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1. INTRODUCTION

Not written as of yet. Topics to mention.

1. A better and more general integral.

(a) Convergence Theorems

(b) Integration over diverse collection of sets. (See probability theory.)

(c) Integration relative to different weights or densities including singular
weights.

(d) Characterization of dual spaces.

(e) Completeness.

Infinite dimensional Linear algebra.

ODE and PDE.

Harmonic and Fourier Analysis.

Probability Theory

G 0o

2. LIMITS, SUMS, AND OTHER BASICS

2.1. Set Operations. Suppose that X is a set. Let P(X) or 2% denote the power
set of X, that is elements of P(X) = 2% are subsets of A. For A € 2% let

A=X\A={xe X :x¢ A}
and more generally if A, B C X let
B\A={xe€B:z ¢ A}.
We also define the symmetric difference of A and B by
AAB =(B\A)U(A\ B).

As usual if {Aq},c; is an indexed collection of subsets of X we define the union
and the intersection of this collection by

Uaerdo :={ze€eX:Fael > xe€ A} and
Nactlo :={zeX:x € AgVael}.

Notation 2.1. We will also write [ ], ; Aa for UaerAq in the case that {A,}
are pairwise disjoint, i.e. Ao NAg =10 if a # .

acl

Notice that U is closely related to 3 and N is closely related to V. For example
let {A,}, | be a sequence of subsets from X and define

{A o} ={ze X :#{n:2€A,} =oc0} and
{A, a.a.} :={xz € X :x € A, for all n sufficiently large}.

(One should read {A, i.0.} as A, infinitely often and {A, a.a.} as A, almost al-
ways.) Then x € {A, i.0.} if VN € N3n > N 5 x € A, which may be written
as

{An 10} = m?=1 UnZN An
Similarly, € {A, a.a.} iff IN e N5V n > N, x € A, which may be written as

{An a.a.} = U})VO=1 ngN An
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2.2. Limits, Limsups, and Liminfs.

Notation 2.2. The Extended real numbers is the set R := RU{+oo}, ie. it
is R with two new points called co and —oco. We use the following conventions,
+00:-0=0, +oo+a = too for any a € R, 0o 4+ 00 = 0o and —oo — 0o = —o0 while
00 — 00 is not defined.

If A C R we will let sup A and inf A denote the least upper bound and greatest
lower bound of A respectively. We will also use the following convention, if A =,
then sup®) = —oco and inf ) = +oo.

Notation 2.3. Suppose that {xn}zozl C R is a sequence of numbers. Then

(2.1) lim inf z, = lim inf{x : k > n} and
(2.2) lim sup x, = lim sup{zy : k > n}.

We will also write lim for liminf and lim for limsup .

Remark 2.4. Notice that if ay := inf{zy : £ > n} and b := sup{zy : k£ > n},then
{ar} is an increasing sequence while {b;} is a decreasing sequence. Therefore the
limits in Eq. (2.1) and Eq. (2.2) always exist and

lim inf x, =supinf{zy: k> n} and

n—

lim sup z, = infsup{xy : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and limsups.

Proposition 2.5. Let {a,}52, and {b,}22, be two sequences of real numbers.
Then
1. liminf, ,« a, <limsup,,_, ., a, andlim,_, a,, exists in R iffliminf, o ay =
limsup,,_ ., an € R.
2. There is a subsequence {an, 7>, of {an}tp2, such that limp_ocan, =
limsup,, . Gn-
3.
(2.3) lim sup (a, + b,) < lim sup a, + lim sup b,
n—0o0 n—oo n—o0

whenever the right side of this equation is not of the form oo — cc.
4. If a,, > 0 and b, > 0 for all m € N, then

(2.4) lim sup (apb,) < lim sup a, -lim sup by,

n—oo n—00 n—00

provided the right hand side of (2.4) is not of the form 0 - oo or oo - 0.
Proof. We will only prove part 1. and leave the rest as an exercise to the reader.
We begin by noticing that
inf{a, : k > n} <sup{ap:k>n}Vn
so that

lim inf a, <lim sup a,.
n—0o0 n— oo

Now suppose that liminf, ., a, = limsup,,_, ., an = a € R. Then for all € > 0,
there is an integer N such that

a—e<inf{ay: k> N} <sup{ap:k> N} <a+e,
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ie.
a—€e<ap<a-+eforall k> N.

Hence by the definition of the limit, limy_. . ax = a.
If liminf,,_, o, a, = 00, then we know for all M € (0,00) there is an integer N
such that

M <inf{ay : k> N}

and hence lim,,_,oc a, = 00. The case where limsup,, ,. a, = —oo is handled
similarly. ~
Conversely, suppose that lim,_,.ca, = A € R exists. If A € R, then for every
€ > 0 there exists N(e) € N such that |4 — a,,| < € for all n > N(e), i.e.
A—e<a, <A+eforaln>N().

From this we learn that

A—e<lim inf a, <lim sup a, < A+e.

n—oo n—00
Since € > 0 is arbitrary, it follows that

A <lim inf a, <lim sup a, < A,

n—oo Nn— 00

i.e. that A =liminf,,_,o a,, = limsup,,_,, an.
If A = oo, then for all M > 0 there exist N(M) such that a,, > M for all
n > N(M). This show that

lim inf a, > M

n—oo

and since M is arbitrary it follows that

oo <lim inf a, <lim sup a,.

n—o0 T— 00

The proof is similar if A = —oco as well. m

2.3. Sums of positive functions. In this and the next few sections, let X and
Y be two sets. We will write o CC X to denote that « is a finite subset of X.

Definition 2.6. Suppose that a : X — [0, 00] is a function and F' C X is a subset,
then

Za: Za(x) —sup{Za(x):aCC F}

zeF rEQ

Remark 2.7. Suppose that X =N ={1,2,3,...}, then

Za = Za(n) = ]\;Eana(n).

Indeed for all N, Zf:;l a(n) < > ya, and thus passing to the limit we learn that

Za(n) < Za.
N

n=1
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Conversely, if & CC N, then for all N large enough so that o C {1,2,..., N}, we
have >~ a < Ziv=1 a(n) which upon passing to the limit implies that

Za<2

n=1

and hence by taking the supremum over a we learn that

Za < Za(n)

Remark 2.8. Suppose that Yy a < oo, then {z € X : a(z) > 0} is at most count-
able. To see this first notice that for any € > 0, the set {z : a(z) > ¢} must be finite
for otherwise )"y a = co. Thus

{reX:alx)>0}= U,?;l{x ca(z) > 1/k}

which shows that {z € X : a(x) > 0} is a countable union of finite sets and thus
countable.

Lemma 2.9. Suppose that a,b: X — [0,00] are two functions, then

Za—l—b Za—l—Zband
Z)\a—)\Za

for all X > 0.

I will only prove the first assertion, the second being easy. Let a CC X be a

finite set, then
> (a+b) = Za+2b<2a+2b

which after taking sups over a shows that
da+b) <D a+> b
X X X

Similarly, if a, 6 CC X, then

Za+2b< Sa+> b= (a+b) <> (a+b).

aup alUpg aJpg X

Taking sups over a and § then shows that
da+d b<> (a+b).
X X X

Lemma 2.10. Let X and Y be sets, R C X xY and suppose that a : R — R is a
function. Let ;R:={y €Y : (z,y) € R} and Ry :={x € X : (x,y) € R}. Then

sup a(z,y) = sup sup a(z,y) = sup sup a(x,y) and
(z,y)ER zeX yEL R yeY zeR,

wmen® V) = Rk 2l e w) = ol g el w)

(Recall the conventions: sup ) = —oo and inf ) = +00.)
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Proof. Let M = sup(, ,cra(z,y), Nz = sup,e, pa(r,y). Then a(z,y) < M
for all (z,y) € R implies N, = sup,_pa(x,y) < M and therefore that

(2.5) sup sup a(z,y) = sup N, < M.
zeX yeL R rxeX

Similarly for any (x,y) € R,

a(z,y) < Ny < sup N, = sup sup a(z,y)
xeX zeX yEL R

and therefore

(26) sup a(x,y) S sup sup a(x,y) - M
(z,9)ER z€X yE. R

Equations (2.5) and (2.6) show that

sup a(z,y) = sup sup a(z,y).
(z,y)ER z€X yEL R

The assertions involving infinums are proved analogously or follow from what we
have just proved applied to the function —a. =

Y

FIGURE 1. The z and y — slices of a set R C X x Y.

Theorem 2.11 (Monotone Convergence Theorem for Sums). Suppose that f,
X — [0, 00] is an increasing sequence of functions and

f(z) = nh_)ngo frn(x) = sup fn(z).

Then
Jim > fu=2f
X X
Proof. We will give two proves. For the first proof, let P;(X) = {A C X :
A Cc X}. Then
lim an = Supin =sup sup an = sup Supin

n a€Pr(X a€Ps(X) o

= sup limen: sup Zlimfn: sup Zf:Zf
)'I‘L—?OOQ x

Q€Pp(X a€Pp(X) T T a€Pr(X) 5
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(Second Proof.) Let S, = >y fn and S = >y f. Since f, < f, < f for all
n < m, it follows that

Sp <Sp <8

which shows that lim,,_, . S,, exists and is less that S, i.e.

(2.7) A= Tim Y f, <> f.

Noting that Y f, <>y fr =5, < Afor all « CC X and in particular,
anSAforallnandaCCX.

Letting n tend to infinity in this equation shows that
Y f<Aforallacc X
«

and then taking the sup over all @ CC X gives

(2.8) Y f<A=lim Y f
X

X
which combined with Eq. (2.7) proves the theorem. m

Lemma 2.12 (Fatou’s Lemma for Sums). Suppose that fp, : X — [0,00] is a se-
quence of functions, then

th inf f, <lim inf Z fn-
X n—oo n—oo X

Proof. Define g, = 1r>1fk fn so that g, T liminf,,_. o f,, as k — oo. Since g < f,

for all k£ < n,
ngSanforallnzk
X X
and therefore
ng < lim nlg&an for all k.
X X
We may now use the monotone convergence theorem to let kK — oo to find
. . MCT . .
St ot gy =3 fim ST iy S <t ot 3
X X X X
[

Remark 2.13. If A= )"y a < 0o, then for all € > 0 there exists o CC X such that
A> Za >A—¢

for all « CC X containing «, or equivalently,

A—Za

for all « CC X containing «.. Indeed, choose «a, so that Za( a>A—e.

(2.9) <e
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2.4. Sums of complex functions.

Definition 2.14. Suppose that a : X — C is a function, we say that

2a=2 a

zeX

exists and is equal to A € C, if for all € > 0 there is a finite subset a. C X such
that for all « CC X containing a, we have

A—Za

The following lemma is left as an exercise to the reader.

<e.

Lemma 2.15. Suppose that a,b: X — C are two functions such that )" a and
Y- x b exist, then Y (a + A\b) exists for all X € C and

> (a+Ab) Z a+ A Z b.
X
Definition 2.16 (Summable). We call a function @ : X — C summable if
Z la| < oco.
X
Proposition 2.17. Leta: X — C be a function, then ) y a exists iff > y |a| < oo,
i.e. iff a is summable.

Proof. If )" |a| < oo, then )~ (Rea)™ < oo and dox (Ima)* < oo and hence
by Remark 2.13 these sums exists in the sense of Definition 2.14. Therefore by
Lemma 2.15, >+ a exists and

Za = Z (Rea)™ Z(Rea)_ +1 (Z(Ima)+ — Z(Ima)_> .

X X X
Conversely, if "y |a| = oo then, because |a| < |Rea| + |Ima|, we must have
Z |Real = o0 or Z Ima| =
X X
Thus it suffices to consider the case where a : X — R is a real function. Write
a =at —a~ where

(2.10) at(x) = max(a(z),0) and a () = max(—a(z),0).

Then |a] =a™ + a~ and
oo:Z\a| :Za++2a_
X X X

which shows that either Yy a*t = oo or } ya~ = co. Suppose, with out loss of
generality, that Y at = co. Let X’ := {z € X : a(z) > 0}, then we know that
>_x @ = 0o which means there are finite subsets a;, C X’ C X suchthat ), a>n
for all n. Thus if o CC X is any finite set, it follows that limy, o0 >
and therefore >y a can not exist as a number in R. =

anUa = 00,
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Remark 2.18. Suppose that X = N and a : N — C is a sequence, then it is not
necessarily true that

(2.11) a(n) = Z a(n).
n=1 neN
This is because
oo N
Z a(n) = A}gnoo a(n)
n=1 n=1

depends on the ordering of the sequence a where as ) a(n) does not. For
example, take a(n) = (—1)"/n then > _yla(n)| = coie. > _ya(n) does not
exist while >°  a(n) does exist. On the other hand, if

Y lam) =" la(n)] < oo

neN
then Eq. (2.11) is valid.

Theorem 2.19 (Dominated Convergence Theorem for Sums). Suppose that f, :
X — C is a sequence of functions on X such that f(x) = lim,— o fn(z) € C exists
for all x € X. Further assume there is a dominating function g : X — [0, 00)
such that

(2.12) |fr(x)] < g(z) for allz € X andn € N
and that g is summable. Then
(2.13) lim Y fu(z) =) f(@).

zeX zeX

Proof. Notice that |f| = lim|f,| < g so that f is summable. By considering
the real and imaginary parts of f separately, it suffices to prove the theorem in the
case where f is real. By Fatou’s Lemma,

d(g+f) = Zlimnig’go (g% fa) < limniggoz (9% fn)
X X

X
= Znglim inf (ian) .
X n—oo X
Since liminf,,—,o(—a,) = —limsup,,_,, a, we have shown,
liminf,, oo >y fn

DOTED DD DUER fenmab

= = = limsup,, . > x fn
and therefore

lim sup an < Zf < 1imni££02fn.
X X

n— oo
X

This shows that lim )", fpexists and is equal to >, f. m
n—oo

Proof. (Second Proof.) Passing to the limit in Eq. (2.12) shows that |f] < ¢
and in particular that f is summable. Given € > 0, let & CC X such that

Zgﬁe.

X\



REAL ANALYSIS LECTURE NOTES 9
Then for § CC X such that a C 3,

DTE=Y I =D =)
B B

B

YN =Sl =D U = Ful +D1f = Sl
B o B\a
<Y - fal 42> g

B\ex
<Y NS — Sl 426

and hence that
B B «
Since this last equation is true for all such 8 CC X, we learn that
STFY Fal SN ful +2¢
X X a

which then implies that

lim sup Zf—an < lim sup Z\f—fn\—&—Qe
X X

n—00 n—0Q o

= 2e.

Because € > 0 is arbitrary we conclude that

Y =D fa|=0.
X X

lim sup

n—oo

which is the same as Eq. (2.13). =

2.5. Iterated sums. Let X and Y be two sets. The proof of the following lemma
is left to the reader.

Lemma 2.20. Suppose that a : X — C is function and F' C X is a subset such
that a(x) = 0 for all x ¢ F. Show that )" . a exists iff >y a exists, and if the sums

exist then
Ya-Ya
X F

Theorem 2.21 (Tonelli’s Theorem for Sums). Suppose that a : X x Y — [0, o0],

then
> a:Z;azgga.

XXY X
Proof. It suffices to show, by symmetry, that

D

XxY X
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Let A CcC X xY. The for any « CC X and # CC Y such that A C « X 3, we have

;a§2azzga§;;a§;;aa

axf «

ie. > pa <> >y a. Taking the sup over A in this last equation shows

Zag;;a.

XXY

We must now show the opposite inequality. If > , a = oo we are done so
we now assume that a is summable. By Remark 2.8, there is a countable set
{(2},,yh)}ory € X x Y off of which a is identically 0.

Let {yn},., be an enumeration of {y,} -, then since a(z,y) = 0 if y ¢

{Untper s 2oyey alx,y) = 2207 a(z, yn) for all x € X. Hence

00 N
Z Z a(z,y) = Z Za(xvyn) = Z J\}gnooza(x’yn)
zeX yeYy zeX n=1 zeX n=1
N
(2.14) = lim > > a(x,yn),
N=eo zeX n=1

wherein the last inequality we have used the monotone convergence theorem with
Fy(z) = ijzl a(z,y,). If @« CC X, then

SY e Y es Y

r€an=1 aX{y,L}ﬁle XxY

and therefore,

(2.15) A}gnoo Z Za(ac,yn) < Z a.

zeX n=1 XxY

Hence it follows from Egs. (2.14) and (2.15) that

(2.16) Z Za(x,y) < Z a

zeX yey X XY

as desired.

Alternative proof of Eq. (2.16). Let A = {2}, : n € N} and let {z,,},-; be an
enumeration of A. Then for z ¢ A, a(x,y) =0 forally € Y.

Given € > 0, let § : X — [0, 00) be the function such that ), ¢ = eand 6(z) >0
for x € A. (For example we may define § by 6(z,) = ¢/2" for all n and 6(z) = 0 if
x ¢ A.) For each x € X, let 8, CC X be a finite set such that

Yo alay) < Y alz,y) + ().

yey YyEL
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Then
>N a<> Y a@y)+ > @)
X Y z€X yELBy zeX
= Z Z a(x,y) + €= sup Z Z a(z,y) + €
2EX yEB, aCCX zea yeg,
(2.17) <> a+te
XXY

wherein the last inequality we have used
> aten) - Ya< Yo
TEQ YEL, Ao XXY
with
Ay ={(z,y) eXxY:z€aandye B} C X xXY.
Since € > 0 is arbitrary in Eq. (2.17), the proof is complete. ®

Theorem 2.22 (Fubini’s Theorem for Sums). Now suppose that a : X x Y — C
is a summable function, i.e. by Theorem 2.21 any one of the following equivalent
conditions hold:

L. ZXXY ‘a| < 00,
2. > x>y lal < oo or

3. 2y Xox lal < oo
Then

D> a=2.> A=) 2 a

XXY X Y Y X

Proof. If a : X — R is real valued the theorem follows by applying Theorem

2.21 to a* — the positive and negative parts of a. The general result holds for

complex valued functions a by applying the real version just proved to the real and
imaginary parts of a. m

2.6. (P — spaces, Minkowski and Holder Inequalities. In this subsection, let
p: X — (0,00] be a given function. Let F denote either C or R. For p € (0, 00)
and f: X — T, let

11l = (S £ @ ()
z€X
and for p = oo let

[flloc = sup{[f(2)] : = € X} .
Also, for p > 0, let
Fp) ={f: X = F:|[fll, < oo}
In the case where p(z) =1 for all z € X we will simply write ¢7(X) for £F ().
Definition 2.23. A norm on a vector space L is a function ||| : L — [0, c0) such
that

1. (Homogeneity) [|Af]| = |A|||f|| for all A € F and f € L.
2. (Triangle inequality) || f + g[| < [|f|| + [|g|| for all f,g € L.
3. (Positive definite) || f|] = 0 implies f = 0.
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A pair (L,]|-||) where L is a vector space and ||-|| is a norm on L is called a
normed vector space.

The rest of this section is devoted to the proof of the following theorem.
Theorem 2.24. Forp € [1,00], (¢P(u), || - |lp) is a normed vector space.

Proof. The only difficulty is the proof of the triangle inequality which is the
content of Minkowski’s Inequality proved in Theorem 2.30 below. m

2.6.1. Some inequalities.

Proposition 2.25. Let f : [0,00) — [0,00) be a continuous strictly increasing
function such that f(0) =0 (for simplicity) and lim f(s) = co. Let g = f~! and

for s, t >0 let

F(s) = / " H(s)ds and G(t) = / Lot
Then for all s,t > 0, ’ ’
st < F(s)+G(t)
and equality holds iff t = f(s).
Proof. Let

As :={(o,7): 0 <7< f(o) for 0 <o < s} and

B, :={(0,7):0< o <g(r) for 0 <7 <t}
then as one sees from Figure 2, [0, s] x [0,t] C A5 U B;. (In the figure: s =3, t =1,
As is the region under t = f(s) for 0 < s < 3 and By is the region to the left of the

curve s = g(t) for 0 <t < 1.) Hence if m denotes the area of a region in the plane,
then

st =m([0,s] x [0,t]) < m(As) +m(B) = F(s) + G(t).

As it stands, this proof is a bit on the intuitive side. However, it will become rig-
orous if one takes m to be Lebesgue measure on the plane which will be introduced
later.

We can also give a calculus proof of this theorem under the additional assumption
that f is C'. (This restricted version of the theorem is all we need in this section.)
To do this fix ¢t > 0 and let

h(s) = st — F(s) = /0 (= F(o)do.

If o > g(t) = f1(¢), then t — f(0) < 0 and hence if s > g(t), we have

S

s g(t)
h(s) = / (t - f(0))do = / (t - f(0))do + / (¢ S

g(t)
< /0 (t — f(o))do = h(g(t).

Combining this with 2(0) = 0 we see that h(s) takes its maximum at some point
s € (0,t] and hence at a point where 0 = 1/(s) =t — f(s). The only solution to this
equation is s = g(¢) and we have thus shown

g(t)
st— F(s) = h(s) < / (t— f(o))do = h(g(®))
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with equality when s = ¢(t). To finish the proof we must show fog ) (t— f(o))do =

G(t). This is verified by making the change of variables ¢ = ¢g(7) and then inte-
grating by parts as follows:

g(t) t t
/0 (t - f(0))do = /0 (t — f(9(r))g (r)dr = /0 (t = )g(r)dr
:/0 g(T)dr = G(t).

FIGURE 2. A picture proof of Proposition 2.25.

Definition 2.26. The conjugate exponent g € [1,00] to p € [1,00] is g := ﬁ with
the convention that ¢ = oo if p = 1. Notice that ¢ is characterized by any of the
following identities:

1 1 q p
q

(2.18) —+-=11+=-=¢,p—==1landq(p—1) =p.
p q p

Lemma 2.27. Let p € (1,00) and q := % € (1,00) be the conjugate exponent.
Then

s? P
st< —+ — foralls,t >0
q p

with equality if and only if s = tP.

Proof. Let F(s) = % for p > 1. Then f(s) = sP~! =t and g(t) = T = a1
wherein we have used ¢ — 1 =p/(p—1) —1 =1/ (p—1). Therefore G(t) = t?/q
and hence by Proposition 2.25,

sP e
st < —+ —
p q
with equality iff t = s~ m
Theorem 2.28 (Holder’s inequality). Let p,q € [1,00] be conjugate exponents.
Forall f,g: X — T,

(2.19) 1£glls < 1I£llp - lgllg-
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If p € (1,00), then equality holds in Eq. (2.19) iff

Ao ldl
T = Qo™

Proof. The proof of Eq. (2.19) for p € {1,00} is easy and will be left to
the reader. The cases where ||f|l, = 0 or oo or ||g|]|, = 0 or oo are easily dealt
with and are also left to the reader. So we will assume that p € (1,00) and
0 < || fllg, llglly < oo. Letting s = |f|/||f||, and t = |g|/||g|l¢ in Lemma 2.27 implies

P q
| fg] <1 7 1 1t
1fllpllglle = 2 IFll, — a llgll®
Multiplying this equation by p and then summing gives

ol 1,1
[Flalols =7 " 4

=1

with equality iff

lg| Pl gl IfIP/e
= s e e = e e (gl ]E = llgllg] f1P.
lglla 7113 lglle 115

Definition 2.29. For a complex number A\ € C, let

A i A£0
Sgn“)_{ 0 it Aro.

Theorem 2.30 (Minkowski’s Inequality). If 1 < p < oo and f,g € (P(p) then
1+ gllp < £llp + llgll,
with equality iff
sgn(f) = sgn(g) whenp =1 and
f =cg for some ¢ > 0 when p € (1,00).

Proof. For p=1,
1F gl =1 +aln < (Fln+lglw) =D 1flp+> lglu
X X X

X
with equality iff

Ifl+ gl =|f +g| <= sgn(f)=sgn(g).
For p = o0,
| f + gllc = sup|f + gl <sup (|f|+ |g])
X X
<sup|f| +sup|g| = || flloo + [|9]loo-
X X

Now assume that p € (1, 00). Since
[f +9" < @max(|f],1g]))" = 2" max (", [g]") < 2 (|fI" + |g]")
it follows that

1f +gllp < 27 (ILF15 + llgll}) < oo.
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The theorem is easily verified if [|f + g[|, = 0, so we may assume [|f + g|, > 0.
Now

(2:20) [f + 9P =[f +allf + 9P < (f] + g f + g~
with equality iff sgn(f) = sgn(g). Multiplying Eq. (2.20) by x and then summing
and applying Holder’s inequality gives

SUF+alPu <D I +9P u+ D lgl [F+9lP
X X X

(2.21) < (I£llp + llgllp) I11f + 9"~ g

with equality iff
() - -
[1£1l 11+ glP~lq gl

and sgn(f) = sgn(g).
By Eq. (2.18), g¢(p — 1) = p, and hence

(2.22) IF+glP =D+l =Y+ gl
X X

Combining Eqgs. (2.21) and (2.22) implies

(2.23) 1+ gllp < £l f + glle/e + llgllpll f + gl

with equality iff
sgn(f) = sgn(g) and

|f] >p |f +glP < lg] )p
2.24 = — .
(224) <|f|p 7o = \Tals

Solving for || f +g||, in Eq. (2.23) with the aid of Eq. (2.18) shows that || f +g||, <
Il fllp + |lg|lp, with equality iff Eq. (2.24) holds which happens iff f = cg with ¢ > 0.
L]

2.7. Exercises .

2.7.1. Set Theory. Let f: X — Y be a function and {A;};c; be an indexed family
of subsets of Y, verify the following assertions.

Exercise 2.1. (N;erA4;)¢ = U;er AS.

Exercise 2.2. Suppose that B C Y, show that B\ (U;cr4;) = Nicr(B\ A;).
Exercise 2.3. f~Y(UjerA;) = Uierf 1 (A).

Exercise 2.4. f~Y(NierA;) = Nierf 1 (A;).

Exercise 2.5. Find a counter example which shows that f(C'ND) = f(C)n f(D)
need not hold.

Exercise 2.6. Now suppose for each n € N = {1,2,...} that f, : X - Risa
function. Let

D={zreX: lim f,(z) =400}
show that
(2.25) D =51 Ux— Muen{z € X - fr(z) > M}
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Exercise 2.7. Let f,, : X — R be as in the last problem. Let
C={zeX: lim f,(z) exists in R}.

Find an expression for C similar to the expression for D in (2.25). (Hint: use the
Cauchy criteria for convergence.)

2.7.2. Limit Problems.
Exercise 2.8. Prove Lemma 2.15.
Exercise 2.9. Prove Lemma 2.20.
Let {a,}52; and {b,}32; be two sequences of real numbers.
Exercise 2.10. Show liminf, . (—a,) = —limsup,,_, . an.
Exercise 2.11. Suppose that limsup,, . a, = M € R, show that there is a sub-
sequence {an, }52; of {a,}52; such that lim;_. an, = M.
Exercise 2.12. Show that
(2.26) limsup(a,, + b,) < limsupa,, + limsup b,

provided that the right side of Eq. (2.26) is well defined, i.e. no 0o — oo or —co+ 00
type expressions. (It is OK to have 0o 4+ 00 = 00 or —o0 — 00 = —00, etc.)
Exercise 2.13. Suppose that a,, > 0 and b,, > 0 for all n € N. Show

(2.27) lim sup(a,by,) < limsup a,, - limsup b,

n—oo n—00 n—00

provided the right hand side of (2.27) is not of the form 0 - 0o or oo - 0.
2.7.3. Dominated Convergence Theorem Problems.

Notation 2.31. For ug € R” and 6 > 0, let By, (6) := {x € R" : | —ug| < 6} be
the ball in R™ centered at ug with radius 6.
Exercise 2.14. Suppose U C R” is a set and ug € U is a point such that
U N (Bu(6) \ {uo}) # 0 for all 6§ > 0. Let G : U \ {up} — C be a function on
U\ {ug}. Show that lim, .., G(u) exists and is equal to A € C,! iff for all se-
quences {uy,},., C U\ {up} which converge to ug (i.e. lim, o u, = ug) we have
lim,, oo G(uy) = A
Exercise 2.15. Suppose that YV isaset, U CR"isaset,and f:U XY — Cisa
function satisfying:

1. For each y € Y, the function u € U — f(u,y) is continuous on U.?

2. There is a summable function g : Y — [0, c0) such that

|f(u,y)] < g(y) forally € Y and u € U.
Show that
(2.28) F(u):=>_ f(u,y)
yey
is a continuous function for v € U.

IMore explicitly, limy— v, G(u) = A means for every every € > 0 there exists a 6 > 0 such that

|G(u) — A| < € whenerver u € U N (By, () \ {uo}).

2T say g := f(-,y) is continuous on U means that g : U — C is continuous relative to the
metric on R™ restricted to U.
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Exercise 2.16. Suppose that Y is a set, J = (a,b) C R is an interval, and f :
J xY — C is a function satisfying:

1. For each y € Y, the function u — f(u,y) is differentiable on J,

2. There is a summable function g : ¥ — [0, c0) such that

aguf(uvy)‘ <g(y) forally € Y.

3. There is a ug € J such that 3\ |f(uo,y)| < oo
Show:

a) forall u € J that 3y [f(u,y)| < oco.
b) Let F(u) :==>_ .y f(u,y), show F is differentiable on J and that

)= Y 5 flu.y).

(Hint: Use the mean value theorem.)

Exercise 2.17 (Differentiation of Power Series). Suppose R > 0 and {an}, , is
a sequence of complex numbers such that >~ |a,|7" < oo for all r € (0, R).
Show, using Exercise 2.16, f(z) := Y .- jan,a™ is continuously differentiable for
z € (—R, R) and

oo oo
f(z) = Znanx"_l = Znanx"_l.
n=0 n=1

Exercise 2.18. Let {a,} - _ be a summable sequence of complex numbers, i.e.
S o lan| < oo. For t >0 and x € R, define

n=—0o0

where as usual e!® = cos(x) + isin(z). Prove the following facts about F :

1. F(t,x) is continuous for (¢t,z) € [0,00) x R. Hint: Let Y =Z and u = (¢, z)
and use Exercise 2.15.

2. OF(t,z)/0t, OF(t,x)/0z and §*F(t,z)/0x? exist for t > 0 and x € R. Hint:
Let Y = Z and u = t for computing 0F(t,z)/0t and u = z for computing
OF(t,z)/0x and 9*F(t,x)/0x?. See Exercise 2.16.

3. F satisfies the heat equation, namely

OF (t,x)/0t = O*F(t,x)/0x* for t > 0 and x € R.
2.7.4. Inequalities.

Exercise 2.19. Generalize Proposition 2.25 as follows. Let a € [—00,0] and f : RN
[a,00) — [0,00) be a continuous strictly increasing function such that lim f(s) =

o0, f(a) = 0if a > —oo or lims_._o f(s) = 0 if a = —oc0. Also let g = f1,
b= £(0) >0,
s t
F(s) :/ f(s')ds" and G(t) :/ g(t"dt'.
0 0
Then for all s,t > 0,
st < F(s)+ Gt VD) < F(s)+ G(¢)
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and equality holds iff t = f(s). In particular, taking f(s) = e®, prove Young’s
inequality stating
st<et+ (V) In(tvl)—(tV1) <e +tlnt—t.
Hint: Refer to the following pictures.

2 -1 0 % 2

FI1GURE 3. Comparing areas when ¢ > b goes the same way as in
the text.

2 -1 0 % 2

FIGURE 4. When ¢ < b, notice that g(¢) < 0 but G(¢t) > 0. Also
notice that G(t) is no longer needed to estimate st.



