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Addendum to Chapter 10

Notation 10.44. Let C%, (R?) denote the 27 — periodic functions in C*(R9),

per
Cﬁer(Rd) ={fe C*RY) : f(z + 2me;) = f(z) forall z € R and i = 1,2, ... ,d}.
Also let (-, -) denote the inner product on the Hilbert space H := L?([—7, 7]%) given

by d
(f,9) = (%) /[—‘n',ﬂ']d f(z)g(z)dz.

Recall that {xx(z) :=e**: k€ Z%} is an orthonormal basis for H in particular
for f € H,

(10.24) F=">(Fxu)xe
kezd

where the convergence takes place in L?([—m,m]%). For f € L'([-m,7]?), we will
write f(k) for the Fourier coefficient,

d
r 1 —ik-x
(10.25) Foy = (o) = (g2) [ st
0 [_7T77.r]d
Lemma 10.45. Let s > 0, then the following are equivalent,
1 1
(10.26) —— < 00, ———— < 0 and s > d.
gz;d (1 +[k])® ,sz;d (1 + [k[*)>/2

Proof. Let Q := (0,1]9 and k € Z%. For x = k +y € (k + Q),
2+ |kl =24z —y[ <2+ ||+ |y[ <3+ [x] and
2+ [kl =24z -yl =2+ 2] -yl > 2| + 1

and therefore for s > 0,

1 < 1 < 1
B+z)° = @+ = W+la)™
Thus we have shown
1 1 1
<y lgu(@) < ———— forall z € R%
(3+al) Z @+kD) " (1+a])

Integrating this equation then shows

1 1 1
I3 Gy ™S 2 Gay S I3 ™

kezZd
from which we conclude that

1
(10.27) < oxiffs>d.
PNCEATE
Because the functions 1+¢, 2+¢, and v/1 + ¢2 all behave like ¢t as t — oo, the sums
in Eq. (10.26) may be compared with the one in Eq. (10.27) to finish the proof. m

Exercise 10.22 (Riemann Lebesgue Lemma for Fourier Series). Show for f €
LY([—m, 7% that f € co(Z%), ie. f:Z% — C and limg .o f(k) = 0. Hint: If
f € H, this follows form Bessel’s inequality. Now use a density argument.
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Exercise 10.23. Suppose f € L'([—m, x]?) is a function such that f € ¢*(Z?) and
set

g(x) == Zf(k)eik‘m (pointwise).
kez
(1) Show g € Cpe,(RY). )
(2) Show g(z) = f(z) for m — a.e. x in [~7, n]%. Hint: Show §(k) = f(k) and
then use approximation arguments to show
/ f(@)h(z)dx = / g(x)h(x)dz ¥V h € C([—n,7]%).
[77T77T]d [77‘—77‘—](1
(3) Conclude that f € LY([-m, n]%) N L®([-m,7]?) and in particular f €
LP([—m,m]4) for all p € [1,00].
Exercise 10.24. Suppose m € Ny, « is a multi-index such that |a| < m and
€ Cm (RO,
(1) Using integration by parts, show

(ik)* f (k) = (O°f, Xk)-
Note: This equality implies

~ 1 1
7)< 107l < 2 10 £, -

— ko T ke
(2) Now let Af = Zle 02 f/0x2, Working as in part 1) show
(10.28) (1= &)™ f.xk) = (L [KI*)™ F(R).

Remark 10.46. Suppose that m is an even integer, « is a multi-index and f €
cpflel(R4), then
2 2

> Ik f(k)’ = | D KO foxa) (L[R2 (1 + k%) 2

kezd kezd

2

> (= ay2o% g 00| (L4 k)~

kezd
< - ay o foa| X @
kezd kezd
2
_ mHa_A)m/?aaf‘H

where C, 1= 37, c7a(1+ k|*)~™ < oo iff m > d/2. So the smoother f is the faster
f decays at infinity. The next problem is ‘the converse of this assertion and hence
smoothness of f corresponds to decay of f at infinity and visa-versa.

Exercise 10.25. Suppose s € R and {ck eC:ke Zd} are coefficients such that

D7 ferl® (1 + k%) < oo,

kezZd

25We view Cper(R) as a subspace of H by identifying f € Cper(R) with f||_r ) € H.
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Show if s > % + m, the function f defined by
_ Z Ckeik-w
kezd

is in O, (R 4). Hint: Work as in the above remark to show

Z lek| |5%] < oo for all |a] < m.
keZd

Exercise 10.26 (Poisson Summation Formula). Let F' € L'(R%),

E:={zeR*: ) |F(z+2rk)| =
kezd

and set
ﬁ'(k) = (277)7(1/2/ F(x)e * g,
Rd

Further assume F' € ¢*(N9).
(1) Show m(E) = 0 and E + 27k = E for all k € Z? Hint: Compute
f[—w,w]d Y okezd |[F(x 4+ 2nk)| da.
(2) Let
f@) = Yopeze Flx+27k) for x¢ E
’ 0 if zek.
Show f € LY([-m,x]%) and f(k) = (2r)" Y F(k).
(3) Using item 2) and the assumptions on F, show f € L([-m,7]¢) N
L>([—m,7]%) and

= Z fk)et = Z 2m) Y2 F(k)e™* ™ for m — ae. x,

kezd kezd
i.e.
. + 27 ) orm—a.e. T.
10.29 F(z + 27k) = (2m)~ Y2 etk f
kezd kezd

(4) Suppose we now assume that F' € C(RY) and F satisfies 1) |F(x)| < C(1+
|z|)~* for some s > d and C' < oo and 2) F' € ¢*(Z?), then show Eq. (10.29)
holds for all = € R? and in particular

Z F(27k) = (2m) —d/2 Z
kezd kezd
For simplicity, in the remaining problems we will assume that d = 1.
Exercise 10.27 (Heat Equation 1.). Let (¢,z) € [0,00) X R — u(t,x) be a contin-
uous function such that u(t,-) € Cper(R) for all t > 0, w := w, uy, and ug, exists
and are continuous when ¢ > 0. Further assume that u satisfies the heat equation

U = Fuge. Let @(t, k) := (u(t,-), xx) for k € Z. Show for ¢ > 0 and k € Z that
u(t, k) is differentiable in ¢ and iﬂ(t, k)= —l{:qu(t, k)/2. Use this result to show

(10.30) =3 et (ke

keZ
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where f(z) :=u(0,z) and as above

F(k) = (f. xu) / fly)e dy.
Notice from Eq. (10.30) that (¢,z) — u(t,x) is C* for ¢t > 0.

Exercise 10.28 (Heat Equation 2.). Let ¢;(z) := 5= >, e~ ¢k Show that
Eq. (10.30) may be rewritten as

utta) = [ " aele — ) f(y)dy

and
x) = Zpt(x + k2m)
kEZ

zlﬂe_%g”z. Also show u(t, z) may be written as

where py(z) :=

ut.a) = po f(a) = [ pla =)y

Hint: To show q:(x) = >, ., pi(w + k27), use the Poisson summation formula
along with the Gaussian integration formula

1
e rdy = e
pr(w) = ’_27r / pe(w o

Exercise 10.29 (Wave Equation). Let u € C*(R x R) such that u(t,-) € Cper(R)
for all ¢ € R. Further assume that u solves the wave equation, uy = ug,. Let
f(@) := u(0,2) and g(x) = 4(0,x). Show a(t, k) := (u(t,-), xx) for k € Z is twice

—_t,2
W

continuously differentiable in ¢ and %ﬂ(t, k) = —k%a(t, k). Use this result to show
~ inkt\ .
(10.31) ut,z) =3 (f(k) cos(kt) + (k) SH;C ) etk
kEZ

with the sum converging absolutely. Also show that u(¢,z) may be written as
t

1 1
(10.32) u(t,z) = 5 [flx+t)+ flz—t)]+ 5/ g(xz+ T1)dr.
—t
Hint: To show Eq. (10.31) implies (10.32) use
ikt | —ikt ikt _ —ikt
cos kt = i, and sin kt = 'e
2 24

and

el k(z+t) _ et k(z—t) t
. :/ Rt gr,
ik

—t
Exercise 10.30. (Worked Example.) Let D := {z € C : |z| < 1} be the open
unit dlsk in (C R?, where we write z = 2 + iy = re'? in the usual way. Also let
A= 3962 + a <= and recall that A may be computed in polar coordinates by the
formula,
1
Au =119, (rilaru) + T—28§u.
Suppose that u € C(D) N C?(D) and Au(z) =0 for z € D.Let g = u|sp and

1 [7 . X
al(k) = 1k0\ _—ik0 )
(k) = o /49(@ )e” "7 do
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(We are identifying S* = 9D := {Z €D:|z| = 1} with [—m,7]/7” — = by the map

0 c[-m n] —e? e S Let

(10.33) a(r,k) == QL/ u(re'®)e*0qdg
T J—rx

then:

(1) a(r, k) satisfies the ordinary differential equation

=10, (royi(r,k)) = %kZﬁ(r, k) for r € (0,1).
r

(2) Recall the general solution to
(10.34) r0y (royy(r)) = k*y(r)

may be found by trying solutions of the form y(r) = r* which then implies
a? = k? or a = +k. From this one sees that @(r,k) may be written as
u(r k) = Apr®l + Byr=I*l for some constants Aj and By, when k # 0. If
k = 0, the solution to Eq. (10.34) is gotten by simple integration and the
result is 4(r,0) = Ag + Bolnr. Since @(r, k) bounded near the origin for
each k, it follows that By = 0 for all k € Z.

(3) So we have shown

Apr* = G(r k) = 2i/ u(re®)e*0dg
T

—T

and letting 7 T 1 in this equation implies

1™ i
Ay = Py u(e®)e=™*0de = g(k).
Therefore,
(10.35) u(re') = Zg(lc)rlkleike

kezZ
for 7 < 1 or equivalently,
u(z) =Y §lk)2* + > g(—k)z".
keNg keN

(4) Inserting the formula for §(k) into Eq. (10.35) shows that

u(re'?) = QL/ <Z rkeik(e_a)> u(e'®)da for all r < 1.
)7

kEZ

Now by simple geometric series considerations we find, setting § = 6 — «,

that
oo oo
Z Ikl giks _ Z Pk eiks Z ko
k€EZ k=0 k=1
1 re— 1—re 4 re ™ (1 —re)
_1frei5+1—re*i5_ 1—2rcosd +r2
1—1r2

1—2rcosd +r2’
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Putting this altogether we have shown
. 1 ™ .
u(re') = Py /—n P.(6 — a)u(e")da

where
1— 72

P.(§)=—
(9) 1—2rcosd +r?
is the so called Poisson kernel.
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10.8. Radon-Nikodym Theorem and the Dual of LP.

Definition 10.47. A complex measure v on a measurable space (X, M) is a count-
ably additive set function v : M — C such that v(0)) = 0.

Theorem 10.48. Suppose (X, M) is a measurable space, |1 is a positive finite
measure on M and v is a complex measure on M such that |v(A)| < u(A) for all
A € M. Then dv = pdu where |p| < 1. Moreover if v is a positive measure, then
0<p<l

Proof. For a simple function, f € S(X, M), let v(f) : wcc av(f = a). Then

=2
(O < lallv(f =a)l <D lalu(f = a) :/ |f] dps-
aeC aeC X
So, by the B.L.T. theorem, v extends to a continuous linear functional on L*(u)
satisfying the bounds

()] < /X [l di < /i) ]l oy for all £ € LY ().

The Riesz representation Theorem (Proposition 10.15) then implies there exists a
unique p € L?(yu) such that

v(f) = /Xfpdu for all f € L*(p).

Taking f = sgn(p)la in this equation shows

/ lpl dp = v(sgn(p)la) < pu(A) =/ Ldp
A A

from which it follows that |p| <1, 4 — a.e. If v is a positive measure, then

0=Im[y(Imp > 0)] = / Im pdp
{Im p>0}

which shows Im p < 0, p — a.e. Similarly,

0=Im[y(Imp < 0)] = / Im pdp
{Im p<0}
and hence Imp > 0, p — a.e. and we have shown p is real a.e. Similarly,
0§1/(R6p<0)=/ pdp <0,
{Re p<0}

shows p >0 a.e. ®

Definition 10.49. Let p and v be two positive measures on (X, M). Then p and
v are mutually singular (written as p L v) if there exists A € M such that
v(A) =0 and pu(A°) = 0. The measure v is absolutely continuous relative to
w (written as v < p) provided v(A) = 0 whenever u(A4) =0.

Theorem 10.50 (Radon Nikodym Theorem). Suppose that p,v are o — finite
positive measures on (X, M). Then there exists a unique measure vs and a unique
(modulo sets of u — measure 0) function p : X — [0,00) such that dv = dvs + pdp
and vs L p. The measure vs in the Lebesgue decomposition of v is unique and
p is unique modulo sets of u — measure zero. Moreover, v < u iff vs = 0.
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Proof. Uniqueness. Suppose that dv = pdy + dvs with p > 0 and 7 L p is
another such decomposition. Let A, A € M be chosen so that u(A) = 0, v5(A°) =0,
u(A) =0 and 75(A°) = 0. Then for B € M, using p(A) = 0 and v4(A°) =0,

V(AN B) =vs(ANB) + p(planp) = vs(B).
Now using 7,(A°) = 0 and pu(A) =0,
V(ANB)=v(ANANB) +v(AN A°N B)
=v(ANANB) + o5(AN AN B) + w(pl 4n ser)
=v(ANANB).
Combining these equations shows
ve(B)=v(ANB)=v(ANANB).
By symmetry (or a similar argument) 77y(B) = v(AN AN B) and therefore v, = .
This then implies that pdu = pdu, i.e. p(1gp) = p(lpp) forall B e M. Let X,, T X
be chosen in M so that u(X,,) and v(X,,) < oo. Since v(X,,) < oo, plx, € L'(u)
and ply, € L*(u) and
w(lp-1x,p) =u(lp-1x,p) for all B e M

which implies 1x, p = 1x, p for y— a.e. z. Letting n — oo then shows that p = p,
1 — a.e.

Existence: (Due to Von-Neumann.) First suppose that p and v are finite
measures and let A\ = y + v. By Theorem 10.48, dv = hdA with 0 < h < 1 and this
implies, for all non-negative measurable functions f, that

(10.36) v(f) = A(fh) = u(fh) +v(fh)
or equivalently
(10.37) v(f(1 = h)) = u(fh).

Taking f = 1y,=1} and f = glgu<3(1 —h)~! with g > 0 in Eq. (10.37)

p({h=1}) =0 and v(glpery) = u(glinery (1 — k)~ h) = p(pg)

where p := 1{h<1}1Thh and v,(g) := v(glp=1y). This gives the desired decomposi-

26 gince

tion
v(9) = v(gln=1y) + v(9lin<ry) = vs(g) + 1lpg)
and

vs (h#1) =0 while p(h=1) = p({h # 1}°) = 0.

26Here is the motivation for this construction. Suppose that dv = dvs + pdu is the Radon-
Nikodym decompostion and X = A]] B such that vs(B) =0 and u(A) = 0. Then we find

vs(f) + ulpf) = v(f) = Mfg) = v(fg) + n(f9)-
Letting f — 14 f then implies that

vs(laf) =v(lafg)
which show that g = 1 v —a.e. on A. Also letting f — 1gf implies that
w(plpf(1—g)) =v(pf(l—g)) = u(lpfg) = u(fg)
which shows that
p(l—g)=plp(l—g)=gu—ae.
This shows that p = ﬁ - a.e.
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If v < p, then p(h=1) = 0 implies v (h=1) = 0 and hence that vy = 0. If
vs = 0, then dv = pdp and so if p(A) =0, then v(A) = u(pla) =0 as well.

For the o — finite case, write X = I_[Zozl X, where X,, € M are chosen so that
w(X,) < oo and v(X,,) < oo for all n. Let du, = lx,dp and dv,, = 1x, dv. Then
by what we have just proved there exists p,, € L' (X, 1,,) and measure v such that
dvy, = pnduy, + dvi with v3 L p,, ie. there exists A,, B, € Mx, and p(A,) =0
and v$(B,) = 0. Define v, := 3> v5 and p:=> " 1x, pn, then

v=> va= (patin+v3) =D (pulx,p+v3) = ppi+vs
n=1

n=1 n=1

and letting A := U2, A, and B := U2 B,,, we have A = B¢ and

wA) = Z,u(An) =0and v(B) = Z v(By,) = 0.
]

Theorem 10.51. Let (X, M,p) be a o — finite measure space and suppose that
p,q € [1,00] are conjugate exponents. Then for p € [1,00), the map g € L? —
¢g € (LP)* is an isometric isomorphism of Banach spaces. (Recall that ¢4(f) :=
Jx fgdp.) We summarize this by writing (LP)* = L? for all 1 < p < .

Proof. The only point that we have not yet proved is the surjectivity of the
map g € LY — ¢4 € (LP)*. When p = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that p(X) < oo in
which cased bounded functions are in LP(u) for all p.

Let ¢ € (LP)" and define v(A) := ¢(14). Suppose that A = [[22, A4, with
A, € M, then

s =

N
14— 1a,llee = e, a,llze = (U2 n4140)]” — 0 as N — o

n=1

Therefore - -
v(A) = ¢(1a) = > _¢(la,) = > v(An)

showing v is a complex measure.?”

Let us define
(10.38)

] (A) = sup {|o(f1a)] : [f] < 1} < 0l zny - [Lallze = 6]l zry - u(A)VP.

You are asked to show in Exercise 10.31 that |v| is a measure on (X, M). (This also
can be deduced from Lemma 15.4 and Proposition 15.6 below.) From Eq. (10.38),

(A)] < || (A) < [19]l 0y p(A)7 for all A € M

from which if follows that |v| < p and by Theorem 10.48, dv = hd|v| for some
|h| < 1 and by Theorem 10.50, d|v| = pdu for some p € L*(u). Hence, letting
g = ph € L*(p), dv = gdu or equivalently

(10.39) (1) = / gladu ¥ A e M.
X

2714 is at this point that the proof breaks down when p = co.
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By linearity this equation implies
(10.40) o) = [ afdn
for all simple functions f on X. Replacing f by 1f4<asyf in Eq. (10.40) shows

o(fL{1g1<my) Z/Xl{\g\SM}gfdﬂ

holds for all simple functions f and then by continuity for all f € L?(u). By the
converse to Holder’s inequality, (Proposition 7.26) we learn that

gl = swp |60 L) < sup 116lze- [|FLgganll, < 19le)-

I £1l,=1 L£11,

Using the monotone convergence theorem we may let M — oo in the previous equa-
tion to learn ||g|[, < [[¢||(z»)- -With this result, Eq. (10.40) extends by continuity
to hold for all f € LP(u) and hence we have shown that ¢ = ¢g.

Case 2. Now suppose that p is ¢ — finite and X,, € M are sets such that
0 < u(X,) < oo and X,, T X as m — oo. Then by Case 1. there exits g, €
L(X,, p) such that

o(f) = / g fdps for all € IP(X,, )

n

and
gnllq = sup {|p(f)] : f € LP(Xo, ) and || fllzo(x, ) = 1} < (18]l {e -

It is easy to see that g, = ¢, a.e. on X,, N X,, for all m,n so that g := lim,_,cc gn
exists p — a.e. By the above inequality and Fatou’s lemma, we have |g|l, <
|Bll1Lr )+ < oo and since

o) = [ afdufor al f € L2(X,.0) and .

it follows by continuity that

o) = [ afdforall f € '(X.10),

Remark 10.52. We will show later that Theorem 10.51 fails in general when p = oo.
10.9. Exercises.

Exercise 10.31. Show |v| be defined as in Eq. (10.38) is a positive measure. Here
is an outline.

(1) Show
(10.41) VI (A) + Iv] (B) < o] (AU B).

when A, B are disjoint sets in M.
(2) fA=T]>", A, with A, € M then

(10.42) [ (A) <> Y] (An).
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(3) From Egs. (10.41) and (10.42) it follows that v is finitely additive, and
hence
N

N
V[ (A) =Y V] (An) + V] (UnsnAn) 2 D I (Ay).
n=1 n=1
Letting N — oo in this inequality shows |v]|(A) > >>° | |v|(A,) which
combined with Eq. (10.42) shows |v| is countable additive.

Exercise 10.32. Suppose pu;,v; are o — finite measure on measurable spaces,
(Xi,M;), for t = 1,2. If v; < p; for i@ = 1,2 then v; @ v <€ p1 ® pg and in

fact 3{:12:22)) = p1 ® pg when p; := dv;/du; for i = 1,2.

Exercise 10.33. Problem 3.13 from Folland.




