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APPENDIX A. MULTINOMIAL THEOREMS AND CALCULUS RESULTS

Given a multi-index a € Z7}, let |a| = a1 + -+ + ap, ol := a1l - ap!,
n « n [
v 0 0 J
_ j a _
= T and 0% = — | = — .
[ and 3; <3x> 11 <axj>
Jj=1 Jj=1

We also write

d
Oy f(zx) := af(:z: + tv)|i=0.

A.1. Multinomial Theorems and Product Rules. For a = (ay,aq,...,a,) €
C", m € Nand (i1,...,im) € {1,2,...,0}" let &; (i1,...,im) = #{k: i =7j}.
Then m .
<Z a'i) = Z azm = Z C
=1 81y =1 la]=m
where

C(a):#{(z'l,... im) G (i1, .., 0m) = a; for j=1,2,... ,n}

I claim that C(a) = 2%. Indeed, one possibility for such a sequence (as,...,a;,)
for a given « is gotten by choosing

o o an
| e N e
(@1,...,01,Q2,...,G2, ..., Gp,...,0p).

Now there are m! permutations of this list. However, only those permutations
leading to a distinct list are to be counted. So for each of these m! permutations
we must divide by the number of permutation which just rearrange the groups of
a;’s among themselves for each i. There are a! := «a4!---a,! such permutations.
Therefore, C(a) = m!/a! as advertised. So we have proved

(A.1) (Zm) = Z %!!ao‘.
i=1 \

al=m
Now suppose that a,b € R” and « is a multi-index, we have
(A-2) (a+b)* = Z—7y I( ﬂba_ﬂ - Z B
Bl /8 @ B+oé=a ﬁ 6
Indeed, by the standard Binomial formula,
(a; + b)) = Z aPipei—Bi
8, < ﬁz Q; z !
from which Eq. (A.2) follows. Eq. (A.2) generalizes in the obvious way to

a al .
<A3) (01 +---+ Cllc) - Z m@fl . .af"
Bi+++Br=a

where ayi,as,...,a; € R" and o € Z1}.
Now let us consider the product rule for derivatives. Let us begin with the one
variable case (write d" f for f(") = d = f) where we will show by induction that

(A1) Z ( ) vy
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Indeed assuming Eq. (A.4) we find

n+1 _ — (n k+1 n—k — (n k n—k+1
d (fg)—Z(k>d fod g+z<k>df-d 9

k=0 k=0
n+1 n n n

— ke gn—k+1 kp m—k+1

Z(k1>dfd g+z<k>dfd g
k=1 k=0
ntl n n

— l:(k1>+<k>:| dkf.dnfk+lg+dn+1f.g+f.dn+1g.
k=1

Since

(k . 1) * (Z) “ Tk +Ti!)!(k BN TRN S —nli:)!k!

n!

1 1
CENICE] [(nkﬂ) +E]
B n! n+1 _(n+1
S k=-D'(n—kK'(n—k+1)k k
the result follows.

Now consider the multi-variable case

9) = (ﬁ@”) (f9) = ﬁ lz 8’“ fooph ]

ki=

S5 S (E)roem ()err om

k=0  k,=0i=1 N k<a

where k = (ky, ko, ..., k,) and

« 2 al
(k) o H (k:) K= k)
=1
So we have proved

(A.5) o (fg) = (Z) 9°f -9 4y,

BLa
A.2. Taylor’s Theorem.
Theorem A.l1. Suppose X C R"™ is an open set, x : [0,1] — X is a C* — path,
and f € CN(X,C). Let vs := x(1) — z(s) and v =v; = z(1) — z(0), then
No1 oy

|
m=0 e

(A.6) (0, f) (x(0)) + Ry

where

1 1
(A7) RN:ﬁ/O (91(5) 9N 1 )(x(s))dS:%/o (-%a{,ﬁ) (a(s))ds.
and 0! := 1.
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Proof. By the fundamental theorem of calculus and the chain rule,

(A8)  falt) = 16O) + [ T fG)ds = f@O)+ [ (@s0) (e(s)ds

and in particular,

F2(1) = F(2(0)) + /0 (Do) (2(5))ds.

This proves Eq. (A.6) when N = 1. We will now complete the proof using induciton
on N.
Applying Eq. (A.8) with f replaced by ﬁ (0i(s)ONT1f) gives

ﬁ (Qas) O, ) (x(5)) = ﬁ (Do) N1 F) (2(0))

1 S
oy, (@ s ) (et

- 7% (%85]“) (x(0)) — % /OS (%8£8i(t)f> (z(t))dt

wherein we have used the fact that mixed partial derivatives commute to show
%af)if = N@i(s)aﬁflf. Integrating this equation on s € [0, 1] shows, using the
fundamental theorem of calculus,

Ry =37 @NGEO) -5 [ (%aggaﬂt) f) (e(t)) s
- % (02 f) (=(0)) + ﬁ /Ogtgl (0 Bs0) f) (x(t))dt

1

=N (82 ) (x(0)) + Rn41

which completes the inductive proof. m

Remark A.2. Using Eq. (A.1) with a; replaced by v;0; (although {v;9;};_; are not
complex numbers they are commuting symbols), we find

3vf_<zvi3i> f=> I o°.
i=1 la|=m
Using this fact we may write Egs. (A.6) and (A.7) as
1
feW)= > v d*f(@0)+ Ry
la]<N—1
and

3 5/01 (%@3%) ((s))ds.

Ry =
la|=N
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Corollary A.3. Suppose X C R"™ is an open set which contains x(s) = (1 —s)xg+
sty for0< s <1 and f € CN(X,C). Then

(A.9)
fla) = 30— @20 o) + 57 [ (03 F) e
(A1)
1
= 3 O ((0)) (e — )" + 0° f(e($))dv(5)| (1 — w0)"
=y \a\ N [/ }

where v := x1 — xg and dvy is the probability measure on [0,1] given by
(A.11) dun(s) :== N(1 — s)Vlds.
If we let © = zg and y = 21 — xg (so x+y=ux1) Eq (A.10) may be written as
A12) fary= Y EDpe s L (/ 9 F (o + sy)dvn (s >>
|a| <N a:la|=N
Proof. This is a special case of Theorem A.1. Notice that
vs =x(l) —x(s) = (1 —s)(x1 —x0) = (1 — s)v

and hence
Ry = %/0 <%(1 — S)N@J)Vf> (z(s))ds = %/0 (dj)vf) (z(s))N(1 —s)N=1ds.
u

Example A.4. Let X = (-1,1) C R, 8 € R and f(z) = (1 — x)®. The reader
should verify

Fr (@) = (-1)"B(B—1)...(B—m+1)(1—z)
and therefore by Taylor’s theorem (Eq. (F.21) with x =0 and y = z)

(A.13) (yﬂ:uz (B—1)...(8—m+1)a™ + Ry(z)
m= 1
where
:EN L
Ry(e) = S [ (CDYB3 1) (8= N+ 1)(1 = s2) "N ()
N ! N(1—s)N-t

0
Now for x € (—1,1) and N > g,
1 N-—-1 1 N-1 1
N(1—s) N1 -3s) 51 N
< ————ds < — - ds= — = —
0_/0 (1,S$)N—,@‘d8— L AP ds /0 N(1—s)"""ds 3
and therefore,

e

|Rn(z)| < m
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Since

PN+1 *ﬁ:|x|<1

lim sup = |z| - lim sup
N—oo N N—oo

and so by the Ratio test, |[Ry(z)| < py — 0 (exponentially fast) as N — oo.
Therefore by passing to the limit in Eq. (A.13) we have proved

- (_1)m m
(A.14) 1-2)f =1+ ——B(8=1)...(6-m+ 1z
m=1
which is valid for || < 1 and 5 € R. An important special cases is § = —1 in which
case, Eq. (A.14) becomes 1T1m =" oa™, the standard geometric series formula.

Another another useful special case is 5 = 1/2 in which case Eq. (A.14) becomes

\/17;1::1+§: (71)m1(%f1)...(17m+1):1:m

— ml 2 2
- o~ (2m =3

m=1



