Conclude from this that

$$
I(f)=\lim _{|\pi| \rightarrow 0} \sum_{i=0}^{n-1} f\left(c_{i}\right)\left(F\left(t_{i+1}\right)-F\left(t_{i}\right)\right)
$$

As usual we will write this integral as $\int_{-M}^{M} f d F$ and as $\int_{-M}^{M} f(t) d t$ if $F(t)=$ t.

Exercise 11.5. Folland problem 1.28.
Exercise 11.6. Suppose that $F \in C^{1}(\mathbb{R})$ is an increasing function and μ_{F} is the unique Borel measure on \mathbb{R} such that $\mu_{F}((a, b])=F(b)-F(a)$ for all $a \leq b$. Show that $d \mu_{F}=\rho d m$ for some function $\rho \geq 0$. Find ρ explicitly in terms of F.

Exercise 11.7. Suppose that $F(x)=e 1_{x \geq 3}+\pi 1_{x \geq 7}$ and μ_{F} is the is the unique Borel measure on \mathbb{R} such that $\mu_{F}((a, b])=F(b)-F(a)$ for all $a \leq b$. Give an explicit description of the measure μ_{F}.

Exercise 11.8. Let $E \in \mathcal{B}_{\mathbb{R}}$ with $m(E)>0$. Then for any $\alpha \in(0,1)$ there exists an open interval $J \subset \mathbb{R}$ such that $m(E \cap J) \geq \alpha m(J)$. Hints: 1. Reduce to the case where $m(E) \in(0, \infty)$. 2) Approximate E from the outside by an open set $V \subset \mathbb{R}$. 3. Make use of Exercise 3.43, which states that V may be written as a disjoint union of open intervals.
11.10.1. The Laws of Large Number Exercises. For the rest of the problems of this section, let ν be a probability measure on $\mathcal{B}_{\mathbb{R}}$ such that $\int_{\mathbb{R}}|x| d \nu(x)<\infty, \mu_{n}:=\nu$ for $n \in \mathbb{N}$ and μ denote the infinite product measure as constructed in Corollary 11.40. So μ is the unique measure on $\left(X:=\mathbb{R}^{\mathbb{N}}, \mathcal{B}:=\mathcal{B}_{\mathbb{R}^{\mathbb{N}}}\right)$ such that

$$
\begin{equation*}
\int_{X} f\left(x_{1}, x_{2}, \ldots, x_{N}\right) d \mu(x)=\int_{\mathbb{R}^{N}} f\left(x_{1}, x_{2}, \ldots, x_{N}\right) d \nu\left(x_{1}\right) \ldots d \nu\left(x_{N}\right) \tag{11.43}
\end{equation*}
$$

for all $N \in \mathbb{N}$ and bounded measurable functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$. We will also use the following notation:

$$
\begin{aligned}
S_{n}(x) & :=\frac{1}{n} \sum_{k=1}^{n} x_{k} \text { for } x \in X, \\
m & :=\int_{\mathbb{R}} x d \nu(x) \text { the average of } \nu, \\
\sigma^{2} & :=\int_{\mathbb{R}}(x-m)^{2} d \nu(x) \text { the variance of } \nu \text { and } \\
\gamma & :=\int_{\mathbb{R}}(x-m)^{4} d \nu(x) .
\end{aligned}
$$

The variance may also be written as $\sigma^{2}=\int_{\mathbb{R}} x^{2} d \nu(x)-m^{2}$.
Exercise 11.9 (Weak Law of Large Numbers). Suppose further that $\sigma^{2}<\infty$, show $\int_{X} S_{n} d \mu=m$,

$$
\left\|S_{n}-m\right\|_{2}^{2}=\int_{X}\left(S_{n}-m\right)^{2} d \mu=\frac{\sigma^{2}}{n}
$$

and $\mu\left(\left|S_{n}-m\right|>\epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}}$ for all $\epsilon>0$ and $n \in \mathbb{N}$.

Exercise 11.10 (A simple form of the Strong Law of Large Numbers). Suppose now that $\gamma:=\int_{\mathbb{R}}(x-m)^{4} d \nu(x)<\infty$. Show for all $\epsilon>0$ and $n \in \mathbb{N}$ that

$$
\begin{aligned}
\left\|S_{n}-m\right\|_{4}^{4} & =\int_{X}\left(S_{n}-m\right)^{4} d \mu=\frac{1}{n^{4}}\left(n \gamma+3 n(n-1) \sigma^{4}\right) \\
& =\frac{1}{n^{2}}\left[n^{-1} \gamma+3\left(1-n^{-1}\right) \sigma^{4}\right] \text { and } \\
\mu\left(\left|S_{n}-m\right|\right. & >\epsilon) \leq \frac{n^{-1} \gamma+3\left(1-n^{-1}\right) \sigma^{4}}{\epsilon^{4} n^{2}}
\end{aligned}
$$

Conclude from the last estimate and the first Borel Cantelli Lemma 5.22 that $\lim _{n \rightarrow \infty} S_{n}(x)=m$ for μ - a.e. $x \in X$.
Exercise 11.11. Suppose $\gamma:=\int_{\mathbb{R}}(x-m)^{4} d \nu(x)<\infty$ and $m=\int_{\mathbb{R}}(x-m) d \nu(x) \neq 0$. For $\lambda>0$ let $T_{\lambda}: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}^{\mathbb{N}}$ be defined by $T_{\lambda}(x)=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}, \ldots\right)$, $\mu_{\lambda}=\mu \circ T_{\lambda}^{-1}$ and

$$
X_{\lambda}:=\left\{x \in \mathbb{R}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} x_{j}=\lambda\right\}
$$

Show

$$
\mu_{\lambda}\left(X_{\lambda^{\prime}}\right)=\delta_{\lambda, \lambda^{\prime}}=\left\{\begin{array}{lll}
1 & \text { if } & \lambda=\lambda^{\prime} \\
0 & \text { if } & \lambda \neq \lambda^{\prime}
\end{array}\right.
$$

and use this to show if $\lambda \neq 1$, then $d \mu_{\lambda} \neq \rho d \mu$ for any measurable function ρ : $\mathbb{R}^{\mathbb{N}} \rightarrow[0, \infty]$.

