute the 2 — norm of ˆ

k k̂22 =
Z

R
(̂ ) (̂ )d =

Z

R
d (̂ )

Z

R
d ( ) ·

=

Z

R
d ( )

Z

R
d (̂ ) ·

=

Z

R
d ( ) ( ) = k k22

because
R

R d (̂ ) · = F 1 (̂ ) = ( ) a.e.

Corollary 20.12. By the B.L.T. Theorem 4.1, the maps F|S and F 1|S extend to
bounded linear maps F̄ and F̄ 1 from 2 2 These maps satisfy the following
properties:

(1) F̄ and F̄ 1 are unitary and are inverses to one another as the notation
suggests.

(2) For 2 we may compute F̄ and F̄ 1 by

F̄ ( ) = 2— lim
Z

| |
( ) · d and(20.14)

F̄ 1 ( ) = 2— lim
Z

| |
( ) · d(20.15)

(3) We may further extend F̄ to a map from 1 + 2
0 +

2 (still denote
by F̄) defined by F̄ = ˆ+ F̄ where = + 1+ 2 For 1+ 2

F̄ may be characterized as the unique function 1 (R ) such that

(20.16) h i = h ˆi for all (R )
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Moreover if Eq. (20.16) holds then 0+
2 1 (R ) and Eq.(20.16)

is valid for all S
Proof. Item 1., If 2 and S such that in 2 then F̄ :=

lim ˆ Since ˆ S 1 we may concluded that
°

°

°

ˆ
°

°

°

2
= k k2 for all

Thus
°

°F̄ °

°

2
= lim

°

°

°

ˆ
°

°

°

2
= lim k k2 = k k2

which shows that F̄ is an isometry from 2 to 2 and similarly F̄ 1 is an isometry.
Since F̄ 1F̄ = F 1F = on the dense set S it follows by continuity that F̄ 1F̄ =
on all of 2 Hence F̄F̄ 1

= and thus F̄ 1 is the inverse of F̄ This proves
item 1.
Item 2. Let 2 and and set ( ) := ( )1| | Then 1 2

Let (R ) be a function such that
R

R ( )d = 1 and set ( ) = ( )

Then F 1 2 with F (R ) S Hence

F̄ = 2— lim F ( F ) = F a.e.

where in the second equality we used the fact that F is continuous on 1 Hence
R

| | ( ) · d represents F̄ ( ) in 2 Since in 2 Eq. (20.14)

follows by the continuity of F̄ on 2

Item 3. If = + 1 + 2 and S then

hˆ + F̄ i = h i+ hF̄ i = h ˆi+ lim hF ¡ 1|·|
¢ i

= h ˆi+ lim h 1|·| ˆi = h + ˆi(20.17)

In particular if + = 0 a.e., then hˆ + F̄ i = 0 for all S and since
ˆ + F̄ 1 it follows from Corollary 11.28 that ˆ + F̄ = 0 a.e. This shows that
F̄ is well defined independent of how 1 + 2 is decomposed into the sum
of an 1 and an 2 function. Moreover Eq. (20.17) shows Eq. (20.16) holds with
= ˆ + F̄ 0 +

2 and S Now suppose 1 and h i = h ˆi for
all (R ) Then by what we just proved, h i = h i for all (R )
and so an application of Corollary 11.28 shows = 0 +

2

Notation 20.13. Given the results of Corollary 20.12, there is little danger in
writing ˆ or F for F̄ when 1 + 2

Corollary 20.14. If and are 1 functions such that ˆ ˆ 1 then

F( ) = ˆFˆ and F 1( ) = F
Since S is closed under pointwise products and F : S S is an isomorphism it
follows that S is closed under convolution as well.
Proof. By Theorem 20.11, ˆ ˆ 1 and hence · 1 and

ˆFˆ 1 Since

F 1
³

ˆFˆ
´

= F 1
³

ˆ
´

· F 1 (ˆ) = · 1

we may conclude from Theorem 20.11 that

ˆFˆ = FF 1
³

ˆFˆ
´

= F( · )
Similarly one shows F 1( ) = F
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Corollary 20.15. Let ( ) and ( ) be as in Notation 20.8 with each func-
tion ( ) being a smooth function of R Then for S

(20.18) ( ) ( ) =

Z

R
( ) ˆ( ) · d

Proof. For S we have

( ) ( ) = ( )
³

F 1 ˆ
´

( ) = ( )

Z

R

ˆ( ) · d

=

Z

R

ˆ( ) ( ) · d =

Z

R

ˆ( ) ( ) · d

If ( ) is a more general function of ( ) then that given in Notation 20.8,
the right member of Eq. (20.18) may still make sense, in which case we may use it
as a definition of ( ) A linear operator defined this way is called a pseudo
di erential operator and they turn out to be a useful class of operators to study
when working with partial di erential equations.

Corollary 20.16. Suppose ( ) =
P

| | is a polynomial in R and
2 Then ( ) exists in 2 (see Definition 19.3) i ( ) (̂ ) 2 in

which case
( ( ) )

ˆ
( ) = ( ) (̂ ) for a.e.

In particular, if 2 then 2 solves the equation, ( ) = i ( ) (̂ ) =
ˆ( ) for a.e.

Proof. By definition ( ) = in 2 i

(20.19) h i = h ( ) i for all (R )

If follows from repeated use of Lemma 19.23 that the previous equation is equivalent
to

(20.20) h i = h ( ) i for all S(R )

This may also be easily proved directly as well as follows. Choose (R )
such that ( ) = 1 for 0(1) and for S(R ) let ( ) := ( ) ( ) By
the chain rule and the product rule (Eq. A.5 of Appendix A),

( ) =
X

µ ¶

| | ¡ ¢

( ) · ( )

along with the dominated convergence theorem shows and in
2 as Therefore if Eq. (20.19) holds, we find Eq. (20.20) holds because

h i = lim h i = lim h ( ) i = h ( ) i
To complete the proof simply observe that h i = hˆ i and

h ( ) i = h ˆ [ ( ) ] i = h (̂ ) ( ) ( )i
= h ( ) (̂ ) ( )i

for all S(R ) From these two observations and the fact that F is bijective on
S one sees that Eq. (20.20) holds i ( ) (̂ ) 2 and ˆ( ) = ( ) (̂ ) for
a.e.
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20.4. Summary of Basic Properties of F and F 1. The following table sum-
marizes some of the basic properties of the Fourier transform and its inverse.

ˆ or
Smoothness Decay at infinity

Multiplication by (± )
S S

2(R ) 2(R )
Convolution Products.

20.5. Fourier Transforms of Measures and Bochner’s Theorem. To moti-
vate the next definition suppose that is a finite measure on R which is absolutely
continuous relative to Lebesgue measure, ( ) = ( )d Then it is reasonable to
require

ˆ( ) := (̂ ) =

Z

R

· ( )d =

Z

R

· ( )

and

( F ) ( ) := F ( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

when : R C is a function such that the latter integral is defined, for example
assume is bounded. These considerations lead to the following definitions.

Definition 20.17. The Fourier transform, ˆ of a complex measure on BR is
defined by

(20.21) ˆ( ) =

Z

R

· ( )

and the convolution with a function is defined by

( F ) ( ) =

Z

R
( ) ( )

when the integral is defined.

It follows from the dominated convergence theorem that ˆ is continuous. Also
by a variant of Exercise 11.11, if and are two complex measure on BR such
that ˆ = ˆ then = The reader is asked to give another proof of this fact in
Exercise 20.4 below.

Example 20.18. Let be the surface measure on the sphere of radius centered
at zero in R3 Then

ˆ ( ) = 4
sin | |
| |

Indeed,

ˆ ( ) =

Z

2

· ( ) = 2

Z

2

· ( )

= 2

Z

2

3| | ( ) = 2

Z 2

0

Z

0

sin cos | |

= 2 2

Z 1

1

| | = 2 2 1

| |
| || =1= 1 = 4

2 sin | |
| |
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Definition 20.19. A function : R C is said to be positive (semi) definite
i the matrices := { ( )} =1 are positive definite for all N and
{ } =1 R

Lemma 20.20. If (R C) is a positive definite function, then

(1) (0) 0

(2) ( ) = ( ) for all R
(3) | ( )| (0) for all R
(4) For all S(R )

(20.22)
Z

R ×R
( ) ( ) ( ) 0

Proof. Taking = 1 and 1 = 0 we learn (0) | |2 0 for all C which
proves item 1. Taking = 2 1 = and 2 = the matrix

:=

·

(0) ( )
( ) (0)

¸

is positive definite from which we conclude ( ) = ( ) (since = by
definition) and

0 det

·

(0) ( )
( ) (0)

¸

= | (0)|2 | ( )|2

and hence | ( )| (0) for all This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (20.22) by Riemann sums,

Z

R ×R
( ) ( ) ( ) = lim

0

X

( ) ( ) ( ) 0

The details are left to the reader.

Lemma 20.21. If is a finite positive measure on BR then := ˆ (R C)
is a positive definite function.

Proof. As has already been observed after Definition 20.17, the dominated
convergence theorem implies ˆ (R C) Since is a positive measure (and
hence real),

ˆ( ) =

Z

R

· ( ) =

Z

R

· ( ) = ˆ( )

From this it follows that for any N and { } =1 R the matrix :=

{ˆ( )} =1 is self-adjoint. Moreover if C

X

=1

ˆ( ) ¯ =

Z

R

X

=1

( )· ¯ ( ) =

Z

R

X

=1

· · ( )

=

Z

R

¯

¯

¯

¯

¯

X

=1

·
¯

¯

¯

¯

¯

2

( ) 0

showing is positive definite.

Theorem 20.22 (Bochner’s Theorem). Suppose (R C) is positive definite
function, then there exists a unique positive measure on BR such that = ˆ
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Proof. If ( ) = ˆ( ) then for S we would have
Z

R
=

Z

R
( )

ˆ
=

Z

R
( )ˆ( )d

This suggests that we define

( ) :=

Z

R
( ) ( )d for all S

We will now show is positive in the sense if S and 0 then ( ) 0 For
general S we have

(| |2) =
Z

R
( )
³

| |2
´

( )d =

Z

R
( )
¡

F ¯
¢

( )d

=

Z

R
( ) ( ) ¯ ( )d d =

Z

R
( ) ( ) ( )d d

=

Z

R
( ) ( ) ( )d d 0

For 0 let ( ) := 2 | |2 2 S and define

F ( ) := ( ( ·)) = (
¯

¯

¯

p

( ·)
¯

¯

¯

2

)

which is non-negative by above computation and because
p

( ·) S
Using

[ ( ·)] ( ) =
Z

R
( ) · d =

Z

R
( ) ( + )· d

= · ( ) = · | |2 2

h F i =
Z

R
( ( ·)) ( )d =

Z

R

Z

R
( ) [ ( ·)] ( ) ( )d d

=

Z

R
( ) ( ) | |2 2d

which coupled with the dominated convergence theorem shows

h F i
Z

R
( ) ( )d = ( ) as 0

Hence if 0 then ( ) = lim 0h F i 0
Let R be a compact set and (R [0 )) be a function such that
= 1 on If (R R) is a smooth function with supp( ) then

0 k k S and hence
0 h k k i = k k h i h i

and therefore h i k k h i Replacing by implies, h i
k k h i and hence we have proved
(20.23) |h i| (supp( )) k k
for all DR := (R R) where ( ) is a finite constant for each compact
subset of R Because of the estimate in Eq. (20.23), it follows that |DR has a
unique extension to (R R) still satisfying the estimates in Eq. (20.23) and
moreover this extension is still positive. So by the Riesz — Markov theorem, there
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exists a unique Radon — measure on R such that such that h i = ( ) for all
(R R)

To finish the proof we must show ˆ( ) = ( ) for all R given

( ) =

Z

R
( ) ( )d for all (R R)

Let (R R+) be a radial function such (0) = 1 and ( ) is decreasing as
| | increases. Let ( ) := ( ) then by Theorem 20.3,

F 1
£

( )
¤

( ) = ( )

and therefore

(20.24)
Z

R
( ) ( ) =

Z

R
( ) ( )d

Because
R

R ( )d = F (0) = (0) = 1 we may apply the approximate —
function Theorem 11.21 to Eq. (20.24) to find

(20.25)
Z

R
( ) ( ) ( ) as 0

On the the other hand, when = 0 the monotone convergence theorem implies
( ) (1) = (R ) and therefore (R ) = (1) = (0) Now knowing the
is a finite measure we may use the dominated convergence theorem to concluded

( ( )) ( ) = ˆ( ) as 0

for all Combining this equation with Eq. (20.25) shows ˆ( ) = ( ) for all
R

20.6. Supplement: Heisenberg Uncertainty Principle. Suppose that is a
Hilbert space and are two densely defined symmetric operators on More
explicitly, is a densely defined symmetric linear operator on means there is
a dense subspace D and a linear map : D such that ( ) =
( ) for all D Let D := { : D and D } and for

D let ( ) = ( ) with a similar definition of D and Moreover,
let D := D D and for D let

=
1
[ ] =

1
( )

Notice that for D we have

( ) =
1 {( ) ( )} = 1 {( ) ( )}

=
1 {( ) ( )} = ( )

so that is symmetric as well.

Theorem 20.23 (Heisenberg Uncertainty Principle). Continue the above notation
and assumptions,

(20.26)
1

2
|( )|

q

k k2 ( ) ·
q

k k2 ( )
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for all D Moreover if k k = 1 and equality holds in Eq. (20.26), then
( ( )) = ( ( )) or

( ( )) = ( ( ))(20.27)

for some R

Proof. By homogeneity (20.26) we may assume that k k = 1 Let := ( )

= ( ) ˜ = and ˜ = Then we have still have

[ ˜ ˜] = [ ] =

Now

( ) = ( ) = ( [ ˜ ˜] ) = ( ˜ ˜ ) ( ˜ ˜ )

= ( ˜ ˜ ) ( ˜ ˜ ) = 2 Im( ˜ ˜ )

from which we learn

|( )| = 2
¯

¯

¯
Im( ˜ ˜ )

¯

¯

¯
2
¯

¯

¯
( ˜ ˜ )

¯

¯

¯
2
°

°

°

˜
°

°

°

°

°

°

˜
°

°

°

with equality i Re( ˜ ˜ ) = 0 and ˜ and ˜ are linearly dependent, i.e. i
Eq. (20.27) holds.
The result follows from this equality and the identities

°

°

°

˜
°

°

°

2

= k k2 = k k2 + 2 k k2 2 Re( )

= k k2 + 2 2 2 = k k2 ( )

and
°

°

°

˜
°

°

°
= k k2 ( )

Example 20.24. As an example, take = 2(R) = 1 and =
with D := { : 0 } ( 0 is the weak derivative) and D :=

n

:
R

R | ( )|2
o

In this case,

D = { : 0 and 0 are in }
and = on D Therefore for a unit vector D

1

2

°

°

°

°

1 0
°

°

°

°

2

· k k2

where =
R

R
¯0 39 and =

R

R | ( )|2 ( ) Thus we have

(20.28)
1

4
=
1

4

Z

R
| |2

Z

R
( )2

¯

¯

¯

ˆ( )
¯

¯

¯

2

·
Z

R
( )2 | ( )|2

39The constant may also be described as

=

Z

R

¯0 = 2

Z

R

ˆ( )
¡

¯0¢ˆ( )

=

Z

R

¯

¯

¯

ˆ( )
¯

¯

¯

2
( )
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Equality occurs if there exists R such that

( ) ( ) = (
1

) ( ) a.e.

Working formally, this gives rise to the ordinary di erential equation (in weak form),

(20.29) = [ ( ) + ]

which has solutions (see Exercise 20.5 below)

(20.30) = exp

µ
Z

R
[ ( ) + ]

¶

= exp

µ

2
( )2 +

¶

Let = 1
2 and choose so that k k2 = 1 to find

( ) =

µ

1

2

¶1 4

exp

µ

1

4
( )2 +

¶

are the functions which saturate the Heisenberg uncertainty principle in Eq. (20.28).

20.6.1. Exercises.

Exercise 20.2. Let 2(R ) and be a multi-index. If exists in 2(R )

then F( ) = ( ) (̂ ) in 2(R ) and conversely if
³

(̂ )
´

2(R ) then

exists.

Exercise 20.3. Suppose ( ) is a polynomial in R and 2 such that
( ) 2 Show

F ( ( ) ) ( ) = ( )ˆ ( ) 2

Conversely if 2 such that ( )ˆ ( ) 2 show ( ) 2

Exercise 20.4. Suppose is a complex measure on R and ˆ( ) is its Fourier
transform as defined in Definition 20.17. Show satisfies,

hˆ i :=
Z

R
ˆ( ) ( ) = (ˆ) :=

Z

R

ˆ for all S

and use this to show if is a complex measure such that ˆ 0 then 0

Exercise 20.5. Show that described in Eq. (20.30) is the general solution to
Eq. (20.29). Hint: Suppose that is any solution to Eq. (20.29) and is given
as in Eq. (20.30) with = 1 Consider the weak — di erential equation solved by

20.6.2. More Proofs of the Fourier Inversion Theorem.

Exercise 20.6. Suppose that 1(R) and assume that continuously di eren-
tiable in a neighborhood of 0 show

(20.31) lim

Z

sin
( ) = (0)

using the following steps.

(1) Use Example 8.26 to deduce,

lim

Z 1

1

sin
= lim

Z

sin
=
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(2) Explain why

0 = lim

Z

| | 1

sin · ( )
and

0 = lim

Z

| | 1

sin · ( ) (0)

(3) Add the previous two equations and use part (1) to prove Eq. (20.31).

Exercise 20.7 (Fourier Inversion Formula). Suppose that 1(R) such that
ˆ 1(R)

(1) Further assume that is continuously di erentiable in a neighborhood of
0 Show that

:=

Z

R
(̂ )d = (0)

Hint: by the dominated convergence theorem, := lim
R

| | (̂ )d

Now use the definition of (̂ ) Fubini’s theorem and Exercise 20.6.
(2) Apply part 1. of this exercise with replace by for some R to

prove

(20.32) ( ) =

Z

R
(̂ ) · d

provided is now continuously di erentiable near

The goal of the next exercises is to give yet another proof of the Fourier inversion
formula.

Notation 20.25. For 0 let (R) denote the space of — 2 periodic
functions:

(R) :=
©

(R) : ( + 2 ) = ( ) for all R
ª

Also let h· ·i denote the inner product on the Hilbert space := 2([ ])
given by

( ) :=
1

2

Z

[ ]

( )¯( )

Exercise 20.8. Recall that
©

( ) := : Z
ª

is an orthonormal basis for
and in particular for

(20.33) =
X

Z

h i

where the convergence takes place in 2([ ]) Suppose now that
2 (R)40. Show (by two integration by parts)

¯

¯( )
¯

¯

2

2
k 00k

where k k denote the uniform norm of a function Use this to conclude that the
sum in Eq. (20.33) is uniformly convergent and from this conclude that Eq. (20.33)
holds pointwise.

40We view 2 (R) as a subspace of by identifying 2 (R) with |[ ]
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Exercise 20.9 (Fourier Inversion Formula on S). Let S(R) 0 and

(20.34) ( ) :=
X

Z

( + 2 )

Show:
(1) The sum defining is convergent and moreover that (R)
(2) Show ( ) = 1

2
(̂ )

(3) Conclude from Exercise 20.8 that

(20.35) ( ) =
1

2

X

Z

(̂ ) for all R

(4) Show, by passing to the limit, in Eq. (20.35) that Eq. (20.32)
holds for all R Hint: Recall that ˆ S

Exercise 20.10. Folland 8.13 on p. 254.

Exercise 20.11. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 20.12. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution F.20 below.)

Exercise 20.13. Folland 8.16 on p. 255.

Exercise 20.14. Folland 8.17 on p. 255.

Exercise 20.15. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 20.16. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 20.17. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 20.18. Folland 8.31 on p. 263. (Poisson Summation formula problem.)

ANALYSIS TOOLS WITH APPLICATIONS 405

21. Constant Coefficient partial differential equations

Suppose that ( ) =
P

| | with C and

(21.1) = ( ) := | | = | |

µ

1
¶

Then for S
c ( ) = ( ) (̂ )

that is to say the Fourier transform takes a constant coe cient partial di erential
operator to multiplication by a polynomial. This fact can often be used to solve
constant coe cient partial di erential equation. For example suppose : R C is
a given function and we want to find a solution to the equation = Taking the
Fourier transform of both sides of the equation = would imply ( ) (̂ ) = ˆ( )

and therefore (̂ ) = ˆ( ) ( ) provided ( ) is never zero. (We will discuss what
happens when ( ) has zeros a bit more later on.) So we should expect

( ) = F 1

µ

1

( )
ˆ( )

¶

( ) = F 1

µ

1

( )

¶

F ( )

Definition 21.1. Let = ( ) as in Eq. (21.1). Then we let ( ) :=Ran( ) C
and call ( ) the spectrum of Given a measurable function : ( ) C we
define (a possibly unbounded operator) ( ) : 2(R ) 2(R ) by

( ) := F 1 F
where denotes the operation on 2(R ) of multiplication by i.e.

= ( )

with domain given by those 2 such that ( ) 2

At a formal level we expect

( ) = F 1 ( )F

21.0.3. Elliptic examples. As a specific example consider the equation

(21.2)
¡

+ 2
¢

=

where : R C and =
P

=1
2 2 is the usual Laplacian on R By

Corollary 20.16 (i.e. taking the Fourier transform of this equation), solving Eq.
(21.2) with 2 is equivalent to solving

(21.3)
¡| |2 + 2

¢

(̂ ) = ˆ( )

The unique solution to this latter equation is

(̂ ) =
¡| |2 + 2

¢ 1
ˆ( )

and therefore,

( ) = F 1
³

¡| |2 + 2
¢ 1

ˆ( )
´

( ) =:
¡

+ 2
¢ 1

( )

We expect

F 1
³

¡| |2 + 2
¢ 1

ˆ( )
´

( ) = F ( ) =

Z

R
( ) ( )d
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where

( ) := F 1
¡| |2 + 2

¢ 1
( ) =

Z

R

1
2 + | |2

· d

At the moment F 1
¡| |2 + 2

¢ 1
only makes sense when = 1 2 or 3 because

only then is
¡| |2 + 2

¢ 1 2(R )
For now we will restrict our attention to the one dimensional case, = 1 in

which case

(21.4) ( ) =
1

2

Z

R

1

( + ) ( )

The function may be computed using standard complex variable contour inte-
gration methods to find, for 0

( ) =
1

2
2

2

2
=

1

2
2

and since is an even function,

(21.5) ( ) = F 1
¡| |2 + 2

¢ 1
( ) =

2

2
| |

This result is easily verified to be correct, since

F
"

2

2
| |
#

( ) =
2

2

Z

R

| | · d

=
1

2

µ
Z

0

· +

Z 0
·

¶

=
1

2

µ

1

+
+

1
¶

=
1

2 + 2

Hence in conclusion we find that
¡

+ 2
¢

= has solution given by

( ) = F ( ) =
2

2

Z

R

| | ( )d =
1

2

Z

R

| | ( )

Question. Why do we get a unique answer here given that ( ) = sinh( ) +
cosh( ) solves

¡

+ 2
¢

= 0?

The answer is that such an is not in 2 unless = 0! More generally it is worth
noting that sinh( ) + cosh( ) is not in P unless = = 0
What about when = 0 in which case 2 + 2 becomes 2 which has a zero at

0 Noting that constants are solutions to = 0 we might look at

lim
0
( ( ) 1) = lim

0

2

2
( | | 1) =

2

2
| |

as a solution, i.e. we might conjecture that

( ) :=
1

2

Z

R
| | ( )

solves the equation 00 = To verify this we have

( ) :=
1

2

Z

( ) ( )
1

2

Z

( ) ( )
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so that

0( ) =
1

2

Z

( ) +
1

2

Z

( ) and

00( ) =
1

2
( )

1

2
( )

21.0.4. Poisson Semi-Group. Let us now consider the problems of finding a function
( 0 ) [0 )×R ( 0 ) C such that

(21.6)
µ

2

2
0

+

¶

= 0 with (0 ·) = 2(R )

Let ˆ( 0 ) :=
R

R ( 0 ) · d denote the Fourier transform of in the R
variable. Then Eq. (21.6) becomes

(21.7)
µ

2

2
0

| |2
¶

ˆ( 0 ) = 0 with ˆ(0 ) = (̂ )

and the general solution to this di erential equation ignoring the initial condition
is of the form

(21.8) ˆ( 0 ) = ( ) 0| | + ( ) 0| |

for some function ( ) and ( ) Let us now impose the extra condition that
( 0 ·) 2(R ) or equivalently that ˆ( 0 ·) 2(R ) for all 0 0 The solution
in Eq. (21.8) will not have this property unless ( ) decays very rapidly at The
simplest way to achieve this is to assume = 0 in which case we now get a unique
solution to Eq. (21.7), namely

ˆ( 0 ) = (̂ ) 0| |

Applying the inverse Fourier transform gives

( 0 ) = F 1
h

(̂ ) 0| |
i

( ) =:
³

0

´

( )

and moreover
³

0

´

( ) =
0

( )

where 0
( ) = (2 ) 2 ¡F 1 0| |¢ ( ) From Exercise 21.1,

0( ) = (2 )
2
³

F 1 0| |
´

( ) =
0

( 2
0 + | |2)( +1) 2

where

= (2 ) 2 (( + 1) 2)

2 2
=

(( + 1) 2)

2 ( +1) 2

Hence we have proved the following proposition.

Proposition 21.2. For 2(R )

0 =
0

for all 0 0

and the function ( 0 ) := 0 ( ) is for ( 0 ) (0 ) × R and
solves Eq. (21.6).
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21.0.5. Heat Equation on R . The heat equation for a function : R+ × R C
is the partial di erential equation

(21.9)
µ

1

2

¶

= 0 with (0 ) = ( )

where is a given function on R By Fourier transforming Eq. (21.9) in the —
variables only, one finds that (21.9) implies that

(21.10)
µ

+
1

2
| |2
¶

ˆ( ) = 0 with ˆ(0 ) = (̂ )

and hence that ˆ( ) = | |2 2 (̂ ) Inverting the Fourier transform then shows
that

( ) = F 1
³

| |2 2 (̂ )
´

( ) =
³

F 1
³

| |2 2
´

F
´

( ) =: 2 ( )

From Example 20.4,

F 1
³

| |2 2
´

( ) = ( ) = 2 1
2 | |2

and therefore,

( ) =

Z

R
( ) ( )d

This suggests the following theorem.

Theorem 21.3. Let

(21.11) ( ) := (2 )
2 | |2 2

be the heat kernel on R Then

(21.12)
µ

1

2

¶

( ) = 0 and lim
0
( ) = ( )

where is the — function at in R More precisely, if is a continuous bounded
(can be relaxed considerably) function on R , then ( ) =

R

R ( ) ( ) is
a solution to Eq. (21.9) where (0 ) := lim 0 ( )

Proof. Direct computations show that
¡

1
2

¢

( ) = 0 and an ap-
plication of Theorem 11.21 shows lim 0 ( ) = ( ) or equivalently that
lim 0

R

R ( ) ( ) = ( ) uniformly on compact subsets of R This shows
that lim 0 ( ) = ( ) uniformly on compact subsets of R
This notation suggests that we should be able to compute the solution to to

( 2) = using

( ) =
¡

2
¢ 1

( ) =

Z

0

³

( 2 )
´

( ) =

Z

0

³

2

2 F
´

( )

a fact which is easily verified using the Fourier transform. This gives us a method
to compute ( ) from the previous section, namely

( ) =

Z

0

2

2 ( ) =

Z

0

(2 ) 2 2 1
4 | |2
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We make the change of variables, = | |2 4 ( = | |2 4 = | |2
4 2 ) to find

( ) =

Z

0

(2 ) 2 2 1
4 | |2 =

Z

0

Ã

| |2
2

! 2
2| |2 4 | |2

(2 )
2

=
2( 2 2)

| | 2

Z

0

2 2 2| |2 4(21.13)

In case = 3 Eq. (21.13) becomes

( ) =
2 | |

Z

0

1 2| |2 4 =
2 | |

| |

where the last equality follows from Exercise 21.1. Hence when = 3 we have
found

¡

2
¢ 1

( ) = F ( ) = (2 ) 3 2

Z

R3 2 | |
| | ( )

=

Z

R3

1

4 | |
| | ( )(21.14)

The function 1
4 | |

| | is called the Yukawa potential.
Let us work out ( ) for odd. By di erentiating Eq. (21.26) of Exercise

21.1 we find
Z

0

1 2 1
4

2 2

=

Z

0

1 1
4

2

µ ¶

| = 2

=

µ ¶

= ( )

where ( ) is a polynomial in with deg = with

(0) =

µ ¶

1 2| = 2 = (
1

2

3

2

2 1

2
) 2 +1 = 2 +1 2 (2 1)!!

Letting 1 2 = 2 2 and = 1 we find = 1
2 2 N for = 3 5

and we find
Z

0

2 2 1
4

2

= 1 ( ) for all 0

Therefore,

( ) =
2( 2 2)

| | 2

Z

0

2 2 2| |2 4 =
2( 2 2)

| | 2 1 2 2( | |) | |

Now for even I think we get Bessel functions in the answer. (BRUCE: look
this up.) Let us at least work out the asymptotics of ( ) for To this
end let

( ) :=

Z

0

2 2 ( + 1 2) = 2

Z

0

2 2 ( 2+ 1)

The function ( ) := ( 2 + 1) satisfies,
0 ( ) =

¡

2 2
¢

and 00( ) = 2 3 and 000( ) = 6 4
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so by Taylor’s theorem with remainder we learn

( ) = 2 + 3( 1)2 for all 0

see Figure 21.0.5 below.

2.521.510.50

30

25

20

15

10

5

0

x

y

x

y

Plot of 4 and its second order Taylor approximation.

So by the usual asymptotics arguments,

( ) = 2

Z

( + 1 1+ )

2 2 ( 2+ 1)

= 2

Z

( + 1 1+ )

2 2 exp
¡

2 3( 1)2
¢

= 2 2

Z

R

2 2 exp
¡

3( 1)2
¢

(let 1)

= 2 2 2+1

Z

R

2 2 exp
¡

( 1)2
¢

= 2 2 2+1

Z

R
( + 1) 2 2 exp

¡

2
¢

The point is we are still going to get exponential decay at
When = 0 Eq. (21.13) becomes

0( ) =
2( 2 2)

| | 2

Z

0

2 1 =
2( 2 2)

| | 2 ( 2 1)

where ( ) in the gamma function defined in Eq. (8.30). Hence for “reasonable”
functions (and 6= 2)

( ) 1 ( ) = 0F ( ) = 2( 2 2) ( 2 1)(2 ) 2

Z

R

1

| | 2 ( )

=
1

4 2
( 2 1)

Z

R

1

| | 2 ( )

The function

˜
0( ) :=

1

4 2
( 2 1)

1

| | 2
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is a “Green’s function” for Recall from Exercise 8.16 that, for = 2 ( 2
1) = ( 1) = ( 2)! and for = 2 + 1

(
2

1) = ( 1 2) = ( 1 + 1 2) =
1 · 3 · 5 · · · · · (2 3)

2 1

=
(2 3)!!

2 1
where ( 1)!! 1

Hence

˜
0( ) =

1

4

1

| | 2

½ 1 ( 2)! if = 2
1 (2 3)!!

2 1 if = 2 + 1

and in particular when = 3

˜
0( ) =

1

4

1

| |
which is consistent with Eq. (21.14) with = 0

21.0.6. Wave Equation on R . Let us now consider the wave equation on R

0 =
¡

2
¢

( ) with

(0 ) = ( ) and (0 ) = ( )(21.15)

Taking the Fourier transform in the variables gives the following equation

0 = ˆ ( ) + | |2 ˆ( ) with

ˆ(0 ) = (̂ ) and ˆ (0 ) = ˆ( )(21.16)

The solution to these equations is

ˆ( ) = (̂ ) cos ( | |) + ˆ( )sin | || |
and hence we should have

( ) = F 1

µ

(̂ ) cos ( | |) + ˆ( )sin | || |
¶

( )

= F 1 cos ( | |)F ( ) + F 1 sin | |
| | F ( )

= F 1

·

sin | |
| |

¸

F ( ) + F 1

·

sin | |
| |

¸

F ( )(21.17)

The question now is how interpret this equation. In particular what are the inverse
Fourier transforms of F 1 cos ( | |) and F 1 sin | |

| | Since F 1 sin | |
| | F ( ) =

F 1 cos ( | |)F ( ) it really su ces to understand F 1
h

sin | |
| |

i

The problem we

immediately run into here is that sin | |
| |

2(R ) i = 1 so that is the case we
should start with.
Again by complex contour integration methods one can show

¡F 1 1 sin
¢

( ) =
2

¡

1 + 0 1( ) 0

¢

=
2
(1 1 ) =

2
1[ ]( )
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where in writing the last line we have assume that 0 Again this easily seen to
be correct because

F
·

2
1[ ]( )

¸

( ) =
1

2

Z

R
1[ ]( )

· =
1

2
· |

=
1

2

£ ¤

= 1 sin

Therefore,
¡F 1 1 sin

¢

F ( ) =
1

2

Z

( )

and the solution to the one dimensional wave equation is

( ) =
1

2

Z

( ) +
1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z +

( )

We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0 =
¡

2 2
¢

( ) = ( ) ( + ) ( )

Let ( ) := ( + ) ( ) then the wave equation states ( ) = 0 and
hence by the chain rule ( ) = 0 So

( ) = (0 ) = ( ) + 0( )

and replacing by + in this equation shows

( + ) ( ) = ( ) = ( + ) + 0( + )

Working similarly, we learn that

( + ) = ( + 2 ) + 0( + 2 )

which upon integration implies

( + ) = (0 ) +

Z

0

{ ( + 2 ) + 0( + 2 )}

= ( ) +

Z

0

( + 2 ) +
1

2
( + 2 )|0

=
1

2
( ( ) + ( + 2 )) +

Z

0

( + 2 )

Replacing in this equation gives

( ) =
1

2
( ( ) + ( + )) +

Z

0

( + 2 )

and then letting = + 2 in the last integral shows again that

( ) =
1

2
( ( ) + ( + )) +

1

2

Z +

( )
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When 3 it is necessary to treat F 1
h

sin | |
| |

i

as a “distribution” or “gener-

alized function,” see Section 30 below. So for now let us take = 3 in which case
from Example 20.18 it follows that

(21.18) F 1

·

sin | |
| |

¸

=
4 2

= ¯

where ¯ is 1
4 2 the surface measure on normalized to have total measure

one. Hence from Eq. (21.17) the solution to the three dimensional wave equation
should be given by

(21.19) ( ) = ( ¯ F ( )) + ¯ F ( )

Using this definition in Eq. (21.19) gives

( ) =

½
Z

( ) ¯ ( )

¾

+

Z

( ) ¯ ( )

=

½
Z

1

( ) ¯1( )

¾

+

Z

1

( ) ¯1( )

=

½
Z

1

( + ) ¯1( )

¾

+

Z

1

( + ) ¯1( )(21.20)

Proposition 21.4. Suppose 3(R3) and 2(R3) then ( ) defined by
Eq. (21.20) is in 2

¡

R×R3¢ and is a classical solution of the wave equation in
Eq. (21.15).

Proof. The fact that 2
¡

R×R3¢ follows by the usual di erentiation under
the integral arguments. Suppose we can prove the proposition in the special case
that 0 Then for 3(R3) the function ( ) = +

R

1
( + ) ¯1( )

solves the wave equation 0 =
¡

2
¢

( ) with (0 ) = 0 and (0 ) = ( )
Di erentiating the wave equation in shows = also solves the wave equation
with (0 ) = ( ) and (0 ) = (0 ) = (0 ) = 0
These remarks reduced the problems to showing in Eq. (21.20) with 0

solves the wave equation. So let

(21.21) ( ) :=

Z

1

( + ) ¯1( )

We now give two proofs the solves the wave equation.
Proof 1. Since solving the wave equation is a local statement and ( ) only

depends on the values of in ( ) we it su ces to consider the case where
2
¡

R3
¢

Taking the Fourier transform of Eq. (21.21) in the variable shows

ˆ( ) =

Z

1

¯1( )

Z

R3
( + ) · d

=

Z

1

¯1( )

Z

R3
( ) · · d = ˆ( )

Z

1

· ¯1( )

= ˆ( )
sin | |
| | = ˆ( )

sin ( | |)
| |

wherein we have made use of Example 20.18. This completes the proof since ˆ( )
solves Eq. (21.16) as desired.
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Proof 2. Di erentiating

( ) :=

Z

1

( + ) ¯1( )

in gives

( ) =
1

4

Z

1

( + ) · ( ) =
1

4

Z

(0 1)

· ( + ) ( )

=
4

Z

(0 1)

( + ) ( ) =
1

4 2

Z

(0 )

( + ) ( )

=
1

4 2

Z

0

2

Z

| |=
( + ) ( )

where we have used the divergence theorem, made the change of variables =
and used the disintegration formula in Eq. (8.27),

Z

R

( ) ( ) =

Z

[0 )× 1

( ) ( ) 1 =

Z

0

Z

| |=
( ) ( )

Since ( ) = ( ) if follows that

( ) = [ ( ) + ( )]

= ( ) +

"

1

4

Z

0

2

Z

| |=
( + ) ( )

#

= ( )
1

4 2

Z

0

Z

| |=
( + ) ( ) +

1

4

Z

| |=
( + ) ( )

= ( ) ( ) +
4 2

Z

| |=1
( + ) ( ) = ( )

as required.
The solution in Eq. (21.20) exhibits a basic property of wave equations, namely

finite propagation speed. To exhibit the finite propagation speed, suppose that
= 0 (for simplicity) and has compact support near the origin, for example

think of = 0( ) Then + = 0 for some i | | = Hence the “wave front”
propagates at unit speed and the wave front is sharp. See Figure 39 below.
The solution of the two dimensional wave equation may be found using

“Hadamard’s method of decent” which we now describe. Suppose now that and
are functions on R2 which we may view as functions on R3 which happen not to

depend on the third coordinate. We now go ahead and solve the three dimensional
wave equation using Eq. (21.20) and and as initial conditions. It is easily seen
that the solution ( ) is again independent of and hence is a solution to
the two dimensional wave equation. See figure 40 below.
Notice that we still have finite speed of propagation but no longer sharp propa-

gation. The explicit formula for is given in the next proposition.

Proposition 21.5. Suppose 3(R2) and 2(R2) then

( ) :=

"

2

ZZ

1

( + )
p

1 | |2 ( )

#

+
2

ZZ

1

( + )
p

1 | |2 ( )
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Figure 39. The geometry of the solution to the wave equation in
three dimensions. The observer sees a flash at = 0 and = 0
only at time = | | The wave progates sharply with speed 1

Figure 40. The geometry of the solution to the wave equation in
two dimensions. A flash at 0 R2 looks like a line of flashes to the
fictitious 3 — d observer and hence she sees the e ect of the flash
for | | The wave still propagates with speed 1 However there
is no longer sharp propagation of the wave front, similar to water
waves.
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is in 2
¡

R×R2¢ and solves the wave equation in Eq. (21.15).
Proof. As usual it su ces to consider the case where 0 By symmetry

may be written as

( ) = 2

Z

+
( ) ¯ ( ) = 2

Z

+
( + ) ¯ ( )

where + is the portion of with 0 The surface + may be parametrized by
( ) = ( 2 2 2) with ( ) :=

©

( ) : 2 + 2 2
ª

In these
coordinates we have

4 2 ¯ =
¯

¯

¯

³

p

2 2 2
p

2 2 2 1
´
¯

¯

¯

=

¯

¯

¯

¯

µ

2 2 2 2 2 2
1

¶
¯

¯

¯

¯

=

r

2 + 2

2 2 2
+ 1 =

| |
2 2 2

and therefore,

( ) =
2

4 2

Z

( + (
p

2 2 2))
| |

2 2 2

=
1

2
sgn( )

Z

( + ( ))
2 2 2

This may be written as

( ) =
1

2
sgn( )

ZZ

( + )
p

2 | |2 ( ) =
1

2
sgn( )

2

| |
ZZ

1

( + )
p

1 | |2 ( )

=
1

2

ZZ

1

( + )
p

1 | |2 ( )

21.1. Elliptic Regularity. The following theorem is a special case of the main
theorem (Theorem 21.10) of this section.

Theorem 21.6. Suppose that R ( ) and 1 ( ) satisfies
= weakly, then has a (necessarily unique) version ˜ ( )

Proof. We may always assume 3 by embedding the = 1 and = 2 cases
in the = 3 cases. For notational simplicity, assume 0 and we will show is
smooth near 0 To this end let ( ) such that = 1 in a neighborhood of 0
and ( ) such that supp( ) { = 1} and = 1 in a neighborhood of 0
as well. Then formally, we have with := 1

( ) = ( ) = ( ( + ))

= ( ( ) + ( )) = + ( ( ))

so that

( ) = ( ) ( ) ( ( ))( )
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for supp( ) The last term is formally given by

( ( ))( ) =

Z

R
( ) ( ) ( ( ) ( ))

=

Z

R
( ) [ ( ) ( )] · ( )

which makes sense for near 0 Therefore we find

( ) = ( ) ( )

Z

R
( ) [ ( ) ( )] · ( )

Clearly all of the above manipulations were correct if we know were 2 to begin
with. So for the general case, let = with { } =1 — the usual sort of —
sequence approximation. Then = =: away from and

(21.22) ( ) = ( ) ( )

Z

R
( ) [ ( ) ( )] · ( )

Since in 1 (O) where O is a su ciently small neighborhood of 0 we may
pass to the limit in Eq. (21.22) to find ( ) = ˜( ) for a.e. O where

˜( ) := ( ) ( )

Z

R
( ) [ ( ) ( )] · ( )

This concluded the proof since ˜ is smooth for near 0

Definition 21.7. We say = ( ) as defined in Eq. (21.1) is elliptic if ( ) :=
P

| |= is zero i = 0 We will also say the polynomial ( ) :=
P

| |
is elliptic if this condition holds.

Remark 21.8. If ( ) :=
P

| | is an elliptic polynomial, then there exists
such that inf | | | ( )| 0 Since ( ) is everywhere non-zero for 1

and 1 R is compact, := inf | |=1 | ( )| 0 By homogeneity this implies

| ( )| | | for all A

Since

| ( )| =
¯

¯

¯

¯

¯

¯

( ) +
X

| |

¯

¯

¯

¯

¯

¯

| ( )|
¯

¯

¯

¯

¯

¯

X

| |

¯

¯

¯

¯

¯

¯

| |
³

1 + | | 1
´

for some constant from which it is easily seen that for su ciently large,

| ( )|
2
| | for all | |

For the rest of this section, let = ( ) be an elliptic operator and 0 R
As mentioned at the beginning of this section, the formal solution to = for

2 (R ) is given by
= 1 =

where

( ) :=

Z

R

1

( )
· d

Of course this integral may not be convergent because of the possible zeros of
and the fact 1

( ) may not decay fast enough at infinity. We we will introduce
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a smooth cut o function ( ) which is 1 on 0( ) := { R : | | } and
supp( ) 0(2 ) where is as in Remark 21.8. Then for 0 let

( ) =

Z

R

(1 ( )) ( )

( )
· d(21.23)

( ) := ( ) =

Z

R
( ) · d and ( ) = ( )(21.24)

Notice
R

R ( ) = F (0) = (0) = 1 S since S and

( ) =

Z

R
(1 ( )) ( ) · d =

Z

R
[ ( ) ( )] · d

= ( ) ( )

provided 2

Proposition 21.9. Let be an elliptic polynomial of degree The function
defined in Eq. (21.23) satisfies the following properties,

(1) S for all 0
(2) ( ) = ( ) ( )
(3) There exists (R \ {0}) such that for all multi-indecies

lim ( ) = ( ) uniformly on compact subsets in R \ {0}
Proof. We have already proved the first two items. For item 3., we notice that

( ) ( ) =

Z

R

(1 ( )) ( )

( )
( ) · d

=

Z

R

·

(1 ( ))

( )
( )

¸

· d

=

Z

R

(1 ( ))

( )
· ( ) · d + ( )

where

( ) =
X

µ ¶

| | | |
Z

R

(1 ( ))

( )
· ¡ ¢

( ) · d

Using
¯

¯

¯

¯

·

( )
(1 ( ))

¸
¯

¯

¯

¯

| || | | |

and the fact that

supp(
¡ ¢

( )) { R : | | 2 } = { R : | | 2 }
we easily estimate

| ( )|
X

µ ¶

| | | |
Z

{ R : | | 2 }
| || | | | d

X

µ ¶

| | | | | | | |+ = | | | | +

Therefore, 0 uniformly in as provided | | | | + It follows
easily now that in (R \ {0}) and furthermore that

( ) ( ) =

Z

R

(1 ( ))

( )
· · d
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provided is su ciently large. In particular we have shown,

( ) =
1

| |2
Z

R
( )

(1 ( ))

( )
· · d

provided | |+ 2 i.e. ( + | |) 2
We are now ready to use this result to prove elliptic regularity for the constant

coe cient case.

Theorem 21.10. Suppose = ( ) is an elliptic di erential operator on R
R ( ) and 1 ( ) satisfies = weakly, then has a

(necessarily unique) version ˜ ( )

Proof. For notational simplicity, assume 0 and we will show is smooth
near 0 To this end let ( ) such that = 1 in a neighborhood of 0 and

( ) such that supp( ) { = 1} and = 1 in a neighborhood of 0 as
well. Then formally, we have with := 1

( ) = ( ) = ( ( + ))

= ( ( ) + ( )) = ( ) ( ) + ( ( ))

so that

(21.25) ( ) ( ) = ( ) ( ) ( ( ))( ) + ( )

Since

F [ ( )] ( ) = ˆ ( ) ( )
ˆ
( ) =

(1 ( )) ( )

( )
( )

ˆ
( )

(1 ( ))

( )
( )

ˆ
( ) as

with the convergence taking place in 2 (actually in S) it follows that

( ) “ ( ) ”( ) :=
Z

R

(1 ( ))

( )
( )ˆ ( ) · d

= F 1

·

(1 ( ))

( )
( )

ˆ
( )

¸

( ) S

So passing the the limit, in Eq. (21.25) we learn for almost every R

( ) = ( ) ( ) lim ( ( ))( ) + ( ) ( )

for a.e. supp( ) Using the support properties of and we see for near 0
that ( ( ))( ) = 0 unless supp( ) and { = 1} i.e. unless is in an
annulus centered at 0 So taking su ciently close to 0 we find stays away
from 0 as varies through the above mentioned annulus, and therefore

( ( ))( ) =

Z

R
( )( ( ))( )d

=

Z

R
{ ( ) ( )} · ( ) ( )d

Z

R
{ ( ) ( )} · ( ) ( )d as
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Therefore we have shown,

( ) = ( ) ( )

Z

R
{ ( ) ( )} · ( ) ( )d + ( ) ( )

for almost every in a neighborhood of 0 (Again it su ces to prove this equation
and in particular Eq. (21.25) assuming 2( ) because of the same convo-
lution argument we have use above.) Since the right side of this equation is the
linear combination of smooth functions we have shown has a smooth version in a
neighborhood of 0

Remarks 21.11. We could avoid introducing ( ) if deg( ) in which case
(1 ( ))

( )
1 and so

( ) :=

Z

R

(1 ( ))

( )
· d

is already well defined function with (R \ {0}) (R ) If deg( )
we may consider the operator = [ ( )] = ( ) where is chosen so that
· deg( ) Since = implies = 1 weakly, we see to prove the

hypoellipticity of it su ces to prove the hypoellipticity of

21.2. Exercises.

Exercise 21.1. Using
1

| |2 + 2
=

Z

0

(| |2+ 2)

the identity in Eq. (21.5) and Example 20.4, show for 0 and 0 that

=

Z

0

1 1
4

2 2

(let 2)(21.26)

=

Z

0

1 2

4
2

(21.27)

Use this formula and Example 20.4 to show, in dimension that

F
h

| |
i

( ) = 2 2 (( + 1) 2)

( 2 + | |2)( +1) 2

where ( ) in the gamma function defined in Eq. (8.30). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)
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22. 2 — Sobolev spaces on R

Recall the following notation and definitions from Section 20. TODO Introduce
S 0 so that one may define negative Sobolev spaces here and do the embedding
theorems. Localize to open sets, add in trace theorems to hyperplanes and sub-
manifolds and give some application to PDE.

Notation 22.1. Let

=

µ

1

2

¶

( ) and
µ

1

2

¶

( )

where is Lebesgue measure on R Also let h i =p1 + | |2

=

µ ¶

and =

µ

1
¶| |µ ¶

=

µ

1
¶

Definition 22.2 (Fourier Transform). For 1 let

(̂ ) = F ( ) :=

Z

R

· ( )

( ) = F 1 ( ) =

Z

R

· ( ) = F ( )

22.1. Sobolev Spaces.

Definition 22.3. To each R and S let

| |2
Z

| (̂ )|2(1 + | |2) =

Z

| (̂ )|2h i2

This norm may also be described by

| | = k(1 ) 2 k 2

We call |·| — the 2 — Sobolev norm with — derivatives.

It will sometime be useful to use the following norms,

k k2
Z

| (̂ )|2(1 + | |)2 for all R and S

For each R k · k is equivalent to |·| because
1 + | |2 (1 + | |)2 2(1 + | |2)

Lemma 22.4. The Hilbert space 2(R (1+ | |2) ) may be viewed as a subspace
of S 0 under the map

2(R (1 + | |2) ) ( S
Z

R
( ) ( ) ) S 0

Proof. Let 2(R (1 + | |2) ) and S then
Z

R
| ( ) ( )| =

Z

R
| ( )| (1 + | |2) 2 | ( )| (1 + | |2) 2

k k 2(R (1+| |2) ) · k k 2(R (1+| |2) )
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Now

k k2 2(R (1+| |2) ) =

Z

R
| ( )|2 (1 + | |2)

Z

R
(1 + | |2) (1 + | |2) · sup

h

| ( )|2 (1 + | |2)
i

= ( + ) · sup
h

| ( )|2 (1 + | |2)
i

where

( + ) :=

Z

R
(1 + | |2)

provided + 2 So by choosing 2 we have shown 1( ) and
that

¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

( + ) sup
h

| ( )|2 (1 + | |2)
i

Therefore S R

R ( ) ( ) is an element of S 0

Definition 22.5. The Sobolev space of order on R is the normed vector space

(R ) = F 1( 2(R (1 + | |2) )) S 0

or equivalently,

(R ) =
n

S 0 : ˆ 2(R (1 + | |2) )
o

We make (R ) into a Hilbert space by requiring

F 1| 2(R (1+| |2) ) :
2(R (1 + | |2) ) (R )

to be a unitary map. So the inner product on is given by

(22.1) h i :=
Z

(̂ )ˆ( )(1 + | |2) for all (R )

and the associated norm is

(22.2) | |2
Z

R
| (̂ )|2(1 + | |2)

Remark 22.6. We may also describe (R ) as

(R ) = (1 ) 2 2(R )

= { S 0 : (1 ) 2 2(R )}
and the inner product may be described as

h i = h(1 ) 2 (1 ) 2 i 2

Here we define (1 ) 2 acting on S 0 as the transpose of its action on S which is
determined by

F
h

(1 ) 2
i

( ) = (1 + | |2) 2 (̂ ) for all S
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It will be useful to notice later that commutes with complex conjugation and

therefore so does (1 ) 2 To check this formally, recall that F (̄ ) = (̂ )
therefore,

F
h

(1 ) 2
i

( ) = F(1 ) 2 ( ) = (1 + | |2) 2 (̂ )

= (1 + | |2) 2 (̂ ) = (1 + | |2) 2F (̄ )

= F
³

(1 ) 2 ¯
´

( )

This shows that (1 ) 2 = (1 ) 2 ¯ for S and hence by duality for
S 0 as well.

Lemma 22.7. S is dense in (R ) for all R and (1 ) 2 : is
unitary for all R

Proof. Because F : (R ) 2(R (1+ | |2) ) is unitary and F(S) = S it
su ces to show S is dense in 2(R (1 + | |2) ) Since ( ) := (1 + | |2) is
a Radon measure on R we know that (R ) is dense in 2( ) and therefore
by the virtue that (R ) S S is dense as well.
Because the map

2(R (1 + | |2) ) (1 + | |2) 2 ( ) 2(R (1 + | |2) )

is unitary, it follows that (1 ) 2 : is unitary for all R as well.

Lemma 22.8. For each multi-index the operator : S 0 S 0 restricts to a
contraction from | | We also have the relation

(22.3) F ( ) ( ) = ˆ( ) for all

Proof. Recall the Eq. (22.3) holds for all S 0 in the sense
(22.4) F ( ) = ˆ

where ( ) := Now if ˆ is represented by a tempered function,
therefore ˆ is represented by the tempered function ˆ( ) That is Eq.
(22.3) holds and therefore,

| |2 | | =
Z

| (̂ )|2(1 + | |2) | |

=

Z

| (̂ )|2(1 + | |2) | | | |2
Z

| (̂ )|2(1 + | |2) | |(1 + | |2)| |
Z

| (̂ )|2(1 + | |2) = | |2

wherein the third line we have used the estimate

| |2 = 2 1
1 · · · 2 | |2| | (1 + | |2)| |

which follows from 2 | |2 for all
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Lemma 22.9. Suppose N Then may be characterized by

(22.5) = { 2( ) : exists in 2( ) for all | | }
where denotes the distributional or weak derivatives of (See Theorem 19.18
for other characterizations of these derivatives.) Also if we let

k k2 :=
X

| |
k k2 2 for

then k·k and |·| are equivalent norms on
Proof. Let ˜ denote the right side of Eq. (22.5). If and | | then

Lemma 22.8,

| |20 | |2 | | | |2

This shows that ˜ and

(22.6) k k2
X

| |
| |2 | |2

Conversely if ˜ (letting ( ) := as above),

k k2 =
X

| |
k k2 2 =

X

| |

°

°

°

ˆ
°

°

°

2

2
=
X

| |

Z

R
( )

2
¯

¯

¯
(̂ )
¯

¯

¯

2

=

Z

R

X

| |
( )2

¯

¯

¯
(̂ )
¯

¯

¯

2

(22.7)

Let 0 = 1 then by the multinomial theorem

(1 + | |2) = (
X

=0

2) =
X

| |=

µ ¶

2

where = ( 0 1 ) N +1 and
µ ¶

=
!

Q

=0 !

We may rewrite this using = ( 1 ) N as follows

(1 + | |2) =
X

| |

µ

( | | )

¶

2

so that

(22.8)
X

| |

2 (1 + | |2) with 1 := max
| |

µ

( | | )

¶

Using this estimate in with Eq. (22.7) implies

(22.9) k k2
Z

R
(1 + | |2)

¯

¯

¯
(̂ )
¯

¯

¯

2

= | |2

This shows that and Eqs. (22.6) and (22.9) prove k·k and |·| are equivalent.
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Definition 22.10. Let 0 (R ) denote the Banach space of — functions on R
for which 0(R ) for | | The norm on 0 (R ) is defined by

| | =
X

| |
k k sup

X

| |
| |

Theorem 22.11 (Sobolev Embedding Theorem). Let N If + 2 (or

2 ) then every has a representative ( ) 0 ( ) which is given
by

(22.10) ( )( ) =

Z

R
(̂ ) ·

The map : 0 (R ) is bounded and linear.

Proof. For N
·
Z

R
| |

¯

¯

¯
(̂ )
¯

¯

¯

¸2 Z

R
(1 + | |2)

¯

¯

¯
(̂ )
¯

¯

¯

2

·
Z

R
| |2 (1 + | |2)

= 2 | |2

where
2 :=

Z

R
| |2 (1 + | |2)

If | | then

| |2 (1 + | |2) (1 + | |2) (1 + | |2) = (1 + | |2) 1( )

provided 2 So we have shown,

(22.11) (̂ ) 1( ) for all | |
Using this result for = 0 we deduce ˆ 1 2 and therefore the continuous
version of is given by Eq. (22.10). Using the integrability of (̂ ) in Eq. (22.11)
we may di erentiate this expression to find

( )( ) =

Z

R
(̂ ) · for all | |

By the dominated convergence theorem and the Riemann Lebesgue lemma,
( ) 0(R ) for all | | Moreover,

| ( )|
Z

R

¯

¯

¯
(̂ )
¯

¯

¯
| | for all | |

This shows that | ( )| (const.) | |
Let us now improve the above result to get some Hölder continuity for for this

| ( ) ( )| =
¯

¯

¯

¯

Z

R
(̂ )
¡ · · ¢

¯

¯

¯

¯

Z

R

¯

¯

¯
(̂ )
¯

¯

¯

¯

¯

· · ¯
¯

=

Z

R

¯

¯

¯
(̂ )
¯

¯

¯
(1 + | |2) 2

¯

¯

¯
1 ( )·

¯

¯

¯
(1 + | |2) 2

µ
Z

R
(1 + | |2)

¯

¯

¯
(̂ )
¯

¯

¯

2
¶1 2

·
µ
Z

R

¯

¯

¯
1 ( )·

¯

¯

¯

2

(1 + | |2)
¶1 2

= | | (| |)
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where

(| |) =
µ
Z

R

¯

¯1 · ¯
¯

2
(1 + | |2)

¶1 2

=

µ
Z

R

¯

¯

¯
1 | |

¯

¯

¯

2

(1 + | |2)
¶1 2

Making the change of variables | | in the above formula gives

(| |) = | |
Z

R

¯

¯1
¯

¯

2 1

(1 + | |2
| |2 )

1 2

= | | 2

Ã

Z

R

¯

¯1
¯

¯

2 1

(| |2 + | |2)

!1 2

| | 2

µ
Z

R

¯

¯1
¯

¯

2 1

| |2
¶1 2

p

( 1) | | 2

µ
Z

0

2 2

2
1

¶1 2

Supposing the 2 = (0 1) we find
Z

0

2 2

2
1 =

Z

0

2 2

+2
1 =

Z

0

2 2

1+2

since 2 1+2 is integrable near infinity and 2 1+2 = 1 2 1 is integrable near
0 Thus we have shown, for 2 (0 1) that

| ( ) ( )| | | | | 2

where

:=
p

( 1)

µ
Z

0

2 2

2
1

¶1 2

Notation 22.12. In the sequel, we will simply write for ( ) with the under-
standing that if 1 (R ) has a continuous version, then we will identify with
its (necessarily unique) continuous version.

Definition 22.13. In the future we will work with the following two subspaces of
S 0 :

= R = 0 and

= R = 0

We also set

(22.12) h i :=
Z

R
(̂ ) ( )

for all such that ˆ 1( )

Notice that 2 for all R Also if 0 =
2

then ˆ 2( ) so that ˆ 1( ) and
Z

R
(̂ ) ( ) =

Z

R
(̂ )b¯( ) =

Z

R
( )¯( ) =

Z

R
( ) ( )
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Therefore, h· ·i is an extension of the pairing
2

Z

R
( ) ( ) =: h i 2

Proposition 22.14. Let R If and then h i is well defined
and satisfies

h i = h(1 ) 2 (1 ) 2 i 2 = h(1 ) 2 (1 ) 2 i
If we further assume that S then h i = h iS0×S where h· ·iS0×S denotes

the natural pairing between S 0 and S. Moreover, if 0 the map

(22.13) h ·i
is a unitary map (i.e. a Hilbert space isomorphism) and the | | may be computed
using

(22.14) | | = sup

½ |h iS0×S |
| | : 0 6= S

¾

Proof. Let R and then

(̂ ) ( ) = (1 + | |2) 2 (̂ ) · (1 + | |2) 2 ( ) 1

since (1+| |2) 2 (̂ ) and (1+| |2) 2 ( ) = (1+| |2) 2ˆ( ) are 2 — functions
by definition of and respectively. Therefore h i is well defined and

h i =
Z

R
(1 + | |2) 2 (̂ ) · (1 + | |2) 2 ( )

=

Z

R
(1 + | |2) 2 (̂ ) · (1 + | |2) 2

b¯( )

= hF 1(1 + | |2) 2 (̂ ) F 1(1 + | |2) 2
b¯( )i 2

= h(1 ) 2 (1 ) 2 i 2 = h(1 ) 2 (1 ) 2 i(22.15)

If S then by definition of the Fourier transform for tempered distributions,
Z

R
(̂ ) ( ) = h ˆ iS0×S = h ( )

ˆiS0×S = h iS0×S
By Eq. (22.15),

|h i|
¯

¯

¯
(1 ) 2

¯

¯

¯

0

¯

¯

¯
(1 ) 2

¯

¯

¯

0
= | | · | |

with equality if (1 ) 2 = (1 ) 2 i.e. if = (1 ) This
shows that

| | = sup

½ |h i|
| | :

¾

= sup

½ |h i|
| | : S

¾

= kh ·ik
where the second equality is a consequence of S being dense in This proves Eq.
(22.14) and the fact the map, in Eq. (22.13) is isometric. So to finish the proof
we need only prove is surjective.
By the Riesz theorem, every element of may be written in the form (· )

for a unique element So we must find such that h i = ( )
for all i.e.

((1 ) 2 (1 ) 2 )0 = h i = ( ) = ((1 ) 2 (1 ) 2 )0
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from which we conclude

(1 ) 2 = (1 ) 2

So
:= (1 ) 2(1 ) 2 = (1 ) ¯

is the desired function.

Lemma 22.15. Useful inequality: k k2 k k1 k k2. (Already proved some-
where else.)

Proof. We will give two the proofs, the first is

k k2 = k ˆ̂ k2 k k̂ k k2 k k1k k2
and the second is

k k22 =
Z

¯

¯

¯

¯

Z

( ) ( )

¯

¯

¯

¯

2

Z
µ
Z

| ( )| | ( )|
¶2

Z Z

| ( )|2 | ( )| ·
µ
Z

12| ( )|
¶

= k k22 k k21

Lemma 22.16 (Rellich’s). For in R the inclusion map : is
“locally compact” in the sense that if { } =1 is a sequence of distributions
such that supp ( ) @@ R for all and sup | | = then there exists
a subsequence of { } =1 which is convergent in .

Proof. Recall for (R ) S ˆ S and hence, for all N there exists
such that

|ˆ( )| (1 + | |)
Choose (R ) such that 1 on a neighborhood of @@ R so that
= · for all We then have

| ˆ( )| = |ˆ ˆ|( )
Z

| ˆ( )| |ˆ( )|(22.16)
Z

| ˆ( )|(1 + | |) (1 + | |) (1 + | |)

| |
µ
Z

(1 + | |) 2 (1 + | |) 2

¶
1
2

| |
µ
Z

(1 + | |) 2 2

¶
1
2

(1 + | |)

wherein the last inequality we have used Peetre’s inequality (Lemma 30.31). Since
R

(1 + | |) 2 2 if is chosen so that 2 + 2 we have shown there
exists ˜ for all 2 such that learn that

| ˆ( )| ˜ | | (1 + | |) for all R
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Because ˆ( ) = ˆ the same argument shows (by increasing ˜ if necessary)
that there exists ˜ for all 2 such that

| ˆ|( ) ˜ (1 + | |) for all R

The Ascolli-Arzela Theorem 3.59 now allows us to conclude there exists a subse-
quence ˆ which is convergent uniformly on compact subsets of R For notational
simplicity we will continue to denote this subsequence by { } For any (0 )
Z

| |
| ˆ ˆ |2( )(1 + | |2) =

Z

| |
| ˆ ˆ |2( )(1 + | |2) (1 + | |2)

(1 + 2) | |2 = 1

(1 + 2)
| |2

and

| |2 =
Z

| |

| ˆ ˆ |2( )(1 + | |2) +

Z

| |
| ˆ ˆ |2( )(1 + | |2)

Using these equations and the uniform convergence on compact just proved,

lim sup | |2 lim sup

Z

| |

| ˆ ˆ |2( )(1 + | |2)

1

(1 + 2)
| |2 0 as

Therefore { } =1 is Cauchy and hence convergent.
22.2. Examples.

Example 22.17. Let be given by (̂ ) = 1 then for any

0 and h i R

(̂ ) = (0) That is to say is the delta distribution.

Example 22.18. ( ( ) ) ( ) = ( ). So h ( ) i = R

( ) (̂ ) =
( ( ) )(0)

Example 22.19. Let =
S

0

. Then and

h i =
Z

ˆ( ) (̂ ) =

Z

ˆ( ) (̂ )(22.17)

=

Z

ˆ( )(( ) ) ( )

= h ( ) i
Note If . Then 0 = implies b0 = 1 or (̂ ) = 1 implies (̂ ) = 1

1 implies ˆ . So h ( ) i = h ( ) i for all and S.
General Idea Suppose

S

0

, how do we compute .̂ Recall (̂ )

and h i = R

(̂ ) (̂ ) = hˆ ǐ. Replace ˆ implies hˆ i = h î. So if
S

0

, then the function in ˆ is characterized by

(22.18) hˆ i = h î
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Example 22.20. Say h i = (0). Then hˆ i = h î = (̂0) =
R

( )
R

(̂ ) ( ) . implies (̂ ) = 1.

Example 22.21. Take = 3. Consider h 1| | i R

1
| | ( ) for S. “Claim”

(False) h 1| | ·i and
³

1
| |
´

( ) = 4 1
| |2 and

1
| | = 4 not zero.

Proof.
D

µ

1

| |
¶

E

=
D 1

| |
Z

(̂ )
E

=

Z

1

| | (̂ )

= lim
%

Z

| |

1

| | (̂ ) = lim
%

Z

| |
1

| |
ˆ

= lim
%

Z
µ

| |
1

| |
¶

( ) ( )

Now

µ

| |
1

| |
¶

( ) =

Z

| |

1

| |
·

= 2

Z

0

Z 1

1

cos + | | cos

=

Z

0

2
| | | |

| | = 4

Z

0

sin( | |)

= 4
cos( | |)
| |2

¯

¯

¯

0
=

4

| |2 (cos( | |) 1)

So
D³

1
| |
´ E

= 4

µ

R

1
| |2 (̂ ) lim

%
R cos( | |) (̂ )

| |2

¶

Claim 3.

(22.19) lim

Z

R
cos( | |) ˆ( )| |2 = 0

Proof. Let :=
R

R cos( | |) ˆ( )| |2 which in polar coordinates may be written
as

=

Z

cos( )
ˆ( )

2
2 cos

=

Z

0

cos( ) ( )

where 1. The result follows by Riemann Lebesgue Lemma. lim = 0. So

we have finally shown
³

1
| |
´

( ) = 4
| |2

2. As a Corollary

· µ

1

| |
¶¸

= | |2 4| |2 = 4 = 4 ˆ( )

So 1
| | = 4 and not 0 as a naive direct calculation would show.
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Example 22.22. Set ( ) = [ 1 1]( ) Then |h i| 2k k | | for
2. implies = what are ˆ and ? Answer:

D E

=

Z

ˆ( ) (̂ ) =

Z

ˆ( )( ) ( )

= h i = 1
Z 1

1

0( ) =
1
( ( ) ( )

Taking the Fourier transform of the equation = ( 1 1) gives

ˆ( ) = 2
2

= 2 sin( )

which shows

(22.20) ˆ( ) =
2 sin( ) 2 = 0

Note 6 0.
Second Method of Computation. Let ( ) S = 2 then on one

hand

h i = h i h i =
Z 1

1

( )

= ( (1) ( 1)) = ( 1 1 )

while on the other hand

h i h i 1

Combining these two equations shows that = ( 1 1)

22.3. Summary of operations on .

Example 22.23. h i = h ( ) i for all and S. Suppose
such that and all its derivatives have at most polynomial growth then

: S S and extends to .

Lemma 22.24. For all S the sum P

Z
( ) converges in for

all 2 . Furthermore lim0
| | = 0.

Proof. Let Z be a finite set, put
P

¤

( ) . Then

(22.21) | ¤ |2
Z

¯

¯

¯

¯

¯

¯

X

¤

( ) ·

¯

¯

¯

¯

¯

¯

2

( )

where ( ) (1 + | |2) for all R. Therefore S we know | ( )|
(1 + | |) so

| ¤ |2
Z

¯

¯

¯

¯

¯

¯

X

¤

(1 + | |)
¯

¯

¯

¯

¯

¯

2

( )

¯

¯

¯

¯

¯

¯

X

¤

(1 + | |)
¯

¯

¯

¯

¯

¯

2
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Now
P

(1 + | |) if . Therefore if and ¤ are two finite subsets

of Z
| ¤ |2 = | ¤ |2 0 as ¤% Z

So the sums exists. Now consider

| |2 =

Z

| (̂ )
X

( ) · |2 ( )

Set ˜ ( ) = ( ) if | | where Z . Then

ˆ̃( ) =
X

( ) ·

So | |2 =
R | (̂ ) ˆ̃

( )|2 ( ). Now

| (̂ ) ˆ̃( )|
Z

| ( ) ˜ ( )| 0 as 0

So | |2 0 as 0 by dominated convergence theorem.

Lemma 22.25. The map R is for all 2 + .

Proof. Since ˆ : 2( ) is a unitary map it su ces to prove that the
map

R · ( )( ) 2( )

is . So we will show ( )(·) = · is .
Consider

( + 1) ( )
=
1
Z 1

0

( + 1)

=
1
( 1 )

Z 1

0

( + 1)

So (Fix)
(22.22)
¯

¯

¯

¯

( + 1) ( )
1 ( )

¯

¯

¯

¯

=

Z

¯

¯

¯

¯

Z 1

0

( ( + 1)· · )
¯

¯

¯

¯

2

2
1 ( )

This shows 1 ( ) exists, and this derivative is easily seen to be continuous in
2( ) norm. The other derivatives may be computed similarly.

Proposition 22.26. Suppose : is a bounded operator and 2 +

for some = 0 1 2 . Then exists a -function ( ) such that ( )( ) =
R

( ) ( ) for all S. Furthermore

(22.23) | | ( )k k
Corollary 22.27. If : + then ( ) is .

Proof. Define ( ) h i
Claim 4. is .
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Reasons:

R ×R × × C
( ) ( ) ( ) h i

so ( ) is the composition of two — maps and a -map. So ( ) is .
Note | ( )| ( )k k . So is bounded.

Claim 5. For S ( ) =
R

( ) ( ) . Indeed,
Z

( ) ( ) = lim
0

X

Z

( ) ( )(22.24)

= h lim
0

X

h ( ) i
= h i = ( )( )

Finally:
¯

¯ ( )
¯

¯ = |h i|(22.25)

= |h ( ) ( ) i|
k k | | | | ( )k k

implies
¯

¯ ( )
¯

¯ ( )k k if | | | | .

22.4. Application to Di erential Equations.

22.4.1. Dirichlet problem . Consider the following Dirichlet problem in one dimen-
sion written in Divergence form as

( ) := ( ( ) ( )) = ( ) where ([0 1] (0 ))(22.26)

2([0 1] R) such that (0) = (1) = 0 and 0([0 1] R)

Theorem 22.28. There exists a solution to (22.26).

Proof. Suppose solves (22.26) and 1([0 1]) R) such that (0) = (1) =
0. Then

( ) =

Z 1

0

( ) 0( ) 0( ) =

Z 1

0

( ) ( ) =: ( )

Define

{ ([0 1] R) : (0) = (1) = 0 and ( )

Z 1

0

| 0( )|2 }
Since

| ( )| =
¯

¯

¯

¯

Z

0

0( )
¯

¯

¯

¯

=

¯

¯

¯

¯

Z 1

0

0( )1[0 ]( )

¯

¯

¯

¯

k 0k2 k 0k2
we find conclude the following Poincaré inequality holds,

k k2 k k k 0k2 = k k
p

( )

In particular this shows that k · k is a norm. Since that map 0
2([0 1]) is unitary, it follows that is complete, i.e. is a Hilbert space. Also

k ( )k k k2 k k2 k k2 k k2
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which implies : R is bounded and linear. We also notice that (· ·) is an
equivalent inner product on so by the Riesz theorem, there exists such
that

( ) = ( ) =

Z 1

0

( ) ( )

for all i.e.

(22.27)
Z 1

0

( ) 0( ) 0( ) =

Z 1

0

( ) ( )

At this point we have produced a so called weak solution of (22.26).
Let ( ) =

R

0
( ) so 0( ) = ( ) a.e. Then by integration by parts

(Justification: See Theorem 3.30 and Proposition 3.31),
Z 1

0

( ) ( ) =

Z 1

0

0( ) ( ) =

Z 1

0

( ) 0( )

Using this in Eq. (22.27) we learn
Z 1

0

[ ( ) 0( ) ( )] 0( ) = 0 for all

By Lemma 22.29 below, this implies there is a constant such that ( ) 0( ) +
( ) = for almost every Solving this equation gives 0( ) = ( ( )) ( )

a.e. or

( ) =

Z

0

( )

( )
2([0 1])

showing is in fact a strong solution.

Lemma 22.29. Suppose 1([0 1] ) and
R 1

0
( ) 0( ) = 0 for all

((0 1)) ten = constant a.e.

Proposition 22.30. Suppose is 2 (0) = 0 = (1) and 00 = 0([0 1])
then

( ) =

Z 1

0

( ) ( )

where

( ) =

½

(1 )
(1 )

Proof. By the fundamental theorem of calculus, 0( ) = 0(0) +
R

0
( ) and

therefore

( ) = 0 + 0(0) +

Z

0

Z

0

( )

= (0) +

Z

1 ( )

= 0(0) +

Z

0

( ) ( )

Since

0 = (1) = 0(0) +
Z 1

0

(1 ) ( )
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we have

( ) =

Z 1

0

[1 ( ) (1 )
| {z }

( )

] ( )

So if we let

( )( ) =

Z 1

0

( ) ( )

then we have shown
³

2

2

´

=

Exercise 22.1. (See previous test) Show
2

2 = .
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23. Sobolev Spaces

Definition 23.1. For [1 ] N and an open subset of R let

( ) := { ( ) : ( ) (weakly) for all | | }

( ) := { ( ) : ( ) (weakly) for all | | }

(23.1) k k ( ) :=
X

| |
k k ( )

1

if

and

(23.2) k k ( ) =
X

| |
k k ( ) if =

In the special case of = 2 we write 2 ( ) =: ( ) and 2 ( ) =: ( )
in which case k·k 2( ) = k·k ( ) is a Hilbertian norm associated to the inner
product

(23.3) ( ) ( ) =
X

| |

Z

·

Theorem 23.2. The function, k·k ( ) is a norm which makes ( ) into a
Banach space.

Proof. Let ( ) then the triangle inequality for the — norms on
( ) and ({ : | | }) implies

k + k ( ) =
X

| |
k + k ( )

1

X

| |

h

k k ( ) + k k ( )

i

1

X

| |
k k ( )

1

+
X

| |
k k ( )

1

= k k ( ) + k k ( )

This shows k·k ( ) defined in Eq. (23.1) is a norm. We now show completeness.
If { } =1 ( ) is a Cauchy sequence, then { } =1 is a Cauchy

sequence in ( ) for all | | By the completeness of ( ) there exists
( ) such that = — lim for all | | Therefore, for all
( )

h i = lim h i = ( 1)| | lim h i = ( 1)| | lim h i

This shows exists weakly and = a.e. This shows ( ) and that
( ) as
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Example 23.3. Let ( ) := | | for R and R Then
Z

(0 )

| ( )| =
¡

1
¢

Z

0

1 1 =
¡

1
¢

Z

0

1

=
¡

1
¢ ·
(

if 0

otherwise
(23.4)

and hence
¡

R
¢

i Now ( ) = | | 1 ˆ where ˆ := | |
Hence if ( ) is to exist in

¡

R
¢

it is given by | | 1 ˆ which is in
¡

R
¢

i + 1 i.e. if 1 = Let us not check that
1 ¡

R
¢

provided 1 To do this suppose (R ) and 0
then

h i = lim
0

Z

| |
( ) ( )

= lim
0

(

Z

| |
( ) ( ) +

Z

| |=
( ) ( ) ( )

)

Since
¯

¯

¯

¯

¯

Z

| |=
( ) ( ) ( )

¯

¯

¯

¯

¯

k k ¡

1
¢

1 0 as 0

and ( ) = | | 1 ˆ · is locally integrable we conclude that

h i =
Z

R
( ) ( )

showing that the weak derivative exists and is given by the usual pointwise
derivative.

23.1. Mollifications.

Proposition 23.4 (Mollification). Let be an open subset of R N0 :=
N {0} [1 ) and ( ) Then there exists ( ) such that

in ( )

Proof. Apply Proposition 19.12 with polynomials, ( ) = for | |
Proposition 23.5. (R ) is dense in (R ) for all 1

Proof. The proof is similar to the proof of Proposition 23.4 using Exercise 19.2
in place of Proposition 19.12.

Proposition 23.6. Let be an open subset of R N0 := N {0} and 1
then

(1) for any with | | : ( ) | | ( ) is a contraction.
(2) For any open subset the restriction map | is bounded from

( ) ( )

(3) For any ( ) and ( ) the ( ) and for | |

(23.5) ( ) =
X

µ ¶

·

where
¡ ¢

:= !
!( )!
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(4) For any ( ) and ( ) the ( ) and for | |
Eq. (23.5) still holds. Moreover, the linear map ( )

( ) is a bounded operator.

Proof. 1. Let ( ) and ( ) then for with | | | |
h i = ( 1)| |h i = ( 1)| |h + i = ( 1)| |h + i

from which it follows that ( ) exists weakly and ( ) = + This shows
that | | ( ) and it should be clear that k k | | ( ) k k ( )

Item 2. is trivial.
3 - 4. Given ( ) by Proposition 23.4 there exists ( ) such

that in ( ) From the results in Appendix A.1, ( )
( ) and

(23.6) ( ) =
X

µ ¶

·

holds. Given such that ¯ is compactly contained in we may use the
above equation to find the estimate

k ( )k ( )

X

µ ¶

°

°

°

°

( )

°

°

°

°

( )

( )
X

°

°

°

°

( )
( ) k k ( )

wherein the last equality we have used Exercise 23.1 below. Summing this equation
on | | shows

(23.7) k k ( ) ( ) k k ( ) for all

where ( ) :=
P

| | ( ) By replacing by in the above
inequality it follows that { } =1 is convergent in ( ) and since was
arbitrary in ( ) Moreover, we may pass to the limit in Eq. (23.6)
and in Eq. (23.7) to see that Eq. (23.5) holds and that

k k ( ) ( ) k k ( ) ( ) k k ( )

Moreover if ( ) then constant ( ) may be chosen to be independent
of and therefore, if ( ) then ( )
Alternative direct proof of 4. We will prove this by induction on | | If
= then, using Lemma 19.9,

h i = h i = h [ ] · i
= h i+ h · i = h + · i

showing ( ) exists weakly and is equal to ( ) = + · ( )
Supposing the result has been proved for all such that | | with [1 )
Let = + with | | = then by what we have just proved each summand in
Eq. (23.5) satisfies

£ · ¤

exists weakly and
£ · ¤

= + · + · + ( )
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Therefore ( ) = ( ) exists weakly in ( ) and

( ) =
X

µ ¶

£

+ · + · +
¤

=
X

µ ¶

£ · ¤

For the last equality see the combinatorics in Appendix A.1.

Theorem 23.7. Let be an open subset of R N0 := N {0} and [1 )
Then ( ) ( ) is dense in ( )

Proof. Let := { : dist( ) 1 } (0 ) then

¯ { : dist( ) 1 } (0 ) +1

¯ is compact for every and as Let 0 = 3 := +3 \ ¯ for
1 0 := ¯

2 and := ¯
+2 \ +1 for 1 as in figure 41. Then @@

Figure 41. Decomposing into compact pieces. The compact
sets 0 1 and 2 are the shaded annular regions while 0 1

and 2 are the indicated open annular regions.

for all and = Choose ( [0 1]) such that = 1 on and
set 0 = 0 and

= (1 1 · · · 1) =

1
Y

=1

(1 )

for 1 Then ( [0 1])

1
X

=0

=
Y

=1

(1 ) 0 as

so that
P

=0 = 1 on with the sum being locally finite.
Let 0 be given. By Proposition 23.6, := ( ) with

supp( ) @@ By Proposition 23.4, we may find ( ) such that
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k k ( ) 2 +1 for all Let :=
P

=1 , then ( ) because
the sum is locally finite. Since

X

=0

k k ( )

X

=0

2 +1 =

the sum
P

=0 ( ) converges in ( ) The sum,
P

=0 ( ) also
converges pointwise to and hence =

P

=0 ( ) is in ( )
Therefore ( ) ( ) and

k k
X

=0

k k ( )

Theorem 23.8 (Density of ( )
¡

¯
¢

in ( )). Let R be a
manifold with 0 — boundary, then for N0 and [1 )

¡

0
¢ ¡

¯
¢

is dense in
¡

0
¢

This may alternatively be stated by assuming R is
an open set such that ¯ = 0 and ¯ is a manifold with 0 — boundary, then

( )
¡

¯
¢

is dense in ( )

Before going into the proof, let us point out that some restriction on the boundary
of is needed for assertion in Theorem 23.8 to be valid. For example, suppose

0 :=
©

R2 : 1 | | 2
ª

and := 0 \ {(1 2)× {0}}
and : (0 2 ) is defined so that 1 = | | cos ( ) and 2 = | | sin ( )
see Figure 42. Then ( ) ( ) for all N0 yet can not be

Figure 42. The region 0 along with a vertical in

approximated by functions from
¡

¯
¢

( 0) in 1 ( ) Indeed, if this
were possible, it would follows that 1 ( 0) However, is not continuous
(and hence not absolutely continuous) on the lines { 1 = } for all (1 2)
and so by Theorem 19.30, 1 ( 0)
The following is a warm-up to the proof of Theorem 23.8.

Proposition 23.9 (Warm-up). Let := H :=
©

R : 0
ª

and (¯)

denote those
¡

¯
¢

which are restrictions of — functions defined on an open
neighborhood of ¯ Then for [1 ) (¯) ( ) is dense in ( )
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Proof. Let ( ) and for 0 let ( ) := ( + ) Then it is easily
seen that ( ) and for | | that = ( ) because for

( )

h i = h ( ) i =
Z

R
( + ) ( ) ( )

=

Z

R
( ) ( ) ( ) =

Z

R
( ) ( )

=

Z

R
( ) ( + ) ( ) = h( ) i

This result and by the strong continuity of translations in (see Proposition
11.13), it follows that lim 0 k k ( ) = 0 By Theorem 23.7, we may choose

( )
¡

¯
¢

such that k k ( ) for all 0 Then

k k ( ) k k ( ) + k k ( ) 0 as 0

23.1.1. Proof of Theorem 23.8. Proof. By Theorem 23.7, it su ces to show than
any ( ) ( ) may be approximated by

¡

¯
¢

To understand the
main ideas of the proof, suppose that is the triangular region in Figure 43 and
suppose that we have used a partition of unity relative to the cover shown so that
= 1 + 2 + 3 with supp( ) Now concentrating on 1 whose support is

Figure 43. Splitting and moving a function in ( ) so that
the result is in

¡

¯
¢

depicted as the grey shaded area in Figure 43. We now simply translate 1 in the
direction shown in Figure 43. That is for any small 0 let ( ) := 1( + )
then lives on the translated grey area as seen in Figure 43. The function
extended to be zero o its domain of definition is an element of

¡

¯
¢

moreover
it is easily seen, using the same methods as in the proof of Proposition 23.9, that

1 in ( )
The formal proof follows along these same lines. To do this choose an at most

countable locally finite cover { } =0 of ¯ such that 0̄ and for each 1
after making an a ne change of coordinates, = ( ) for some 0 and

¯ = {( ) : ( )}
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where : ( ) 1 ( ) see Figure 44 below. Let { } =0 be a partition of

Figure 44. The shaded area depicts the support of =

unity subordinated to { } and let := ( ) Given 0 we choose
so small that ( ) := ( + ) (extended to be zero o its domain of definition)
may be viewed as an element of (¯) and such that k k ( ) 2 For
= 0 we set 0 := 0 = 0 Then, since { } =1 is a locally finite cover of ¯ it
follows that :=

P

=0

¡

¯
¢

and further we have

X

=0

k k ( )

X

=1

2 =

This shows

=
X

=0

( ) ( )

and k k ( ) Hence
¡

¯
¢

( ) is a — approximation of
and since 0 arbitrary the proof is complete.

23.2. Di erence quotients.

Theorem 23.10. Suppose N0 is a precompact open subset of R and is
an open precompact subset of

(1) If 1 ( ) and ( ) then

(23.8) k k ( ) k k ( )

for all 0 | | 1
2dist( )

(2) Suppose that 1 ( ) and assume there exists a constant
( ) such that

k k ( ) ( ) for all 0 | | 1

2
dist( )

Then ( ) and k k ( ) ( ) Moreover if :=

sup ( ) then in fact ( ) and there is a constant
such that

k k ( )

³

+ k k ( )

´
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Proof. 1. Let | | then

k k ( ) = k k ( ) k k ( )

wherein we have used Theorem 19.22 for the last inequality. Eq. (23.8) now easily
follows.
2. If k k ( ) ( ) then for all | |

k k ( ) = k k ( ) ( )

So by Theorem 19.22, ( ) and k k ( ) ( ) From this we
conclude that k k ( ) ( ) for all 0 | | +1 and hence k k +1 ( )
£

( ) + k k ( )

¤

for some constant

23.3. Application to regularity.

Definition 23.11 (Negative order Sobolev space). Let 1( ) = 1( ) and
recall that

k k 1( ) := sup
1( )

|h i|
k k 1( )

When = R
¡

R
¢

is dense in 1(R ) and hence

k k 1(R ) := sup
(R )

|h i|
k k 1(R )

and we may identify 1
¡

R
¢

with
© D0(R ) : k 1( )

ª D0(R )

Theorem 23.12. Suppose 1(R ) and 4 (R ) for {0 1 2 }
then +2(R ).

Proof. Fourier transform proof. Since (1 + | |2) + | |2(1 + | |2) ³ (1 +
| |2) +2 we are given

ˆ( ) 2((1 + | |2) ) and | |2ˆ( ) 2((1 + | |2) )

But this implies +2(R )
Proof with out the Fourier transform. For 1(R )

k k 1 =

s

Z

R
(| |2 + 2) = sup

(R )

¯

¯

R

R ( · + )
¯

¯

k k 1(R )

= sup
(R )

|h + i|
k k 1(R )

= k( 4+ 1) k 1(R )(23.9)

which shows ( 4+ 1) : 1(R ) 1(R ) is an isometry.
Now suppose that 1 and ( 4+ 1) 2 1(R ) Then

k k 1 = k( 4+ 1) k 1 = sup
k k 1=1

|h ( 4+ 1) i|

= sup
k k 1=1

|h ( 4+ 1) i| = sup
k k 1=1

{h( 4+ 1) i}

sup
k k 1=1

k( 4+ 1) k 2 k k 2 = sup
k k 1=1

k( 4+ 1) k 2 k k 2

k( 4+ 1) k 2
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Therefore by Theorem 23.10 1 and since this is true for = 1 2
2 and

k k 1 k( 4+ 1) k 2

Combining this with Eq. (23.9) allows us to conclude

k k 2 k( 4+ 1) k 2

The argument may now be repeated. For example if 4 1 then 2 and
2 and

k k 2 k( 4+ 1) k 2 k ( 4+ 1) k 2 k( 4+ 1) k 1

Therefore 3 and k k 2 k( 4 + 1) k 1 and so k k 3 k( 4 +
1) k 1

23.4. Sobolev Spaces on Compact Manifolds.

Theorem 23.13 (Change of Variables). Suppose that and are open subsets
of R ( ) be a — di eomorphism such that k k ( ) for all
1 | | and := inf |det 0| 0 Then the map : ( ) ( )
defined by ( ) := ( ) is well defined and is bounded.

Proof. For ( ) ( ) repeated use of the chain and product rule
implies,

( )0 = ( 0 ) 0

( )00 = ( 0 )
0 0 + ( 0 ) 00 = ( 00 ) 0 0 + ( 0 ) 00

( )
(3)
=
³

(3)
´

0 0 0 + ( 00 ) ( 0 0)0

+ ( 00 ) 0 00 + ( 0 ) (3)

...

( )
( )
=
³

( )
´

times
z }| {

· · · +
1

X

=1

³

( )
´ ³

0 00 ( +1 )
´

(23.10)

This equation and the boundedness assumptions on ( ) for 1 implies there
is a finite constant such that

¯

¯

¯
( )

( )
¯

¯

¯

X

=1

¯

¯

¯

( )
¯

¯

¯
for all 1

By Hölder’s inequality for sums we conclude there is a constant such that
X

| |
| ( )|

X

| |
| |

and therefore

k k ( )

X

| |

Z

| | ( ( ))

Making the change of variables, = ( ) and using

= |det 0( )|
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we find

k k ( )

X

| |

Z

| | ( ( ))

X

| |

Z

| | ( ) = k k ( )(23.11)

This shows that : ( ) ( ) ( ) ( ) is a bounded
operator. For general ( ) we may choose ( ) ( ) such
that in ( ) Since is bounded, it follows that is Cauchy
in ( ) and hence convergent. Finally, using the change of variables theorem
again we know,

k k ( )
1 k k ( ) 0 as

and therefore = lim and by continuity Eq. (23.11) still holds for
( )

Let be a compact — manifolds without boundary, i.e. is a compact
Hausdor space with a collection of charts in an “atlas” A such that : ( )

( ) R is a homeomorphism such that
1 ( ( ( ) ( ))) ( ( ) ( ))) for all A

Definition 23.14. Let { } =1 A such that = =1 ( ) and let { } =1
be a partition of unity subordinate do the cover { ( )} =1 We now define

( ) if : C is a function such that

(23.12) k k ( ) :=
X

=1

°

°( ) 1
°

°

( ( ))

Since k·k ( ( )) is a norm for all it easily verified that k·k ( ) is a norm
on ( )

Proposition 23.15. If ( ) and ( ) then ( ) and

(23.13) k k ( ) k k ( )

where is a finite constant not depending on Recall that : R is said to
be with if 1 ( ( ) R) for all A
Proof. Since

£

1
¤

has bounded derivatives on supp( 1) it follows
from Proposition 23.6 that there is a constant such that
°

°( ) 1
°

°

( ( ))
=
°

°

£

1
¤

( ) 1
°

°

( ( ))

°

°( ) 1
°

°

( ( ))

and summing this equation on shows Eq. (23.13) holds with := max

Theorem 23.16. If { } =1 A such that = =1 ( ) and { } =1 is a

partition of unity subordinate to the cover { ( )} =1 then the norm

(23.14) | | ( ) :=
X

=1

°

°( ) 1
°

°

( ( ))

is equivalent to the norm in Eq. (23.12). That is to say the space ( ) along
with its topology is well defined independent of the choice of charts and partitions
of unity used in defining the norm on ( )



446 BRUCE K. DRIVER†

Proof. Since |·| ( ) is a norm,

| | ( ) =

¯

¯

¯

¯

¯

X

=1

¯

¯

¯

¯

¯

( )

X

=1

| | ( )

=
X

=1

°

°

°

°

°

X

=1

( ) 1

°

°

°

°

°

( ( ))

X

=1

X

=1

°

°( ) 1
°

°

( ( ))
(23.15)

and since 1 and 1 are di eomorphism and the sets (supp( ) supp( ))

and (supp( ) supp( )) are compact, an application of Theorem 23.13 and
Proposition 23.6 shows there are finite constants such that
°

°( ) 1
°

°

( ( ))

°

°( ) 1
°

°

( ( ))

°

°

1
°

°

( ( ))

which combined with Eq. (23.15) implies

| | ( )

X

=1

X

=1

°

°

1
°

°

( ( ))
k k ( )

where := max
P

=1 Analogously, one shows there is a constant
such that k k ( ) | | ( )

Lemma 23.17. Suppose A( ) and such that ¯ ( ) then
there is a constant such that

(23.16)
°

°

1
°

°

( ( ))
k k ( ) for all ( )

Conversely a function : C with supp( ) is in ( ) i
°

°

1
°

°

( ( ))
and in any case there is a finite constant such that

(23.17) k k ( )

°

°

1
°

°

( ( ))

Proof. Choose charts 1 := 2 A such that { ( )} =1 is an

open cover of and choose a partition of unity { } =1 subordinate to the cover

{ ( )} =1 such that 1 = 1 on a neighborhood of ¯ To construct such a partition
of unity choose such that ¯ ( ) ¯

1 and =1 =

and for each let ( ( ) [0 1]) such that = 1 on a neighborhood of
¯ Then define := (1 0) · · · (1 1) where by convention 0 0 Then
{ } =1 is the desired partition, indeed by induction one shows

1
X

=1

= (1 1) · · · (1 )

and in particular

1
X

=1

= (1 1) · · · (1 ) = 0
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Using Theorem 23.16, it follows that
°

°

1
°

°

( ( ))
=
°

°( 1 )
1
°

°

( ( ))

°

°( 1 )
1
°

°

( ( 1))

X

=1

°

°( ) 1
°

°

( ( ))

= | | ( ) k k ( )

which proves Eq. (23.16).
Using Theorems 23.16 and 23.13 there are constants for = 0 1 2 such

that

k k ( ) 0

X

=1

°

°( ) 1
°

°

( ( ))
= 0

X

=1

°

°( ) 1
1 1

1
°

°

( ( ))

0

X

=1

°

°( ) 1
°

°

( ( 1))
= 0

X

=1

°

°

1 · 1
°

°

( ( 1))

This inequality along with — applications of Proposition 23.6 proves Eq. (23.17).

Theorem 23.18. The space ( ( ) k·k ( )) is a Banach space.

Proof. Let { } =1 A and { } =1 be as in Definition 23.14 and choose
such that supp( ) ¯ ( ) If { } =1 ( ) is a Cauchy

sequence, then by Lemma 23.17,
©

1
ª

=1
( ( )) is a Cauchy se-

quence for all Since ( ( )) is complete, there exists ( ( )) such
that 1 ˜ in ( ( )) For each let := (˜ ) and notice by
Lemma 23.17 that

k k ( )

°

°

1
°

°

( ( ))
= k˜ k ( ( ))

so that :=
P

=1 ( ) Since supp( ) it follows that

k k ( ) =

°

°

°

°

°

X

=1

X

=1

°

°

°

°

°

( )

X

=1

k k ( )

X

=1

°

°[ (˜ )] 1
°

°

( ( ))

=
X

=1

°

°

£

1
¡

˜ 1
¢¤
°

°

( ( ))

X

=1

°

°˜ 1
°

°

( ( ))
0 as

wherein the last inequality we have used Proposition 23.6 again.

23.5. Trace Theorems. For many more general results on this subject matter,
see E. Stein [7, Chapter VI].
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Lemma 23.19. Suppose 1 H :=
©

R : 0
ª

R
³

H
´

and is the smallest constant so that supp( ) R 1 × [0 ] Then there is a
constant = ( ) such that

(23.18) k k 1 ( H ) ( ) k k (H )

Proof. Write H as = ( ) R 1 × [0 ) then by the fundamental
theorem of calculus we have for any N 1

0 with | | 1 that

(23.19) ( 0) = ( )

Z

0

( )

Therefore, for [1 )

¯

¯ ( 0)
¯

¯ 2 ·
·

¯

¯ ( )
¯

¯ +

¯

¯

¯

¯

Z

0

( )

¯

¯

¯

¯

¸

2 ·
·

¯

¯ ( )
¯

¯ +

Z

0

¯

¯ ( )
¯

¯ · | |
¸

2 1 ·
"

¯

¯ ( )
¯

¯ +

Z

0

¯

¯ ( )
¯

¯ · 1

#

where := 1 is the conjugate exponent to Integrating this inequality over
R 1 × [0 ] implies

k k ( H ) 2 1

·

k k (H ) +
°

°

+
°

°

(H )

¸

or equivalently that

k k ( H ) 2 1 1 k k (H ) + 2
1

1
°

°

+
°

°

(H )

from which implies Eq. (23.18).
Similarly, if = then from Eq. (23.19) we find

k k ( H ) = k k (H ) +
°

°

+
°

°

(H )

and again the result follows.

Theorem 23.20 (Trace Theorem). Suppose 1 and R such that ¯ is
a compact manifold with — boundary. Then there exists a unique linear map
: ( ) 1 ( ) such that = | for all

¡

¯
¢

Proof. Choose a covering { } =0 of ¯ such that 0̄ and for each 1
there is — di eomorphism : ( ) R such that

( ) = ( ) bd(H ) and

( ) = ( ) H

as in Figure 45. Further choose ( [0 1]) such that
P

=0 = 1 on a
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Figure 45. Covering (the shaded region) as described in the text.

neighborhood of ¯ and set := | for 1 Given
¡

¯
¢

we compute

k | ¯k 1 ( ¯) =
X

=1

°

°( ) | ¯ 1
°

°

1 ( ( ) bd(H ))

=
X

=1

°

°

£

( ) 1
¤ |bd(H )

°

°

1 ( ( ) bd(H ))

X

=1

°

°

£

( ) 1
¤
°

°

( ( ))

max ·
X

=1

°

°

£

( ) 1
¤
°

°

( ( ) H )
+
°

°

£

( 0 )
1

0

¤
°

°

( ( 0))

k k ( )

where = max {1 1 } The result now follows by the B.L.T. Theorem
4.1 and the fact that

¡

¯
¢

is dense inside ( )

Notation 23.21. In the sequel will often abuse notation and simply write | ¯ for
the “function” 1 ( ¯)

Proposition 23.22 (Integration by parts). Suppose R such that ¯ is a
compact manifold with 1 — boundary, [1 ] and = 1 is the conjugate
exponent. Then for ( ) and ( )

(23.20)
Z

· =

Z

· +

Z

¯
| ¯ · | ¯

where : ¯ R is unit outward pointing norm to ¯
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Proof. Equation 23.20 holds for 2
¡

¯
¢

and therefore for ( )

( ) × ( ) since both sides of the equality are continuous in ( )
( )× ( ) as the reader should verify.

Definition 23.23. Let 0 ( ) := ( )
( )

be the closure of ( ) inside
( )

Remark 23.24. Notice that if : ( ) 1
¡

¯
¢

is the trace operator in

Theorem 23.20, then
³

0 ( )
´

= {0} 1
¡

¯
¢

since = | ¯ = 0 for
all ( )

Corollary 23.25. Suppose R such that ¯ is a compact manifold with 1 —
boundary, [1 ] and : 1 ( ) ( ) is the trace operator of Theorem
23.20. Then 1

0 ( ) = Nul( )

Proof. It has already been observed in Remark 23.24 that 1
0 ( ) Nul( )

Suppose Nul( ) and supp( ) is compactly contained in The mollification
( ) defined in Proposition 23.4 will be in ( ) for 0 su ciently small and

by Proposition 23.4, in 1 ( ) Thus 1
0 ( ) We will now give

two proofs for Nul( ) 1
0 ( )

Proof 1. For Nul( ) 1 ( ) define

˜( ) =

½

( ) for ¯

0 for ¯

Then clearly ˜
¡

R
¢

and moreover by Proposition 23.22, for (R )
Z

R
˜ · =

Z

· =

Z

·

from which it follows that ˜ exists weakly in
¡

R
¢

and ˜ = 1 a.e.. Thus
˜ 1

¡

R
¢

with k˜k 1 (R ) = k k 1 ( ) and supp(˜)
Choose 1

¡

R R
¢

such that ( ) · ( ) 0 for all ¯ and define

˜ ( ) = ˜( ) := ˜ ( )

Notice that supp(˜ )
¡

¯
¢

@@ for all su ciently small. By the change
of variables Theorem 23.13, we know that ˜ 1 ( ) and since supp(˜ ) is a
compact subset of it follows from the first paragraph that ˜ 1

0 ( )
To so finish this proof, it only remains to show ˜ in 1 ( ) as 0

Looking at the proof of Theorem 23.13, the reader may show there are constants
0 and such that

(23.21) k k 1 (R ) k k 1 (R ) for all
1
¡

R
¢

By direct computation along with the dominated convergence it may be shown
that

(23.22) in 1
¡

R
¢

for all (R )

As is now standard, Eqs. (23.21) and (23.22) along with the density of (R ) in
1
¡

R
¢

allows us to conclude in 1
¡

R
¢

for all 1
¡

R
¢

which
completes the proof that ˜ in 1 ( ) as 0

Proof 2. As in the first proof it su ces to show that any 1
0 ( ) may

be approximated by 1 ( ) with supp( ) @ As above extend to
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by 0 so that ˜ 1
¡

R
¢

Using the notation in the proof of 23.20, it su ces
to show := ˜ 1

¡

R
¢

may be approximated by 1 ( ) with
supp( ) @ Using the change of variables Theorem 23.13, the problem may be
reduced to working with = 1 on = ( ) But in this case we need only
define ( ) := ( ) for 0 su ciently small. Then supp( ) H
and as we have already seen in 1

¡

H
¢

Thus := 1 ( )
as 0 with supp( ) @

23.6. Extension Theorems.

Lemma 23.26. Let 0 := (0 ) R ± := { : ± 0} and
:= { : = 0} Suppose that ( \ ) ( ) and for each | |
extends to a continuous function on Then ( ) and = for

all | |
Proof. For and then by continuity, the fundamental theorem of

calculus and the dominated convergence theorem,

( + ) ( ) = lim

\

[ ( + ) ( )] = lim

\

Z

0

( + )

= lim

\

Z

0

( + ) =

Z

0

( + )

and similarly, for =

( + ) ( ) = lim

sgn( )\

[ ( + ) ( )] = lim

sgn( )\

Z

0

( + )

= lim

sgn( )\

Z

0

( + ) =

Z

0

( + )

These two equations show, for each ( ) exits and ( ) = ( ) Hence we
have shown 1 ( )
Suppose it has been proven for some 1 that ( ) exists and is given by
( ) for all | | Then applying the results of the previous paragraph to
( ) with | | = shows that ( ) exits and is given by + ( ) for all

and and from this we conclude that ( ) exists and is given by ( ) for
all | | +1 So by induction we conclude ( ) exists and is given by ( ) for
all | | i.e. ( )

Lemma 23.27. Given any +1 distinct points, { } =0 in R\ {0} the ( + 1)×
( + 1) matrix with entries := ( ) is invertible.

Proof. Let R +1 and define ( ) :=
P

=0 If Nul( ) then

0 =
X

=0

( ) = ( ) for = 0 1

Since deg ( ) and the above equation says that has + 1 distinct roots, we
conclude that Nul( ) implies 0 which implies = 0 Therefore Nul( ) =
{0} and is invertible.
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Lemma 23.28. Let ± and be as in Lemma 23.26 and { } =0 be + 1
distinct points in ( 1] for example = ( + 1) will work. Also let R +1

be the unique solution (see Lemma 23.27 to = 1 where 1 denotes the vector
of all ones in R +1 i.e. satisfies

(23.23) 1 =
X

=0

( ) for = 0 1 2

For (H ) (H ) with supp( ) and = ( ) R define

(23.24) ˜( ) = ˜( ) =

½

( ) if 0
P

=0 ( ) if 0

Then ˜ (R ) with supp(˜) and moreover there exists a constant
independent of such that

(23.25) k˜k ( ) k k ( +)

Proof. By Eq. (23.23) with = 0

X

=0

( 0) = ( 0)
X

=0

= ( 0)

This shows that ˜ in Eq. (23.24) is well defined and that ˜
¡

H
¢

Let :=
{( ) : ( ) supp( )} Since ( 1] if = ( ) and 0
then ( ) supp( ) and therefore ˜( ) = 0 and therefore supp(˜) is compactly
contained inside of Similarly if N0 with | | Eq. (23.23) with =
implies

( ) :=

½

( ) ( ) if 0
P

=0 ( ) ( ) if 0

is well defined and
¡

R
¢

Di erentiating Eq. (23.24) shows ˜( ) = ( )

for \ and therefore we may conclude from Lemma 23.26 that ( )
¡

R
¢

and = for all | |
We now verify Eq. (23.25) as follows. For | |

k ˜k ( ) =

Z

R
1 0

¯

¯

¯

¯

¯

X

=0

( ) ( )

¯

¯

¯

¯

¯

Z

R
1 0

X

=0

|( ) ( )|

=

Z

R
1 0

X

=0

1

| | |( ) ( )|

=

Ã

X

=0

1

| |

!

k k ( +)

where :=
³

P

=0 | |
´

Summing this equation on | | shows there ex-

ists a constant 0 such that k˜k ( )
0 k k ( +) and hence Eq. (23.25)

holds with = 0 + 1
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Theorem 23.29 (Extension Theorem). Suppose 1 and R such that ¯

is a compact manifold with — boundary. Given R such that ¯ there
exists a bounded linear (extension) operator : ( )

¡

R
¢

such that

(1) = a.e. in and
(2) supp( )

Proof. As in the proof of Theorem 23.20, choose a covering { } =0 of ¯ such
that 0̄ =0

¯ and for each 1 there is — di eomorphism :
( ) R such that

( ) = ( ) bd(H ) and ( ) = ( ) H = +

where + is as in Lemma 23.28, refer to Figure 45. Further choose
( [0 1]) such that

P

=0 = 1 on a neighborhood of ¯ and set := |
for 1 Given

¡

¯
¢

and 1 the function := ( ) 1 may be
viewed as a function in (H ) (H ) with supp( ) Let ˜ ( ) be
defined as in Eq. (23.24) above and define ˜ := 0 +

P

=1 ˜
¡

R
¢

with
supp( ) Notice that ˜ = on ¯ and making use of Lemma 23.17 we learn

k˜k (R ) k 0 k (R ) +
X

=1

k˜ k (R )

k 0 k ( ) +
X

=1

k˜ k ( ( ))

( 0) k k ( ) +
X

=1

k k ( +)

= ( 0) k k ( ) +
X

=1

°

°( ) 1
°

°

( +)

( 0) k k ( ) +
X

=1

k k ( )

This shows the map (¯) := ˜ ( ) is bounded as map from
( ) to ( ) As usual, we now extend using the B.L.T. Theorem 4.1

to a bounded linear map from ( ) to ( ) So for general ( )
= ( ) — lim ˜ where (¯) and = ( ) — lim

By passing to a subsequence if necessary, we may assume that ˜ converges a.e. to
from which it follows that = a.e. on ¯ and supp( )

23.7. Exercises.

Exercise 23.1. Show the norm in Eq. (23.1) is equivalent to the norm

| | ( ) :=
X

| |
k k ( )
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Solution. 23.1This is a consequence of the fact that all norms on ({ : | | })
are equivalent. To be more explicit, let = k k ( ) then

X

| |
| |

X

| |
| |

1
X

| |
1

1

while

X

| |
| |

1
X

| |

X

| |
| |

1

[# { : | | }]1
X

| |
| |
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24. Hölder Spaces

Notation 24.1. Let be an open subset of R ( ) and (¯) be the bounded
continuous functions on and ¯ respectively. By identifying (¯) with
| ( ) we will consider (¯) as a subset of ( ) For ( ) and
0 1 let

k k := sup | ( )| and [ ] := sup

6=

½ | ( ) ( )|
| |

¾

If [ ] then isHölder continuous with holder exponent41 The collection
of — Hölder continuous function on will be denoted by

0 ( ) := { ( ) : [ ] }
and for 0 ( ) let

(24.1) k k 0 ( ) := k k + [ ]

Remark 24.2. If : C and [ ] for some 1 then is constant on
each connected component of Indeed, if and R then

¯

¯

¯

¯

( + ) ( )
¯

¯

¯

¯

[ ] 0 as 0

which shows ( ) = 0 for all If is in the same connected component
as then by Exercise 17.5 there exists a smooth curve : [0 1] such that
(0) = and (1) = So by the fundamental theorem of calculus and the chain
rule,

( ) ( ) =

Z 1

0

( ( )) =

Z 1

0

0 = 0

This is why we do not talk about Hölder spaces with Hölder exponents larger than
1

Lemma 24.3. Suppose 1( ) ( ) and ( ) for = 1 2
then 0 1( ) i.e. [ ]1

The proof of this lemma is left to the reader as Exercise 24.1.

Theorem 24.4. Let be an open subset of R Then
(1) Under the identification of

¡

¯
¢

with | ( ) (¯) is a
closed subspace of ( )

(2) Every element 0 ( ) has a unique extension to a continuous func-
tion (still denoted by ) on ¯ Therefore we may identify 0 ( ) with
0 (¯) (¯)

(3) The function 0 ( ) k k 0 ( ) [0 ) is a norm on 0 ( )

which make 0 ( ) into a Banach space.

Proof. 1. The first item is trivial since for (¯) the sup-norm of on ¯

agrees with the sup-norm on and (¯) is complete in this norm.
2. Suppose that [ ] and 0 Let { } =1 be a sequence such

that 0 = lim Then

| ( ) ( )| [ ] | | 0 as

41If = 1 is is said to be Lipschitz continuous.
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showing { ( )} =1 is Cauchy so that ¯( 0) := lim ( ) exists. If { } =1

is another sequence converging to 0 then

| ( ) ( )| [ ] | | 0 as

showing ¯( 0) is well defined. In this way we define ¯( ) for all and let
¯( ) = ( ) for Since a similar limiting argument shows

|¯( ) ¯( )| [ ] | | for all ¯

it follows that ¯ is still continuous and [¯] = [ ] In the sequel we will abuse
notation and simply denote ¯ by
3. For 0 ( )

[ + ] = sup

6=

½ | ( ) + ( ) ( ) ( )|
| |

¾

sup

6=

½ | ( ) ( )|+ | ( ) ( )|
| |

¾

[ ] + [ ]

and for C it is easily seen that [ ] = | | [ ] This shows [·] is a semi-norm
on 0 ( ) and therefore k · k 0 ( ) defined in Eq. (24.1) is a norm.
To see that 0 ( ) is complete, let { } =1 be a

0 ( )—Cauchy sequence.
Since (¯) is complete, there exists (¯) such that k k 0 as

For with 6=
| ( ) ( )|
| |

= lim
| ( ) ( )|

| |
lim sup[ ] lim k k 0 ( )

and so we see that 0 ( ) Similarly,

| ( ) ( ) ( ( ) ( ))|
| |

= lim
|( )( ) ( )( )|

| |
lim sup[ ] 0 as

showing [ ] 0 as and therefore lim k k 0 ( ) = 0

Notation 24.5. Since and ¯ are locally compact Hausdor spaces, we may
define 0( ) and 0(¯) as in Definition 10.29. We will also let

0
0 ( ) := 0 ( ) 0( ) and

0
0 (¯) := 0 ( ) 0(¯)

It has already been shown in Proposition 10.30 that 0( ) and 0(¯) are closed
subspaces of ( ) and (¯) respectively. The next proposition describes the
relation between 0( ) and 0(¯)

Proposition 24.6. Each 0( ) has a unique extension to a continuous func-
tion on ¯ given by ¯ = on and ¯ = 0 on and the extension ¯ is in 0(¯)
Conversely if 0(¯) and | = 0 then | 0( ) In this way we may
identify 0( ) with those 0(¯) such that | = 0

Proof. Any extension 0( ) to an element ¯ (¯) is necessarily unique,
since is dense inside ¯ So define ¯ = on and ¯ = 0 on We must show ¯
is continuous on ¯ and ¯ 0(¯)
For the continuity assertion it is enough to show ¯ is continuous at all points

in For any 0 by assumption, the set := { : | ( )| } is a
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compact subset of Since = ¯ \ = and therefore the distance,
:= ( ) between and is positive. So if and ¯ and

| | then |¯( ) ¯( )| = | ( )| which shows ¯ : ¯ C is continuous.
This also shows {|¯| } = {| | } = is compact in and hence also in ¯

Since 0 was arbitrary, this shows ¯ 0(¯)
Conversely if 0(¯) such that | = 0 and 0 then :=

©

¯ : | ( )| ª

is a compact subset of ¯ which is contained in since
= Therefore is a compact subset of showing | 0(¯)

Definition 24.7. Let be an open subset of R N {0} and (0 1] Let
( ) ( (¯)) denote the set of — times continuously di erentiable functions

on such that ( ) ( (¯))42 for all | | Similarly, let
( ) denote those ( ) such that [ ] for all | | = For
( ) let

k k ( ) =
X

| |
k k and

k k ( ) =
X

| |
k k +

X

| |=
[ ]

Theorem 24.8. The spaces ( ) and ( ) equipped with k · k ( ) and
k · k ( ) respectively are Banach spaces and (¯) is a closed subspace of

( ) and ( ) (¯) Also

0 ( ) = 0 (¯) = { ( ) : 0( ) | | }
is a closed subspace of ( )

Proof. Suppose that { } =1 ( ) is a Cauchy sequence, then { } =1

is a Cauchy sequence in ( ) for | | Since ( ) is complete, there exists
( ) such that lim k k = 0 for all | | Letting := 0

we must show ( ) and = for all | | This will be done by
induction on | | If | | = 0 there is nothing to prove. Suppose that we have
verified ( ) and = for all | | for some Then for

{1 2 } and R su ciently small,

( + ) = ( ) +

Z

0

( + )

Letting in this equation gives

( + ) = ( ) +

Z

0
+ ( + )

from which it follows that ( ) exists for all and = + This
completes the induction argument and also the proof that ( ) is complete.
It is easy to check that (¯) is a closed subspace of ( ) and by using

Exercise 24.1 and Theorem 24.4 that that ( ) is a subspace of (¯) The
fact that 0 ( ) is a closed subspace of ( ) is a consequence of Proposition
10.30.

42To say (¯) means that ( ) and extends to a continuous function
on ¯
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To prove ( ) is complete, let { } =1 ( ) be a k · k ( ) —
Cauchy sequence. By the completeness of ( ) just proved, there exists

( ) such that lim k k ( ) = 0 An application of Theorem 24.4 then
shows lim k k 0 ( ) = 0 for | | = and therefore lim k
k ( ) = 0

The reader is asked to supply the proof of the following lemma.

Lemma 24.9. The following inclusions hold. For any [0 1]

+1 0( ) 1( ) ( )

+1 0(¯) 1(¯) ( )

Definition 24.10. Let : be a bounded operator between two (sep-
arable) Banach spaces. Then is compact if [ (0 1)] is precompact in
or equivalently for any { } =1 such that k k 1 for all the sequence
:= has a convergent subsequence.

Example 24.11. Let = 2 = and C such that lim = 0 then
: defined by ( )( ) = ( ) is compact.

Proof. Suppose { } =1
2 such that k k2 = P | ( )|2 1 for all By

Cantor’s Diagonalization argument, there exists { } { } such that, for each
˜ ( ) = ( ) converges to some ˜( ) C as Since for any

X

=1

|˜( )|2 = lim
X

=1

|˜ ( )|2 1

we may conclude that
P

=1
|˜( )|2 1 i.e. ˜ 2

Let := ˜ and := ˜ We will finish the verification of this example by
showing in 2 as Indeed if = max | | then

k ˜ ˜k2 =
X

=1

| |2 |˜ ( ) ˜( )|2

=
X

=1

| |2|˜ ( ) ˜( )|2 + | |2
X

+1

|˜ ( ) ˜( )|2

X

=1

| |2|˜ ( ) ˜( )|2 + | |2 k˜ ˜k2

X

=1

| |2|˜ ( ) ˜( )|2 + 4| |2

Passing to the limit in this inequality then implies

lim sup k ˜ ˜k2 4| |2 0 as

Lemma 24.12. If are continuous operators such the either or
is compact then the composition : is also compact.
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Proof. If is compact and is bounded, then ( (0 1)) ( (0 1))
which is compact since the image of compact sets under continuous maps are com-
pact. Hence we conclude that ( (0 1)) is compact, being the closed subset of
the compact set ( (0 1))
If is continuos and is compact, then ( (0 1)) is a bounded set and so

by the compactness of ( (0 1)) is a precompact subset of i.e. is
compact.

Proposition 24.13. Let R such that ¯ is compact and 0 1
Then the inclusion map : ( ) ( ) is compact.

Let { } =1 ( ) such that k k 1 i.e. k k 1 and

| ( ) ( )| | | for all

By Arzela-Ascoli, there exists a subsequence of {˜ } =1 of { } =1 and (¯)
such that ˜ in 0 Since

| ( ) ( )| = lim |˜ ( ) ˜ ( )| | |

as well. Define := ˜ then k k 2 and 0 in 0 To
finish the proof we must show that 0 in Given 0

sup
6=
| ( ) ( )|

| | : +

where

+

:= sup
6=

| |

| ( ) ( )|
| |

1
sup
6=

| ( ) ( )| 2k k 0 as

and

:= sup
6=

| |

| ( ) ( )|
| |

sup
6=

| |

| |
| | = sup

6=
| |

| |

Therefore,

lim sup [ ] lim sup + lim sup 0 + 0 as 0

This proposition generalizes to the following theorem which the reader is asked to
prove in Exercise 24.2 below.

Theorem 24.14. Let be a precompact open subset of R [0 1] and
N0 If + + then

¡

¯
¢

is compactly contained in
¡

¯
¢
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24.1. Exercises.

Exercise 24.1. Prove Lemma 24.3.

Exercise 24.2. Prove Theorem 24.14. Hint: First prove
¡

¯
¢

@@
¡

¯
¢

is
compact if 0 1 Then use Lemma 24.12 repeatedly to handle all of the
other cases.
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25. Sobolev Inequalities

25.1. Gagliardo-Nirenberg-Sobolev Inequality. In this section our goal is to
prove an inequality of the form:

(25.1) k k k k (R ) for
1(R )

For 0 let ( ) = ( ) Then

k k =

Z

| ( )| =

Z

| ( )|

and hence k k = k k Moreover, ( ) = ( )( ) and thus

k k = k( ) k = k k
If (25.1) is to hold for all 1(R ) then we must have

k k = k k k k (R ) =
1 k k for all 0

which only possible if 1 + = 0 i.e. 1 = 1 + 1 Let us denote the
solution, to this equation by so :=

Theorem 25.1. Let = 1 so 1 = 1 then

(25.2) k k1 = k k
1

1
2 k k1 for all 1(R )

Proof. To help the reader understand the proof, let us give the proof for = 1
= 2 and = 3 first and with the constant 1 2 being replaced by 1 After that

the general induction argument will be given. (The adventurous reader may skip
directly to the paragraph containing Eq. (25.3) below.)
( = 1 = ) By the fundamental theorem of calculus,

| ( )| =
¯

¯

¯

¯

Z

0( )
¯

¯

¯

¯

Z

| 0( )|
Z

R
| 0( )|

Therefore k k k 0k 1 proving the = 1 case.
( = 2 = 2) Applying the same argument as above to 1 ( 1 2) and

2 ( 1 2) ,

| ( 1 2)|
Z

| 1 ( 1 2)| 1

Z

| ( 1 2)| 1 and

| ( 1 2)|
Z

| 2 ( 1 2)| 2

Z

| ( 1 2)| 2

and therefore

| ( 1 2)|2
Z

| 1 ( 1 2)| 1 ·
Z

| 2 ( 1 2)| 2

Integrating this equation relative to 1 and 2 gives

k k2 2 =
Z

R2
| ( )|2

µ
Z

| 1 ( )|
¶µ

Z

| 2 ( )|
¶

µ
Z

| ( )|
¶2

which proves the = 2 case.
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( = 3 = 3 2) Let 1 = ( 1 2 3)
2 = ( 1 2 3) and 3 = ( 1 2 3) if

= 3 then as above,

| ( )|
Z

| ( )| for = 1 2 3

and hence

| ( )| 32
3
Y

=1

µ
Z

| ( )|
¶

1
2

Integrating this equation on 1 gives,

Z

R
| ( )| 32 1

µ
Z

| 1 ( 1)| 1

¶
1
2
Z 3
Y

=2

µ
Z

| ( )|
¶

1
2

1

µ
Z

| 1 ( )| 1

¶
1
2

3
Y

=2

µ
Z

| ( )| 1

¶
1
2

wherein the second equality we have used the Hölder’s inequality with = = 2
Integrating this result on 2 and using Hölder’s inequality gives

Z

R2
| ( )| 32 1 2

µ
Z

R2
| 2 ( )| 1 2

¶
1
2
Z

R
2

µ
Z

| 1 ( )| 1

¶
1
2
µ
Z

R2
| 3 ( 3)| 1 3

¶
1
2

µ
Z

R2
| 2 ( )| 1 2

¶
1
2
µ
Z

R2
| 1 ( )| 1 2

¶
1
2
µ
Z

R3
| 3 ( )|

¶
1
2

One more integration of 3 and application of Hölder’s inequality, implies

Z

R3
| ( )| 32

3
Y

=1

µ
Z

R3
| ( )|

¶
1
2

µ
Z

R3
| ( )|

¶
3
2

proving the = 3 case.
For general ( = 1) as above let = ( 1 ) Then

| ( )|
µ
Z

| ( )|
¶

and

(25.3) | ( )| 1

Y

=1

µ
Z

| ( )|
¶

1
1

Integrating this equation relative to 1 and making use of Hölder’s inequality in
the form

(25.4)

°

°

°

°

°

°

1
Y

=1

°

°

°

°

°

°

1

1
Y

=1

k k 1
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(see Corollary 9.3) we find

Z

R
| ( )| 1 1

µ
Z

R
1 ( ) 1

¶
1
1
Z

R
1

Y

=2

µ
Z

R
| ( )|

¶
1
1

µ
Z

R
1 ( ) 1

¶
1
1 Y

=2

µ
Z

R2
| ( )| 1

¶
1
1

=

µ
Z

R
1 ( ) 1

¶
1
1
µ
Z

R2
| 2 ( )| 1 2

¶
1
1 Y

=3

µ
Z

R2
| ( )| 1

¶
1
1

Integrating this equation on 2 and using Eq. (25.4) once again implies,

Z

R2
| ( )| 1 1 2

µ
Z

R2
| 2 ( )| 1 2

¶
1
1
Z

R
2

µ
Z

R
1 ( ) 1

¶
1
1

×
Y

=3

µ
Z

R2
| ( )| 1

¶
1
1

µ
Z

R2
| 2 ( )| 1 2

¶
1
1
µ
Z

R2
| 1 ( )| 1 2

¶
1
1

×
Y

=3

µ
Z

R3
| ( )| 1 2

¶
1
1

Continuing this way inductively, one shows

Z

R
| ( )| 1 1 2

Y

=1

µ
Z

R
| ( )| 1 2

¶
1
1

×
Y

= +1

µ
Z

R3
| ( )| 1 2 +1

¶
1
1

and in particular when =

Z

R
| ( )| 1

Y

=1

µ
Z

R
| ( )| 1 2

¶
1
1

(25.5)

Y

=1

µ
Z

R
| ( )|

¶
1
1

=

µ
Z

R
| ( )|

¶

1

We can improve on this estimate by using Young’s inequality (see Exercise 25.1) in

the form
Q

=1

1
P

=1 Indeed by Eq. (25.5) and Young’s inequality,

k k
1

Y

=1

µ
Z

R
| ( )|

¶
1

1X

=1

µ
Z

R
| ( )|

¶

=
1
Z

R

X

=1

| ( )| 1
Z

R
| ( )|
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wherein the last inequality we have used Hölder’s inequality for sums,

X

=1

| |
Ã

X

=1

1

!1 2Ã
X

=1

| |2
!1 2

= | |

The next theorem generalizes Theorem 25.1 to an inequality of the form in Eq.
(25.1).

Notation 25.2. For [1 ) let := so that 1 +1 = 1 In particular

1 = 1

Theorem 25.3. If [1 ) then

(25.6) k k 1 2 ( 1)k k for all 1(R )

Proof. Let 1(R ) and 1 then | | 1(R ) and | | =
| | 1sgn( ) Applying Eq. (25.2) with replaced by | | and then using
Holder’s inequality gives

(25.7) k| | k
1

1
2 k | | k1 =

1
2 k| | 1 k 1 k k ·k| | 1k

where = 1 Let us now choose so that

1 =
1
= ( 1) = ( 1)

1
=:

i.e.

=
1
=

1

1 1

=
( 1)

( 1) ( 1)
=

( 1)

and = ( 1)
1 = Using this in Eq. (25.7) gives

k k
1

1 2 ( 1) k k · k k

This proves Eq. (25.6) since

1
=

µ

1
¶

= 1

Corollary 25.4. The estimate k k ( 1)

( )
k k holds for all

1 (R ).

Corollary 25.5. Suppose R is bounded with 1-boundary, then for all 1
and 1 there exists = ( ) such that k k ( ) k k 1 ( ).

Proof. Let 1( ) 1 ( ) and denote an extension operator. Then

k k ( ) k k (R ) k ( )k (R ) k k 1 ( )

Therefore

(25.8) k k ( ) k k 1 ( )
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Since 1( ) is dense in 1 ( ) Eq. (25.8) holds for all 1 ( ) Finally for
all 1

k k k k · k1k = k k ( ( ))

where 1 + 1 = 1

Corollary 25.6. Suppose 2 then

k k2+42 k k22 k k41
for all 1.

Proof. Recall k k2 k k2 where 2 = 2
2 . Now

k k2 k k k k1

where + 1 = 1
2 Taking = 2 and = 1 implies 2 + 1 = 1

2 i.e.
¡

1
2 1

¢

= 1
2 and hence

=
1
2

1 1
2

=
2

2(2 1)
=
( 2)

· 1
2
2 1

=
2

2

+ 2
=

+ 2
and

1 =
2

+ 2

Hence
k k2 k k +2

2 k k
2
+2

1
+2 k k =2

2 k k
2
+2

1

and therefore
k k

+2

2 k k2 k k
2

1

and squaring this equation then gives

k k2+42
2k k22 k k

4

1

25.2. Morrey’s Inequality.

Notation 25.7. Let 1 be the sphere of radius one centered at zero inside R
For 1 R and (0 ) let

{ + : 3 0 }
So = + 0 where 0 is a cone based on

Notation 25.8. If 1 is a measurable set let | | = ( ) be the surface
“area” of If R is a measurable set, let

Z

( ) =
1

( )

Z

( )

By Theorem 8.35,

(25.9)
Z

( ) =

Z

0

( + ) =

Z

0

1

Z

( + ) ( )

and letting = 1 in this equation implies

(25.10) ( ) = | |
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Lemma 25.9. Let 1 be a measurable set. For 1( )

(25.11)
Z

| ( ) ( )| 1

| |
Z | ( )|

| | 1

Proof. Write = + with 1 then by the fundamental theorem of
calculus,

( + ) ( ) =

Z

0

( + ) ·

and therefore,
Z

| ( + ) ( )| ( )

Z

0

Z

| ( + )| ( )

=

Z

0

1

Z | ( + )|
| + | 1

( )

=

Z | ( )|
| | 1

Z | ( )|
| | 1

wherein the second equality we have used Eq. (25.9). Multiplying this inequality
by 1 and integrating on [0 ] gives

Z

| ( ) ( )|
Z | ( )|

| | 1
=

( )

| |
Z | ( )|

| | 1

which proves Eq. (25.11).

Corollary 25.10. For N and ( ] there is a constant = ( )
such that if 1(R ) then for all R

(25.12) | ( ) ( )| k k ( ( ) ( )) · | |(1 )

where := | |
Proof. The case = is easy and will be left to the reader. Let := | |

( ) ( ) and 1 be chosen so that + = ( ) ( )
and + = ( ) ( ) i.e.

=
1
( ( ) ( ) ) and =

1
( ( ) ( ) ) =

Also let = see Figure 46 below. By a scaling,

:=
| |
| | =

| 1 1|
| 1| (0 1)

is a constant only depending on i.e. we have | | = | | = | | Integrating
the inequality

| ( ) ( )| | ( ) ( )|+ | ( ) ( )|
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Figure 46. The geometry of two intersecting balls of radius := | |

over gives

| ( ) ( )|
Z

| ( ) ( )| +

Z

| ( ) ( )|

= | |
Z

| ( ) ( )| +

Z

| ( ) ( )|

| |
Z

| ( ) ( )| +

Z

| ( ) ( )|

Hence by Lemma 25.9, Hölder’s inequality and translation and rotation invariance
of Lebesgue measure,

| ( ) ( )| | |
Z | ( )|

| | 1
+

Z | ( )|
| | 1

| |
µ

k k ( )k 1

| ·| 1
k ( ) + k k ( )k 1

| ·| 1
k ( )

¶

2

| | k k ( )k 1

| · | 1
k ( 0 )

(25.13)
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where = 1 is the conjugate exponent to Now

k 1

| · | 1
k ( 0 ) =

Z

0

1

Z

¡

1
¢

( )

= | |
Z

0

¡

1
¢1 1 = | |

Z

0

1

1

and since 1
1 + 1 = 1 we find

(25.14) k 1

| · | 1
k ( 0 ) =

µ

1 | | 1

¶1

=

µ

1 | |
¶

1

1

Combining Eqs. (25.13) and (25.14) gives

| ( ) ( )| 2

| |1
µ

1
¶

1

k k ( ) · 1

Corollary 25.11. Suppose B 1 (0 ) and 1( )
Then

(25.15) | ( )| (| | ) k k 1 ( ) · 1

where

(| | ) :=
1

| |1 max

Ã

1
µ

1
¶1 1

!

Proof. For

| ( )| | ( )|+ | ( ) ( )|
and hence using Eq. (25.11) and Hölder’s inequality,

| ( )|
Z

| ( )| +
1

| |
Z | ( )|

| | 1

1

( )
k k ( ) k1k ( ) +

1

| | k k ( )k 1

| ·| 1
k ( )

where = 1 as before. This equation combined with Eq. (25.14) and the equality,

(25.16)
1

( )
k1k ( ) =

1

( )
( )1 =

¡| | ¢ 1

shows

| ( )| k k ( )

¡| | ¢ 1
+
1

| | k k ( )

µ

1 | |
¶1 1

1

=
1

| |1
"

k k ( )

1

+ k k ( )

µ

1
¶1 1

#

1

1

| |1 max

Ã

1
µ

1
¶1 1

!

k k 1 ( ) · 1
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Theorem 25.12 (Morrey’s Inequality). If 1 (R ), then there
exists a unique version of (i.e. = a.e.) such that is continuous.
Moreover 0 1 (R ) and

(25.17) k k 0 1 (R )
k k 1

where = ( ) is a universal constant.

Proof. First assume that 1(R ) then by Corollary 25.11 k k (R )

k k 1 (R ) and by Corollary 25.10

| ( ) ( )|
| |1

k k (R )

Therefore

[ ]1 k k (R ) k k 1 (R )

and hence

(25.18) k k 0 1 (R )
k k 1 (R )

Now suppose 1 (R ), choose (using Exercise 19.8 and Theorem G.67)
1(R ) such that in 1 (R ) Then by Eq. (25.18), k k 0 1 (R )

0 as and therefore there exists 0 1 (R ) such that in
0 1 (R ) Clearly = a.e. and Eq. (25.17) holds.
The following example shows that (R ) 6 1 (R ) in general.

Example 25.13. Let ( ) = ( ) log log
³

1 + 1
| |
´

where (R ) is chosen

so that ( ) = 1 for | | 1 Then (R ) while 1 (R ) Let us check
this claim. Using Theorem 8.35, one easily shows (R ) A short computation
shows, for | | 1 that

( ) =
1

log
³

1 + 1
| |
´

1

1 + 1
| |

1

| |

=
1

1 + 1
| |

1

log
³

1 + 1
| |
´

µ

1

| | ˆ
¶

where ˆ = | | and so again by Theorem 8.35,

Z

R

| ( )|
Z

| | 1

1

| |2 + | |
1

log
³

1 + 1
| |
´

( 1)

Z 1

0

Ã

2

log
¡

1 + 1
¢

!

1 =

Corollary 25.14. The above them holds with R replaced by R such that
is compact 1-manifold with boundary.

Proof. Use Extension Theory.



470 BRUCE K. DRIVER†

25.3. Rademacher’s Theorem.

Theorem 25.15. Suppose that 1 ( ) for some Then is
di erentiable almost everywhere and - = a.e. on

Proof. We clearly may assume that For 1 ( ) and such
that ( ) ( ) where := | | the estimate in Corollary 25.10,
gives

| ( ) ( )| k k ( ( ) ( )) · | |(1 )

= k k ( ( ) ( )) · (1 )(25.19)

Let now denote the unique continuous version of 1 ( ) The by the
Lebesgue di erentiation Theorem 16.12, there exists an exceptional set such
that ( ) = 0 and

lim
0

1

( ( ))

Z

( )

| ( ) ( )| = 0 for \

Fix a point \ and let ( ) := ( ) ( ) ( ) · ( ) and notice that
( ) = ( ) ( ) Applying Eq. (25.19) to then implies

| ( ) ( ) ( ) · ( )|
k (·) ( )k ( ( ) ( )) · (1 )

Ã

Z

( )

| ( ) ( )|
!1

· (1 )

=
q

( 1))

Ã

1

( ( ))

Z

( )

| ( ) ( )|
!1

· (1 )

=
q

( 1))

Ã

1

( ( ))

Z

( )

| ( ) ( )|
!1

· | |

which shows is di erentiable at and ( ) = - ( )

Theorem 25.16 (Rademacher’s Theorem). Let be locally Lipschitz continuous
on R Then is di erentiable almost everywhere and - = a.e. on

Proof. By Proposition 19.29 ( ) exists weakly and is in (R ) for
= 1 2 The result now follows from Theorem 25.15.

25.4. Sobolev Embedding Theorems Summary.

Space Degree of Reguilarity

= + +

Summary A space embeds continuously in the other if it has a higher or equal
degree of regularity. Here are some examples:

(1) i.e. or

1 1
=
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(2)
³ ´

+

The embeddings are compact if the above inequalities are strict and in the case
of considering 1 we must have !
Example 2([0 1]) 1([0 1]) but this is not compact. To see this, take { } =1

to be the Haar basis for 2. Then 0 in 2 and 1, while k k2 k k1 1
since | | = 1.

25.5. Other Theorems along these lines. Another theorem of this form is de-
rived as follows. Let 0 be fixed and ((0 1) [0 1]) such that ( ) = 1 for
| | 1 2 and set ( ) := ( ) Then for R and we have

Z

0

[ ( ) ( + )] = ( )

and then by integration by parts repeatedly we learn that

( ) =

Z

0

2 [ ( ) ( + )] =

Z

0

2 [ ( ) ( + )]
2

2

=

Z

0

3 [ ( ) ( + )]
3

3!
=

= ( 1)

Z

0

[ ( ) ( + )]
!

= ( 1)

Z

0

[ ( ) ( + )]
1

( 1)!

Integrating this equatoin on then implies

| | ( ) = ( 1)

Z Z

0

[ ( ) ( + )]
1

( 1)!

=
( 1)

( 1)!

Z Z

0

[ ( ) ( + )] 1

=
( 1)

( 1)!

Z Z

0

X

=0

µ ¶

h

( )( )
¡ ¢

( + )
i

1

=
( 1)

( 1)!

Z Z

0

X

=0

µ ¶

h

( )( )
¡ ¢

( + )
i

1

=
( 1)

( 1)!

X

=0

µ ¶
Z

| |
h

( )(| |)
³

[

´

( )
i

and hence

( ) =
( 1)

| | ( 1)!

X

=0

µ ¶
Z

| |
h

( )(| |)
³

[

´

( )
i

and hence by the Hölder’s inequality,

| ( )| ( )
( 1)

| | ( 1)!

X

=0

µ ¶

"

Z

| | ( )

#1 "

Z

¯

¯

¯

³

[

´

( )
¯

¯

¯

#1
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From the same computation as in Eq. (23.4) we find
Z

| | ( )
= ( )

Z

0

( ) 1 = ( )
( )+

( ) +

= ( )
1

( 1)

provided that 0 (i.e. ) wherein we have used

( ) + =
1
( ) + =

( ) + ( 1)

1
=

1

This gives the estimate
"

Z

| | ( )

#1
·

( ) ( 1)
¸

1

=

·

( ) ( 1)
¸

1

Thus we have obtained the estimate that

| ( )| ( )

| | ( 1)!

·

( ) ( 1)
¸

1
X

=0

µ ¶

°

°

° [

°

°

°

( )

25.6. Exercises.

Exercise 25.1. Let 0 and [1 ) for = 1 2 satisfy
P

=1
1 = 1

then
Y

=1

X

=1

1

Hint: This may be proved by induction on making use of Lemma 2.27 or by
using Jensen’s inequality analogously to how the = 2 case was done in Example
9.11.
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26. Banach Spaces III: Calculus

In this section, and will be Banach space and will be an open subset of

Notation 26.1 ( and notation). Let 0 and : be a
function. We will write:

(1) ( ) = ( ) if lim 0 k ( )k = 0
(2) ( ) = ( ) if there are constants and 0 such that

k ( )k k k for all (0 ) This is equivalent to the condition
that lim sup 0

k ( )k
k k where

lim sup
0

k ( )k
k k lim

0
sup{k ( )k : 0 k k }

(3) ( ) = ( ) if ( ) = ( ) ( ) i.e. lim 0 k ( )k k k = 0
Example 26.2. Here are some examples of properties of these symbols.

(1) A function : is continuous at 0 if ( 0 + ) =
( 0) + ( )

(2) If ( ) = ( ) and ( ) = ( ) then ( ) + ( ) = ( )
Now let : be another function where is another Banach

space.
(3) If ( ) = ( ) and ( ) = ( ) then ( ) = ( )
(4) If ( ) = ( ) and ( ) = ( ) then ( ) = ( )

26.1. The Di erential.

Definition 26.3. A function : is di erentiable at 0 + 0

if there exists a linear transformation ( ) such that

(26.1) ( 0 + ) ( 0 + 0) = ( )

We denote by 0( 0) or ( 0) if it exists. As with continuity, is di erentiable
on if is di erentiable at all points in

Remark 26.4. The linear transformation in Definition 26.3 is necessarily unique.
Indeed if 1 is another linear transformation such that Eq. (26.1) holds with
replaced by 1 then

( 1) = ( )

i.e.

lim sup
0

k( 1) k
k k = 0

On the other hand, by definition of the operator norm,

lim sup
0

k( 1) k
k k = k 1k

The last two equations show that = 1

Exercise 26.1. Show that a function : ( ) is a di erentiable at ( )
in the sense of Definition 4.6 i it is di erentiable in the sense of Definition 26.3.
Also show ( ) = ˙( ) for all R
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Example 26.5. Assume that ( ) is non-empty. Then : ( )
( ) defined by ( ) 1 is di erentiable and

0( ) = 1 1 for all ( )

Indeed (by Eq. (3.13)),

( + ) ( ) = ( + ) 1 1 = (
¡

+ 1
¢

) 1 1

=
¡

+ 1
¢

) 1 1 1 =
X

=0

( 1 ) · 1 1

= 1 1 +
X

=2

( 1 )

Since

k
X

=2

( 1 ) k
X

=2

k 1 k k 1k2k k2
1 k 1 k

we find that
( + ) ( ) = 1 1 + ( )

26.2. Product and Chain Rules. The following theorem summarizes some basic
properties of the di erential.

Theorem 26.6. The di erential has the following properties:

Linearity: is linear, i.e. ( + ) = +
Product Rule: If : and : ( ) are
di erentiable at 0 then so is ( )( ) ( ) ( ) and

( )( 0) = ( ( 0) ) ( 0) + ( 0) ( 0)

Chain Rule: If : is di erentiable at 0 and
: is di erentiable at 0 ( ) then is di erentiable

at 0 and ( )0( 0) =
0( 0)

0( 0)
Converse Chain Rule: Suppose that : is continuous
at 0 : is di erentiable 0 ( ) 0( 0) is invertible,
and is di erentiable at 0 then is di erentiable at 0 and

(26.2) 0( 0) [ 0( 0)]
1( )0( 0)

Proof. For the proof of linearity, let : be two functions which
are di erentiable at 0 and R then

( + )( 0 + ) = ( 0) + ( 0) + ( ) + ( ( 0) + ( 0) + ( )

= ( + )( 0) + ( ( 0) + ( 0)) + ( )

which implies that ( + ) is di erentiable at 0 and that

( + )( 0) = ( 0) + ( 0)

For item 2, we have

( 0 + ) ( 0 + ) = ( ( 0) + ( 0) + ( ))( ( 0) +
0( 0) + ( ))

= ( 0) ( 0) + ( 0)
0( 0) + [ ( 0) ] ( 0) + ( )

which proves item 2.
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Similarly for item 3,

( )( 0 + ) = ( ( 0)) +
0( ( 0))( ( 0 + ) ( 0)) + ( ( 0 + ) ( 0))

= ( ( 0)) +
0( ( 0))( ( 0) 0 + ( )) + ( ( 0 + ) ( 0)

= ( ( 0)) +
0( ( 0)) ( 0) + ( )

where in the last line we have used the fact that ( 0+ ) ( 0) = ( ) (see Eq.
(26.1)) and ( ( )) = ( )
Item 4. Since is di erentiable at 0 = ( 0)

( ( 0 + )) ( ( 0)) =
0( ( 0))( ( 0 + ) ( 0)) + ( ( 0 + ) ( 0))

And since is di erentiable at 0

( )( 0 + ) ( ( 0)) = ( )0( 0) + ( )

Comparing these two equations shows that

( 0 + ) ( 0) =
0( ( 0))

1{( )0( 0) + ( ) ( ( 0 + ) ( 0))}
= 0( ( 0))

1( )0( 0) + ( )

0( ( 0))
1 ( ( 0 + ) ( 0))(26.3)

Using the continuity of ( 0 + ) ( 0) is close to 0 if is close to zero, and
hence k ( ( 0 + ) ( 0))k 1

2k ( 0 + ) ( 0)k for all su ciently close to
0 (We may replace 1

2 by any number 0 above.) Using this remark, we may
take the norm of both sides of equation (26.3) to find

k ( 0+ ) ( 0)k k 0( ( 0))
1( )0( 0)kk k+ ( )+

1

2
k ( 0 + ) ( 0)k

for close to 0 Solving for k ( 0 + ) ( 0)k in this last equation shows that
(26.4) ( 0 + ) ( 0) = ( )

(This is an improvement, since the continuity of only guaranteed that ( 0+ )
( 0) = ( ) ) Because of Eq. (25.4), we now know that ( ( 0+ ) ( 0)) = ( )
which combined with Eq. (26.3) shows that

( 0 + ) ( 0) =
0( ( 0))

1( )0( 0) + ( )

i.e. is di erentiable at 0 and 0( 0) =
0( ( 0))

1( )0( 0)

Corollary 26.7. Suppose that : ( ) is di erentiable at ( )
and : is di erentiable at ( ) Then is di erentiable at
and

( )( ) = 0( ( )) ˙ ( )

Example 26.8. Let us continue on with Example 26.5 but now let = to
simplify the notation. So : ( ) ( ) is the map ( ) = 1 and

0( ) = 1 1 i.e. 0 =

where = and = for all ( ) As the reader may easily
check, the maps

( ) ( ( ))

are linear and bounded. So by the chain and the product rule we find 00( ) exists
for all ( ) and

00( ) = 0( ) 0( )
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More explicitly

(26.5) [ 00( ) ] = 1 1 1 + 1 1 1

Working inductively one shows : ( ) ( ) defined by ( ) 1 is

26.3. Partial Derivatives.

Definition 26.9 (Partial or Directional Derivative). Let : be a
function, 0 and We say that is di erentiable at 0 in the direction
i |0( ( 0+ )) =: ( )( 0) exists. We call ( )( 0) the directional or partial
derivative of at 0 in the direction

Notice that if is di erentiable at 0 then ( 0) exists and is equal to 0( 0)
see Corollary 26.7.

Proposition 26.10. Let : be a continuous function and be
a dense subspace of Assume ( ) exists for all and and there
exists a continuous function : ( ) such that ( ) = ( ) for all

and Then 1( ) and =

Proof. Let 0 0 such that ( 0 2 ) and sup{k ( )k :
( 0 2 )} 43. For ( 0 ) and (0 ) by the fundamental

theorem of calculus,
(26.6)

( + ) ( ) =

Z 1

0

( + )
=

Z 1

0

( )( + ) =

Z 1

0

( + )

For general ( 0 ) and (0 ) choose ( 0 ) and
(0 ) such that and Then

(26.7) ( + ) ( ) =

Z 1

0

( + )

holds for all The left side of this last equation tends to ( + ) ( ) by the
continuity of For the right side of Eq. (26.7) we have

k
Z 1

0

( + )

Z 1

0

( + ) k
Z 1

0

k ( + ) ( + ) kk k
+ k k

It now follows by the continuity of the fact that k ( + ) ( + ) k
and the dominated convergence theorem that right side of Eq. (26.7) converges to
R 1

0
( + ) Hence Eq. (26.6) is valid for all ( 0 ) and (0 ) We

also see that

(26.8) ( + ) ( ) ( ) = ( )

43It should be noted well, unlike in finite dimensions closed and bounded sets need not be
compact, so it is not su cient to choose su ciently small so that ( 0 2 ) Here is a
counter example. Let be a Hilbert space, { } =1 be an orthonormal set. Define
( )

P

=1 (k k) where is any continuous function on R such that (0) = 1 and
is supported in ( 1 1) Notice that k k2 = 2 for all 6= so that k k = 2
Using this fact it is rather easy to check that for any 0 there is an 0 such that for all

( 0 ) only one term in the sum defining is non-zero. Hence, is continuous. However,
( ) = as
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where ( )
R 1

0
[ ( + ) ( )] Now

k ( )k
Z 1

0

k ( + ) ( )k max
[0 1]

k ( + ) ( )k 0 as 0

by the continuity of Thus, we have shown that is di erentiable and that
( ) = ( )

26.4. Smooth Dependence of ODE’s on Initial Conditions . In this subsec-
tion, let be a Banach space, and be an open interval with 0

Lemma 26.11. If ( × ) such that ( ) exists for all ( ) ×
and ( ) ( × ) then is locally Lipschitz in see Definition 5.12.

Proof. Suppose @@ and By the continuity of for every
there an open neighborhood of and 0 such that ( ) and

sup {k ( 0 0)k : ( 0 0) × ( )}
By the compactness of there exists a finite subset such that
Let ( ) := min { : } and

( ) sup {k ( 0)k( 0) × ( ( ))}
Then by the fundamental theorem of calculus and the triangle inequality,

k ( 1) ( 0)k
µ
Z 1

0

k ( 0 + ( 1 0)k
¶

k 1 0k ( )k 1 0k

for all 0 1 ( ( )) and

Theorem 26.12 (Smooth Dependence of ODE’s on Initial Conditions). Let be
a Banach space, (R × ) such that (R × ) and
: D( ) R × denote the maximal solution operator to the ordinary

di erential equation

(26.9) ˙( ) = ( ( )) with (0) =

see Notation 5.15 and Theorem 5.21. Then 1(D( ) ) ( ) exists
and is continuous for ( ) D( ) and ( ) satisfies the linear di erential
equation,

(26.10) ( ) = [( ) ( ( ))] ( ) with (0 ) =

for

Proof. Let 0 and be an open interval such that 0 ¯ @@ 0

0 := (· 0)| and

O := { ( ) : k 0k } ( )

By Lemma 26.11, is locally Lipschitz and therefore Theorem 5.21 is applicable.
By Eq. (5.30) of Theorem 5.21, there exists 0 and 0 such that :
( 0 ) O defined by ( ) (· )| is continuous. By Lemma 26.13 below,

for 0 su ciently small the function : O ( ) defined by

(26.11) ( )

Z ·

0

( ( ))
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is 1 and

(26.12) ( ) =

Z ·

0

( ( )) ( )

By the existence and uniqueness Theorem 5.5 for linear ordinary di erential
equations, ( ) is invertible for any ( ) By the definition of
( ( )) = ( ) for all ( 0 ) where : ( ) is defined by
( )( ) = for all i.e. ( ) is the constant path at Since is a bounded
linear map, is smooth and ( ) = for all We may now apply the
converse to the chain rule in Theorem 26.6 to conclude 1 ( ( 0 ) O) and

( ) = [ ( ( ))] 1 ( ) or equivalently, ( ( )) ( ) = which in turn
is equivalent to

( )

Z

0

[ ( ( )] ( ) =

As usual this equation implies ( ) is di erentiable in ( ) is continuous
in ( ) and ( ) satisfies Eq. (26.10).

Lemma 26.13. Continuing the notation used in the proof of Theorem 26.12 and
further let

( )

Z ·

0

( ( )) for O
Then 1(O ) and for all O

0( ) =

Z ·

0

( ( )) ( ) =:

Proof. Let be su ciently small and then by fundamental theorem
of calculus,

( ( ) + ( )) ( ( )) =

Z 1

0

[ ( ( ) + ( )) ( ( ))]

and therefore,

( ( + ) ( ) ) ( ) =

Z

0

[ ( ( ) + ( )) ( ( )) ( ( )) ( ) ]

=

Z

0

Z 1

0

[ ( ( ) + ( )) ( ( ))] ( )

Therefore,

(26.13) k( ( + ) ( ) )k k k ( )

where

( ) :=

Z Z 1

0

k ( ( ) + ( )) ( ( ))k
With the aide of Lemmas 26.11 and Lemma 5.13,

( ) [0 1]× × k ( ( ) + ( ))k
is bounded for small provided 0 is su ciently small. Thus it follows from the
dominated convergence theorem that ( ) 0 as 0 and hence Eq. (26.13)
implies 0( ) exists and is given by Similarly,

k 0( + ) 0( )k
Z

k ( ( ) + ( )) ( ( ))k 0 as 0

ANALYSIS TOOLS WITH APPLICATIONS 479

showing 0 is continuous.

Remark 26.14. If ( ) then an inductive argument shows that
(D( ) ) For example if 2( ) then ( ( ) ( )) := ( ( ) ( ))

solves the ODE,

( ( ) ( )) = ˜ (( ( ) ( ))) with ( (0) (0)) = ( )

where ˜ is the 1 — vector field defined by
˜ ( ) = ( ( ) ( ) )

Therefore Theorem 26.12 may be applied to this equation to deduce: 2 ( ) and
2 ˙( ) exist and are continuous. We may now di erentiate Eq. (26.10) to find
2 ( ) satisfies the ODE,

2 ( ) = [
¡

( )

¢

( ( ))] ( ) + [( ) ( ( ))] 2 ( )

with 2 (0 ) = 0

26.5. Higher Order Derivatives. As above, let : be a function.
If is di erentiable on then the di erential of is a function from to
the Banach space ( ) If the function : ( ) is also di eren-
tiable on then its di erential 2 = ( ) : ( ( )) Similarly,
3 = ( ( )) : ( ( ( ))) if the di erential of ( ) ex-

ists. In general, let L1( ) ( ) and L ( ) be defined inductively by
L +1( ) = ( L ( )) Then ( )( ) L ( ) if it exists. It will be
convenient to identify the space L ( ) with the Banach space defined in the
next definition.

Definition 26.15. For {1 2 3 } let ( ) denote the set of functions
: such that
(1) For {1 2 } h 1 2 1 +1 i is

linear 44 for all { } =1
(2) The norm k k ( ) should be finite, where

k k ( ) sup{k h 1 2 ik
k 1kk 2k · · · k k : { } =1 \ {0}}

Lemma 26.16. There are linear operators : L ( ) ( ) defined in-
ductively as follows: 1 = ( ) (notice that 1( ) = L1( ) = ( ))
and

( +1 )h 0 1 i = ( ( 0))h 1 2 i
(Notice that 0 L ( ) ) Moreover, the maps are isometric isomorphisms.

Proof. To get a feeling for what is let us write out 2 and 3 explicitly. If
L2( ) = ( ( )) then ( 2 )h 1 2i = ( 1) 2 and if L3( ) =
( ( ( ))) ( 3 )h 1 2 3i = (( 1) 2) 3 for all
It is easily checked that is linear for all We will now show by induction that
is an isometry and in particular that is injective. Clearly this is true if = 1

since 1 is the identity map. For L +1( )

44I will routinely write h 1 2 i rather than ( 1 2 ) when the function
depends on each of variables linearly, i.e. is a multi-linear function.
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k +1 k
+1( ) sup{k( ( 0))h 1 2 ik

k 0kk 1kk 2k · · · k k : { } =0 \ {0}}

sup{k( ( 0))k ( )

k 0k : 0 \ {0}}

= sup{k 0kL ( )

k 0k : 0 \ {0}}
= k k ( L ( )) k kL +1( )

wherein the second to last inequality we have used the induction hypothesis. This
shows that +1 is an isometry provided is an isometry.
To finish the proof it su ces to shows that is surjective for all Again this is

true for = 1 Suppose that is invertible for some 1 Given +1( )
we must produce L +1( ) = ( L ( )) such that +1 = If such
an equation is to hold, then for 0 we would have ( 0) = h 0 · · · i That
is 0 =

1( h 0 · · · i) It is easily checked that so defined is linear, bounded,
and +1 =
From now on we will identify L with without further mention. In particular,

we will view as function on with values in ( )

Theorem 26.17 (Di erentiability). Suppose {1 2 } and is a dense
subspace of : is a function such that ( 1 2 · · · )( )
exists for all { } =1 and = 1 2 Further assume
there exists continuous functions : ( ) such that such
that (

1 2
· · · )( ) = ( )h 1 2 i for all { } =1

and = 1 2 Then ( ) exists and is equal to ( ) for all and
= 1 2

Proof. We will prove the theorem by induction on We have already proved
the theorem when = 1 see Proposition 26.10. Now suppose that 1 and that
the statement of the theorem holds when is replaced by 1 Hence we know
that ( ) = ( ) for all and = 1 2 1 We are also given that

(26.14) ( 1 2 · · · )( ) = ( )h 1 2 i { }
Now we may write (

2
· · · )( ) as ( 1 )( )h 2 3 i so that Eq.

(26.14) may be written as
(26.15)

1(
1 )( )h 2 3 i) = ( )h 1 2 i { }

So by the fundamental theorem of calculus, we have that
(26.16)

(( 1 )( + 1) ( 1 )( ))h 2 3 i =
Z 1

0

( + 1)h 1 2 i

for all and { } with 1 su ciently small. By the same argument
given in the proof of Proposition 26.10, Eq. (26.16) remains valid for all and
{ } with 1 su ciently small. We may write this last equation alternatively
as,

(26.17) ( 1 )( + 1) ( 1 )( ) =

Z 1

0

( + 1)h 1 · · · i
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Hence

( 1 )( + 1) ( 1 )( ) ( )h 1 · · · i =
Z 1

0

[ ( + 1) ( )]h 1 · · · i

from which we get the estimate,

(26.18) k( 1 )( + 1) ( 1 )( ) ( )h 1 · · · ik ( 1)k 1k
where ( 1)

R 1

0
k ( + 1) ( )k Notice by the continuity of that

( 1) 0 as 1 0 Thus it follow from Eq. (26.18) that 1 is di erentiable
and that ( )( ) = ( )

Example 26.18. Let : ( ) ( ) be defined by ( ) 1 We
assume that ( ) is not empty. Then is infinitely di erentiable and
(26.19)
( )( )h 1 2 i = ( 1)

X

{ 1
(1)

1
(2)

1 · · · 1
( )

1}

where sum is over all permutations of of {1 2 }
Let me check Eq. (26.19) in the case that = 2 Notice that we have already

shown that ( 1 )( ) = ( ) 1 =
1
1

1 Using the product rule we find
that

(
2 1

)( ) = 1
2

1
1

1 + 1
1

1
2

1 =: 2( )h 1 2i
Notice that k 2( )h 1 2ik 2k 1k3k 1k · k 2k so that k 2( )k 2k 1k3

Hence 2 : ( ) 2( ( ) ( )) Also

k( 2( ) 2( ))h 1 2ik 2k 1
2

1
1

1 1
2

1
1

1k
2k 1

2
1
1

1 1
2

1
1

1k
+ 2k 1

2
1
1

1 1
2

1
1

1k
+ 2k 1

2
1
1

1 1
2

1
1

1k
2k 1k2k 2kk 1kk 1 1k
+ 2k 1kk 1kk 2kk 1kk 1 1k
+ 2k 1k2k 2kk 1kk 1 1k

This shows that

k 2( ) 2( )k 2k 1 1k{k 1k2 + k 1kk 1k+ k 1k2}
Since 1 is di erentiable and hence continuous, it follows that 2( ) is
also continuous in Hence by Theorem 26.17 2 ( ) exists and is given as in Eq.
(26.19)

Example 26.19. Suppose that : R R is a — function and
( )

R 1

0
( ( )) for ([0 1] R) equipped with the norm k k

max [0 1] | ( )| Then : R is also infinitely di erentiable and

(26.20) ( )( )h 1 2 i =
Z 1

0

( )( ( )) 1( ) · · · ( )

for all and { }
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To verify this example, notice that

( )( ) |0 ( + ) = |0
Z 1

0

( ( ) + ( ))

=

Z 1

0

|0 ( ( ) + ( )) =

Z 1

0

0( ( )) ( )

Similar computations show that

(
1 2

· · · )( ) =

Z 1

0

( )( ( )) 1( ) · · · ( ) =: ( )h 1 2 i

Now for

| ( )h 1 2 i ( )h 1 2 i|
Z 1

0

| ( )( ( )) ( )( ( ))| · | 1( ) · · · ( ) |

Y

=1

k k
Z 1

0

| ( )( ( )) ( )( ( ))|

which shows that

k ( ) ( )k
Z 1

0

| ( )( ( )) ( )( ( ))|

This last expression is easily seen to go to zero as in Hence is
continuous. Thus we may apply Theorem 26.17 to conclude that Eq. (26.20) is
valid.

26.6. Contraction Mapping Principle.

Theorem 26.20. Suppose that ( ) is a complete metric space and :
is a contraction, i.e. there exists (0 1) such that ( ( ) ( )) ( ) for
all Then has a unique fixed point in i.e. there exists a unique point

such that ( ) =

Proof. For uniqueness suppose that and 0 are two fixed points of then

( 0) = ( ( ) ( 0)) ( 0)

Therefore (1 ) ( 0) 0 which implies that ( 0) = 0 since 1 0 Thus
= 0

For existence, let 0 be any point in and define inductively by
+1 = ( ) for 0 We will show that lim exists in and because
is continuous this will imply,

= lim +1 = lim ( ) = ( lim ) = ( )

showing is a fixed point of
So to finish the proof, because is complete, it su ces to show { } =1 is a

Cauchy sequence in An easy inductive computation shows, for 0 that

( +1 ) = ( ( ) ( 1)) ( 1) · · · ( 1 0)

Another inductive argument using the triangle inequality shows, for that,

( ) ( 1) + ( 1 ) · · ·
1

X

=

( +1 )
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Combining the last two inequalities gives (using again that (0 1)),

( )
1

X

=

( 1 0) ( 1 0)
X

=0

= ( 1 0)
1

This last equation shows that ( ) 0 as i.e. { } =0 is a
Cauchy sequence.

Corollary 26.21 (Contraction Mapping Principle II). Suppose that ( ) is a
complete metric space and : is a continuous map such that ( ) is a
contraction for some N Here

( )

times
z }| {

and we are assuming there exists (0 1) such that ( ( )( ) ( )( )) ( )
for all Then has a unique fixed point in

Proof. Let ( ) then : is a contraction and hence has a
unique fixed point Since any fixed point of is also a fixed point of we
see if has a fixed point then it must be Now

( ( )) = ( )( ( )) = ( ( )( )) = ( ( )) = ( )

which shows that ( ) is also a fixed point of Since has only one fixed point,
we must have that ( ) = So we have shown that is a fixed point of and
this fixed point is unique.

Lemma 26.22. Suppose that ( ) is a complete metric space, N is a
topological space, and (0 1) Suppose for each there is a map :
with the following properties:

Contraction property: (
( )
( )

( )
( )) ( ) for all and

Continuity in : For each the map ( ) is continu-
ous.

By Corollary 26.21 above, for each there is a unique fixed point ( )
of
Conclusion: The map : is continuous.

Proof. Let ( ) If then

( ( ) ( )) = ( ( ( )) ( ( )))

( ( ( )) ( ( ))) + ( ( ( )) ( ( )))

( ( ( )) ( ( ))) + ( ( ) ( ))

Solving this inequality for ( ( ) ( )) gives

( ( ) ( ))
1

1
( ( ( )) ( ( )))

Since ( ( )) is continuous it follows from the above equation that ( )
( ) as i.e. is continuous.
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26.7. Inverse and Implicit Function Theorems. In this section, let be a
Banach space, be an open set, and : and : be
continuous functions. Question: under what conditions on is ( ) := + ( )
a homeomorphism from 0( ) to ( 0( )) for some small 0? Let’s start by
looking at the one dimensional case first. So for the moment assume that = R
= ( 1 1) and : R is 1 Then will be one to one i is monotonic.

This will be the case, for example, if 0 = 1 + 0 0 This in turn is guaranteed
by assuming that | 0| 1 (This last condition makes sense on a Banach space
whereas assuming 1 + 0 0 is not as easily interpreted.)

Lemma 26.23. Suppose that = = (0 ) ( 0) is a ball in and :
is a 1 function such that k k on Then for all we

have:

(26.21) k ( ) ( )k k k
Proof. By the fundamental theorem of calculus and the chain rule:

( ) ( ) =

Z 1

0

( + ( ))

=

Z 1

0

[ ( + ( ))]( )

Therefore, by the triangle inequality and the assumption that k ( )k on

k ( ) ( )k
Z 1

0

k ( + ( ))k · k( )k k( )k

Remark 26.24. It is easily checked that if : = (0 ) is 1 and satisfies
(26.21) then k k on

Using the above remark and the analogy to the one dimensional example, one is
lead to the following proposition.

Proposition 26.25. Suppose that = = (0 ) ( 0) is a ball in
(0 1) : is continuous, ( ) + ( ) for and satisfies:

(26.22) k ( ) ( )k k k
Then ( ) is open in and : := ( ) is a homeomorphism.

Proof. First notice from (26.22) that

k k = k( ( ) ( )) ( ( ) ( ))k
k ( ) ( )k+ k ( ) ( )k
k ( ) ( )k+ k( )k

from which it follows that k k (1 ) 1k ( ) ( )k Thus is injective
on Let = ( ) and = 1 : denote the inverse function which
exists since is injective.
We will now show that is open. For this let 0 and 0 = ( 0) =

0 + ( 0) We wish to show for close to 0 that there is an such that
( ) = + ( ) = or equivalently = ( ) Set ( ) = ( ) then we are

looking for such that = ( ) i.e. we want to find a fixed point of We
will show that such a fixed point exists by using the contraction mapping theorem.
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Step 1. is contractive for all In fact for

(26.23) k ( ) ( )k = k ( ) ( ))k k k
Step 2. For any 0 such the = ( 0 ) and such that

k 0k (1 ) we have ( ) Indeed, let and compute:

k ( ) 0k = k ( ) 0( 0)k
= k ( ) ( 0 ( 0))k
= k 0 ( ( ) ( 0))k
k 0k+ k 0k
(1 ) + =

wherein we have used 0 = ( 0) and (26.22).
Since is a closed subset of a Banach space we may apply the contraction

mapping principle, Theorem 26.20 and Lemma 26.22, to to show there is a
continuous function : ( 0 (1 ) ) such that

( ) = ( ( )) = ( ( )) = ( ( )) + ( )

i.e. ( ( )) = This shows that ( 0 (1 ) ) ( ) ( ) = That is
0 is in the interior of Since 1| ( 0 (1 ) ) is necessarily equal to which is
continuous, we have also shown that 1 is continuous in a neighborhood of 0

Since 0 was arbitrary, we have shown that is open and that 1 :
is continuous.

Theorem 26.26 (Inverse Function Theorem). Suppose and are Banach
spaces, ( ) with 1 0 and ( 0) is invert-
ible. Then there is a ball = ( 0 ) in centered at 0 such that

(1) = ( ) is open,
(2) | : is a homeomorphism,
(3) = ( | ) 1 ( ) and

(26.24) 0( ) = [ 0( ( ))] 1 for all

Proof. Define ( ) [ ( 0)]
1 ( + 0) and ( ) ( ) for

( 0) Notice that 0 0 (0) = and that (0) = = 0

Choose 0 such that ˜ (0 ) 0 and k ( )k 1
2 for

˜ By
Lemma 26.23, satisfies (26.23) with = 1 2 By Proposition 26.25, ( ˜) is open
and | ˜ : ˜ ( ˜) is a homeomorphism. Let | 1

˜ which we know to be a

continuous map from ( ˜) ˜

Since k ( )k 1 2 for ˜ ( ) = + ( ) is invertible, see Corollary
3.70. Since ( ) = is 1 and = on ( ˜) it follows from the converse
to the chain rule, Theorem 26.6, that is di erentiable and

( ) = [ ( ( ))] 1 ( ) = [ ( ( ))] 1

Since and the map ( ) 1 ( ) are all continuous maps,
(see Example 26.5) the map ( ˜) ( ) ( ) is also continuous, i.e.
is 1

Let = ˜ + 0 = ( 0 ) Since ( ) = [ ( 0)] ( 0) and ( 0) is
invertible (hence an open mapping), := ( ) = [ ( 0)] ( ˜) is open in It
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is also easily checked that | 1 exists and is given by

(26.25) | 1( ) = 0 + ([ ( 0)]
1 )

for = ( ) This shows that | : is a homeomorphism and it follows
from (26.25) that = ( | ) 1 1( ) Eq. (26.24) now follows from the chain
rule and the fact that

( ) = for all

Since 0 1( ( )) and ( ) := 1 is a smooth map by Example 26.18,
0 = 0 is 1 if 2 i.e. is 2 if 2 Again using 0 = 0 we may
conclude 0 is 2 if 3 i.e. is 3 if 3 Continuing bootstrapping our way
up we eventually learn = ( | ) 1 ( ) if is

Theorem 26.27 (Implicit Function Theorem). Now suppose that and
are three Banach spaces, 1 × is an open set, ( 0 0) is a
point in and : is a — map such ( 0 0) = 0 Assume that
2 ( 0 0) ( ( 0 ·))( 0) : is a bounded invertible linear transforma-

tion. Then there is an open neighborhood 0 of 0 in such that for all connected
open neighborhoods of 0 contained in 0 there is a unique continuous function
: such that ( 0) = ( ( )) and ( ( )) = 0 for all

Moreover is necessarily and

(26.26) ( ) = 2 ( ( )) 1
1 ( ( )) for all

Proof. Proof of 26.27. By replacing by ( ) 2 ( 0 0)
1 ( ) if

necessary, we may assume with out loss of generality that = and 2 ( 0 0) =
Define : × by ( ) ( ( )) for all ( ) Notice that

( ) =

·

1 ( )
0 2 ( )

¸

which is invertible i 2 ( ) is invertible and if 2 ( ) is invertible then

( ) 1 =

·

1 ( ) 2 ( ) 1

0 2 ( ) 1

¸

Since 2 ( 0 0) = is invertible, the implicit function theorem guarantees that
there exists a neighborhood 0 of 0 and 0 of 0 such that 0× 0 ( 0× 0)
is open in × |( 0× 0) has a —inverse which we call 1 Let 2( )

for all ( ) × and define — function 0 on 0 by 0( ) 2
1( 0)

Since 1( 0) = (˜ 0( )) i ( 0) = (˜ 0( )) = (˜ (˜ 0( ))) it follows
that = ˜ and ( 0( )) = 0 Thus ( 0( )) =

1( 0) 0 × 0 and
( 0( )) = 0 for all 0 Moreover, 0 is being the composition of the —
functions, ( 0) 1 and 2 So if 0 is a connected set containing 0

we may define 0| to show the existence of the functions as described in
the statement of the theorem. The only statement left to prove is the uniqueness
of such a function
Suppose that 1 : is another continuous function such that 1( 0) = 0

and ( 1( )) and ( 1( )) = 0 for all Let

{ | ( ) = 1( )} = { | 0( ) = 1( )}
Clearly is a (relatively) closed subset of which is not empty since 0

Because is connected, if we show that is also an open set we will have shown
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that = or equivalently that 1 = 0 on So suppose that i.e.
0( ) = 1( ) For ˜ near

(26.27) 0 = 0 0 = (˜ 0(˜)) (˜ 1(˜)) = (˜)( 1(˜) 0(˜))

where

(26.28) (˜)

Z 1

0
2 ((˜ 0(˜) + ( 1(˜) 0(˜)))

From Eq. (26.28) and the continuity of 0 and 1 lim˜ (˜) = 2 ( 0( ))
which is invertible45. Thus (˜) is invertible for all ˜ su ciently close to Using
Eq. (26.27), this last remark implies that 1(˜) = 0(˜) for all ˜ su ciently close
to Since was arbitrary, we have shown that is open.

26.8. More on the Inverse Function Theorem. In this section and will
denote two Banach spaces, 1 and ( ) Suppose 0

and 0( 0) is invertible, then

( 0 + ) ( 0) =
0( 0) + ( ) = 0( 0) [ + ( )]

where
( ) = 0( 0)

1 [ ( 0 + ) ( 0)] = ( )

In fact by the fundamental theorem of calculus,

( ) =

Z 1

0

¡ 0( 0)
1 0( 0 + )

¢

but we will not use this here.
Let 0 (0 ) and apply the fundamental theorem of calculus to
( 0 + ( 0 )) to conclude

( 0) ( ) = 0( 0)
1 [ ( 0 +

0) ( 0 + )] ( 0 )

=

·
Z 1

0

¡ 0( 0)
1 0( 0 + ( 0 ))

¢

¸

( 0 )

Taking norms of this equation gives

k ( 0) ( )k
·
Z 1

0

°

°

0( 0)
1 0( 0 + ( 0 ))

°

°

¸

k 0 k k 0 k

where

(26.29) := sup
( 0 )

°

°

0( 0)
1 0( )

°

°

( )

We summarize these comments in the following lemma.

Lemma 26.28. Suppose 0 0 : ( 0 ) be a 1 — function
such that 0( 0) is invertible, is as in Eq. (26.29) and 1

¡

(0 )
¢

is
defined by

(26.30) ( 0 + ) = ( 0) +
0( 0) ( + ( ))

Then

(26.31) k ( 0) ( )k k 0 k for all 0 (0 )

45Notice that ( 0( )) is invertible for all 0 since | 0× 0 has a
1 inverse. There-

fore 2 ( 0( )) is also invertible for all 0
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Furthermore if 1 (which may be achieved by shrinking if necessary) then
0( ) is invertible for all ( 0 ) and

(26.32) sup
( 0 )

°

°

0( ) 1
°

°

( )

1

1

°

°

0( 0)
1
°

°

( )

Proof. It only remains to prove Eq. (26.32), so suppose now that 1 Then
by Proposition 3.69 0( 0)

1 0( ) is invertible and
°

°

°

£ 0( 0)
1 0( )

¤ 1
°

°

°

1

1
for all ( 0 )

Since 0( ) = 0( 0)
£ 0( 0)

1 0( )
¤

this implies 0( ) is invertible and
°

°

0( ) 1
°

° =
°

°

°

£ 0( 0)
1 0( )

¤ 1 0( 0)
1
°

°

°

1

1

°

°

0( 0)
1
°

° for all ( 0 )

Theorem 26.29 (Inverse Function Theorem). Suppose 1 and
( ) such that 0( ) is invertible for all Then:

(1) : is an open mapping, in particular := ( )
(2) If is injective, then 1 : is also a — map and

¡

1
¢0
( ) =

£ 0( 1( ))
¤ 1

for all

(3) If 0 and 0 such that ( 0 ) and

sup
( 0 )

°

°

0( 0)
1 0( )

°

° = 1

(which may always be achieved by taking su ciently small by continuity
of 0( )) then | ( 0 ) : ( 0 ) ( ( 0 )) is invertible and
| 1

( 0 )
:
¡

( 0 )
¢

( 0 ) is
(4) Keeping the same hypothesis as in item 3. and letting 0 = ( 0)

( ( 0 )) ( 0 k 0( 0)k (1 + ) ) for all

and
( 0 ) ( ( 0 (1 ) 1 °

°

0( 0)
1
°

° ))

for all ( 0) := (1 )
°

°

0( 0)
1
°

°

Proof. Let 0 and 0 be as in item 3. above and be as defined in Eq.
(26.30) above, so that for 0 ( 0 )

( ) = ( 0) +
0( 0) [( 0) + ( 0)] and

( 0) = ( 0) +
0( 0) [(

0
0) + ( 0

0)]

Subtracting these two equations implies

( 0) ( ) = 0( 0) [
0 + ( 0

0) ( 0)]

or equivalently
0 = 0( 0)

1 [ ( 0) ( )] + ( 0) ( 0
0)

Taking norms of this equation and making use of Lemma 26.28 implies

k 0 k °

°

0( 0)
1
°

° k ( 0) ( )k+ k 0 k
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which implies

(26.33) k 0 k
°

°

0( 0)
1
°

°

1
k ( 0) ( )k for all 0 ( 0 )

This shows that | ( 0 ) is injective and that | 1
( 0 )

:
¡

( 0 )
¢

( 0 ) is Lipschitz continuous because
°

°

°
| 1

( 0 )
( 0) | 1

( 0 )
( )
°

°

°

°

°

0( 0)
1
°

°

1
k 0 k for all 0 ¡

( 0 )
¢

Since 0 was chosen arbitrarily, if we know : is injective, we then
know that 1 : = ( ) is necessarily continuous. The remaining assertions
of the theorem now follow from the converse to the chain rule in Theorem 26.6 and
the fact that is an open mapping (as we shall now show) so that in particular
¡

( 0 )
¢

is open.
Let (0 ) with to be determined later, we wish to solve the equation,

for (0 )

( 0) + = ( 0 + ) = ( 0) +
0( 0) ( + ( ))

Equivalently we are trying to find (0 ) such that

= 0( 0)
1 ( ) =: ( )

Now using Lemma 26.28 and the fact that (0) = 0

k ( )k °

°

0( 0)
1
°

°+ k ( )k °

°

0( 0)
1
°

° k k+ k k
°

°

0( 0)
1
°

° +

Therefore if we assume is chosen so that
°

°

0( 0)
1
°

° + i.e. (1 )
°

°

0( 0)
1
°

° := ( 0)

then : (0 ) (0 ) (0 )

Similarly by Lemma 26.28, for all (0 )

k ( ) ( )k = k ( ) ( )k k k
which shows is a contraction on (0 ) Hence by the contraction mapping
principle in Theorem 26.20, for every (0 ) there exists a unique solution

(0 ) such that = ( ) or equivalently

( 0 + ) = ( 0) +

Letting 0 = ( 0) this last statement implies there exists a unique function :
( 0 ( 0)) ( 0 ) such that ( ( )) = ( 0 ( 0)) From Eq.

(26.33) it follows that

k ( ) 0k = k ( ) ( 0)k
°

°

0( 0)
1
°

°

1
k ( ( )) ( ( 0))k =

°

°

0( 0)
1
°

°

1
k 0k

This shows
( ( 0 )) ( 0 (1 ) 1 °

°

0( 0)
1
°

° )

and therefore

( 0 ) =
¡

( ( 0 ))
¢

³

( 0 (1 )
1 °
°

0( 0)
1
°

° )
´
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for all ( 0)
This last assertion implies ( 0) ( ) for any with 0 Since

0 was arbitrary, this shows is an open mapping.

26.8.1. Alternate construction of . Suppose and : is a 2 —
function. Then we are looking for a function ( ) such that ( ( )) = Fix an
0 and 0 = ( 0) Suppose such a exists and let ( ) = ( 0 + ) for
some Then di erentiating ( ( )) = 0 + implies

( ( )) = 0( ( )) ˙ ( ) =

or equivalently that

(26.34) ˙ ( ) = [ 0( ( ))] 1
= ( ( )) with (0) = 0

where ( ) = [ 0( ( ))] 1 Conversely if solves Eq. (26.34) we have
( ( )) = and hence that

( (1)) = 0 +

Thus if we define
( 0 + ) := ( ·)( 0)

then ( ( 0 + )) = 0 + for all su ciently small. This shows is an open
mapping.

26.9. Applications. A detailed discussion of the inverse function theorem on Ba-
nach and Fréchet spaces may be found in Richard Hamilton’s, “The Inverse Func-
tion Theorem of Nash and Moser.” The applications in this section are taken from
this paper.

Theorem 26.30 (Hamilton’s Theorem on p. 110.). Let : := ( ) :=
( ) be a smooth function with 0 0 on ( ) For every 2 (R ( )) there
exists a unique function 2 (R ( )) such that

˙( ) + ( ( )) = ( )

Proof. Let ˜ := 0
2 (R ( )) 0

2 (R R) and

˜ :=
©

1
2 (R R) : ( ) and ˙( ) + ( ( )) for all

ª

1
2 (R ( ))

The proof will be completed by showing : ˜ ˜ defined by

( )( ) = ˙( ) + ( ( )) for ˜ and R

is bijective.
Step 1. The di erential of is given by 0( ) = ˙ + 0( ) see Exercise

26.7. We will now show that the linear mapping 0( ) is invertible. Indeed let
= 0( ) 0 then the general solution to the Eq. ˙ + = is given by

( ) =
R

0
( )

0 +

Z

0

R

( ) ( )

where 0 is a constant. We wish to choose 0 so that (2 ) = 0 i.e. so that

0

³

1 ( )
´

=

Z 2

0

R

( ) ( )
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where

( ) =

Z 2

0

( ) =

Z 2

0

0( ( )) 0

The unique solution 1
2 (R R) to 0( ) = is given by

( ) =
³

1 ( )
´ 1 R

0
( )

Z 2

0

R

( ) ( ) +

Z

0

R

( ) ( )

=
³

1 ( )
´ 1 R

0
( )

Z 2

0

R

( ) ( ) +

Z

0

R

( ) ( )

Therefore 0( ) is invertible for all Hence by the implicit function theorem,
: ˜ ˜ is an open mapping which is locally invertible.
Step 2. Let us now prove : ˜ ˜ is injective. For this suppose 1 2

˜

such that ( 1) = = ( 2) and let = 2 1 Since

˙( ) + ( 2( )) ( 1( )) = ( ) ( ) = 0

if R is point where ( ) takes on its maximum, then ˙( ) = 0 and hence

( 2( )) ( 1( )) = 0

Since is increasing this implies 2( ) = 1( ) and hence ( ) = 0 This shows
( ) 0 for all and a similar argument using a minimizer of shows ( ) 0 for
all So we conclude 1 = 2

Step 3. Let := ( ˜) we wish to show = ˜ By step 1., we know is
an open subset of ˜ and since ˜ is connected, to finish the proof it su ces to show
is relatively closed in ˜ So suppose ˜ such that := ( ) ˜

We must now show i.e. = ( ) for some If is a maximizer of
then ˙ ( ) = 0 and hence ( ) = ( ( )) and therefore ( )

because is increasing. A similar argument works for the minimizers then allows us
to conclude Ran ) Ran ) @@ ( ) for all Since is converging uniformly
to there exists such that Ran( ) Ran( ) [ ] for all
Again since 0 0

Ran( ) 1 ([ ]) = [ ] @@ ( ) for all

In particular sup {| ˙ ( )| : R and } since

(26.35) ˙ ( ) = ( ) ( ( )) [ ] [ ]

which is a compact subset of R The Ascoli-Arzela Theorem 3.59 now allows us to
assume, by passing to a subsequence if necessary, that is converging uniformly
to 0

2 (R [ ]) It now follows that

˙ ( ) = ( ) ( ( )) ( )

uniformly in Hence we concluded that 1
2 (R R) 0

2 (R [ ]) ˙ and
( ) = This has proved that and hence that is relatively closed in ˜
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26.10. Exercises.

Exercise 26.2. Suppose that : R ( ) is a continuous function and : R
( ) is the unique solution to the linear di erential equation

(26.36) ˙ ( ) = ( ) ( ) with (0) =

Assuming that ( ) is invertible for all R show that 1( ) [ ( )] 1 must
solve the di erential equation

(26.37) 1( ) = 1( ) ( ) with 1(0) =

See Exercise 5.14 as well.

Exercise 26.3 (Di erential Equations with Parameters). Let be another Ba-
nach space, × × and 1( × ) For each ( ) × let

( ) denote the maximal solution to the ODE

(26.38) ˙( ) = ( ( ) ) with (0) =

and
D := {( ) R× × : }

as in Exercise 5.18.

(1) Prove that is 1 and that ( ) solves the di erential equation:

( ) = ( )( ( ) ) ( ) + ( )( ( ) )

with (0 ) = 0 ( ) Hint: See the hint for Exercise 5.18
with the reference to Theorem 5.21 being replace by Theorem 26.12.

(2) Also show with the aid of Duhamel’s principle (Exercise 5.16) and Theorem
26.12 that

( ) = ( )

Z

0

( ) 1( )( ( ) )

Exercise 26.4. (Di erential of ) Let : ( ) ( ) be the exponential
function ( ) = Prove that is di erentiable and that

(26.39) ( ) =

Z 1

0

(1 )

Hint: Let ( ) and define ( ) = ( + ) for all R Notice that

(26.40) ( ) = ( + ) ( ) with (0 ) = ( )

Use Exercise 26.3 to conclude that is 1 and that 0( 0) ( ) | =0
satisfies the di erential equation,

(26.41) 0( 0) = 0( 0) + with (0 0) = 0 ( )

Solve this equation by Duhamel’s principle (Exercise 5.16) and then apply Proposi-
tion 26.10 to conclude that is di erentiable with di erential given by Eq. (26.39).

Exercise 26.5 (Local ODE Existence). Let be defined as in Eq. (5.22) from the
proof of Theorem 5.10. Verify that satisfies the hypothesis of Corollary 26.21.
In particular we could have used Corollary 26.21 to prove Theorem 5.10.

ANALYSIS TOOLS WITH APPLICATIONS 493

Exercise 26.6 (Local ODE Existence Again). Let = [ 1 1] 1( )
:= ( ) and for and let be defined by ( ) := ( ) Use

the following outline to prove the ODE

(26.42) ˙( ) = ( ( )) with (0) =

has a unique solution for small and this solution is 1 in
(1) If solves Eq. (26.42) then solves

˙ ( ) = ( ( )) with (0) =

or equivalently

(26.43) ( ) = +

Z

0

( ( ))

Notice that when = 0 the unique solution to this equation is 0( ) =
(2) Let : × × be defined by

( ) := ( ( )

Z

0

( ( )) )

Show the di erential of is given by

0( )( ) =

µ

( )

Z

0

0( ( )) ( )
Z ·

0

( ( ))

¶

(3) Verify 0(0 ) : R× R× is invertible for all and notice that
(0 ) = (0 )

(4) For let be the constant path at i.e. ( ) = for all
Use the inverse function Theorem 26.26 to conclude there exists 0

and a 1 map : ( )× ( 0 ) such that

( ( )) = ( ) for all ( ) ( )× ( 0 )

(5) Show, for that ( ) := ( )( ) satisfies Eq. (26.43). Now define
( ) = ( 2 )(2 ) and show ( ) solve Eq. (26.42) for | | 2
and ( 0 )

Exercise 26.7. Show defined in Theorem 26.30 is continuously di erentiable
and 0( ) = ˙ + 0( )
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27. Proof of the Change of Variable Theorem

This section is devoted to the proof of the change of variables theorem 8.31. For
convenience we restate the theorem here.

Theorem 27.1 (Change of Variables Theorem). Let R be an open set and
: ( ) R be a 1 — di eomorphism. Then for any Borel measurable
: ( ) [0 ] we have

(27.1)
Z

|det 0| =

Z

( )

Proof. We will carry out the proof in a number of steps.
Step 1. Eq. (27.1) holds when = R and is linear and invertible. This was

proved in Theorem 8.33 above using Fubini’s theorem, the scaling and translation
invariance properties of one dimensional Lebesgue measure and the fact that by
row reduction arguments may be written as a product of “elementary” transfor-
mations.
Step 2. For all B

(27.2) ( ( ))

Z

|det 0|

This will be proved in Theorem 27.4below.
Step 3. Step 2. implies the general case. To see this, let B ( ) and
= 1( ) in Eq. (27.2) to learn that

Z

1 = ( )

Z

1( )

|det 0| =

Z

1 |det 0|

Using linearity we may conclude from this equation that

(27.3)
Z

( )

Z

|det 0|

for all non-negative simple functions on ( ) Using Theorem 7.12 and the
monotone convergence theorem one easily extends this equation to hold for all
nonnegative measurable functions on ( )
Applying Eq. (27.3) with replaced by ( ) replaced by 1 and by
: [0 ] we see that

(27.4)
Z

=

Z

1( ( ))

Z

( )

1
¯

¯

¯
det

¡

1
¢0¯
¯

¯

for all Borel measurable Taking = ( ) |det 0| in this equation shows,
Z

|det 0|
Z

( )

¯

¯det 0 1
¯

¯

¯

¯

¯
det

¡

1
¢0¯
¯

¯

=

Z

( )

(27.5)

wherein the last equality we used the fact that 1 = so that
¡ 0 1

¢ ¡

1
¢0
= and hence det 0 1 det

¡

1
¢0
= 1

Combining Eqs. (27.3) and (27.5) proves Eq. (27.1). Thus the proof is complete
modulo Eq. (27.3) which we prove in Theorem 27.4 below.
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Notation 27.2. For R we will write is for all and
if for all Given let [ ] =

Q

=1[ ] and ( ] =
Q

=1( ]
(Notice that the closure of ( ] is [ ] ) We will say that = ( ] is a cube
provided that = 2 0 is a constant independent of When is a cube,
let

:= + ( )

be the center of the cube.

Notice that with this notation, if is a cube of side length 2

(27.6) ¯ = { R : | | }
and the interior ( 0) of may be written as

0 = { R : | | }
Notation 27.3. For R let | | = max | | and if is a × matrix let
k k = max P | |
A key point of this notation is that

| | = max
¯

¯

¯

¯

¯

¯

X

¯

¯

¯

¯

¯

¯

max
X

| | | |

k k | |(27.7)

Theorem 27.4. Let R be an open set and : ( ) R be a 1 —
di eomorphism. Then for any B

(27.8) ( ( ))

Z

|det 0( )|

Proof. Step 1. We will first assume that = = ( ] is a cube such that
¯ = [ ] Let = ( ) 2 be half the side length of By the fundamental
theorem of calculus (for Riemann integrals) for

( ) = ( ) +

Z 1

0

0( + ( ))( )

= ( ) + 0( ) ( )

where

( ) =

·
Z 1

0

0( ) 1 0( + ( ))

¸

( )

Therefore ( ) = ( ) + 0( ) ( ) and hence

( ( )) = ( ( ) + 0( ) ( )) = ( 0( ) ( ))

= |det 0( )| ( ( ))(27.9)

Now for ¯ i.e. | |

| ( )|
°

°

°

°

Z 1

0

0( ) 1 0( + ( ))

°

°

°

°

| |
( )
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where

(27.10) ( ) :=

Z 1

0

°

°

0( ) 1 0( + ( ))
°

°

Hence
( ) max ( ){ R : | | max ( )}

and

(27.11) ( ( )) max ( ) (2 ) = max ( ) ( )

Combining Eqs. (27.9) and (27.11) shows that

(27.12) ( ( )) |det 0( )| ( ) ·max ( )

To refine this estimate, we will subdivide into smaller cubes, i.e. for N let

Q =

½

( +
2
( )] +

2
: {0 1 2 }

¾

Notice that =
`

Q By Eq. (27.12),

( ( )) |det 0( )| ( ) ·max ( )

and summing the equation on gives

( ( )) =
X

Q
( ( ))

X

Q
|det 0( )| ( ) ·max ( )

Since ( ) = 1 for all ¯ and : ¯ × ¯ [0 ) is continuous function on
a compact set, for any 0 there exists such that if ¯ and | |
then ( ) 1 + Using this in the previously displayed equation, we find that

( ( ) (1 + )
X

Q
|det 0( )| ( )

= (1 + )

Z

X

Q
|det 0( )| 1 ( ) ( )(27.13)

Since |det 0( )| is continuous on the compact set ¯ it easily follows by uniform
continuity that

X

Q
|det 0( )| 1 ( ) |det 0( )| as

and the convergence in uniform on ¯ Therefore the dominated convergence theorem
enables us to pass to the limit, in Eq. (27.13) to find

( ( )) (1 + )

Z

|det 0( )| ( )

Since 0 is arbitrary we are done we have shown that

( ( ))

Z

|det 0( )| ( )

Step 2. We will now show that Eq. (27.8) is valid when = is an open
subset of For N let

Q =
©

(0 ( )] + 2 : Z
ª
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so that Q is a partition of R Let F1 :=
© Q1 : ¯

ª

and define F
=1Q inductively as follows. Assuming F 1 has been defined, let

F = F 1

© Q : ¯ and = for all F 1

ª

= F 1

© Q : ¯ and * for any F 1

ª

Now set F = F (see Figure 47) and notice that =
`

F Indeed by con-

Figure 47. Filling out an open set with half open disjoint cubes.
We have drawn F2

struction, the sets in F are pairwise disjoint subset of so that
`

F
If there exists an and Q such that and ¯ Then by
construction of F either F or there is a set F such that In either
case

`

F which shows that =
`

F Therefore by step 1.,

( ( )) = ( ( F )) = (( F ( )))

=
X

F
( ( ))

X

F

Z

|det 0( )| ( )

=

Z

|det 0( )| ( )

which proves step 2.
Step 3. For general B let be the measure,

( ) :=

Z

|det 0( )| ( )

Then and are ( — finite measures as you should check) on B such that
on open sets. By regularity of these measures, we may conclude that
Indeed, if B

( ( )) = inf ( ( )) inf ( ) = ( ) =

Z

|det 0( )| ( )
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27.1. Appendix: Other Approaches to proving Theorem 27.1 . Replace
by 1 in Eq. (27.1) gives

Z

|det 0| =

Z

( )

1 =

Z

( )

so we are trying to prove ( ) = |det 0| Since both sides are measures it
su ces to show that they agree on a multiplicative system which generates the —
algebra. So for example it is enough to show ( ( )) =

R |det 0| when is
a small rectangle.
As above reduce the problem to the case where (0) = 0 and 0(0) = Let

( ) = ( ) and set ( ) = + ( ) (Notice that det 0 0 in this case so
we will not need absolute values.) Then : ( ) is a 1 — morphism for
small and ( ) contains some fixed smaller cube for all Let 1( ) then
it su ces to show

Z

|det 0| = 0

for then
Z

det 0 =

Z

0 det
0
0 =

Z

=

Z

( )

So we are left to compute
Z

det 0 =

Z
½

( ) ( ) det 0 + det 0
¾

=

Z

{( ) ( ) + · ( 0 )}det 0

Now let := ( 0) 1 then

( ) = ( ) =
¡

0
¢

( ) = ( ) ( )

Therefore,
Z

det 0 =

Z

{ ( ) + · ( 0 )}det 0

Let us now do an integration by parts,
Z

( ) det 0 =

Z

( ) { det 0 + · det 0}

so that
Z

det 0 =

Z

{ ( 0 ) det 0 det 0 · det 0}

Finally,

det 0 = det 0 · (( 0) 1 0) = det 0 · (( 0) 1 00 ( 0) 1
)

while
· = 0 =

h

( 0) 1 00 ( 0) 1
i

+
h

( 0) 1 0
i

so that
det 0 + · det 0 = det 0 ·

h

( 0) 1 0
i
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and therefore
Z

det 0 = 0

as desired.
The problem with this proof is that it requires or equivalently to be twice

continuously di erentiable. I guess this can be overcome by smoothing a 1 —
and then removing the smoothing after the result is proved.
Proof. Take care of lower bounds also.
(1) Show ( ( )) =

R

( 0( )) =: ( ) for all
(2) Fix . Claim = on B = { : B}
Proof Equality holds on a k. Rectangles contained in . Therefore the algebra

of finite disjoint unison of such of rectangles here as ({rectangle contained in }.
But ({rectangle } = B .

(3) Since =
S

=1
of such rectangles (even cubes) it follows that ( ) =

P

( ) =
P

( ) = ( ) for all B .

Now for general open sets write =
S

=1
almost disjoint union. Then

( ( )) (
[

=1

( ))
X X

Z

| 0| =

Z

| 0|

so ( ( ))
R | 0| for all . Let such that bounded. Choose

C such that and ( \ ) 0. Then ( ) ( )
R | 0|

R | 0| so ( ( ))
R | 0| for all bounded for general

( ( )) = lim ( ( )) lim

Z

| 0| =

Z

| 0|

Therefore ( ( ))
R | 0| for all measurable.

27.2. Sard’s Theorem. See p. 538 of Taylor and references. Also see Milnor’s
topology book. Add in the Brower Fixed point theorem here as well. Also Spivak’s
calculus on manifolds.

Theorem 27.5. Let R ( R ) and := { : rank( 0( )) }
be the set of critical points of Then the critical values, ( ) is a Borel measuralbe
subset of R of Lebesgue measure 0

Remark 27.6. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the norm,
| | := max | | Recall that if 1( R ) and then

( + ) = ( ) +

Z 1

0

0( + ) = ( ) + 0( ) +

Z 1

0

[ 0( + ) 0( )]

so that if

( ) := ( + ) ( ) 0( ) =

Z 1

0

[ 0( + ) 0( )]
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we have

| ( )| | |
Z 1

0

| 0( + ) 0( )| = | | ( )

By uniform continuity, it follows for any compact subset that

sup {| ( )| : and | | } 0 as 0

Proof. Notice that if \ then 0( ) : R R is surjective, which is
an open condition, so that \ is an open subset of This shows is relatively
closed in i.e. there exists ˜ @ R such that = ˜ Let be
compact subsets of such that then and = ˜

is compact for each Therefore, ( ) ( ) i.e. ( ) = ( ) is
a countable union of compact sets and therefore is Borel measurable. Moreover,
since ( ( )) = lim ( ( )) it su ces to show ( ( )) = 0 for all
compact subsets
Case 1. ( ) Let = [ + ] be a cube contained in and by

scaling the domain we may assume = (1 1 1 1) For N and
:= {0 1 1} let = + [ + ] so that =

with 0 = if 6= 0 Let { : = 1 } be the collection of those
{ : } which intersect For each let and for
we have

( + ) = ( ) + 0( ) + ( )

where | ( )| ( ) and ( ) := max ( ) 0 as Now

( ( )) = ( ( ) + ( 0( ) + ) ( ))

= (( 0( ) + ) ( ))

= ( ( 0( ) + ) ( ))(27.14)

where ( ) is chosen so that 0( )R R 1×{0} Now 0( )(
) is contained in ×{0} where R 1 is a cube cetered at 0 R 1 with side

length at most 2 | 0( )| 2 where = max | 0( )| It now follows
that ( 0( ) + ) ( ) is contained the set of all points within ( ) of
× {0} and in particular

( 0( ) + ) ( ) (1 + ( ) ) × [ ( ) ( ) ]

From this inclusion and Eq. (27.14) it follows that

( ( ))

·

2 (1 + ( ) )

¸ 1

2 ( )

= 2 1 [(1 + ( ) )] 1 ( )
1

and therefore,

( ( ))
X

( ( )) 2 1 [(1 + ( ) )]
1
( )

1

= 2 1 [(1 + ( ) )]
1
( )

1
0 as

since This proves the easy case since we may write as a countable union
of cubes as above.
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Remark. The case ( ) also follows brom the case = as follows. When
= and we must show ( ( )) = 0 Letting : × R R be

the map ( ) = ( ) Then 0( )( ) = 0( ) and hence := ×R
So if the assetion holds for = we have

( ( )) = ( ( ×R )) = 0

Case 2. ( ) This is the hard case and the case we will need in the co-area
formula to be proved later. Here I will follow the proof in Milnor. Let

:= { : ( ) = 0 when | | }
so that 1 2 3 The proof is by induction on and goes by the
following steps:

(1) ( ( \ 1)) = 0
(2) ( ( \ +1)) = 0 for all 1
(3) ( ( )) = 0 for all su ciently large.

Step 1. If = 1 there is nothing to prove since = 1 so we may assume
2 Suppose that \ 1 then 0( ) 6= 0 and so by reordering the components

of and ( ) if necessary we may assume that 1( ) 1 6= 0 The map ( ) :=
( 1( ) 2 ) has di erential

0( ) =

1( ) 1 1( ) 2 1( )
0 1 0 0
...

...
. . .

...
0 0 0 1

which is not singular. So by the implicit function theorem, there exists there exists
such that : ( ) ( ) is a di eomorphism and in particular

1( ) 1 6= 0 for and hence \ 1 Consider the map := 1 :
0 := ( ) R which satisfies

( 1( ) 2( ) ( )) = ( ) = ( ( )) = (( 1( ) 2 ))

which implies ( ) = ( ( )) for ( ) 0 := ( ) ( ) see Figure 48
below where = ¯ and = Since

Figure 48. Making a change of variable so as to apply induction.
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0( ) =

·

1 0
( ) ( )

¸

it follows that ( ) is a critical point of i 0 — the set of critical points of
( ) Since is a di eomorphism we have 0 := ( ) are the critical

points of in 0 and

( ) = ( 0) = [{ } × ( 0)]

By the induction hypothesis, 1( ( 0)) = 0 for all and therefore by Fubini’s
theorem,

( ( )) =

Z

R
1( ( 0))1 0 6= = 0

Since \ 1 may be covered by a countable collection of open sets as above, it
follows that ( ( \ 1)) = 0
Step 2. Suppose that \ +1 then there is an such that | | = +1 such

that ( ) = 0 while ( ) = 0 for all | | Again by permuting coordinates
we may assume that 1 6= 0 and 1( ) 6= 0 Let ( ) := 1

1( ) then
( ) = 0 while 1 ( ) 6= 0 So again the implicit function theorem there exists

such that ( ) := ( ( ) 2 ) maps 0 := ( ) ( ) in
di eomorphic way and in particular 1 ( ) 6= 0 on so that \ +1 As
before, let := 1 and notice that 0 := ( ) {0} ×R 1 and

( ) = ( 0 ) = ¯ ( 0 )

where ¯ := |({0}×R 1) 0 Clearly 0 is contained in the critical points of ¯ and
therefore, by induction

0 = (¯( 0 )) = ( ( ))

Since \ +1 is covered by a countable collection of such open sets, it follows
that

( ( \ +1)) = 0 for all 1

Step 3. Supppose that is a closed cube with edge length contained in
and 1 We will show ( ( )) = 0 and since is arbitrary it will
forllow that ( ( )) = 0 as desired.
By Taylor’s theorem with (integral) remainder, it follows for and

such that + that

( + ) = ( ) + ( )

where
| ( )| k k +1

where = ( ) Now subdivide into cubes of edge size and let 0 be
one of the cubes in this subdivision such that 0 6= and let 0

It then follows that ( 0) is contained in a cube centered at ( ) R with side
length at most 2 ( ) +1 and hence volume at most (2 ) ( ) ( +1) Therefore,
( ) is contained in the union of at most cubes of volume (2 ) ( )

( +1)

and hence each

( ( )) (2 ) ( )
( +1)

= (2 ) ( +1) ( +1) 0 as

provided that ( + 1) 0 i.e. provided 1
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27.3. Co-Area Formula. See “C:\driverdat\Bruce\DATA\MATHFILE\qft-notes\co-
area.tex” for this material.

27.4. Stokes Theorem. See Whitney’s "Geometric Integration Theory," p. 100.
for a fairly genral form of Stokes Theorem allowing for rough boundaries.
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28. Complex Differentiable Functions

28.1. Basic Facts About Complex Numbers.

Definition 28.1. C = R2 and we write 1 = (1 0) and = (0 1). As usual C
becomes a field with the multiplication rule determined by 12 = 1 and 2 = 1, i.e.

( + )( + ) ( ) + ( + )

Notation 28.2. If = + with R let ¯ = and

| |2 ¯ = 2 + 2

Also notice that if 6= 0 then is invertible with inverse given by

1 =
1
=

¯

| |2
Given = + C the map C C is complex and hence

real linear so we may view this a linear transformation : R2 R2 To work
out the matrix of this transformation, let = + , then the map is +

= ( ) + ( + ) which written in terms of real and imaginary parts is
equivalent to

µ ¶µ ¶

=

µ

+

¶

Thus

=

µ ¶

= + where =

µ

0 1
1 0

¶

Remark 28.3. Continuing the notation above, = det( ) = 2 + 2 =
| |2 and = for all C Moreover the ready may easily check that
a real 2 × 2 matrix is equal to for some C i 0 = [ ] =:
Hence C and the set of real 2× 2 matrices such that 0 = [ ] are algebraically
isomorphic objects.

28.2. The complex derivative.

Definition 28.4. A function : C C is complex di erentiable at
0 if

(28.1) lim
0

( ) ( 0)

0
=

exists.

Proposition 28.5. A function : C C is complex di erentiable i
: C is di erentiable (in the real sense as a function from R2 R2)

and [ 0( 0) ] = 0, i.e. by Remark 28.3,

0( 0) = =

µ ¶

for some = + C

Proof. Eq. (28.1) is equivalent to the equation:

( ) = ( 0) + ( 0) + ( 0)

= ( 0) + ( 0) + ( 0)(28.2)

and hence is complex di erentiable i is di erentiable and the di erential is
of the form 0( 0) = for some C
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Corollary 28.6 (Cauchy Riemann Equations). : C is complex di eren-
tiable at 0 i 0( 0) exists46 and, writing 0 = 0 + 0

(28.3)
( 0 + 0)

= ( 0 + 0)

or in short we write + = 0

Proof. The di erential 0( 0) is, in general, an arbitrary matrix of the form

0( 0) =

· ¸

where

(28.4) ( 0) = + and ( 0) = +

Since is complex di erentiable at 0 i = and = which is easily seen to
be equivalent to Eq. (28.3) by Eq. (28.4) and comparing the real and imaginary
parts of ( 0) and ( 0)
Second Proof. If is complex di erentiable at 0 = 0 + 0 then by the

chain rule,

( 0 + 0) =
0( 0 + 0) =

( 0 + 0)

Conversely if is real di erentiable at 0 there exists a real linear transformation
: C = R2 C such that

(28.5) ( ) = ( 0) + ( 0) + ( 0)

and as usual this implies

( 0)
= (1) and

( 0)
= ( )

where 1 = (1 0) and = (0 1) under the identification of C with R2 So if Eq.
(28.3) holds, we have

( ) = (1)

from which it follows that is complex linear. Hence if we set := (1) we have

( + ) = (1) + ( ) = (1) + (1) = ( + )

which shows Eq. (28.5) may be written as

( ) = ( 0) + ( 0) + ( 0)

This is equivalent to saying is complex di erentiable at 0 and 0( 0) =

Notation 28.7. Let

=
1

2

µ

+

¶

and =
1

2

µ ¶

46For example this is satisfied if If : C is continuous at 0 and exists in a
neighborhood of 0 and are continuous near 0
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With this notation we have

+ ¯ ¯ =
1

2

µ ¶

( + ) +
1

2

µ

+

¶

( )

= + =

In particular if ( ) C is a smooth curve, then

( ( )) = ( ( )) 0( ) + ¯ ( ( ))¯0( )

Corollary 28.8. Let C be a given open set and : C be a 1 — function
in the real variable sense. Then the following are equivalent:

(1) The complex derivative ( ) exists for all 47

(2) The real di erential 0( ) satisfies [ 0( ) ] = 0 for all
(3) The function satisfies the Cauchy Riemann equations ¯ = 0 on

Notation 28.9. A function 1( C) satisfying any and hence all of the
conditions in Corollary 28.8 is said to be a holomorphic or an analytic function
on We will let ( ) denote the space of holomorphic functions on

Corollary 28.10. The chain rule holds for complex di erentiable functions. In
particular, C C C are functions, 0 and 0 = ( 0)
Assume that 0( 0) exists, 0( 0) exists then ( )0( 0) exists and is given by

(28.6) ( )0( 0) = 0( ( 0))
0( 0)

Proof. This is a consequence of the chain rule for : R2 R2 when restricted
to those functions whose di erentials commute with Alternatively, one can simply
follow the usual proof in the complex category as follows:

( ) = ( ( )) = ( 0) +
0( 0)( ( ) ( 0)) + ( ( ) ( 0))

and hence

(28.7)
( ) ( ( 0))

0
= 0( 0)

( ) ( 0)

0
+

( ( ) ( 0))

0

Since ( ( ) ( 0))

0
0 as 0 we may pass to the limit 0 in Eq. (28.7) to

prove Eq. (28.6).

Lemma 28.11 (Converse to the Chain rule). Suppose : C C and
: C C are functions such that is continuous, ( ) and :=
( ) then ( \ { : 0( ( )) = 0}) Moreover 0( ) = 0( ) 0( ( )) when

and 0( ( )) 6= 0
Proof. This follow from the previous converse to the chain rule or directly as

follows48. Suppose that 0 and 0( ( 0)) 6= 0 On one hand
( ) = ( 0) +

0( 0)( 0) + ( 0)

while on the other

( ) = ( ( )) = ( ( 0)) +
0( ( 0)( ( ) ( 0)) + ( ( ) ( 0))

47As we will see later in Theorem 28.38, the assumption that is 1 in this condition is
redundant. Complex di erentiablity of at all points already implies that is ( C)!!

48One could also apeal to the inverse function theorem here as well.
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Combining these equations shows

(28.8) 0( 0)( 0) =
0( ( 0))( ( ) ( 0)) + ( ( ) ( 0)) + ( 0)

Since 0( ( 0)) 6= 0 we may conclude that
( ) ( 0) = ( ( ) ( 0)) + ( 0)

in particular it follow that

| ( ) ( 0)| 1

2
| ( ) ( 0)|+ ( 0) for near 0

and hence that ( ) ( 0) = ( 0) Using this back in Eq. (28.8) then shows
that

0( 0)( 0) =
0( ( 0))( ( ) ( 0)) + ( 0)

or equivalently that

( ) ( 0) =
0( 0)

0( ( 0))
( 0) + ( 0)

Example 28.12. Here are some examples.

(1) ( ) = is analytic and more generally ( ) =
P

=0
with C are

analytic on C
(2) If ( ) then · + ( ) and ( \ { = 0})
(3) ( ) = ¯ is not analytic and 1(C R) is analytic i is constant.

The next theorem shows that analytic functions may be averaged to produce
new analytic functions.

Theorem 28.13. Let : × C be a function such that
(1) (· ) ( ) for all and write 0( ) for ( )

(2) There exists 1( ) such that | 0( )| ( ) on ×
(3) ( ·) 1( ) for
Then

( ) :=

Z

( ) ( )

is holomorphic on and the complex derivative is given by

0( ) =
Z

0( ) ( )

Exercise 28.1. Prove Theorem 28.13 using the dominated convergence theorem
along with the mean value inequality of Corollary 4.10. Alternatively one may use
the corresponding real variable di erentiation theorem to show and exists
and are continuous and then to show ¯ = 0

As an application we will shows that power series give example of complex dif-
ferentiable functions.

Corollary 28.14. Suppose that { } =0 C is a sequence of complex numbers
such that series

( ) :=
X

=0

( 0)
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is convergent for | 0| where is some positive number. Then :
( 0 ) C is complex di erentiable on ( 0 ) and

(28.9) 0( ) =
X

=0

( 0)
1 =

X

=1

( 0)
1

By induction it follows that ( ) exists for all and that

( )( ) =
X

=0

( 1) ( + 1) ( 0)
1

Proof. Let be given and choose ( ) Since = 0+ ( 0 ) by

assumption the series
P

=0
is convergent and in particular := sup | |

We now apply Theorem 28.13 with = N {0} being counting measure,
= ( 0 ) and ( ) := ( 0) Since

| 0( )| = | ( 0)
1| | | 1

1 ³ ´ 1

| | 1 ³ ´ 1

and the function ( ) :=
¡ ¢ 1

is summable (by the Ratio test for example),
we may use as our dominating function. It then follows from Theorem 28.13

( ) =

Z

( ) ( ) =
X

=0

( 0)

is complex di erentiable with the di erential given as in Eq. (28.9).

Example 28.15. Let C := C\ { } and ( ) = 1 Then ( ) Let
0 and write = 0 + then

( ) =
1

=
1

0
=

1

0

1

1 ( 0)

=
1

0

X

=0

µ

0

¶

=
X

=0

µ

1

0

¶ +1

( 0)

which is valid for | 0| | 0| Summarizing this computation we have shown

(28.10)
1

=
X

=0

µ

1

0

¶ +1

( 0) for | 0| | 0|

Proposition 28.16. The exponential function =
P

=0
! is holomorphic on C

and = Moreover,

(1) ( + ) = for all C
(2) (Euler’s Formula) = cos + sin for all R and | | = 1 for all

R
(3) + = (cos + sin ) for all R
(4) =

Proof. By the chain rule for functions of a real variable,

[ ( + )] = ( + ) + ( + ) = 0
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and hence ( + ) is constant in So by evaluating this expression at = 0
and = 1 we find

(28.11) ( + ) = for all C

Choose = 0 in Eq. (28.11) implies = 1 i.e. = 1 which used back
in Eq. (28.11 proves item 1. Similarly,

[ (cos + sin )] = (cos + sin ) + ( sin + cos ) = 0

Hence (cos + sin ) = (cos + sin )| =0 = 1 which proves item 2. Item
3. is a consequence of items 1) and 2) and item 4) follows from item 3) or directly
from the power series expansion.

Remark 28.17. One could define by = (cos( ) + sin( )) when = +
and then use the Cauchy Riemann equations to prove is complex di erentiable.

Exercise 28.2. By comparing the real and imaginary parts of the equality =
( + ) prove the formulas:

cos( + ) = cos cos sin sin and

sin( + ) = cos sin + cos sin

for all R

Exercise 28.3. Find all possible solutions to the equation = where
and are complex numbers. Let log( ) { : = } Note that log : C
(subsets of C). One often writes log : C C and calls log a multi-valued function.
A continuous function defined on some open subset of C is called a branch of
log if ( ) log( ) for all Use the reverse chain rule to show any branch of
log is holomorphic on its domain of definition and that 0( ) = 1 for all

Exercise 28.4. Let = { = C : 0 and } = C \ ( 0]
and define : C by ( ) ln( ) + for 0 and | | Show that

is a branch of log This branch of the log function is often called the principle
value branch of log The line ( 0] where is not defined is called a branch
cut.

Exercise 28.5. Let { C : = } The “function” is another
example of a multi-valued function. Let ( ) be any branch of , that is is a
continuous function on an open subset of C such that ( ) . Show that
is holomorphic away from = 0 and that 0( ) = 1 ( )

Exercise 28.6. Let be any branch of the log function. Define ( ) for
all C and ( ) where ( ) denotes the domain of Show that 1 is a
branch of and also show that = 1

28.3. Contour integrals.

Definition 28.18. Suppose that : [ ] is a Piecewise 1 function and
: C is continuous, we define the contour integral of along (written

R

( ) ) by
Z

( ) :=

Z

( ( )) ˙ ( )
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Notation 28.19. Given C and a 2 map : [ ] × [0 1] let :=
(· ) 1([ ] ) In this way, the map may be viewed as a map

[0 1] := (· ) 2([ ] )

i.e. is a path of contours in

Definition 28.20. Given a region and 2 ([ ] ) we will write
' in provided there exists a 2 — map : [ ] × [0 1] such that

0 = 1 = and satisfies either of the following two conditions:

(1) ( ) = ( ) = 0 for all [0 1] i.e. the end points of the paths
for [0 1] are fixed.

(2) ( ) = ( ) for all [0 1] i.e. is a loop in for all [0 1]

Proposition 28.21. Let be a region and 2([ ] ) be two contours
such that ' in Then

Z

( ) =

Z

( ) for all ( )

Proof. Let : [ ] × [0 1] be as in Definition 28.20, then it su ces to
show the function

( ) :=

Z

( )

is constant for [0 1] For this we compute:

0( ) =
Z

( ( )) ˙ ( ) =

Z

[ ( ( )) ˙ ( )]

=

Z

{ 0( ( )) 0( ) ˙ ( ) + ( ( )) ˙ 0( )}

=

Z

[ ( ( )) 0( )]

= [ ( ( )) 0( )]
¯

¯

¯

=

=
= 0

where the last equality is a consequence of either of the two endpoint assumptions
of Definition 28.20.

Remark 28.22. For those who know about di erential forms and such we may
generalize the above computation to 1( ) using = + ¯ ¯ We then
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find

0( ) =
Z

( ( )) ˙ ( ) =

Z

[ ( ( )) ˙ ( )]

=

Z

©£

( ( )) 0( ) + ¯ ( ( ))¯0( )
¤

˙ ( ) + ( ( )) ˙ 0( )
ª

=

Z

©£

( ( )) ˙ ( ) 0( ) + ¯ ( ( ))¯ ( ) 0( )
¤

+ ( ( )) ˙ 0( )
ª

+

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

=

Z

[ ( ( )) 0( )] +

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

= [ ( ( )) 0( )]
¯

¯

¯

=

=
+

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

=

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

Integrating this expression on then shows that
Z

1

Z

0

=

Z 1

0

Z

¯ ( ( )) (¯0( ) ˙ ( ) ¯ ( ) 0( ))

=

Z

¯( ) =

Z

¯ ¯

We have just given a proof of Green’s theorem in this context.

The main point of this section is to prove the following theorem.

Theorem 28.23. Let C be an open set and 1( C) then the following
statements are equivalent:

(1) ( )
(2) For all disks = ( 0 ) such that ¯

(28.12) ( ) =
1

2

I

( )
for all

(3) For all disks = ( 0 ) such that ¯ ( ) may be represented as a
convergent power series

(28.13) ( ) =
X

=0

( 0) for all

In particular ( C)

Moreover if is as above, we have

(28.14) ( )( ) =
!

2

I

( )

( )
for all

and the coe cients in Eq. (28.13) are given by

= ( )( 0) ! =
1

2

I

( )

( 0) +1
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Proof. 1) = 2) For [0 1] let = (1 ) 0 + := dist( ) =
| 0| and ( ) = + for 0 2 Notice that 0 is a parametrization
of 0 ' 1 in \ { } ( ) is in ( \ { }) and hence by Proposition
28.21,

I

( )
=

Z

0

( )
=

Z

1

( )

Now let ( ) = + 1 for 0 2 and (0 1] Then 1 = 1 and 1 ' in
\ { } and so again by Proposition 28.21,

I

( )
=

Z

1

( )
=

Z

( )

=

Z 2

0

( + 1 )

1
1

=

Z 2

0

( + 1 ) 2 ( ) as 0

2) = 3) By 2) and Eq. (28.10)

( ) =
1

2

I

( )

=
1

2

I

( )
X

=0

µ

1

0

¶ +1

( 0)

=
1

2

X

=0

Ã

I

( )

µ

1

0

¶ +1
!

( 0)

(The reader should justify the interchange of the sum and the integral.) The last
equation proves Eq. (28.13) and shows that

=
1

2

I

( )

( 0) +1

Also using Theorem 28.13 we may di erentiate Eq. (28.12) repeatedly to find

(28.15) ( )( ) =
!

2

I

( )

( )
+1 for all

which evaluated at = 0 shows that = ( )( 0) !
3) = 1) This follows from Corollary 28.14 and the fact that being complex

di erentiable is a local property.
The proof of the theorem also reveals the following corollary.

Corollary 28.24. If ( ) then 0 ( ) and by induction ( ) ( )
with ( ) defined as in Eq. (28.15).

Corollary 28.25 (Cauchy Estimates). Suppose that ( ) where C and
suppose that ( 0 ) then

(28.16)
¯

¯

¯

( )( 0)
¯

¯

¯

!
sup

| 0|=
| ( )|
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Proof. From Eq. (28.15) evaluated at = 0 and letting ( ) = 0 + for
0 2 we find

( )( 0) =
!

2

I

( )

( 0)
+1 =

!

2

Z

( )

( 0)
+1

=
!

2

Z 2

0

( 0 + )

( )
+1

=
!

2

Z 2

0

( 0 + )
(28.17)

Therefore,
¯

¯

¯

( )( 0)
¯

¯

¯

!

2

Z 2

0

¯

¯

¯

¯

( 0 + )
¯

¯

¯

¯

=
!

2

Z 2

0

¯

¯ ( 0 + )
¯

¯

!
sup

| 0|=
| ( )|

Exercise 28.7. Show that Theorem 28.13 is still valid with conditions 2) and 3) in
the hypothesis being replaced by: there exists 1( ) such that | | ( )|
( )
Hint: Use the Cauchy estimates.

Corollary 28.26 ( Liouville’s Theorem). If (C) and is bounded then is
constant.

Proof. This follows from Eq. (28.16) with = 1 and the letting to find
0( 0) = 0 for all 0 C

Corollary 28.27 (Fundamental theorem of algebra). Every polynomial ( ) of
degree larger than 0 has a root in C

Proof. Suppose that ( ) is polynomial with no roots in Then ( ) = 1 ( )
is a bounded holomorphic function and hence constant. This shows that ( ) is a
constant, i.e. has degree zero.

Definition 28.28. We say that is a region if is a connected open subset of
C

Corollary 28.29. Let be a region and ( ) and ( ) = 1({0}) denote
the zero set of Then either 0 or ( ) has no accumulation points in More
generally if ( ) and the set { : ( ) = ( )} has an accumulation
point in then

Proof. The second statement follows from the first by considering the function
For the proof of the first assertion we will work strictly in with the relative

topology.
Let denote the set of accumulation points of ( ) (in ) By continuity of

( ) and is a closed49 subset of with the relative topology. The proof

49Recall that i 0 6= for all C where 0 := \ { } Hence
i there exists C such that 0 = Since 0 is open, it follows that 0 and
thus So is open, i.e. is closed.
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is finished by showing that is open and thus = or = because is
connected.
Suppose that 0 and express ( ) as its power series expansion

( ) =
X

=0

( 0)

for near 0 Since 0 = ( 0) it follows that 0 = 0 Let ( ) \ { 0} such that
lim = 0 Then

0 =
( )

0
=
X

=1

( 0)
1

1 as

so that ( ) =
P

=2 ( 0) Similarly

0 =
( )

( 0)
2 =

X

=2

( 0)
2

2 as

and continuing by induction, it follows that 0 i.e. is zero in a neighborhood
of 0

Definition 28.30. For C let

cos( ) =
+

2
and sin( ) =

2

Exercise 28.8. Show the these formula are consistent with the usual definition of
cos and sin when is real. Also shows that the addition formula in Exercise 28.2
are valid for C This can be done with no additional computations by making
use of Corollary 28.29.

Exercise 28.9. Let

( ) :=
1

2

Z

R
exp(

1

2
2 + ) ( ) for C

Show ( ) = exp(12
2) using the following outline:

(1) Show ( )
(2) Show ( ) = exp(12

2) for R by completing the squares and using the
translation invariance of Also recall that you have proved in the first
quarter that (0) = 1

(3) Conclude ( ) = exp(12
2) for all C using Corollary 28.29.

Corollary 28.31 (Mean vaule property). Let C and ( ) then
satisfies the mean value property

(28.18) ( 0) =
1

2

Z 2

0

( 0 + )

which holds for all 0 and 0 such that ( 0 )

Proof. Take = 0 in Eq. (28.17).

Proposition 28.32. Suppose that is a connected open subset of C If ( )
is a function such that | | has a local maximum at 0 then is constant.
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Proof. Let 0 such that ¯ = ( 0 ) and | ( )| | ( 0)| =:
for ¯ By replacing by with an appropriate R we may assume
= ( 0) Letting ( ) = Re ( ) and ( ) = Im ( ) we learn from Eq. (28.18)

that

= ( 0) = Re ( 0) =
1

2

Z 2

0

( 0 + )

1

2

Z 2

0

min( ( 0 + ) 0)

since
¯

¯ ( 0 + )
¯

¯

¯

¯ ( 0 + )
¯

¯ for all From the previous equation it
follows that

0 =

Z 2

0

©

min( ( 0 + ) 0)
ª

which in turn implies that = min( ( 0 + ) 0) since min( ( 0 +
) 0) is positive and continuous. So we have proved = ( 0 + ) for all

Since
2

¯

¯ ( 0 + )
¯

¯

2
= 2( 0 + ) + 2( 0 + ) = 2 + 2( 0 + )

we find ( 0 + ) = 0 for all Thus we have shown ( 0 + ) = for all
and hence by Corollary 28.29, ( ) = for all
The following lemma makes the same conclusion as Proposition 28.32 using the

Cauchy Riemann equations. This Lemma may be skipped.

Lemma 28.33. Suppose that ( ) where = ( 0 ) for some 0 If
| ( )| = is constant on then is constant on

Proof. If = 0 we are done, so assume that 0 By assumption

0 = 2 = | |2 = ( ¯ ) = ¯ · + ¯

= ¯ = ¯ 0

wherein we have used

¯=
1

2
( ) ¯=

1

2
( + ) ( ) = ¯ = 0

by the Cauchy Riemann equations. Hence 0 = 0 and is constant.

Corollary 28.34 (Maximum modulous principle). Let be a bounded region and
( ) ( ) Then for all | ( )| sup | ( )| Furthermore if there

exists 0 such that | ( 0)| = sup | ( )| then is constant.

Proof. If there exists 0 such that | ( 0)| = max | ( )| then Proposi-
tion 28.32 implies that is constant and hence | ( )| = sup | ( )| If no such 0

exists then | ( )| sup | ( )| for all ¯

28.4. Weak characterizations of ( ). The next theorem is the deepest theo-
rem of this section.

Theorem 28.35. Let C and : C is a function which is complex
di erentiable at each point Then

H

( ) = 0 for all solid triangles
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Figure 49. Spliting into four similar triangles of equal size.

Proof. Write = 1 2 3 4 as in Figure 49 below.
Let 1 { 1 2 3 4} such that |

R

( ) | = max{| R ( ) | : =

1 2 3 4} then

|
Z

( ) | = |
4
X

=1

Z

( ) |
4
X

=1

|
Z

( ) | 4|
Z

1

( ) |

Repeating the above argument with replaced by 1 again and again, we find by
induction there are triangles { } =1 such that

(1) 1 2 3

(2) ( ) = 2 ( ) where ( ) denotes the length of the boundary of
(3) diam( ) = 2 diam( ) and

(28.19) |
Z

( ) | 4 |
Z

( ) |

By finite intersection property of compact sets there exists 0

T

=1
Because

( ) = ( 0) +
0( 0)( 0) + ( 0)

we find
¯

¯

¯

¯

¯

¯

4

Z

( )

¯

¯

¯

¯

¯

¯

= 4

¯

¯

¯

¯

¯

¯

Z

( 0) +

Z

0( 0)( 0) +

Z

( 0)

¯

¯

¯

¯

¯

¯

= 4

¯

¯

¯

¯

¯

¯

Z

( 0)

¯

¯

¯

¯

¯

¯

4

Z

| 0| | |
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where 0 as Since
Z

| 0| | | diam( ) ( ) = 2 diam( )2 ( ) = 4 diam( ) ( )

we see

4

¯

¯

¯

¯

¯

¯

Z

( )

¯

¯

¯

¯

¯

¯

4 4 diam( ) ( ) = 0 as

Hence by Eq. (28.19),
R

( ) = 0

Theorem 28.36 (Morera’s Theorem). Suppose that C and ( ) is a
complex function such that

(28.20)
Z

( ) = 0 for all solid triangles

then ( )

Proof. Let = ( 0 ) be a disk such that ¯ and for let

( ) =

Z

[ 0 ]

( )

where [ 0 ] is by definition the contour, ( ) = (1 ) 0 + for 0 1 For
we have, using Eq. (28.20),

( ) ( ) =

Z

[ ]

( ) =

Z 1

0

( + ( ))( )

= ( )

Z 1

0

( + ( ))

From this equation and the dominated convergence theorem we learn that

( ) ( )
=

Z 1

0

( + ( )) ( ) as

Hence 0 = so that ( ) Corollary 28.24 now implies = 0 ( )
Since was an arbitrary disk contained in and the condition for being in ( )
is local we conclude that ( )
The method of the proof above also gives the following corollary.

Corollary 28.37. Suppose that C is convex open set. Then for every
( ) there exists ( ) such that 0 = In fact fixing a point 0 we

may define by

( ) =

Z

[ 0 ]

( ) for all

Exercise 28.10. Let C and { } ( ) be a sequence of functions such
that ( ) = lim ( ) exists for all and the convergence is uniform on
compact subsets of Show ( ) and 0( ) = lim 0 ( )
Hint: Use Morera’s theorem to show ( ) and then use Eq. (28.14) with
= 1 to prove 0( ) = lim 0 ( )
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Theorem 28.38. Let C be an open set. Then

(28.21) ( ) =

½

: C such that
( )

exists for all
¾

In other words, if : C is complex di erentiable at all points of then 0 is
automatically continuous and hence by Theorem 28.23!!!

Proof. Combine Theorems 28.35 and 28.36.

Corollary 28.39 (Removable singularities). Let C 0 and ( \
{ 0}) If lim sup 0

| ( )| i.e. sup
0 | 0|

| ( )| for some 0 then

lim
0

( ) exists. Moreover if we extend to by setting ( 0) = lim
0

( ) then

( )

Proof. Set

( ) =

½

( 0)
2 ( ) for \ { 0}

0 for = 0

Then 0( 0) exists and is equal to zero. Therefore 0( ) exists for all and
hence ( ) We may now expand into a power series using ( 0) =

0( 0) = 0

to learn ( ) =
P

=2
( 0) which implies

( ) =
( )

( 0)2
=
X

=0

( 0)
2 for 0 | 0|

Therefore, lim
0 ( ) = 2 exists. Defining ( 0) = 2 we have ( ) =

P

=0
(

0)
2 for near 0 This shows that is holomorphic in a neighborhood of 0 and

since was already holomorphic away from 0 ( )

Exercise 28.11. Show

(28.22)
Z 1

1

sin
=

Z

sin
as

using the following method.50

(1) Show that

( ) =

½

1 sin for 6= 0
1 if = 0

defines a holomorphic function on C
(2) Let denote the straight line path from to 1 along the real axis

followed by the contour for going from to 2 and then followed by
the straight line path from 1 to Explain why
Z

sin
=

Z

sin
µ

=
1

2

Z

1

2

Z
¶

50In previous notes we evaluated this limit by real variable techniques based on the identity
that 1 =

R

0 for 0
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(3) Let + denote the path with going from 0 to and denote the
path with going from to 2 By deforming paths and using the
Cauchy integral formula, show

Z

+ +
= 2 and

Z

= 0

(4) Show (by writing out the integrals explicitly) that

lim

Z

+
= 0 = lim

Z

(5) Conclude from steps 3. and 4. that Eq. (28.22) holds.

28.5. Summary of Results.

Theorem 28.40. Let C be an open subset and : C be a given function.
If 0( ) exists for all then in fact has complex derivatives to all orders and
hence ( ) Set ( ) to be the set of holomorphic functions on
Now assume that 0( ) Then the following are equivalent:
(1) ( )
(2)

H

( ) = 0 for all triangles .
(3)

H

( ) = 0 for all “nice” regions .
(4)

H

( ) = 0 for all closed paths in which are null-homotopic.
(5) 1( ) and ¯ 0 or equivalently if ( + ) = ( ) + ( )

then the pair of real valued functions should satisfy
" #

· ¸

=

·

0
0

¸

(6) For all closed discs and

( ) =

I

( )

(7) For all 0 and 0 such that ( 0 ) the function restricted
to ( 0 ) may be written as a power series:

( ) =
X

=0

( 0) for ( 0 ).

Furthermore

= ( )( 0) ! =
1

2

I

| 0|=

( )

( 0) +1

where 0

Remark 28.41. The operator =

" #

is an example of an elliptic dif-

ferential operator. This means that if is replaced by 1 and is replaced by

2 then the “principal symbol” of ˆ( )

·

1 2

2 1

¸

is an invertible matrix

for all = ( 1 2) 6= 0 Solutions to equations of the form = where is an
elliptic operator have the property that the solution is “smoother” than the forc-
ing function Another example of an elliptic di erential operator is the Laplacian
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=
2

2 +
2

2 for which ˆ ( ) = 2
1 +

2
2 is invertible provided 6= 0 The wave

operator ¤ = 2

2

2

2 for which ¤̂( ) = 2
1

2
2 is not elliptic and also does not

have the smoothing properties of an elliptic operator.

28.6. Exercises.

(1) Set =
P

=0 ! Show that = (cos( ) + sin( )) and that =

= and ¯ = 0
(2) Find all possible solutions to the equation = where and are

complex numbers. Let log( ) { : = } Note that log : C
(subsets of C). One often writes log : C C and calls log a multi-valued
function. A continuous function defined on some open subset of C is
called a branch of log if ( ) log( ) for all Use a result from class
to show any branch of log is holomorphic on its domain of definition and
that 0( ) = 1 for all

(3) Let = { = C : 0 and } = C \ ( 0] and
define : C by ( ) ln( ) + for 0 and | | Show
that is a branch of log This branch of the log function is often called
the principle value branch of log The line ( 0] where is not defined
is called a branch cut. We will see that such a branch cut is necessary. In
fact for any continuous “simple” curve joining 0 and there will be a
branch of the log - function defined on the complement of

(4) Let { C : = } The “function” is another example
of a multivalued function. Let ( ) be any branch of , that is is a
continuous function on an open subset of C such that ( ) . Show
that is holomorphic away from = 0 and that 0( ) = 1 ( )

(5) Let be any branch of the log function. Define ( ) for all C
and ( ) where ( ) denotes the domain of Show that 1 is a
branch of and also show that = 1

(6) Suppose that ( ) is a measure space and that : × C is a
function ( is an open subset of C) such that for all the function

( ) is in ( ) and
R | ( )| ( ) for all (in fact

one is enough). Also assume there is a function 1( ) such
that | ( ) | ( ) for all ( ) × Show that the function ( )
R

( ) ( ) is holomorphic on and that 0( ) =
R ( ) ( )

for all Hint: use the Hahn Banach theorem and the mean valued
theorem to prove the following estimate:

| ( + ) ( ) | ( )

all C su ciently close to but not equal to zero.
(7) Assume that is a 1 function on C Show that [ (¯)] = (¯ )(¯). (By the

way, a 1 function on C is said to be anti-holomorphic if = 0 This
problem shows that is anti-holomorphic i (¯) is holomorphic.)

(8) Let C be connected and open. Show that ( ) is constant on
i 0 0 on
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(9) Let ( ) and be a “nice” closed region (See Figure To be
supplied later.). Use Green’s theorem to show

R

( ) = 0 where
Z

( )
X

=1

Z

( )

and { } =1 denote the components of the boundary appropriately oriented,
see the Figure 1.

(10) The purpose of this problem is to understand the Laurent Series of a
function holomorphic in an annulus. Let 0 0 0 1 1

0 C { C| 0 | 0| 1} and { C| 0 | 0|
1}
a): Use the above problem (or otherwise) and the simple form of the
Cauchy integral formula proved in class to show if ( ) 1( )

then for all ( ) = 1
2

R ( ) Hint: Apply the above

problem to the function ( ) = ( ) with a judiciously chosen region

b): Mimic the proof (twice, one time for each component of ) of the
Taylor series done in class to show if ( ) 1( ) then

( ) =
X

=

( 0)

where

=
1

2

Z

( )

( ) +1

and ( ) = (0 2 ) and is any point in ( 0 1)
c): Suppose that 0 = 0 ( ) 1( ) and is bounded near 0

Show in this case that 0 for all 0 and in particular conclude
that may be extended uniquely to 0 in such a way that is complex
di erentiable at 0

(11) A Problem from Berenstein and Gay, “Complex Variables: An introduc-
tion,” Springer, 1991, p. 163.
Notation and Conventions: Let denote an open subset of R Let
= =

P

=1

2

2 be the Laplacian on 2( R).

(12) (Weak Maximum Principle)
a): Suppose that 2( R) such that ( ) 0 Show that
can have no local maximum in In particular if is a bounded open
subset of R and (¯ R) 2( R) then ( ) max ( )
for all

b): (Weak maximum principle) Suppose that is now a bounded open
subset of R and that (¯ R) 2( R) such that 0 on
Show that ( ) : max ( ) for all (Hint: apply

part a) to the function ( ) = ( ) + | |2 where 0 and then let
0 )

Remark 28.42 (Fact:). Assume now that is connected. It is possible to
prove, using just calculus techniques, the “strong maximum principle”
which states that if as in part b) of the problem above has an interior
maximum then must be a constant. (One may prove this result when the
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dimension = 2 by using the mean value property of harmonic functions
discussed in Chapter 11 of Rudin.) The direct calculus proof of this fact
is elementary but tricky. If you are interested see Protter and Weinberger,
“Maximum Principles in Di erential Equations”, p.61—.

(13) (Maximum modulus principle) Prove the maximum modulus principle us-
ing the strong maximum principle. That is assume that is a con-
nected bounded subset of C and that ( ) (¯ C). Show that
| ( )| max | ( )| for all and if equality holds for some
then is a constant.
Hint: Assume for contradiction that | ( )| has a maximum greater than

zero at 0 . Write ( ) = ( ) for some analytic function in a
neighborhood of 0 (We have shown such a function must exist.) Now use
the strong maximum principle on the function = Re( )

28.7. Problems from Rudin.
p. 229:: #17
Chapter 10:: 2, 3, 4, 5
Chapter 10:: 8-13, 17, 18-21, 26, 30 (replace the word “show” by “convince
yourself that” in problem 30.)

Remark 28.43. Remark. Problem 30. is related to the fact that the fundamental
group of is not commutative, whereas the first homology group of and is in
fact the abelianization of the fundamental group.

Chapter 11:: 1, 2, 5, 6,
Chapter 12:: 2 (Hint: use the fractional linear transformation

( )
+

which maps + conformally.), 3, 4 (Hint: on 4a, apply Maxi-
mum modulus principle to 1 ), 5, 11 (Hint: Choose 1 0

such that | ( 0)| and (0 1) such that ¯ ( 0 )
and | ( )| on ¯ For let ( ( 0 )) \ ¯
Show that ( ) ( ( )) ( 0) satisfies ( ) 0(¯ ) and
| | max{ } on Now apply the maximum modulus
principle to then let then and finally let 1 )
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29. Littlewood Payley Theory

Lemma 29.1 (Hadamard’s three line lemma). Let be the vertical strip

= { : 0 Re( ) 1} = (0 1)× R

and ( ) be a continuous bounded function on ¯ = [0 1]× R which is holomorphic
on If := supRe( )= | ( )| then 1

0 1 (In words this says that the
maximum of ( ) on the line Re( ) = is controlled by the maximum of ( ) on
the lines Re( ) = 0 and Re( ) = 1 Hence the reason for the naming this the three
line lemma.

Proof. Let 0 0 and 1 1
51 and 0 be given. For = + ¯

max( 0 1)
¯

¯

1
0 1

¯

¯ = 1
0 1 min( 0 1)

and Re( 2 1) = ( 2 1 2) 0 and Re( 2 1) as in the strip
Therefore,

( ) :=
( )

1
0 1

exp( ( 2 1)) for ¯

is a bounded continuous function ¯ ( ) and ( ) 0 as in the
strip By the maximum modulus principle applied to ¯ := [0 1]× [ ] for
su ciently large, shows that

max
©| ( )| : ¯

ª

= max
©| ( )| : ¯

ª

For = we have

| ( )| =
¯

¯

¯

¯

( )
1
0 1

exp( ( 2 1))

¯

¯

¯

¯

| ( )|
0

0

0
1

and for = 1 +

| ( )| | (1 + )|
1

1

1
1

Combining the last three equations implies max
©| ( )| : ¯

ª

1 Letting 0
then shows that

¯

¯

¯

¯

( )
1
0 1

¯

¯

¯

¯

1 for all ¯

or equivalently that

| ( )| ¯

¯

1
0 1

¯

¯ = 1
0 1 for all = + ¯

Since 0 0 and 1 1 were arbitrary, we conclude that

| ( )| ¯

¯

1
0 1

¯

¯ = 1
0 1 for all = + ¯

from which it follows that 1
0 1 for all (0 1)

As a first application we have.

Proposition 29.2. Suppose that and are complex × matrices with 0
( 0 can be handled by a limiting argument.) Suppose that k k 1 and

k k 1 then
°

°

°

°

°

°
1 as well.

51If 0 and 1 are both positive, we may take 0 = 0 and 1 = 1
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Proof. Let ( ) = 1 for where := = ln when
= Then one checks that is holomorphic and

( + ) = + 1 = ( )

so that
k ( + )k = k ( )k

Hence is bounded on and

k (0 + )k = k (0)k = k k 1 and

k (1 + )k = k (1)k = k k 1

So by the three lines lemma (and the Hahn Banach theorem) k ( )k 1 for all
Taking = 1 2 then proves the proposition.

Theorem 29.3 (Riesz-Thorin Interpolation Theorem). Suppose that ( M )
and ( N ) are — finite measure spaces and that 1 for = 0 1 For
0 1 let and be defined by

1
=
1

0
+

1
and

1
=
1

0
+

1

If is a linear map from 0( ) + 1( ) to 0( ) + 1( ) such that

k k
0 0 0 and k k

1 1 1

then
k k =

(1 )
0 1

Alternatively put we are trying to show

(29.1) k k k k for all (0 1) and ( )

given

k k
0 0 k k 0

for all 0( ) and

k k
1 1 k k 1

for all 1( )

Proof. Let us first give the main ideas of the proof. At the end we will fill in
some of the missing technicalities. (See Theorem 6.27 in Folland for the details.)
Eq. (29.1) is equivalent to showing

¯

¯

¯

¯

Z

¯

¯

¯

¯

for all ( ) such that k k = 1 and for all such that k k = 1

where is the conjugate exponent to Define and by

1
=
1

0
+

1
and

1
=
1

0

+
1

and let

= | | | | and = | | | |
Writing = + we have | | = | | and | | = | | so that

(29.2) k k = 1 and k k = 1
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for all = + with 0 1 Let

( ) := h i =
Z

·

and assume that and are simple functions. It is then routine to show
( ¯) ( ) where is the strip = (0 1) + R Moreover using Eq. (29.2),

| ( )| = |h i| 0 k k
0
k k

0
= 0

and
| (1 + )| = |h 1+ 1+ i| 1 k 1+ k

1
k 1+ k

1
= 1

for all R By the three lines lemma, it now follows that

|h i| = | ( )| 1 Re
0

Re
1

and in particular taking = using = and = gives

|h i| = ( ) 1
0 1

Taking the supremum over all simple such that k k = 1 shows k k
1
0 1 for all simple ( ) such that k k = 1 or equivalently that

(29.3) k k 1
0 1 k k for all simple ( )

Now suppose that and are simple functions in such that | | | |
and point wise as Set = {| | 1} = 1 = 1 = 1
and = 1 By renaming 0 and 1 if necessary we may assume 0 1 Under
this hypothesis we have 0 and 1 and = + and = +
By the dominated convergence theorem

k k 0 k k
0

0 and k k
1

0

as Therefore k k
0

0 and k k
1

0 as
Passing to a subsequence if necessary, we may also assume that 0 and

0 a.e. as It then follows that = + + =
a.e. as This result, Fatou’s lemma, the dominated convergence theorem

and Eq. (29.3) then gives

k k lim inf k k lim inf 1
0 1 k k = 1

0 1 k k

29.0.1. Applications. For the first application, we will give another proof of Theo-
rem 11.19.
Proof. Proof of Theorem 11.19. The case = 1 is simple, namely

k k =

°

°

°

°

Z

R
(· ) ( )

°

°

°

°

Z

R
k (· )k | ( )|

= k k k k1
and by interchanging the roles of and we also have

k k = k k1 k k
Letting = the above comments may be reformulated as saying

k k1 k k
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Another easy case is when = since

| ( )| =
¯

¯

¯

¯

Z

R
( ) ( )

¯

¯

¯

¯

k ( ·)k k k = k k k k

which may be formulated as saying that

k k k k
By the Riesz Thorin interpolation with 0 = 1 0 = 1 = and 1 =

k k k k1 k k1 k k1 k k k k
for all (0 1) which is equivalent to

k k k k k k
Since

1 = (1 ) + 1 and 1 = (1 ) 1 + 1 = (1 ) 1

and therefore if = and = then

1 + 1 = (1 ) + 1 + 1

= (1 ) + ( 1 + 1) + (1 ) 1

= 1 + (1 ) 1 = 1 + 1

Example 29.4. By the Riesz Thorin interpolation theorem we conclude that F :
is bounded for all [1 2] where = is the conjugate exponent to

Indeed, in the notation of the Riesz Thorin interpolation theorem F : is
bounded where

1
=
1

1
+
2
and

1
=
1

+
2
=
2

i.e.
1
+
1
= 1 +

2
+
2
= 1

See Theorem 20.11.

For the next application we will need the following general duality argument.

Lemma 29.5. Suppose that ( M ) and ( N ) are — finite measure spaces
and : 2( ) 2( ) is a bounded operator. If there exists [1 ] and a
constant such that

k k k k for all ( ) 2( )

then

k k k k for all ( ) 2( )

where is the 2 — adjoint of and and are the conjugate exponents to
and
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Proof. Suppose that ( ) 2( ) then by the reverse Holder inequality

k k = sup
n

|( )| : ( ) 2( ) with k k = 1
o

= sup
n

|( )| : ( ) 2( ) with k k = 1
o

k k sup
n

k k : ( ) 2( ) with k k = 1
o

k k

Lemma 29.6. Suppose that = { 0} =1 is a symmetric matrix such that

(29.4) := sup
X

=1

= sup
X

=1

and define by ( ) =
P

when the sum converges. Given [1 ]
and be the conjugate exponent, then : is bounded k k
Proof. Let =

P

=1 =
P

=1 For
Ã

X

| |
!

=

Ã

X

| |
!

X

| | 1
X

| |(29.5)

and hence
X

Ã

X

| |
!

1
XX

| | = 1
XX

| |

k k
which shows : with k k Moreover from Eq. (29.5) we see that

sup
X

| | k k

which shows that : is bounded with k k for all and in
particular for = 1 By duality it follows that k k as well. This is easy
to check directly as well.
Let 0 = 1 = 1 and 1 = = 0 so that

1 = (1 )1 1 + 1 = (1 ) and 1 = (1 ) 1 + 1 1 =

so that = Applying the Riesz-Thorin interpolation theorem shows

k k = k k

The following lemma only uses the case = 2 which we proved without interpo-
lation.

Lemma 29.7. Suppose that { } is a sequence in a Hilbert space such that: 1)
P | |2 and 2) there exists constants = 0 satisfying Eq. (29.4)
and

|( )| | || | for all and
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Then =
P

exists and

(29.6) | |2
X

| |2

Proof. Let us begin by assuming that only a finite number of the { } are
non-zero. The key point is to prove Eq. (29.6). In this case

| |2 =
X

( )
X

| || | = ·

where = | | Now by the above remarks
· | |2 =

X

2 =
X

| |2

which establishes Eq. (29.6) in this case.
For let =

P

= then by what we have just proved

| |2
X

=

| |2 0 as

This shows that =
P

exists. Moreover we have

| 1 |2
X

=1

| |2
X

=1

| |2

Letting in this last equation shows that Eq. (29.6) holds in general.
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30. Elementary Distribution Theory

Author Friedlander, F. G. (Friedrich Gerard), 1917-
Title Introduction to the theory of distributions
Published Cambridge ; New York : Cambridge University Press, 1998
Edition 2nd ed. / F.G. Friedlander, with additional material by M. Joshi
LOCATION CALL NUMBER STATUS
S&E Stacks QA324 .F74 1998

30.1. Distributions on R . Let be an open subset of R and

(30.1) ( ) = @@ ( )

denote the set of smooth functions on with compact support in

Definition 30.1. A sequence { } =1 D( ) converges to D( ) i there is
a compact set @@ such that supp( ) for all and in ( )

Definition 30.2 (Distributions on R ). A generalized function on
R is a continuous linear functional on D( ) i.e. : D( ) C is linear and
lim h i = 0 for all { } D( ) such that 0 in D( ) We denote the
space of generalized functions by D0( )

Proposition 30.3. Let : D( ) C be a linear functional. Then D0( ) i
for all @@ there exist N and such that

(30.2) | ( )| ( ) for all ( )

Proof. Suppose that { } D( ) such that 0 in D( ) Let be a
compact set such that supp( ) for all Since lim ( ) = 0 it follows
that if Eq. (30.2) holds that lim h i = 0 Conversely, suppose that there is
a compact set @@ such that for no choice of N and Eq. (30.2)
holds. Then we may choose non-zero ( ) such that

| ( )| ( ) for all

Let = 1
( ) ( ) then ( ) = 1 0 as which shows

that 0 in D( ) On the other hence | ( )| 1 so that lim h i 6= 0
Alternate Proof:The definition of being continuous is equivalent to | ( )

being sequentially continuous for all @@ Since ( ) is a metric space,
sequential continuity and continuity are the same thing. Hence is continuous i
| ( ) is continuous for all @@ Now | ( ) is continuous i a bound like
Eq. (30.2) holds.

Definition 30.4. Let be a topological space and D0( ) for all We
say that D0( ) as 0 i

lim
0

h i = h i for all D( )

30.1.1. Examples of distributions and related computations.

Example 30.5. Let be a positive Radon measure on and 1 ( ) Define
D0( ) by h i = R for all D( ) Notice that if ( ) then

|h i|
Z

| | =

Z

| | k k
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where :=
R | | Hence D0( ) Furthermore, the map

1 ( ) D0( )

is injective. Indeed, = 0 is equivalent to

(30.3)
Z

= 0 for all D( )

for all ( ) By the dominated convergence theorem and the usual convolu-
tion argument, this is equivalent to

(30.4)
Z

= 0 for all ( )

Now fix a compact set @@ and ( ) such that sgn( )1 in
1( ) By replacing by ( ) if necessary, where

( ) =

½

if | | 1

| | if | | 1

we may assume that | | 1 By passing to a further subsequence, we may assume
that sgn( )1 a.e.. Thus we have

0 = lim

Z

=

Z

sgn( )1 =

Z

| |

This shows that | ( )| = 0 for -a.e. Since is arbitrary and is the
countable union of such compact sets it follows that ( ) = 0 for -a.e.

The injectivity may also be proved slightly more directly as follows. As before,
it su ces to prove Eq. (30.4) implies that ( ) = 0 for — a.e. We may
further assume that is real by considering real and imaginary parts separately.
Let @@ and 0 be given. Set = { 0} then ( ) and hence
since all finite measure on are Radon, there exists with compact
and such that ( \ ) By Uryshon’s lemma, there exists ( )
such that 0 1 and = 1 on Then by Eq. (30.4)

0 =

Z

=

Z

+

Z

\
=

Z

+

Z

\
so that

Z

=

¯

¯

¯

¯

¯

Z

\

¯

¯

¯

¯

¯

Z

\
| |

provided that is chosen su ciently small by the — definition of absolute con-
tinuity. Similarly, it follows that

0

Z Z

+ 2

Since 0 is arbitrary, it follows that
R

= 0 Since was arbitrary, we learn
that

Z

{ 0}
= 0

which shows that 0 — a.e. Similarly, one shows that 0 — a.e. and hence
= 0 — a.e.
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Example 30.6. Let us now assume that = and write h i = R For
the moment let us also assume that = R Then we have

(1) lim sin = 0
(2) lim 1 sin = 0 where 0 is the point measure at 0
(3) If 1(R ) with

R

R = 1 and ( ) = ( ) then
lim 0 = 0 As a special case,
consider lim 0 ( 2+ 2) = 0

Definition 30.7 (Multiplication by smooth functions). Suppose that ( )
and D0( ) then we define D0( ) by

h i = h i for all D( )

It is easily checked that is continuous.

Definition 30.8 (Di erentiation). For D0( ) and {1 2 } let
D0( ) be the distribution defined by

h i = h i for all D( )

Again it is easy to check that is a distribution.

More generally if =
P

| | with ( ) for all then is the
distribution defined by

h i = h
X

| |
( 1)| | ( )i for all D( )

Hence we can talk about distributional solutions to di erential equations of the
form = .

Example 30.9. Suppose that 1 and ( ) then = If further
1( ) then = If ( ) then =

Example 30.10. Suppose that then

h i = ( )

and more generally we have

h i =
X

| |
( 1)| | ( ) ( )

Example 30.11. Consider the distribution := | | for R i.e. take = R
Then

= sgn( ) and
2

2
= 2 0

More generally, suppose that is piecewise 1 the

= 0 +
X

( ( +) ( ))
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Example 30.12. Consider = ln| | on D(R) Then

h 0 i =
Z

R
ln | | 0( ) = lim

0

Z

| |
ln | | 0( )

= lim
0

Z

| |
ln | | 0( ) = lim

0

Z

| |

1
( ) lim

0
[ln ( ( ) ( ))]

= lim
0

Z

| |

1
( )

We will write 0 = 1 in the future. Here is another formula for 0

h 0 i = lim
0

Z

1 | |

1
( ) +

Z

| | 1

1
( )

= lim
0

Z

1 | |

1
[ ( ) (0)] +

Z

| | 1

1
( )

=

Z

1 | |

1
[ ( ) (0)] +

Z

| | 1

1
( )

Please notice in the last example that 1 1 (R) so that 1 is not well
defined. This is an example of the so called division problem of distributions. Here
is another possible interpretation of 1 as a distribution.

Example 30.13. Here we try to define 1 as lim 0
1
± that is we want to

define a distribution ± by

h ± i := lim
0

Z

1

± ( )

Let us compute + explicitly,

lim
0

Z

R

1

+
( ) = lim

0

Z

| | 1

1

+
( ) + lim

0

Z

| | 1

1

+
( )

= lim
0

Z

| | 1

1

+
[ ( ) (0)] + (0) lim

0

Z

| | 1

1

+

+

Z

| | 1

1
( )

=

Z

R

1
( ) + (0) lim

0

Z

| | 1

1

+

Now by deforming the contour we have
Z

| | 1

1

+
=

Z

| | 1

1

+
+

Z

1

+

where : = with : 0 Therefore,

lim
0

Z

| | 1

1

+
= lim

0

Z

| | 1

1

+
+ lim

0

Z

1

+

=

Z

| | 1

1
+

Z

1
= 0
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Hence we have shown that + = 1
0 Similarly, one shows that =

1 + 0 Notice that it follows from these computations that + = 2 0

Notice that
1 1

+
=

2
2 + 2

and hence we conclude that lim 0 2+ 2 = 0 — a result that we saw in Example
30.6, item 3.

Example 30.14. Suppose that is a complex measure on R and ( ) =
(( ]) then 0 = Moreover, if 1 (R) and 0 = then = +
a.e. for some constant

Proof. Let D := D(R) then

h 0 i = h 0i =
Z

R
( ) 0( ) =

Z

R

Z

R
( ) 0( )1

=

Z

R
( )

Z

R

0( )1 =

Z

R
( ) ( ) = h i

by Fubini’s theorem and the fundamental theorem of calculus. If 0 = then
0 = 0 and the result follows from Corollary 30.16 below.

Lemma 30.15. Suppose that D0(R ) is a distribution such that = 0 for
some then there exists a distribution D0(R 1) such that h i = h ¯ i for
all D(R ) where

¯ =

Z

R
D(R 1)

Proof. To simplify notation, assume that = and write R as = ( )
with R 1 and R Let (R) such that

R

R ( ) = 1 and for
D(R 1) let ( ) = ( ) ( ) The mapping

D(R 1) D(R )

is easily seen to be sequentially continuous and therefore h i := h i defined
a distribution in D0(R ) Now suppose that D(R ) If = for some

D(R ) we would have to have
R

( ) = 0 This is not generally true,
however the function ¯ does have this property. Define

( ) :=

Z

£

( 0) ¯( ) ( 0)
¤ 0

then D(R ) and = ¯ Therefore,

0 = h i = h i = h i h ¯ i = h i h ¯i

Corollary 30.16. Suppose that D0(R ) is a distribution such that there exists
0 such that

= 0 for all | | =
then = where ( ) is a polynomial on R of degree less than or equal to 1
where by convention if deg( ) = 1 then 0
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Proof. The proof will be by induction on and The corollary is trivially
true when = 0 and is arbitrary. Let = 1 and assume the corollary holds
for = 1 with 1 Let D0(R) such that 0 = = 1 By
the induction hypothesis, there exists a polynomial, of degree 2 such that
0 = Let ( ) =

R

0
( ) then is a polynomial of degree at most 1 such

that 0 = and hence 0 = = 0 So ( )0 = 0 and hence by Lemma 30.15,
= where = h i and is as in the proof of Lemma 30.15. This

proves the he result for = 1
For the general induction, suppose there exists ( ) N2 with 0 and
1 such that assertion in the corollary holds for pairs ( 0 0) such that either

0 of 0 = and 0 Suppose that D0(R ) is a distribution such that

= 0 for all | | = + 1

In particular this implies that = 0 for all | | = 1 and hence by induction
= where is a polynomial of degree at most 1 on R Let ( ) =

R

0
( 0) 0 a polynomial of degree at most on R The polynomial satisfies,

1) = 0 if | | = and = 0 and 2) = Hence ( ) = 0 and
so by Lemma 30.15,

h i = h ¯ i
for some distribution D0(R 1) If is a multi-index such that = 0 and
| | = then

0 = h i = h i = h ( ) i = h ¯ i = ( 1)| |h ¯ i
and in particular by taking = we learn that h i = 0 for all
D(R 1) Thus by the induction hypothesis, = for some polynomial ( ) of
degree at most on R 1 Letting ( ) = ( ) + ( ) — a polynomial of
degree at most on R it is easily checked that =

Example 30.17. Consider the wave equation

( ) ( + ) ( ) =
¡

2 2
¢

( ) = 0

From this equation one learns that ( ) = ( + ) + ( ) solves the wave
equation for 2 Suppose that is a bounded Borel measurable function on
R and consider the function ( + ) as a distribution on R We compute

h( ) ( + ) ( )i =
Z

R2
( + ) ( ) ( )

=

Z

R2
( ) [( ) ] ( )

=

Z

R2
( ) [ ( )]

=

Z

R
( ) [ ( )] | == = 0

This shows that ( ) ( + ) = 0 in the distributional sense. Similarly,
( + ) ( ) = 0 in the distributional sense. Hence ( ) = ( + )+ ( )
solves the wave equation in the distributional sense whenever and are bounded
Borel measurable functions on R
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Example 30.18. Consider ( ) = ln | | for R2 and let = Then, pointwise
we have

ln | | = | |2 and ln | | = 2

| |2 2 · | |4 = 0

Hence ( ) = 0 for all R2 except at = 0 where it is not defined. Does this
imply that = 0? No, in fact = 2 as we shall now prove. By definition of

and the dominated convergence theorem,

h i = h i =
Z

R2
ln | | ( ) = lim

0

Z

| |
ln | | ( )

Using the divergence theorem,
Z

| |
ln | | ( ) =

Z

| |
ln | | · ( ) +

Z

{| | }
ln | | ( ) · ( ) ( )

=

Z

| |
ln | | ( )

Z

{| | }
ln | | · ( ) ( ) ( )

+

Z

{| | }
ln | | ( ( ) · ( )) ( )

=

Z

{| | }
ln | | ( ( ) · ( )) ( )

Z

{| | }
ln | | · ( ) ( ) ( )

where ( ) is the outward pointing normal, i.e. ( ) = ˆ := | | Now
¯

¯

¯

¯

¯

Z

{| | }
ln | | ( ( ) · ( )) ( )

¯

¯

¯

¯

¯

¡

ln 1
¢

2 0 as 0

where is a bound on ( ( ) · ( )) While
Z

{| | }
ln | | · ( ) ( ) ( ) =

Z

{| | }

ˆ

| | · ( ˆ) ( ) ( )

=
1
Z

{| | }
( ) ( ) 2 (0) as 0

Combining these results shows

h i = 2 (0)

Exercise 30.1. Carry out a similar computation to that in Example 30.18 to show

1 | | = 4

where now R3

Example 30.19. Let = + and ¯ = 1
2( + ) Let = 1 then

¯ = 0 or imprecisely ¯
1
= ( )
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Proof. Pointwise we have ¯1 = 0 so we shall work as above. We then have

h¯ i = h ¯ i =
Z

R2

1 ¯ ( ) ( ) = lim
0

Z

| |

1 ¯ ( ) ( )

= lim
0

Z

| |
¯1 ( ) ( ) lim

0

Z

{| | }

1
( )
1

2
( 1( ) + 2( )) ( )

= 0 lim
0

Z

{| | }

1
( )
1

2

µ

| |
¶

( ) =
1

2
lim
0

Z

{| | }

1

| | ( ) ( )

= lim
0

1

2

Z

{| | }
( ) ( ) = (0)

30.2. Other classes of test functions. (For what follows, see Exercises 6.13 and
6.14 of Chapter 6.

Notation 30.20. Suppose that is a vector space and { } =0 is a family of semi-
norms on such that +1 for all and with the property that ( ) = 0
for all implies that = 0 (We allow for = 0 for all in which case is a
normed vector space.) Let be the smallest topology on such that ( ·) :

[0 ) is continuous for all N and For N and 0 let
( ) := { : ( ) }

Proposition 30.21. The balls B := { ( ) : N and 0} for a
basis for the topology This topology is the same as the topology induced by the
metric on defined by

( ) =
X

=0

2
( )

1 + ( )

Moreover, a sequence { } is convergent to i lim ( ) =
0 i lim ( ) = 0 for all N and { } is Cauchy in i
lim ( ) = 0 i lim ( ) = 0 for all N

Proof. Suppose that ( ) ( ) and assume with out loss of
generality that Then if ( ) we have

( ) ( ) + ( ) + ( )

provided that (0 ( )) and similarly

( ) ( ) ( ) + ( ) + ( )

provided that (0 ( )) So choosing

=
1

2
min ( ( ) ( ))

we have shown that ( ) ( ) ( ) This shows that B forms a
basis for a topology. In detail, i for all there exists N and

0 such that ( ) := { : ( ) }
Let (B) be the topology generated by B Since| ( ) ( )| (
) we see that ( ·) is continuous on relative to (B) for each and N
This shows that (B) On the other hand, since ( ·) is — continuous, it
follows that ( ) = { : ( ) } for all 0 and N
This shows that B and therefore that (B) Thus = (B)
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Given and 0 let ( ) = { : ( ) } be a — ball. Choose
large so that

P

= +1 2 2. Then ( 4) we have

( ) = ( )
X

=0

2 + 2 2
4
+ 2

which shows that ( 4) ( ) Conversely, if ( ) then

2
( )

1 + ( )

which implies that

( )
2

1 2
=:

when 2 1 which shows that ( ) contains ( ) with and as above.
This shows that and the topology generated by are the same.
The moreover statements are now easily proved and are left to the reader.

Exercise 30.2. Keeping the same notation as Proposition 30.21 and further assume
that { 0 } N is another family of semi-norms as in Notation 30.20. Then the
topology 0 determined by { 0 } N is weaker then the topology determined by
{ } N (i.e.

0 ) i for every N there is an N and such that
0

Solution. Suppose that 0 Since 0 { 0 1} 0 there exists an
N and 0 such that { } { 0 1} So for

2 ( )
{ } { 0 1}

which implies 0 ( ) 2 ( ) and hence 0 with = 2 (Actually 1
would do here.)
For the converse assertion, let 0 and 0 Then there exists an N

and 0 such that { 0 ( 0 ·) } If N and so that 0

then
0 { ( 0 ·) } { 0 ( 0 ·) }

which shows that

Lemma 30.22. Suppose that and are vector spaces equipped with sequences
of norms { } and { } as in Notation 30.20. Then a linear map : is
continuous if for all N there exists and N such that ( )

( ) for all In particular, i | ( )| ( ) for some
and N (We may also characterize continuity by sequential convergence since
both and are metric spaces.)

Proof. Suppose that is continuous, then { : ( ) 1} is an open neigh-
borhood of 0 in Therefore, there exists N and 0 such that (0 )
{ : ( ) 1} So for and 1 ( ) (0 ) and thus

(
( )

) 1 = ( )
1

( )

for all Letting 1 shows that ( ) 1 ( ) for all
Conversely, if satisfies

( ) ( ) for all
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then
( 0) = ( ( 0)) ( 0) for all

This shows 0 as 0 i.e. that is continuous.

Definition 30.23. A Fréchet space is a vector space equipped with a family
{ } of semi-norms such that is complete in the associated metric

Example 30.24. Let @@ R and ( ) := { (R ) : supp( ) }
For N let

( ) :=
X

| |
k k

Then ( ( ) { } =1) is a Fréchet space. Moreover the derivative operators
{ } and multiplication by smooth functions are continuous linear maps from

( ) to ( ) If is a finite measure on then ( ) :=
R

is an
element of ( ) for any multi index

Example 30.25. Let R and for N and a compact set @@ let

( ) :=
X

| |
k k :=

X

| |
max | ( )|

Choose a sequence @@ such that +1 +1 @@ for all
and set ( ) = ( ) Then ( ( ) { } =1) is a Fréchet space and the
topology in independent of the choice of sequence of compact sets exhausting
Moreover the derivative operators { } and multiplication by smooth functions

are continuous linear maps from ( ) to ( ) If is a finite measure with
compact support in then ( ) :=

R

is an element of ( ) for any
multi index

Proposition 30.26. A linear functional on ( ) is continuous, i.e.
( ) i there exists a compact set @@ N and such that

|h i| ( ) for all ( )

Notation 30.27. Let ( ) := (1+| |) (or change to ( ) = (1+| |2) 2 = h i ?)
for R and R

Example 30.28. Let S denote the space of functions (R ) such that
and all of its partial derivatives decay faster that (1 + | |) for all 0 as in
Definition 20.6. Define

( ) =
X

| |
k(1 + | · |) (·)k =

X

| |
k( (·)k

then (S { }) is a Fréchet space. Again the derivative operators { } and multi-
plication by function P are examples of continuous linear operators on S For
an example of an element S let be a measure on R such that

Z

(1 + | |) | |( )

for some N Then ( ) :=
R

defines and element of S
Proposition 30.29. The Fourier transform F : S S is a continuous linear
transformation.
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Proof. For the purposes of this proof, it will be convenient to use the semi-norms
0 ( ) =

X

| |

°

°(1 + | · |2) (·)°°

This is permissible, since by Exercise 30.2 they give rise to the same topology on
S
Let S and N then

(1 + | |2) (̂ ) = (1 + | |2) F (( ) ) ( )

= F [(1 ) (( ) )] ( )

and therefore if we let = (1 ) (( ) ) S
¯

¯

¯
(1 + | |2) (̂ )

¯

¯

¯
k k1 =

Z

R
| ( )|

=

Z

R
| ( )| (1 + | |2) 1

(1 + | |2)
°

°

°
| (·)| (1 + |·|2)

°

°

°

where =
R

R
1

(1+| |2) Using the product rule repeatedly, it is not hard
to show

°

°

°
| (·)| (1 + |·|2)

°

°

°
=
°

°

°
(1 + |·|2) (1 ) (( ) )

°

°

°

X

| | 2

°

°

°
(1 + |·|2) +| | 2

°

°

°

0
2 + ( )

for some constant Combining the last two displayed equations implies that
0 ( )̂ 0

2 + ( ) for all S and thus F is continuous.

Proposition 30.30. The subspace (R ) is dense in S(R )

Proof. Let (R ) such that = 1 in a neighborhood of 0 and set
( ) = ( ) for all N We will now show for all S that converges

to in S The main point is by the product rule,

( ) ( ) =
X

µ ¶

( ) ( )

=
X

: 6=

µ ¶

1
| | ( ) ( )

Since max
©
°

°

°

° :
ª

is bounded it then follows from the last equation that
k ( )k = (1 ) for all 0 and That is to say in S
Lemma 30.31 (Peetre’s Inequality). For all R and R

(30.5) (1 + | + |) min
n

(1 + | |)| |(1 + | |) (1 + | |) (1 + | |)| |
o

that is to say ( + ) | |( ) ( ) and ( + ) ( ) | |( ) for all R
where ( ) = (1 + | |) as in Notation 30.27. We also have the same results for
h i namely
(30.6) h + i 2| | 2min

n

h i| |h i h i h i| |
o
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Proof. By elementary estimates,

(1 + | + |) 1 + | |+ | | (1 + | |)(1 + | |)
and so for Eq. (30.5) holds if 0 Now suppose that 0 then

(1 + | + |) (1 + | |) (1 + | |)
and letting and in this inequality implies

(1 + | |) (1 + | + |) (1 + | |)
This inequality is equivalent to

(1 + | + |) (1 + | |) (1 + | |) = (1 + | |) (1 + | |)| |

By symmetry we also have

(1 + | + |) (1 + | |)| |(1 + | |)
For the proof of Eq. (30.6

h + i2 = 1 + | + |2 1 + (| |+ | |)2 = 1 + | |2 + | |2 + 2 | | | |
1 + 2 | |2 + 2 | |2 2(1 + | |2)(1 + | |2) = 2h i2h i2

From this it follows that h i 2 2h + i 2h i2 and hence
h + i 2 2h i 2h i2

So if 0 then

h + i 2 2h i h i
and

h + i 2 2h i h i

Proposition 30.32. Suppose that S then S
Proof. First proof. Since F( ) = ˆ̂ S it follows that = F 1( ˆ̂ ) S

as well.
For the second proof we will make use of Peetre’s inequality. We have for any
N that

( ) | ( )( )| = ( ) | ( )| ( )

Z

| ( )| | ( )|

( )

Z

( ) ( ) ( )

Z

( ) ( ) ( )

= ( )

Z

( )

Choosing = and + we learn that

( ) | ( )( )|
Z

( )

showing k ( )k for all 0 and N
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30.3. Compactly supported distributions.

Definition 30.33. For a distribution D0( ) and we say | = 0 if
h i = 0 for all D( )

Proposition 30.34. Suppose that V := { } is a collection of open subset of
such that | = 0 for all then | = 0 where =

Proof. Let { } be a smooth partition of unity subordinate to V i.e.
supp( ) for all for each point there exists a neighborhood

such that #{ : supp( ) 6= } and 1 =
P

Then for D( ) we have =
P

and there are only a finite number of
nonzero terms in the sum since supp( ) is compact. Since D( ) for all

h i = h
X

i =
X

h i = 0

Definition 30.35. The support, supp( ) of a distribution D0( ) is the rela-
tively closed subset of determined by

\ supp( ) = { : | = 0}
By Proposition 30.26, supp( ) may described as the smallest (relatively) closed set
such that | \ = 0

Proposition 30.36. If 1 ( ) then supp( ) = ess sup( ) where

ess sup( ) := { : ({ : ( ) 6= 0}}) 0 for all neighborhoods of }
as in Definition 11.14.

Proof. The key point is that | = 0 i = 0 a.e. on and therefore

\ supp( ) = { : 1 = 0 a.e.}
On the other hand,

\ ess sup( ) = { : ({ : ( ) 6= 0}}) = 0 for some neighborhood of }
= { : 1 = 0 a.e. for some neighborhood of }
= { : 1 = 0 a.e.}

Definition 30.37. Let E 0( ) := { D0( ) : supp( ) is compact} — the
compactly supported distributions in D0( )

Lemma 30.38. Suppose that D0( ) and ( ) is a function such that
:= supp( ) supp( ) is a compact subset of Then we may define h i :=

h i where D( ) is any function such that = 1 on a neighborhood of
Moreover, if @@ is a given compact set and @@ is a compact set such
that then there exists N and such that

(30.7) |h i|
X

| |

°

°

°

°

for all ( ) such that supp( ) supp( ) In particular if E 0( )
then extends uniquely to a linear functional on ( ) and there is a compact
subset @@ such that the estimate in Eq. (30.7) holds for all ( )
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Proof. Suppose that ˜ is another such cuto function and let be an open

neighborhood of such that = ˜ = 1 on Setting :=
³

˜
´

D( ) we

see that

supp( ) supp( ) \ supp( ) \ = supp( ) \ supp( ) \ supp( )
see Figure 50 below. Therefore,

0 = h i = h
³

˜
´

i = h i h ˜ i

which shows that h i is well defined.

Figure 50. Intersecting the supports.

Moreover, if @@ is a compact set such that and ( 0) is a
function which is 1 on a neighborhood of we have

|h i| = |h i| =
X

| |
k ( )k

X

| |

°

°

°

°

and this estimate holds for all ( ) such that supp( ) supp( )

Theorem 30.39. The restriction of ( ) to ( ) defines an element in
E 0( ) Moreover the map

( ) |D( ) E 0( )

is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given E 0( ) and ( ) such that = 1 on = supp( ) then 1( ) =

where ( ) defined by

h i = h i for all ( )

Proof. Suppose that ( ) then there exists a compact set @@
N and such that

|h i| ( ) for all ( )
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where is defined in Example 30.25. It is clear using the sequential notion of
continuity that |D( ) is continuous on D( ) i.e. |D( ) D0( ) Moreover, if

( ) such that = 1 on a neighborhood of then

|h i h i| = |h ( 1) i| (( 1) ) = 0

which shows = Hence supp( ) = supp( ) supp( ) @@ showing that
|D( ) E 0( ) Therefore the map is well defined and is clearly linear. I also
claim that is injective because if ( ) and ( ) = |D( ) 0 then
h i = h i = h |D( ) i = 0 for all ( )
To show is surjective suppose that E 0( ) By Lemma 30.38 we know that
extends uniquely to an element ˜ of ( ) such that ˜|D( ) = i.e. ( ˜) =

and = supp( )

Lemma 30.40. The space E 0( ) is a sequentially dense subset of D0( )

Proof. Choose @@ such that +1 +1 as Let
( 0

+1) such that = 1 on Then for D0( ) E 0( ) and
as

30.4. Tempered Distributions and the Fourier Transform. The space of
tempered distributions S 0 (R ) is the continuous dual to S = S(R ) A linear
functional on S is continuous i there exists N and such that

(30.8) |h i| ( ) :=
X

| |
k k

for all S Since D = D (R ) is a dense subspace of S any element S 0
is determined by its restriction to D Moreover, if S 0 it is easy to see that
|D D0 Conversely and element D0 satisfying an estimate of the form in Eq.
(30.8) for all D extend uniquely to an element of S 0 In this way we may view
S 0 as a subspace of D0

Example 30.41. Any compactly supported distribution is tempered, i.e. E 0( )
S 0(R ) for any R

One of the virtues of S 0 is that we may extend the Fourier transform to S 0 Recall
that for 1 functions and we have the identity,

h ˆ i = h ˆi
This suggests the following definition.

Definition 30.42. The Fourier and inverse Fourier transform of a tempered dis-
tribution S 0 are the distributions ˆ = F S 0 and = F 1 S 0defined
by

h ˆ i = h ˆi and h i = h i for all S
Since F : S S is a continuous isomorphism with inverse F 1 one easily checks
that ˆ and are well defined elements of S and that F 1 is the inverse of F on
S 0
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Example 30.43. Suppose that is a complex measure on R . Then we may view
as an element of S 0 via h i = R for all S 0 Then by Fubini-Tonelli,

hˆ i = h ˆi =
Z

ˆ( ) ( ) =

Z
·
Z

( ) ·
¸

( )

=

Z
·
Z

( ) · ( )

¸

which shows that ˆ is the distribution associated to the continuous function
R · ( )

R · ( )We will somewhat abuse notation and identify the
distribution ˆ with the function

R · ( ) When ( ) = ( ) with
1 we have ˆ = ,̂ so the definitions are all consistent.

Corollary 30.44. Suppose that is a complex measure such that ˆ = 0 then = 0
So complex measures on R are uniquely determined by their Fourier transform.

Proof. If ˆ = 0 then = 0 as a distribution, i.e.
R

= 0 for all S and in
particular for all D By Example 30.5 this implies that is the zero measure.

More generally we have the following analogous theorem for compactly supported
distributions.

Theorem 30.45. Let E 0(R ) then ˆ is an analytic function and ˆ( ) =

h ( ) · i Also if supp( ) @@ (0 ) then ˆ( ) satisfies a bound of the form
¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) |Im |

for some N and If D(R ) i.e. if is assumed to be smooth, then
for all N there exists such that

¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) |Im |

Proof. The function ( ) = h ( ) · i for C is analytic since the map
C · ( R ) is analytic and is complex linear. Moreover, we

have the bound

| ( )| = ¯¯h ( ) · i¯¯
X

| |

°

°

· °
°

(0 )
=

X

| |

°

°

· °
°

(0 )

X

| |
| || | °° · °

°

(0 )
(1 + | |) |Im |

If we now assume that D(R ) then
¯

¯

¯

ˆ( )
¯

¯

¯
=

¯

¯

¯

¯

Z

R
( ) ·

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( )( ) ·

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
( ) ( ) ·

¯

¯

¯

¯

|Im |
Z

R
| ( )|

showing

| |
¯

¯

¯

ˆ( )
¯

¯

¯

|Im | k k1
and therefore

(1 + | |)
¯

¯

¯

ˆ( )
¯

¯

¯

|Im | X

| |
k k1 |Im |
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So to finish the proof it su ces to show = ˆ in the sense of distributions52.
For this let D @@ R be a compact set for 0 let

ˆ ( ) = (2 ) 2
X

Z

( ) ·

This is a finite sum and

sup
¯

¯

¯

³

ˆ ( ) ˆ( )
´
¯

¯

¯
= sup

¯

¯

¯

¯

¯

¯

X

Z

Z

+ (0 1]

¡

( ) ( ) · ( ) ( ) · ¢
¯

¯

¯

¯

¯

¯

X

Z

Z

+ (0 1]

sup
¯

¯ ( ) · ( ) · ¯
¯

By uniform continuity of ( ) · for ( ) ×R ( has compact support),

( ) = sup sup
Z

sup
+ (0 1]

¯

¯ ( ) · ( ) · ¯
¯ 0 as 0

which shows
sup

¯

¯

¯

³

ˆ ( ) ˆ( )
´
¯

¯

¯
( )

where is the volume of a cube in R which contains the support of This shows
that ˆ ˆ in (R ) Therefore,

h ˆ i = h ˆi = lim
0
h ˆ i = lim

0
(2 ) 2

X

Z

( )h ( ) · i

= lim
0
(2 ) 2

X

Z

( ) ( ) =

Z

R
( ) ( ) = h i

Remark 30.46. Notice that
ˆ( ) = h ( ) · i = h ( ) ( ) · i = h( ) ( ) · i

and ( ) ( ) E 0(R ) Therefore, we find a bound of the form
¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) 0 |Im |

where and 0 depend on In particular, this shows that ˆ P i.e. S 0 is
preserved under multiplication by ˆ

The converse of this theorem holds as well. For the moment we only have the
tools to prove the smooth converse. The general case will follow by using the notion
of convolution to regularize a distribution to reduce the question to the smooth case.

52This is most easily done using Fubini’s Theorem 31.2 for distributions proved below. This
proof goes as follows. Let D(R ) such that = 1 on a neighborhood of supp( ) and = 1
on a neighborhood of supp( ) then

h i = h ( ) h ( ) · ii = h ( ) ( ) h ( ) ( ) · ii
= h ( ) h ( ) ( ) ( ) · ii

We may now apply Theorem 31.2 to conclude,

h i = h ( ) h ( ) ( ) ( ) · ii = h ( ) ( )h ( ) · ii = h ( ) h ( ) · ii
= h ( ) ˆ( )i
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Theorem 30.47. Let S(R ) and assume that ˆ is an analytic function and
there exists an such that for all N there exists such that

¯

¯

¯

ˆ( )
¯

¯

¯
(1 + | |) |Im |

Then supp( ) (0 )

Proof. By the Fourier inversion formula,

( ) =

Z

R

ˆ( ) ·

and by deforming the contour, we may express this integral as

( ) =

Z

R +

ˆ( ) · =

Z

R

ˆ( + ) ( + )·

for any R From this last equation it follows that

| ( )| ·
Z

R

¯

¯

¯

ˆ( + )
¯

¯

¯

· | |
Z

R
(1 + | + |)

· | |
Z

R
(1 + | |) ˜ · | |

where ˜ if Letting = with 0 we learn

(30.9) | ( )| ˜ exp
¡ | |2 + | |¢ = ˜ | |( | |)

Hence if | | we may let in Eq. (30.9) to show ( ) = 0 That is to
say supp( ) (0 )
Let us now pause to work out some specific examples of Fourier transform of

measures.

Example 30.48 (Delta Functions). Let R and be the point mass measure
at then

ˆ ( ) = ·

In particular it follows that
F 1 · =

To see the content of this formula, let S Then
Z

· ( ) = h · F 1 i = hF 1 · i = h i = ( )

which is precisely the Fourier inversion formula.

Example 30.49. Suppose that ( ) is a polynomial. Then

hˆ i = h ˆi =
Z

( )ˆ( )

Now

( )ˆ( ) =

Z

( ) ( ) · =

Z

( ) ( ) ·

=

Z

( ) ( ) · = F ( ( ) ) ( )
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which combined with the previous equation implies

hˆ i =
Z

F ( ( ) ) ( ) =
¡F 1F ( ( ) )

¢

(0) = ( ) (0)

= h 0 ( ) i = h ( ) 0 i
Thus we have shown that ˆ = ( ) 0

Lemma 30.50. Let ( ) be a polynomial in R = ( ) (a constant
coe cient partial di erential operator) and S 0 then

F ( ) = ˆ

In particular if = 0 we have

F ( ) 0 = · 0̂ =

Proof. By definition,

hF i = h ˆi = h ( ) ˆi = h ( )ˆi
and

( )ˆ( ) = ( )

Z

( ) · =

Z

( ) ( ) · = ( ) ˆ

Thus
hF i = h ( )ˆi = h ( ) ˆi = h ˆ i = h ˆ i

which proves the lemma.

Example 30.51. Let = 1 and ( ) = 1[ ]( ) Then

ˆ( ) =

Z

· =
1

2

·
| = 1

2

· ·

=
1

2

· ·

So by the inversion formula we may conclude that

(30.10) F 1

µ

1

2

· · ¶
( ) = 1[ ]( )

in the sense of distributions. This also true at the Level of 2 — functions. When
= and 0 these formula reduce to

F1[ ] =
1

2

· ·
=

2

2

sin

and

F 1 2

2

sin
= 1[ ]

Let us pause to work out Eq. (30.10) by first principles. For (0 ) let
be the complex measure on R defined by

( ) =
1

2
1| |

· ·

then
1

2

· ·
= lim in the S 0 topology.
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Hence

F 1

µ

1

2

· · ¶
( ) = lim F 1

and

F 1 ( ) =

Z

1

2

· ·

Since is 1
2

· ·
is a holomorphic function on C we may deform

the contour to any contour in C starting at and ending at Let denote
the straight line path from to 1 along the real axis followed by the contour

for going from to 2 and then followed by the straight line path from 1 to
Then
Z

| |

1

2

· ·
=

Z

1

2

· ·

=

Z

1

2

( )· ( )·

=
1

2

Z ( )· ( )·
( )

By the usual contour methods we find

lim
1

2

Z

( ) =

½

1 if 0
0 if 0

and therefore we have

F 1

µ

1

2

· · ¶
( ) = lim F 1 ( ) = 1 1 = 1[ ]( )

Example 30.52. Let be the surface measure on the sphere of radius centered
at zero in R3 Then

ˆ ( ) = 4
sin | |
| |

Indeed,

ˆ ( ) =

Z

2

· ( ) = 2

Z

2

· ( )

= 2

Z

2

3| | ( ) = 2

Z 2

0

Z

0

sin cos | |

= 2 2

Z 1

1

| | = 2 2 1

| |
| || =1= 1 = 4

2 sin | |
| |

By the inversion formula, it follows that

F 1 sin | |
| | =

4 2
= ¯

where ¯ is 1
4 2 the surface measure on normalized to have total measure one.
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Let us again pause to try to compute this inverse Fourier transform directly.
To this end, let ( ) := sin | |

| | 1| | By the dominated convergence theorem, it

follows that sin | |
| | in S 0 i.e. pointwise on S Therefore,

hF 1 sin | |
| | i = hsin | |

| | F 1 i = lim h F 1 i = lim hF 1 i

and

(2 )3 2F 1 ( ) = (2 )3 2

Z

R3

sin | |
| | 1| |

·

=

Z

=0

Z 2

=0

Z

=0

sin | | cos 2 sin

=

Z

=0

Z 2

=0

Z 1

= 1

sin | | 2 = 2

Z

=0

sin | | | |

| |

=
4

| |
Z

=0

sin sin | |

=
4

| |
Z

=0

1

2
(cos( ( + | |) cos( ( | |))

=
4

| |
1

2( + | |) (sin( ( + | |) sin( ( | |)) | =0

=
4

| |
1

2

µ

sin( ( + | |)
+ | |

sin( ( | |)
| |

¶

Now make use of the fact that sin ( ) in one dimension to finish the proof.

30.4.1. Wave Equation. Given a distribution and a test function we wish to
define by the formula

( ) = “

Z

( ) ( ) ” = h ( ·)i

As motivation for wanting to understand convolutions of distributions let us recon-
sider the wave equation in R

0 =
¡

2
¢

( ) with

(0 ) = ( ) and (0 ) = ( )

Taking the Fourier transform in the variables gives the following equation

0 = ˆ ( ) + | |2 ˆ( )with

ˆ(0 ) = (̂ ) and ˆ (0 ) = ˆ( )

The solution to these equations is

ˆ( ) = (̂ ) cos ( | |) + ˆ( )sin | || |
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and hence we should have

( ) = F 1

µ

(̂ ) cos ( | |) + ˆ( )sin | || |
¶

( )

= F 1 cos ( | |) ( ) + F 1 sin | |
| | ( )

= F 1 sin | |
| | ( ) + F 1 sin | |

| | ( )

The question now is how interpret this equation. In particular what are the inverse
Fourier transforms of F 1 cos ( | |) and F 1 sin | |

| | Since F 1 sin | |
| | ( ) =

F 1 cos ( | |) ( ) it really su ces to understand F 1 sin | |
| | This was worked

out in Example 30.51 when = 1 where we found

¡F 1 1 sin
¢

( ) =
2

¡

1 + 0 1( ) 0

¢

=
2
(1 1 ) =

2
1[ ]( )

where in writing the last line we have assume that 0 Therefore,

¡F 1 1 sin
¢

( ) =
1

2

Z

( )

Therefore the solution to the one dimensional wave equation is

( ) =
1

2

Z

( ) +
1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z

( )

=
1

2
( ( ) + ( + )) +

1

2

Z +

( )

We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0 =
¡

2 2
¢

( ) = ( ) ( + ) ( )

Let ( ) := ( + ) ( ) then the wave equation states ( ) = 0 and
hence by the chain rule ( ) = 0 So

( ) = (0 ) = ( ) + 0( )

and replacing by + in this equation shows

( + ) ( ) = ( ) = ( + ) + 0( + )

Working similarly, we learn that

( + ) = ( + 2 ) + 0( + 2 )
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which upon integration implies

( + ) = (0 ) +

Z

0

{ ( + 2 ) + 0( + 2 )}

= ( ) +

Z

0

( + 2 ) +
1

2
( + 2 )|0

=
1

2
( ( ) + ( + 2 )) +

Z

0

( + 2 )

Replacing in this equation then implies

( ) =
1

2
( ( ) + ( + )) +

Z

0

( + 2 )

Finally, letting = + 2 in the last integral gives

( ) =
1

2
( ( ) + ( + )) +

1

2

Z +

( )

as derived using the Fourier transform.
For the three dimensional case we have

( ) = F 1 sin | |
| | ( ) + F 1 sin | |

| | ( )

= ( ¯ ( )) + ¯ ( )

The question is what is ( ) where is a measure. To understand the definition,
suppose first that ( ) = ( ) then we should have

( ) = ( ) =

Z

R
( ) ( ) =

Z

R
( ) ( )

Thus we expect our solution to the wave equation should be given by

( ) =

½
Z

( ) ¯ ( )

¾

+

Z

( ) ¯ ( )

=

½
Z

1

( )

¾

+

Z

1

( )

=

½
Z

1

( + )

¾

+

Z

1

( + )(30.11)

where := ¯1( ) Notice the sharp propagation of speed. To understand this
suppose that = 0 for simplicity and has compact support near the origin, for
example think of = 0( ) the + = 0 for some i | | = Hence the wave
front propagates at unit speed in a sharp way. See figure below.
We may also use this solution to solve the two dimensional wave equation using

Hadamard’s method of decent. Indeed, suppose now that and are function
on R2 which we may view as functions on R3 which do not depend on the third
coordinate say. We now go ahead and solve the three dimensional wave equation
using Eq. (30.11) and and as initial conditions. It is easily seen that the solution
( ) is again independent of and hence is a solution to the two dimensional
wave equation. See figure below.
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Figure 51. The geometry of the solution to the wave equation in
three dimensions.

Figure 52. The geometry of the solution to the wave equation in
two dimensions.

Notice that we still have finite speed of propagation but no longer sharp prop-
agation. In fact we can work out the solution analytically as follows. Again for
simplicity assume that 0 Then

( ) =
4

Z 2

0

Z

0

sin (( ) + (sin cos sin sin ))

=
2

Z 2

0

Z 2

0

sin (( ) + (sin cos sin sin ))

and letting = sin so that = cos = 1 2 we find

( ) =
2

Z 2

0

Z 1

0 1 2
(( ) + (cos sin ))

ANALYSIS TOOLS WITH APPLICATIONS 553

and then letting = we learn,

( ) =
1

2

Z 2

0

Z

0

p

1 2 2
(( ) + (cos sin ))

=
1

2

Z 2

0

Z

0
2 2

(( ) + (cos sin ))

=
1

2

ZZ

(( ) + ))
p

2 | |2 ( )

Here is a better alternative derivation of this result. We begin by using symmetry
to find

( ) = 2

Z

+
( ) ¯ ( ) = 2

Z

+
( + ) ¯ ( )

where + is the portion of with 0 This sphere is parametrized by
( ) = ( 2 2 2) with ( ) :=

©

( ) : 2 + 2 2
ª

In these
coordinates we have

4 2 ¯ =
¯

¯

¯

³

p

2 2 2
p

2 2 2 1
´
¯

¯

¯

=

¯

¯

¯

¯

µ

2 2 2 2 2 2
1

¶
¯

¯

¯

¯

=

r

2 + 2

2 2 2
+ 1 =

| |
2 2 2

and therefore,

( ) =
2

4 2

Z

+
( + (

p

2 2 2))
| |

2 2 2

=
1

2
sgn( )

Z

+

( + ( ))
2 2 2

This may be written as

( ) =
1

2
sgn( )

ZZ

(( ) + ))
p

2 | |2 ( )

as before. (I should check on the sgn( ) term.)

30.5. Appendix: Topology on ( ). Let be an open subset of R and

(30.12) ( ) = @@ ( )

denote the set of smooth functions on with compact support in Our goal is
to topologize ( ) in a way which is compatible with he topologies defined in
Example 30.24 above. This leads us to the inductive limit topology which we now
pause to introduce.

Definition 30.53 (Indcutive Limit Topology). Let be a set, for
( is an index set) and assume that P( ) is a topology on for each
Let : denote the inclusion maps. The inductive limit topology on
is the largest topology on such that is continuous for all That is to
say, = ( ) i.e. a set is open ( ) i 1( ) =
for all
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Notice that is closed i is closed in for all Indeed,
is closed i = \ is open, i = \ is open in i

= \ ( \ ) is closed in for all

Definition 30.54. Let D( ) denote ( ) equipped with the inductive limit
topology arising from writing ( ) as in Eq. (30.12) and using the Fréchet
topologies on ( ) as defined in Example 30.24.

For each @@ ( ) is a closed subset of D( ) Indeed if is another
compact subset of then ( ) ( ) = ( ) which is a closed subset
of ( ) The set U D( ) defined by

(30.13) U = D( ) :
X

| |
k ( )k

for some D( ) and 0 is an open subset of D( ) Indeed, if @@ then

U ( ) = ( ) :
X

| |
k ( )k

is easily seen to be open in ( )

Proposition 30.55. Let ( ) be as described in Definition 30.53 and :
be a function where is another topological space. Then is continuous i :

is continuous for all

Proof. Since the composition of continuous maps is continuous, it follows that
: is continuous for all if : is continuous. Conversely,

if is continuous for all then for all we have

3 ( ) 1 ( ) = 1( 1( )) = 1( ) for all

showing that 1( )

Lemma 30.56. Let us continue the notation introduced in Definition 30.53. Sup-
pose further that there exists such that 0 := as and for
each there exists an N such that 0 and the inclusion map is con-
tinuous. Then = { : 0 0 for all } and a function :
is continuous i | 0 : 0 is continuous for all In short the inductive limit
topology on arising from the two collections of subsets { } and { 0 } N
are the same.

Proof. Suppose that if then 0 = 0 by
definition. Now suppose that 0 0 for all For choose such
that 0 then = ( 0 ) since 0 is open in 0

and by assumption that is continuously embedded in 0 for all
0 The characterization of continuous functions is prove similarly.

Let @@ for N such that +1 +1 for all and
as Then it follows for any @@ there exists an such

that One now checks that the map ( ) embeds continuously
into ( ) and moreover, ( ) is a closed subset of ( +1) Therefore
we may describe D( ) as ( ) with the inductively limit topology coming from

N ( )
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Lemma 30.57. Suppose that { } =1 D( ) then D( ) i
0 D( )

Proof. Let D( ) and U D( ) be a set. We will begin by showing that
U is open in D( ) i U is open in D( ) To this end let be the compact
sets described above and choose 0 su ciently large so that ( ) for all

0 Now U D( ) is open i (U ) ( ) is open in ( ) for
all 0 Because ( ) we have (U ) ( ) = U ( )
which is open in ( ) i U ( ) is open ( ) Since this is true for
all 0 we conclude that U is an open subset of D( ) i U is open in D( )
Now in D( ) i for all U D( ) U for almost all which

happens i U for almost all Since U ranges over all open
neighborhoods of 0 when U ranges over the open neighborhoods of the result
follows.

Lemma 30.58. A sequence { } =1 D( ) converges to D( ) i there is a
compact set @@ such that supp( ) for all and in ( )

Proof. If in ( ) then for any open set V D( ) with V we
have V ( ) is open in ( ) and hence V ( ) V for almost all
This shows that D( )
For the converse, suppose that there exists { } =1 D( ) which converges to
D( ) yet there is no compact set such that supp( ) for all Using

Lemma30.57, we may replace by if necessary so that we may assume
0 in D( ) By passing to a subsequences of { } and { } if necessary, we

may also assume there +1 \ such that ( ) 6= 0 for all Let denote
the semi-norm on ( ) defined by

( ) =
X

=0

sup

½ | ( )|
| ( )| : +1 \

¾

One then checks that

( )

Ã

X

=0

1

| ( )|

!

k k

for ( +1) This shows that | ( +1) is continuous for all and hence
is continuous on D( ) Since is continuous on D( ) and 0 in D( ) it

follows that lim ( ) = (lim ) = (0) = 0 While on the other hand,
( ) 1 by construction and hence we have arrived at a contradiction. Thus for
any convergent sequence { } =1 D( ) there is a compact set @@ such
that supp( ) for all
We will now show that { } =1 is convergent to in ( ) To this end let

U D( ) be the open set described in Eq. (30.13), then U for almost all
and in particular, U ( ) for almost all (Letting 0 tend to zero
shows that supp( ) i.e. ( ) ) Since sets of the form U ( ) with
U as in Eq. (30.13) form a neighborhood base for the ( ) at we concluded
that in ( )

Definition 30.59 (Distributions on R ). A generalized function on R
is a continuous linear functional on D( ) We denote the space of generalized
functions by D0( )
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Proposition 30.60. Let : D( ) C be a linear functional. Then the following
are equivalent.

(1) is continuous, i.e. D0( )
(2) For all @@ there exist N and such that

(30.14) | ( )| ( ) for all ( )

(3) For all sequences { } D( ) such that 0 in D( ) lim ( ) =
0

Proof. 1) 2) If is continuous, then by definition of the inductive limit
topology | ( ) is continuous. Hence an estimate of the type in Eq. (30.14) must
hold. Conversely if estimates of the type in Eq. (30.14) hold for all compact sets
then | ( ) is continuous for all @@ and again by the definition of the

inductive limit topologies, is continuous on D0( )
1) 3) By Lemma 30.58, the assertion in item 3. is equivalent to saying that
| ( ) is sequentially continuous for all @@ Since the topology on ( )
is first countable (being a metric topology), sequential continuity and continuity
are the same think. Hence item 3. is equivalent to the assertion that | ( ) is
continuous for all @@ which is equivalent to the assertion that is continuous
on D0( )

Proposition 30.61. The maps ( ) C × D( ) D( ) and ( )
D( ) × D( ) + D( ) are continuous. (Actually, I will have to look up
how to decide to this.) What is obvious is that all of these operations are sequentially
continuous, which is enough for our purposes.
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31. Convolutions involving distributions

31.1. Tensor Product of Distributions. Let R and R and
D0( ) and D0( ) We wish to define D0( × ) Informally, we should
have

h i =
Z

×
( ) ( ) ( )

=

Z

( )

Z

( ) ( ) =

Z

( )

Z

( ) ( )

Of course we should interpret this last equation as follows,

(31.1) h i = h ( ) h ( ) ( )ii = h ( ) h ( ) ( )ii
This formula takes on particularly simple form when = with D( ) and

D( ) in which case

(31.2) h i = h ih i
We begin with the following smooth version of the Weierstrass approximation the-
orem which will be used to show Eq. (31.2) uniquely determines

Theorem 31.1 (Density Theorem). Suppose that R and R then
D( ) D( ) is dense in D( × )

Proof. First let us consider the special case where = (0 1) and = (0 1)
so that × = (0 1) + To simplify notation, let + = and = (0 1) and
: (0 1) be projection onto the i factor of Suppose that ( ) and
= supp( ) We will view (R ) by setting = 0 outside of Since is

compact ( ) [ ] for some 0 1 Let = min { : = 1 }
and = max { : = 1 } Then supp( ) = [ ]
As in the proof of the Weierstrass approximation theorem, let ( ) = (1

2) 1| | 1 where is chosen so that
R

R ( ) = 1 Also set = · · ·
i.e. ( ) =

Q

=1 ( ) for R Let

(31.3) ( ) := ( ) =

Z

R
( )
Y

=1

(1 ( )2) 1| | 1

By standard arguments, we know that uniformly on R as
Moreover for it follows from Eq. (31.3) that

( ) :=

Z

( )
Y

=1

(1 ( )2) = ( )

where ( ) is a polynomial in Notice that ((0 1)) · · · ((0 1)) so
that we are almost there.53 We need only cuto these functions so that they have

53One could also construct (R) such that uniformlly as using
Fourier series. To this end, let ˜ be the 1 — periodic extension of to R Then ˜ periodic (R )

and hence it may be written as
˜( ) =

X

Z

2 ·

where the
©

: Z
ª

are the Fourier coe cients of ˜ which decay faster that (1 + | |) for
any 0 Thus ( ) :=

P

Z :| |
2 · (R) and unifromly on

as
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compact support. To this end, let ((0 1)) be a function such that = 1 on
a neighborhood of [ ] and define

= ( · · · ) = ( · · · ) ((0 1)) · · · ((0 1))

I claim now that in D( ) Certainly by construction supp( )
[ ] @@ for all Also

(31.4) ( ) = ( ( · · · ) ) = ( · · · ) ( ) +

where is a sum of terms of the form ( · · · ) · with 6= 0 Since
( · · · ) = 0 on [ ] and converges uniformly to zero on R \ [ ]

it follows that 0 uniformly as Combining this with Eq. (31.4) and
the fact that uniformly on R as we see that in D( )
This finishes the proof in the case = (0 1) and = (0 1)
For the general case, let = supp( ) @@ × and 1 = 1( ) @@ and
2 = 2( ) @@ where 1 and 2 are projections from × to and

respectively. Then @ 1 × 2 @@ × Let { } =1 and { } =1 be finite
covers of 1 and 2 respectively by open sets = ( ) and = ( ) with

and Also let ( ) for = 1 and ( )
for = 1 be functions such that

P

=1 = 1 on a neighborhood of 1 and
P

=1 = 1 on a neighborhood of 2 Then =
P

=1

P

=1 ( ) and by
what we have just proved (after scaling and translating) each term in this sum,
( ) may be written as a limit of elements in D( ) D( ) in the D( × )
topology.

Theorem 31.2 (Distribution-Fubini-Theorem). Let D0( ) D0( )
( ) := h ( ) ( )i and ( ) := h ( ) ( )i Then = D( )
= D( ) ( ) = h ( ) ( )i and ( ) = h ( ) ( )i for

all multi-indices and Moreover

(31.5) h ( ) h ( ) ( )ii = h i = h i = h ( ) h ( ) ( )ii
We denote this common value by h i and call the tensor product of
and This distribution is uniquely determined by its values on D( ) D( ) and
for D( ) and D( ) we have

h i = h ih i
Proof. Let = supp( ) @@ × and 1 = 1( ) and 2 = 2( ) Then
1 @@ and 2 @@ and 1 × 2 × If and 2 then
( ) = 0 and more generally ( ) = 0 so that { : ( ) 6= 0} 2

Thus for all supp( ( ·)) 2 By the fundamental theorem of
calculus,

(31.6) ( + ) ( ) =

Z 1

0

( + )

and therefore

°

° ( + ·) ( ·)°° | |
Z 1

0

°

° ( + ·)°°

| |°° °

° 0 as 0
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This shows that ( ·) D( ) is continuous. Thus is continuous being
the composition of continuous functions. Letting = in Eq. (31.6) we find

( + ) ( )
( ) =

Z 1

0

·

( + ) ( )

¸

and hence
°

°

°

°

°

( + ·) ( ·)
( ·)

°

°

°

°

°

Z 1

0

°

°

°

°

( + ·) ( ·)
°

°

°

°

which tends to zero as 0 Thus we have checked that

( ·) = D0( )— lim
0

( + ·) ( ·)

and therefore,

( + ) ( )
= h ( + ·) ( ·) i h ( ·)i

as 0 showing ( ) exists and is given by h ( ·)i By what we
have proved above, it follows that ( ) = h ( ·)i is continuous in
By induction on | | it follows that ( ) exists and is continuous and
( ) = h ( ) ( )i for all Now if 1 then ( ·) 0 showing that

{ : ( ) 6= 0} 1 and hence supp( ) 1 @@ Thus has compact
support. This proves all of the assertions made about The assertions pertaining
to the function are prove analogously.
Let h i = h ( ) h ( ) ( )ii = h i for D( × ) Then is clearly

linear and we have

|h i| = |h i|
X

| |
k k

1
=

X

| |
kh ( ) (· )ik

1

which combined with the estimate

|h ( ) ( )i|
X

| |

°

° ( )i°°
2

shows
|h i|

X

| |

X

| |

°

° ( )i°°
1× 2

So is continuous, i.e. D0( × ) i.e.

D( × ) h ( ) h ( ) ( )ii
defines a distribution. Similarly,

D( × ) h ( ) h ( ) ( )ii
also defines a distribution and since both of these distributions agree on the dense
subspace D( ) D( ) it follows they are equal.

Theorem 31.3. If ( ) is a distribution test function pair satisfying one of the
following three conditions

(1) E 0(R ) and (R )
(2) D0(R ) and D(R ) or
(3) S 0(R ) and S(R )
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let

(31.7) ( ) = “

Z

( ) ( ) ” = h ( ·)i
Then (R ) ( ) = ( ) = ( ) for all and

supp( ) supp( ) + supp( ) Moreover if (3) holds then P — the space
of smooth functions with slow decrease.

Proof. I will supply the proof for case (3) since the other cases are similar and
easier. Let ( ) := ( ) Since S 0(R ) there exists N and
such that |h i| ( ) for all S where is defined in Example 30.28.
Therefore,

| ( ) ( )| = |h ( ·) ( ·)i| ( ( ·) ( ·))
=

X

| |
k ( ( ·) ( ·))k

Let := then

(31.8) ( ) ( ) =

Z 1

0

( + ( ) ) · ( )

and hence

| ( ) ( )| | | ·
Z 1

0

| ( + ( ) )|

| |
Z 1

0

( + ( ) )

for any By Peetre’s inequality,

( + ( ) ) ( ) ( + ( ))

so that

| ( ) ( )| | | ( )

Z 1

0

( + ( ))

( ) | | ( )(31.9)

where ( ) is a continuous function of ( ) Putting all of this together we see
that

| ( ) ( )| ˜( ) | | 0 as

showing is continuous. Let us now compute a partial derivative of Suppose
that R is a fixed vector, then by Eq. (31.8),

( + ) ( )
( ) =

Z 1

0

( + ) · ( )

=

Z 1

0

[ ( + ) ( )]

This then implies
¯

¯

¯

¯

½

( + ) ( )
( )

¾
¯

¯

¯

¯

=

¯

¯

¯

¯

Z 1

0

[ ( + ) ( )]

¯

¯

¯

¯

Z 1

0

| [ ( + ) ( )]|
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But by the same argument as above, it follows that

| [ ( + ) ( )]| ( + ) | | ( )

and thus
¯

¯

¯

¯

½

( + ) ( )
( )

¾
¯

¯

¯

¯

( )

Z 1

0

( + ) | | ( )

Putting this all together shows
°

°

°

°

½

( + ) ( )
( )

¾
°

°

°

°

= ( ) 0 as 0

That is to say ( + ·) ( ·) ( ·) in S as 0 Hence since is
continuous on S we learn

( ) ( ) = h ( ·)i = lim
0
h ( + ·) ( ·)i

= h ( ·)i = ( )

By the first part of the proof, we know that ( ) is continuous and hence by
induction it now follows that is and = Since

( ) = h ( ) ( ) ( )i = ( 1) h ( ) ( )i
= h ( ) ( )i = ( )

the proof is complete except for showing P
For the last statement, it su ces to prove | ( )| ( ) for some

and This goes as follows

| ( )| = |h ( ·)i| ( ( ·)) =
X

| |
k ( ( ·)k

and using Peetre’s inequality, | ( )| ( ) ( ) ( ) so
that

k ( ( ·)k ( )

Thus it follows that | ( )| ( ) for some
If R \ (supp( ) + supp( )) and supp( ) then supp( ) for

otherwise = + supp( ) + supp( ) Thus

supp( ( ·)) = supp( ) R \ supp( )
and hence ( ) = h ( ·)i = 0 for all R \ (supp( ) + supp( )) This
implies that { 6= 0} supp( ) + supp( ) and hence

supp( ) = { 6= 0} supp( ) + supp( )

As we have seen in the previous theorem, is a smooth function and hence
may be used to define a distribution in D0(R ) by

h i =
Z

( ) ( ) =

Z

h ( ·)i ( )
Using the linearity of we might expect that

Z

h ( ·)i ( ) = h
Z

( ·) ( ) i
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or equivalently that

(31.10) h i = h ˜ i
where ˜( ) := ( )

Theorem 31.4. Suppose that if ( ) is a distribution test function pair satisfy-
ing one the three condition in Theorem 31.3, then as a distribution may be
characterized by

(31.11) h i = h ˜ i
for all D(R ) Moreover, if S 0 and S then Eq. (31.11) holds for all

S
Proof. Let us first assume that D0 and D and D be a function

such that = 1 on a neighborhood of the support of Then

h i =
Z

R
h ( ·)i ( ) = h ( ) h ( ) ( )ii

= h ( ) ( ) h ( ) ( )ii = h ( ) ( )h ( ) ( )ii
= h ( ) h ( ) ( ) ( )ii

Now the function, ( ) ( ) D(R × R ) so we may apply Fubini’s theorem
for distributions to conclude that

h i = h ( ) h ( ) ( ) ( )ii = h ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( ) ( )ii = h ( ) h ( ) ( )ii
= h ( ) ˜( )i = h ˜i

as claimed.
If E 0 let D(R ) be a function such that = 1 on a neighborhood of

supp( ) then working as above,

h i = h ( ) h ( ) ( ) ( )ii = h ( ) h ( ) ( ) ( ) ( )ii
and since ( ) ( ) ( ) D(R × R ) we may apply Fubini’s theorem for
distributions to conclude again that

h i = h ( ) h ( ) ( ) ( ) ( )ii
= h ( ) ( ) h ( ) ( ) ( )ii
= h ( ) h ( ) ( )ii = h ˜i

Now suppose that S 0 and S Let D be a sequences such that
and in S then using arguments similar to those in the proof of

Theorem 31.3, one shows

h i = lim h i = lim h ˜ i = h ˜i

Theorem 31.5. Let R then D( ) is sequentially dense in E 0( ) When
= R we have E 0(R ) is a dense subspace of S 0(R ) D0(R ) Hence we have
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the following inclusions,

D( ) E 0( ) D0( )

D(R ) E 0(R ) S 0(R ) D0(R ) and

D(R ) S(R ) S 0(R ) D0(R )

with all inclusions being dense in the next space up.

Proof. The key point is to show D( ) is dense in E 0( ) Choose (R )
such that supp( ) (0 1) = and

R

( ) = 1 Let ( ) = ( )
so that supp( ) (0 1 ) An element in E 0( ) may be viewed as an
element in E 0(R ) in a natural way. Namely if ( ) such that = 1
on a neighborhood of supp( ) and (R ) let h i = h i Define

= It is easily seen that supp( ) supp( ) + (0 1 ) for all
su ciently large. Hence D( ) for large enough Moreover, if D( )
then

h i = h i = h i = h i h i
since in D( ) by standard arguments. If = R E 0(R ) S 0(R )
and S the same argument goes through to show h i h i provided
we show in S(R ) as This latter is proved by showing for all
and 0 I

k ( )k 0 as

which is a consequence of the estimates:

| ( ) ( )| = | ( ) ( )|

=

¯

¯

¯

¯

Z

( ) [ ( ) ( )]

¯

¯

¯

¯

sup
| | 1

| ( ) ( )| 1
sup

| | 1

| ( )|

1
sup

| | 1

( )
1

( ) sup
| | 1

( )

1 ¡

1 + 1
¢

( )

Definition 31.6 (Convolution of Distributions). Suppose that D0 and E 0
then define D0 by

h i = h +i
where +( ) = ( + ) for all R More generally we may define
for any two distributions having the property that supp( ) supp( +) =
[supp( )× supp( )] supp( +) is compact for all D
Proposition 31.7. Suppose that D0 and E 0 then is well defined and

(31.12) h i = h ( ) h ( ) ( + )ii = h ( ) h ( ) ( + )ii
Moreover, if S 0 then S 0 and F( ) = ˆ ˆ Recall from Remark 30.46
that ˆ P so that ˆ ˆ S 0
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Proof. Let D be a function such that = 1 on a neighborhood of supp( )
then by Fubini’s theorem for distributions,

h +i = h ( ) ( ) ( + )i = h ( ) ( ) ( ) ( + )i
= h ( ) h ( ) ( ) ( + )ii = h ( ) h ( ) ( + )ii

and

h +i = h ( ) ( ) ( ) ( + )i = h ( ) h ( ) ( ) ( + )ii
= h ( ) ( )h ( ) ( + )ii = h ( ) h ( ) ( + )ii

proving Eq. (31.12).
Suppose that S 0 then
|h i| = |h ( ) h ( ) ( + )ii|

X

| |
k h ( ) (·+ )ik

=
X

| |
k h ( ) (·+ )ik

and

|h ( ) ( + )i|
X

| |
sup

¯

¯ ( + )
¯

¯

+ ( ) sup ( + )

+ ( ) ( ) sup + ( ) = ˜ ( ) + ( )

Combining the last two displayed equations shows

|h i| + ( )

which shows that S 0 We still should check that
h i = h ( ) h ( ) ( + )ii = h ( ) h ( ) ( + )ii

still holds for all S This is a matter of showing that all of the expressions
are continuous in S when restricted to D Explicitly, let D be a sequence of
functions such that in S then

(31.13) h i = lim h i = lim h ( ) h ( ) ( + )ii
and

(31.14) h i = lim h i = lim h ( ) h ( ) ( + )ii
So it su ces to show the map S h ( ) (· + )i S is continuous and

S h ( ) ( + ·)i (R ) are continuous maps. These may verified
by methods similar to what we have been doing, so I will leave the details to the
reader. Given these continuity assertions, we may pass to the limits in Eq. (31.13d
(31.14) to learn

h i = h ( ) h ( ) ( + )ii = h ( ) h ( ) ( + )ii
still holds for all S
The last and most important point is to show F( ) = ˆ ˆ Using

ˆ( + ) =

Z

R
( ) ·( + ) =

Z

R
( ) · · = F ¡ ( ) · ¢ ( )

ANALYSIS TOOLS WITH APPLICATIONS 565

and the definition of F on S 0 we learn
hF( ) i = h ˆi = h ( ) h ( ) ˆ( + )ii = h ( ) h ( ) F ¡ ( ) · ¢ ( )ii

= h ( ) h ˆ( ) ( ) · ii
(31.15)

Let D be a function such that = 1 on a neighborhood of supp( ) and
assume D for the moment. Then from Eq. (31.15) and Fubini’s theorem for
distributions we find

hF( ) i = h ( ) ( )h ˆ( ) ( ) · ii = h ( ) h ˆ( ) ( ) ( ) · ii
= h ˆ( ) h ( ) ( ) ( ) · ii = h ˆ( ) ( )h ( ) · ii
= h ˆ( ) ( ) ˆ( )i = h ˆ( ) ˆ( ) ( )i(31.16)

Since F( ) S 0 and ˆ ˆ S 0 we conclude that (31.16) holds for all S
and hence F( ) = ˆ ˆ as was to be proved.

31.2. Elliptic Regularity.

Theorem 31.8 (Hypoellipticity). Suppose that ( ) =
P

| | is a polyno-
mial on R and is the constant coe cient di erential operator

= (
1
) =

X

| |
(
1
) =

X

| |
( )

Also assume there exists a distribution D0(R ) such that := (R )
and |R \{0} (R \ {0}) Then if ( ) and D0( ) solves =
then ( ) In particular, all solutions to the equation = 0 are smooth.

Proof. We must show for each 0 that is smooth on a neighborhood of
0 So let 0 and D( ) such that 0 1 and = 1 on neighborhood
of 0 Also pick D( ) such that 0 1 and = 1 on a neighborhood of

0 Then

= ( ) = ( + ) ( ) = ( ) ( ) + ( )

= ( ) + ( )

= { ( ) + (1 ) ( )}+ ( )

= { + (1 ) ( )}+ ( )

= ( ) + ( ) + [(1 ) ( )]

Since D( ) and D0(R ) it follows that ( ) (R ) Also since
(R ) and E 0( ) ( ) (R ) So to show and hence is

smooth near 0 it su ces to show is smooth near 0 where := (1 ) ( )
Working formally for the moment,

( ) =

Z

R
( ) ( ) =

Z

R \{ =1}
( ) ( )

which should be smooth for near 0 since in this case 6= 0 when ( ) 6= 0 To
make this precise, let 0 be chosen so that = 1 on a neighborhood of ( 0 )

so that supp( ) ( 0 ) For D( ( 0 2)

h i = h ( ) h ( ) ( + )ii = h i
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where ( ) := h ( ) ( + )i If | | 2

supp( ( + ·)) = supp( ) ( 0 2) ( 0 )

so that ( ) = 0 and hence supp( ) ( 0 2) Hence if we let D( (0 2))
be a function such that = 1 near 0 we have 0 and thus

h i = h i = h i = h(1 ) i = h[(1 ) ] i
Since this last equation is true for all D( ( 0 2)) = [(1 ) ]
on ( 0 2) and this finishes the proof since [(1 ) ] (R ) because
(1 ) (R )

Definition 31.9. Suppose that ( ) =
P

| | is a polynomial on R and
is the constant coe cient di erential operator

= (
1
) =

X

| |
(
1
) =

X

| |
( )

Let ( )( ) :=
P

| |= and call ( ) the principle symbol of The oper-
ator is said to be elliptic provided that ( )( ) 6= 0 if 6= 0
Theorem 31.10 (Existence of Parametrix). Suppose that = ( 1 ) is an elliptic
constant coe cient di erential operator, then there exists a distribution D0(R )
such that := (R ) and |R \{0} (R \ {0})
Proof. The idea is to try to find such that = Taking the Fourier

transform of this equation implies that ( ) ˆ( ) = 1 and hence we should try to
define ˆ( ) = 1 ( ) The main problem with this definition is that ( ) may have
zeros. However, these zeros can not occur for large by the ellipticity assumption.
Indeed, let ( ) := ( )( ) =

P

| |= ( ) = ( ) ( ) =
P

| | and
let = min {| ( )| : | | = 1} max {| ( )| : | | = 1} =: Then because | (·)| is a
nowhere vanishing continuous function on the compact set := { R : | | = 1|}
0 For R let ˆ= | | and notice

| ( )| = | ( )| | ( )| | | | ( )| = | | (
| ( )|
| | ) 0

for all | | with su ciently large since lim | ( )|
| | = 0 Choose D(R )

such that = 1 on a neighborhood of (0 ) and let

( ) =
1 ( )

( )
=

( )

( )
(R )

where = 1 Since ( ) is bounded (in fact lim ( ) = 0) S 0(R ) so
there exists := F 1 S 0(R ) is well defined. Moreover,

F ( ) = 1 ( ) ( ) = 1 ( ) = ( ) D(R )

which shows that
:= S(R ) (R )

So to finish the proof it su ces to show

|R \{0} (R \ {0})
To prove this recall that

F ( ) = ( ) ˆ = ( )
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By the chain rule and the fact that any derivative of is has compact support in
(0 ) and any derivative of 1 is non-zero on this set,

=
1
+

where D(R ) Moreover,

1
=

2
and

1
=

2
=

2
+ 2

3

from which it follows that
¯

¯

¯

¯

( )
1
( )

¯

¯

¯

¯

| | ( +1) and

¯

¯

¯

¯

( )
1
¯

¯

¯

¯

| | ( +2)

More generally, one shows by inductively that

(31.17)

¯

¯

¯

¯

( )
1
¯

¯

¯

¯

| | ( +| |)

In particular, if N is given and is chosen so that | | + + then
| | ( ) 1( ) and therefore

= F 1 [( ) ] (R )

Hence we learn for any N we may choose su ciently large so that

| |2 (R )

This shows that |R \{0} (R \ {0})
Here is the induction argument that proves Eq. (31.17). Let := | |+1 1

with 0 = 1 then

1 =
³

| | 1
´

= ( | | 1) | | 2 + | | 1

so that
+ = | |+2 1 = ( | | 1) +

It follows by induction that is a polynomial in and letting := deg( ) we
have + + 1 with 0 = 1 Again by indunction this implies
| | ( 1) Therefore

1 = | |+1 | | (| |+1) = | || |( 1) (| |+1) = | | ( +| |)

as claimed in Eq. (31.17).

31.3. Appendix: Old Proof of Theorem 31.4. This indeed turns out to be the
case but is a bit painful to prove. The next theorem is the key ingredient to proving
Eq. (31.10).

Theorem 31.11. Let D ( S) ( ) = ( ) and (R ) ( S)
For 0 we may write R =

`

Z ( + ) where = (0 1] For
( + ) let + ¯ be the point closest to the origin in + ¯ (This
will be one of the corners of the translated cube.) In this way we define a function

R Z which is constant on each cube ( + ) Let

(31.18) ( ) :=

Z

( ) ( ) =
X

Z

( ( ) ) ( ( + ))
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then the above sum converges in (R ) (S) and in (R ) (S) as
0 (In particular if S then S )
Proof. First suppose that D the measure has compact support and hence

the sum in Eq. (31.18) is finite and so is certainly convergent in (R ) To shows
in (R ) let be a compact set and N Then for | |

| ( ) ( )| =
¯

¯

¯

¯

Z

[ ( ) ( )] ( )

¯

¯

¯

¯

Z

| ( ) ( )| | ( )|(31.19)

and therefore,

k k
Z

k (· ) (· )k | ( )|

sup
supp( )

k (· ) (· )k
Z

| ( )|

Since ( ) has compact support, we may us the uniform continuity of on
compact sets to conclude

sup
supp( )

k (· ) (· )k 0 as 0

This finishes the proof for D and (R )
Now suppose that both and are in S in which case the sum in Eq. (31.18) is

now an infinite sum in general so we need to check that it converges to an element
in S For this we estimate each term in the sum. Given 0 and a multi-index
using Peetre’s inequality and simple estimates,

| ( ( ) ) ( ( + ))| ( ( ) )

Z

( + )

| ( )|

( ) (( ) )

Z

( + )

( )

for some finite constants and Making the change of variables = + we
find

Z

( + )

( ) =

Z

( + )

( )

Z

( ) = ( )

Z

1

(1 + | |)
( )

Combining these two estimates shows

k (· ( ) ) ( ( + ))k (( ) ) ( )

( ) ( )

= (( )
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and therefore for some (di erent constant )

X

Z

( (· ( ) ) ( ( + )))
X

Z

( )

=
X

Z

1

(1 + | |)

which can be made finite by taking + as can be seen by an comparison with
the integral

R

1
(1+ | |) Therefore the sum is convergent in S as claimed.

To finish the proof, we must show that in S From Eq. (31.19) we
still have

| ( ) ( )|
Z

| ( ) ( )| | ( )|

The estimate in Eq. (31.9) gives

| ( ) ( )|
Z 1

0

( + ( )) | | ( )

( )

Z 1

0

( + ( ))

( )

Z 1

0

( ) = ( ) ( )

where in the last inequality we have used the fact that | + ( )| | |
Therefore,

k ( ( ) )k
Z

R
( ) | ( )| = ( ) 0 as

because
R

R ( ) | ( )| for all since S
We are now in a position to prove Eq. (31.10). Let us state this in the form of

a theorem.

Theorem 31.12. Suppose that if ( ) is a distribution test function pair satis-
fying one the three condition in Theorem 31.3, then as a distribution may be
characterized by

(31.20) h i = h ˜ i

for all D(R ) and all S when S 0 and S

Proof. Let

˜ =

Z

˜( ) ( ) =
X

Z

˜( ( ) ) ( ( + ))
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then making use of Theorem 31.12 in all cases we find

h ˜ i = lim
0
h ˜ i

= lim
0
h ( )

X

Z

˜( ( ) ) ( ( + ))i

= lim
0

X

Z

h ( ) (( ) ) ( ( + ))i

= lim
0

X

Z

h (( ) i ( ( + ))(31.21)

To compute this last limit, let ( ) = ( ) and let us do the hard case where
S 0 In this case we know that P and in particular there exists and

such that k k So we have
¯

¯

¯

¯

¯

Z

R
( ) ( )

X

Z

h (( ) i ( ( + ))

¯

¯

¯

¯

¯

=

¯

¯

¯

¯

Z

R
[ ( ) ( )] ( )

¯

¯

¯

¯

Z

R
| ( ) ( )| | ( )|

Now
| ( ) ( )| ( ( ) + ( )) 2 ( )

and since | | 1 we may use the dominated convergence theorem to conclude

lim
0

¯

¯

¯

¯

¯

Z

R
( ) ( )

X

Z

h (( ) i ( ( + ))

¯

¯

¯

¯

¯

= 0

which combined with Eq. (31.21) proves the theorem.


