BRUCE K. DRIVER^{\dagger}

Addendum to Chapter 10

Notation 10.44. Let $C_{per}^k(\mathbb{R}^d)$ denote the 2π – periodic functions in $C^k(\mathbb{R}^d)$,

 $C_{per}^{k}(\mathbb{R}^{d}) := \left\{ f \in C^{k}(\mathbb{R}^{d}) : f(x + 2\pi e_{i}) = f(x) \text{ for all } x \in \mathbb{R}^{d} \text{ and } i = 1, 2, \dots, d \right\}.$ Also let $\langle \cdot, \cdot \rangle$ denote the inner product on the Hilbert space $H := L^{2}([-\pi, \pi]^{d})$ given by

$$\langle f,g\rangle := \left(\frac{1}{2\pi}\right)^d \int_{[-\pi,\pi]^d} f(x)\bar{g}(x)dx.$$

Recall that $\{\chi_k(x) := e^{ik \cdot x} : k \in \mathbb{Z}^d\}$ is an orthonormal basis for H in particular for $f \in H$,

(10.24)
$$f = \sum_{k \in \mathbb{Z}^d} \langle f, \chi_k \rangle \chi_k$$

where the convergence takes place in $L^2([-\pi,\pi]^d)$. For $f \in L^1([-\pi,\pi]^d)$, we will write $\tilde{f}(k)$ for the **Fourier coefficient**,

(10.25)
$$\tilde{f}(k) := \langle f, \chi_k \rangle = \left(\frac{1}{2\pi}\right)^d \int_{[-\pi,\pi]^d} f(x) e^{-ik \cdot x} dx.$$

Lemma 10.45. Let s > 0, then the following are equivalent,

(10.26)
$$\sum_{k \in \mathbb{Z}^d} \frac{1}{(1+|k|)^s} < \infty, \ \sum_{k \in \mathbb{Z}^d} \frac{1}{(1+|k|^2)^{s/2}} < \infty \text{ and } s > d.$$

Proof. Let $Q := (0, 1]^d$ and $k \in \mathbb{Z}^d$. For $x = k + y \in (k + Q)$,

$$2 + |k| = 2 + |x - y| \le 2 + |x| + |y| \le 3 + |x| \text{ and}$$

$$2 + |k| = 2 + |x - y| \ge 2 + |x| - |y| \ge |x| + 1$$

and therefore for s > 0,

$$\frac{1}{(3+|x|)^s} \le \frac{1}{(2+|k|)^s} \le \frac{1}{(1+|x|)^s}.$$

Thus we have shown

$$\frac{1}{\left(3+|x|\right)^{s}} \leq \sum_{k \in \mathbb{Z}^{d}} \frac{1}{\left(2+|k|\right)^{s}} \mathbf{1}_{Q+k}(x) \leq \frac{1}{\left(1+|x|\right)^{s}} \text{ for all } x \in \mathbb{R}^{d}.$$

Integrating this equation then shows

$$\int_{\mathbb{R}^d} \frac{1}{(3+|x|)^s} dx \le \sum_{k \in \mathbb{Z}^d} \frac{1}{(2+|k|)^s} \le \int_{\mathbb{R}^d} \frac{1}{(1+|x|)^s} dx$$

from which we conclude that

(10.27)
$$\sum_{k \in \mathbb{Z}^d} \frac{1}{(2+|k|)^s} < \infty \text{ iff } s > d.$$

Because the functions 1+t, 2+t, and $\sqrt{1+t^2}$ all behave like t as $t \to \infty$, the sums in Eq. (10.26) may be compared with the one in Eq. (10.27) to finish the proof.

Exercise 10.22 (Riemann Lebesgue Lemma for Fourier Series). Show for $f \in L^1([-\pi,\pi]^d)$ that $\tilde{f} \in c_0(\mathbb{Z}^d)$, i.e. $\tilde{f} : \mathbb{Z}^d \to \mathbb{C}$ and $\lim_{k\to\infty} \tilde{f}(k) = 0$. **Hint:** If $f \in H$, this follows form Bessel's inequality. Now use a density argument.

Exercise 10.23. Suppose $f \in L^1([-\pi,\pi]^d)$ is a function such that $\tilde{f} \in \ell^1(\mathbb{Z}^d)$ and set

$$g(x) := \sum_{k \in \mathbb{Z}} \tilde{f}(k) e^{ik \cdot x}$$
 (pointwise).

- (1) Show $g \in C_{per}(\mathbb{R}^d)$.
- (2) Show g(x) = f(x) for m a.e. x in $[-\pi, \pi]^d$. Hint: Show $\tilde{g}(k) = \tilde{f}(k)$ and then use approximation arguments to show

$$\int_{[-\pi,\pi]^d} f(x)h(x)dx = \int_{[-\pi,\pi]^d} g(x)h(x)dx \ \forall \ h \in C([-\pi,\pi]^d).$$

(3) Conclude that $f \in L^1([-\pi,\pi]^d) \cap L^\infty([-\pi,\pi]^d)$ and in particular $f \in L^p([-\pi,\pi]^d)$ for all $p \in [1,\infty]$.

Exercise 10.24. Suppose $m \in \mathbb{N}_0$, α is a multi-index such that $|\alpha| \leq m$ and $f \in C^m_{per}(\mathbb{R}^d)^{25}$.

(1) Using integration by parts, show

$$(ik)^{\alpha} f(k) = \langle \partial^{\alpha} f, \chi_k \rangle.$$

Note: This equality implies

$$\left|\tilde{f}(k)\right| \leq \frac{1}{k^{\alpha}} \left\|\partial^{\alpha}f\right\|_{H} \leq \frac{1}{k^{\alpha}} \left\|\partial^{\alpha}f\right\|_{u}.$$

(2) Now let $\Delta f = \sum_{i=1}^{d} \partial^2 f / \partial x_i^2$, Working as in part 1) show

(10.28)
$$\langle (1-\Delta)^m f, \chi_k \rangle = (1+|k|^2)^m \tilde{f}(k)$$

Remark 10.46. Suppose that m is an even integer, α is a multi-index and $f \in C_{per}^{m+|\alpha|}(\mathbb{R}^d)$, then

$$\begin{split} \left(\sum_{k\in\mathbb{Z}^d} |k^{\alpha}| \left| \tilde{f}(k) \right| \right)^2 &= \left(\sum_{k\in\mathbb{Z}^d} |\langle \partial^{\alpha} f, \chi_k \rangle| \left(1 + |k|^2\right)^{m/2} \left(1 + |k|^2\right)^{-m/2} \right)^2 \\ &= \left(\sum_{k\in\mathbb{Z}^d} \left| \langle (1-\Delta)^{m/2} \partial^{\alpha} f, \chi_k \rangle \right| \left(1 + |k|^2\right)^{-m/2} \right)^2 \\ &\leq \sum_{k\in\mathbb{Z}^d} \left| \langle (1-\Delta)^{m/2} \partial^{\alpha} f, \chi_k \rangle \right|^2 \cdot \sum_{k\in\mathbb{Z}^d} \left(1 + |k|^2\right)^{-m} \\ &= C_m \left\| (1-\Delta)^{m/2} \partial^{\alpha} f \right\|_H^2 \end{split}$$

where $C_m := \sum_{k \in \mathbb{Z}^d} (1 + |k|^2)^{-m} < \infty$ iff m > d/2. So the smoother f is the faster \tilde{f} decays at infinity. The next problem is the converse of this assertion and hence smoothness of f corresponds to decay of \tilde{f} at infinity and visa-versa.

Exercise 10.25. Suppose $s \in \mathbb{R}$ and $\{c_k \in \mathbb{C} : k \in \mathbb{Z}^d\}$ are coefficients such that

$$\sum_{k\in\mathbb{Z}^d}\left|c_k\right|^2(1+\left|k\right|^2)^s<\infty.$$

²⁵We view $C_{per}(\mathbb{R})$ as a subspace of H by identifying $f \in C_{per}(\mathbb{R})$ with $f|_{[-\pi,\pi]} \in H$.

Show if $s > \frac{d}{2} + m$, the function f defined by

$$f(x) = \sum_{k \in \mathbb{Z}^d} c_k e^{ik \cdot x}$$

is in $C_{per}^m(\mathbb{R}^d)$. Hint: Work as in the above remark to show

$$\sum_{k \in \mathbb{Z}^d} |c_k| |k^{\alpha}| < \infty \text{ for all } |\alpha| \le m.$$

Exercise 10.26 (Poisson Summation Formula). Let $F \in L^1(\mathbb{R}^d)$,

$$E := \left\{ x \in \mathbb{R}^d : \sum_{k \in \mathbb{Z}^d} |F(x + 2\pi k)| = \infty \right\}$$

and set

$$\hat{F}(k) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} F(x) e^{-ik \cdot x} dx.$$

Further assume $\hat{F} \in \ell^1(\mathbb{N}^d)$.

(1) Show m(E) = 0 and $E + 2\pi k = E$ for all $k \in \mathbb{Z}^d$. Hint: Compute $\int_{[-\pi,\pi]^d} \sum_{k \in \mathbb{Z}^d} |F(x+2\pi k)| \, dx.$

(2) Let

$$f(x) := \begin{cases} \sum_{k \in \mathbb{Z}^d} F(x + 2\pi k) & \text{for} \quad x \notin E \\ 0 & \text{if} \quad x \in E. \end{cases}$$

Show $f \in L^1([-\pi,\pi]^d)$ and $\tilde{f}(k) = (2\pi)^{-d/2} \hat{F}(k)$. (3) Using item 2) and the assumptions on F, show $f \in L^1([-\pi,\pi]^d) \cap$ $L^{\infty}([-\pi,\pi]^d)$ and

$$f(x) = \sum_{k \in \mathbb{Z}^d} \tilde{f}(k) e^{ik \cdot x} = \sum_{k \in \mathbb{Z}^d} (2\pi)^{-d/2} \hat{F}(k) e^{ik \cdot x} \text{ for } m - \text{a.e. } x,$$

i.e.

(10.29)
$$\sum_{k \in \mathbb{Z}^d} F(x + 2\pi k) = (2\pi)^{-d/2} \sum_{k \in \mathbb{Z}^d} \hat{F}(k) e^{ik \cdot x} \text{ for } m - \text{a.e. } x.$$

(4) Suppose we now assume that $F \in C(\mathbb{R}^d)$ and F satisfies 1) $|F(x)| \leq C(1 + C)$ $|x|)^{-s}$ for some s > d and $C < \infty$ and 2) $\hat{F} \in \ell^1(\mathbb{Z}^d)$, then show Eq. (10.29) holds for all $x \in \mathbb{R}^d$ and in particular

$$\sum_{k \in \mathbb{Z}^d} F(2\pi k) = (2\pi)^{-d/2} \sum_{k \in \mathbb{Z}^d} \hat{F}(k).$$

For simplicity, in the remaining problems we will assume that d = 1.

Exercise 10.27 (Heat Equation 1.). Let $(t, x) \in [0, \infty) \times \mathbb{R} \to u(t, x)$ be a continuous function such that $u(t, \cdot) \in C_{per}(\mathbb{R})$ for all $t \geq 0$, $\dot{u} := u_t, u_x$, and u_{xx} exists and are continuous when t > 0. Further assume that u satisfies the heat equation $\dot{u} = \frac{1}{2}u_{xx}$. Let $\tilde{u}(t,k) := \langle u(t,\cdot), \chi_k \rangle$ for $k \in \mathbb{Z}$. Show for t > 0 and $k \in \mathbb{Z}$ that $\tilde{u}(t,k)$ is differentiable in t and $\frac{d}{dt}\tilde{u}(t,k) = -k^2\tilde{u}(t,k)/2$. Use this result to show

(10.30)
$$u(t,x) = \sum_{k \in \mathbb{Z}} e^{-\frac{t}{2}k^2} \tilde{f}(k) e^{ikx}$$

where f(x) := u(0, x) and as above

$$\tilde{f}(k) = \langle f, \chi_k \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iky} dy.$$

Notice from Eq. (10.30) that $(t, x) \to u(t, x)$ is C^{∞} for t > 0.

Exercise 10.28 (Heat Equation 2.). Let $q_t(x) := \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} e^{-\frac{t}{2}k^2} e^{ikx}$. Show that Eq. (10.30) may be rewritten as

$$u(t,x) = \int_{-\pi}^{\pi} q_t(x-y)f(y)dy$$

and

$$q_t(x) = \sum_{k \in \mathbb{Z}} p_t(x + k2\pi)$$

where $p_t(x) := \frac{1}{\sqrt{2\pi t}} e^{-\frac{1}{2t}x^2}$. Also show u(t,x) may be written as

$$u(t,x) = p_t * f(x) := \int_{\mathbb{R}^d} p_t(x-y)f(y)dy.$$

Hint: To show $q_t(x) = \sum_{k \in \mathbb{Z}} p_t(x + k2\pi)$, use the Poisson summation formula along with the Gaussian integration formula

$$\hat{p}_t(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} p_t(x) e^{i\omega x} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{t}{2}\omega^2}.$$

Exercise 10.29 (Wave Equation). Let $u \in C^2(\mathbb{R} \times \mathbb{R})$ such that $u(t, \cdot) \in C_{per}(\mathbb{R})$ for all $t \in \mathbb{R}$. Further assume that u solves the wave equation, $u_{tt} = u_{xx}$. Let f(x) := u(0, x) and $g(x) = \dot{u}(0, x)$. Show $\tilde{u}(t, k) := \langle u(t, \cdot), \chi_k \rangle$ for $k \in \mathbb{Z}$ is twice continuously differentiable in t and $\frac{d^2}{dt^2}\tilde{u}(t, k) = -k^2\tilde{u}(t, k)$. Use this result to show

(10.31)
$$u(t,x) = \sum_{k \in \mathbb{Z}} \left(\tilde{f}(k) \cos(kt) + \tilde{g}(k) \frac{\sin kt}{k} \right) e^{ikx}$$

with the sum converging absolutely. Also show that u(t, x) may be written as

(10.32)
$$u(t,x) = \frac{1}{2} \left[f(x+t) + f(x-t) \right] + \frac{1}{2} \int_{-t}^{t} g(x+\tau) d\tau.$$

Hint: To show Eq. (10.31) implies (10.32) use

$$\cos kt = \frac{e^{ikt} + e^{-ikt}}{2}$$
, and $\sin kt = \frac{e^{ikt} - e^{-ikt}}{2i}$

and

$$\frac{e^{ik(x+t)} - e^{ik(x-t)}}{ik} = \int_{-t}^{t} e^{ik(x+\tau)} d\tau.$$

Exercise 10.30. (Worked Example.) Let $D := \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in $\mathbb{C} \cong \mathbb{R}^2$, where we write $z = x + iy = re^{i\theta}$ in the usual way. Also let $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ and recall that Δ may be computed in polar coordinates by the formula,

$$\Delta u = r^{-1}\partial_r \left(r^{-1}\partial_r u\right) + \frac{1}{r^2}\partial_\theta^2 u$$

Suppose that $u \in C(\overline{D}) \cap C^2(D)$ and $\Delta u(z) = 0$ for $z \in D$. Let $g = u|_{\partial D}$ and

$$\tilde{g}(k) := \frac{1}{2\pi} \int_{-\pi}^{\pi} g(e^{ik\theta}) e^{-ik\theta} d\theta.$$

(We are identifying $S^1 = \partial D := \{z \in \overline{D} : |z| = 1\}$ with $[-\pi, \pi]/\pi^{\sim} - \pi$ by the map $\theta \in [-\pi, \pi] \to e^{i\theta} \in S^1$.) Let

(10.33)
$$\tilde{u}(r,k) := \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{i\theta}) e^{-ik\theta} d\theta$$

then:

(1) $\tilde{u}(r,k)$ satisfies the ordinary differential equation

$$r^{-1}\partial_r \left(r \partial_r \tilde{u}(r,k) \right) = \frac{1}{r^2} k^2 \tilde{u}(r,k) \text{ for } r \in (0,1).$$

(2) Recall the general solution to

(10.34)
$$r\partial_r \left(r\partial_r y(r) \right) = k^2 y(r)$$

may be found by trying solutions of the form $y(r) = r^{\alpha}$ which then implies $\alpha^2 = k^2$ or $\alpha = \pm k$. From this one sees that $\tilde{u}(r,k)$ may be written as $\tilde{u}(r,k) = A_k r^{|k|} + B_k r^{-|k|}$ for some constants A_k and B_k when $k \neq 0$. If k = 0, the solution to Eq. (10.34) is gotten by simple integration and the result is $\tilde{u}(r,0) = A_0 + B_0 \ln r$. Since $\tilde{u}(r,k)$ bounded near the origin for each k, it follows that $B_k = 0$ for all $k \in \mathbb{Z}$.

(3) So we have shown

$$A_k r^{|k|} = \tilde{u}(r,k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{i\theta}) e^{-ik\theta} d\theta$$

and letting $r \uparrow 1$ in this equation implies

$$A_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(e^{i\theta}) e^{-ik\theta} d\theta = \tilde{g}(k).$$

Therefore,

(10.35)

$$u(re^{i\theta}) = \sum_{k \in \mathbb{Z}} \tilde{g}(k) r^{|k|} e^{ik\theta}$$

for r < 1 or equivalently,

$$u(z) = \sum_{k \in \mathbb{N}_0} \tilde{g}(k) z^k + \sum_{k \in \mathbb{N}} \tilde{g}(-k) \bar{z}^k.$$

(4) Inserting the formula for $\tilde{g}(k)$ into Eq. (10.35) shows that

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{k \in \mathbb{Z}} r^{|k|} e^{ik(\theta - \alpha)} \right) u(e^{i\alpha}) d\alpha \text{ for all } r < 1.$$

Now by simple geometric series considerations we find, setting $\delta = \theta - \alpha$, that

$$\begin{split} \sum_{k\in\mathbb{Z}}r^{|k|}e^{ik\delta} &= \sum_{k=0}^{\infty}r^k e^{ik\delta} + \sum_{k=1}^{\infty}r^k e^{-ik\delta} \\ &= \frac{1}{1-re^{i\delta}} + \frac{re^{-i\delta}}{1-re^{-i\delta}} = \frac{1-re^{-i\delta}+re^{-i\delta}\left(1-re^{i\delta}\right)}{1-2r\cos\delta+r^2} \\ &= \frac{1-r^2}{1-2r\cos\delta+r^2}. \end{split}$$

Putting this altogether we have shown

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - \alpha) u(e^{i\alpha}) d\alpha$$

where

$$P_r(\delta) := \frac{1 - r^2}{1 - 2r\cos\delta + r^2}$$

is the so called Poisson kernel.

10.8. Radon-Nikodym Theorem and the Dual of L^p .

Definition 10.47. A complex measure ν on a measurable space (X, \mathcal{M}) is a countably additive set function $\nu : \mathcal{M} \to \mathbb{C}$ such that $\nu(\emptyset) = 0$.

Theorem 10.48. Suppose (X, \mathcal{M}) is a measurable space, μ is a positive finite measure on \mathcal{M} and ν is a complex measure on \mathcal{M} such that $|\nu(A)| \leq \mu(A)$ for all $A \in \mathcal{M}$. Then $d\nu = \rho d\mu$ where $|\rho| \leq 1$. Moreover if ν is a positive measure, then $0 \leq \rho \leq 1$.

Proof. For a simple function, $f \in \mathcal{S}(X, \mathcal{M})$, let $\nu(f) := \sum_{a \in \mathbb{C}} a\nu(f = a)$. Then

$$|\nu(f)| \le \sum_{a \in \mathbb{C}} |a| \, |\nu(f=a)| \le \sum_{a \in \mathbb{C}} |a| \, \mu(f=a) = \int_X |f| \, d\mu.$$

So, by the B.L.T. theorem, ν extends to a continuous linear functional on $L^1(\mu)$ satisfying the bounds

$$\nu(f)| \le \int_X |f| \, d\mu \le \sqrt{\mu(X)} \, \|f\|_{L^2(\mu)} \text{ for all } f \in L^1(\mu).$$

The Riesz representation Theorem (Proposition 10.15) then implies there exists a unique $\rho \in L^2(\mu)$ such that

$$u(f) = \int_X f \rho d\mu \text{ for all } f \in L^2(\mu)$$

Taking $f = \overline{\operatorname{sgn}(\rho)} 1_A$ in this equation shows

$$\int_{A} |\rho| \, d\mu = \nu(\overline{\operatorname{sgn}(\rho)} 1_{A}) \le \mu(A) = \int_{A} 1 d\mu$$

from which it follows that $|\rho| \leq 1, \mu$ – a.e. If ν is a positive measure, then

$$0 = \operatorname{Im} \left[\nu(\operatorname{Im} \rho > 0)\right] = \int_{\{\operatorname{Im} \rho > 0\}} \operatorname{Im} \rho d\mu$$

which shows $\operatorname{Im} \rho \leq 0$, μ – a.e. Similarly,

$$0 = \operatorname{Im} \left[\nu(\operatorname{Im} \rho < 0)\right] = \int_{\{\operatorname{Im} \rho < 0\}} \operatorname{Im} \rho d\mu$$

and hence $\operatorname{Im} \rho \geq 0$, μ – a.e. and we have shown ρ is real a.e. Similarly,

$$0 \le \nu(\operatorname{Re} \rho < 0) = \int_{\{\operatorname{Re} \rho < 0\}} \rho d\mu \le 0$$

shows $\rho \ge 0$ a.e.

Definition 10.49. Let μ and ν be two positive measures on (X, \mathcal{M}) . Then μ and ν are **mutually singular** (written as $\mu \perp \nu$) if there exists $A \in \mathcal{M}$ such that $\nu(A) = 0$ and $\mu(A^c) = 0$. The measure ν is absolutely continuous relative to μ (written as $\nu \ll \mu$) provided $\nu(A) = 0$ whenever $\mu(A) = 0$.

Theorem 10.50 (Radon Nikodym Theorem). Suppose that μ, ν are σ – finite positive measures on (X, \mathcal{M}) . Then there exists a unique measure ν_s and a unique (modulo sets of μ – measure 0) function $\rho : X \to [0, \infty)$ such that $d\nu = d\nu_s + \rho d\mu$ and $\nu_s \perp \mu$. The measure ν_s in the **Lebesgue decomposition** of ν is unique and ρ is unique modulo sets of μ – measure zero. Moreover, $\nu \ll \mu$ iff $\nu_s = 0$.

Proof. Uniqueness. Suppose that $d\nu = \tilde{\rho}d\mu + d\tilde{\nu}_s$ with $\tilde{\rho} \ge 0$ and $\tilde{\nu}_s \perp \mu$ is another such decomposition. Let $A, \tilde{A} \in \mathcal{M}$ be chosen so that $\mu(A) = 0, \nu_s(A^c) = 0$, $\mu(\tilde{A}) = 0$ and $\tilde{\nu}_s(\tilde{A}^c) = 0$. Then for $B \in \mathcal{M}$, using $\mu(A) = 0$ and $\nu_s(A^c) = 0$,

$$\nu(A \cap B) = \nu_s(A \cap B) + \mu(\rho \mathbf{1}_{A \cap B}) = \nu_s(B).$$

Now using $\tilde{\nu}_s(\tilde{A}^c) = 0$ and $\mu(A) = 0$,

$$\begin{split} \nu(A \cap B) &= \nu(A \cap \tilde{A} \cap B) + \nu(A \cap \tilde{A}^c \cap B) \\ &= \nu(A \cap \tilde{A} \cap B) + \tilde{\nu}_s(A \cap \tilde{A}^c \cap B) + \mu(\tilde{\rho} \mathbf{1}_{A \cap \tilde{A}^c \cap B}) \\ &= \nu(A \cap \tilde{A} \cap B). \end{split}$$

Combining these equations shows

$$\nu_s(B) = \nu(A \cap B) = \nu(A \cap \tilde{A} \cap B).$$

By symmetry (or a similar argument) $\tilde{\nu}_s(B) = \nu(A \cap \tilde{A} \cap B)$ and therefore $\nu_s = \tilde{\nu}_s$. This then implies that $\tilde{\rho}d\mu = \rho d\mu$, i.e. $\mu(1_B\rho) = \mu(1_B\tilde{\rho})$ for all $B \in \mathcal{M}$. Let $X_n \uparrow X$ be chosen in \mathcal{M} so that $\mu(X_n)$ and $\nu(X_n) < \infty$. Since $\nu(X_n) < \infty$, $\rho 1_{X_n} \in L^1(\mu)$ and $\tilde{\rho} 1_{X_n} \in L^1(\mu)$ and

$$\mu(1_B \cdot 1_{X_n} \rho) = \mu(1_B \cdot 1_{X_n} \tilde{\rho})$$
 for all $B \in \mathcal{M}$

which implies $1_{X_n}\rho = 1_{X_n}\tilde{\rho}$ for μ - a.e. x. Letting $n \to \infty$ then shows that $\rho = \tilde{\rho}$, μ - a.e.

Existence: (Due to Von-Neumann.) First suppose that μ and ν are finite measures and let $\lambda = \mu + \nu$. By Theorem 10.48, $d\nu = hd\lambda$ with $0 \le h \le 1$ and this implies, for all non-negative measurable functions f, that

(10.36)
$$\nu(f) = \lambda(fh) = \mu(fh) + \nu(fh)$$

or equivalently

(10.37)
$$\nu(f(1-h)) = \mu(fh).$$

Taking $f = 1_{\{h=1\}}$ and $f = g 1_{\{h<1\}} (1-h)^{-1}$ with $g \ge 0$ in Eq. (10.37)

$$\mu(\{h=1\}) = 0 \text{ and } \nu(g1_{\{h<1\}}) = \mu(g1_{\{h<1\}}(1-h)^{-1}h) = \mu(\rho g)$$

where $\rho := \mathbb{1}_{\{h < 1\}} \frac{h}{1-h}$ and $\nu_s(g) := \nu(g\mathbb{1}_{\{h=1\}})$. This gives the desired decomposition²⁶ since

$$\nu(g) = \nu(g1_{\{h=1\}}) + \nu(g1_{\{h<1\}}) = \nu_s(g) + \mu(\rho g)$$

and

$$\nu_s (h \neq 1) = 0$$
 while $\mu (h = 1) = \mu(\{h \neq 1\}^c) = 0.$

²⁶Here is the motivation for this construction. Suppose that $d\nu = d\nu_s + \rho d\mu$ is the Radon-Nikodym decomposition and $X = A \coprod B$ such that $\nu_s(B) = 0$ and $\mu(A) = 0$. Then we find

$$\nu_s(f) + \mu(\rho f) = \nu(f) = \lambda(fg) = \nu(fg) + \mu(fg).$$

Letting $f \to 1_A f$ then implies that

$$\nu_s(1_A f) = \nu(1_A fg)$$

which show that $g = 1 \nu$ –a.e. on A. Also letting $f \rightarrow 1_B f$ implies that

$$\mu(\rho 1_B f(1-g)) = \nu(1_B f(1-g)) = \mu(1_B fg) = \mu(fg)$$

which shows that

$$\rho(1-g) = \rho 1_B (1-g) = g \ \mu - \text{a.e.}$$

This shows that $\rho = \frac{g}{1-g} \mu$ - a.e.

If $\nu \ll \mu$, then $\mu (h = 1) = 0$ implies $\nu (h = 1) = 0$ and hence that $\nu_s = 0$. If $\nu_s = 0$, then $d\nu = \rho d\mu$ and so if $\mu(A) = 0$, then $\nu(A) = \mu(\rho 1_A) = 0$ as well.

For the σ – finite case, write $X = \coprod_{n=1}^{\infty} X_n$ where $X_n \in \mathcal{M}$ are chosen so that $\mu(X_n) < \infty$ and $\nu(X_n) < \infty$ for all n. Let $d\mu_n = 1_{X_n} d\mu$ and $d\nu_n = 1_{X_n} d\nu$. Then by what we have just proved there exists $\rho_n \in L^1(X, \mu_n)$ and measure ν_n^s such that $d\nu_n = \rho_n d\mu_n + d\nu_n^s$ with $\nu_n^s \perp \mu_n$, i.e. there exists $A_n, B_n \in \mathcal{M}_{X_n}$ and $\mu(A_n) = 0$ and $\nu_n^s(B_n) = 0$. Define $\nu_s := \sum_{n=1}^{\infty} \nu_n^s$ and $\rho := \sum_{n=1}^{\infty} 1_{X_n} \rho_n$, then

$$\nu = \sum_{n=1}^{\infty} \nu_n = \sum_{n=1}^{\infty} \left(\rho_n \mu_n + \nu_n^s\right) = \sum_{n=1}^{\infty} \left(\rho_n 1_{X_n} \mu + \nu_n^s\right) = \rho \mu + \nu_s$$

and letting $A := \bigcup_{n=1}^{\infty} A_n$ and $B := \bigcup_{n=1}^{\infty} B_n$, we have $A = B^c$ and

$$\mu(A) = \sum_{n=1}^{\infty} \mu(A_n) = 0 \text{ and } \nu(B) = \sum_{n=1}^{\infty} \nu(B_n) = 0$$

Theorem 10.51. Let (X, \mathcal{M}, μ) be a σ – finite measure space and suppose that $p, q \in [1, \infty]$ are conjugate exponents. Then for $p \in [1, \infty)$, the map $g \in L^q \rightarrow \phi_g \in (L^p)^*$ is an isometric isomorphism of Banach spaces. (Recall that $\phi_g(f) := \int_X fgd\mu$.) We summarize this by writing $(L^p)^* = L^q$ for all $1 \leq p < \infty$.

Proof. The only point that we have not yet proved is the surjectivity of the map $g \in L^q \to \phi_g \in (L^p)^*$. When p = 2 the result follows directly from the Riesz theorem. We will begin the proof under the extra assumption that $\mu(X) < \infty$ in which cased bounded functions are in $L^p(\mu)$ for all p.

Let $\phi \in (L^p)^*$ and define $\nu(A) := \phi(1_A)$. Suppose that $A = \coprod_{n=1}^{\infty} A_n$ with $A_n \in \mathcal{M}$, then

$$\|1_A - \sum_{n=1}^N 1_{A_n}\|_{L^p} = \|1_{\bigcup_{n=N+1}^\infty A_n}\|_{L^p} = \left[\mu(\bigcup_{n=N+1}^\infty A_n)\right]^{\frac{1}{p}} \to 0 \text{ as } N \to \infty.$$

Therefore

$$\nu(A) = \phi(1_A) = \sum_{1}^{\infty} \phi(1_{A_n}) = \sum_{1}^{\infty} \nu(A_n)$$

showing ν is a complex measure.²⁷

Let us define

(10.38)

$$|\nu|(A) := \sup \{ |\phi(f1_A)| : |f| \le 1 \} \le \|\phi\|_{(L^p)^*} \cdot \|1_A\|_{L^p} = \|\phi\|_{(L^p)^*} \cdot \mu(A)^{1/p}.$$

You are asked to show in Exercise 10.31 that $|\nu|$ is a measure on (X, \mathcal{M}) . (This also can be deduced from Lemma 15.4 and Proposition 15.6 below.) From Eq. (10.38),

$$|\nu(A)| \le |\nu|(A) \le \|\phi\|_{(L^p)^*} \, \mu(A)^{1/p} \text{ for all } A \in \mathcal{M}$$

from which if follows that $|\nu| \ll \mu$ and by Theorem 10.48, $d\nu = hd |\nu|$ for some $|h| \leq 1$ and by Theorem 10.50, $d|\nu| = \rho d\mu$ for some $\rho \in L^1(\mu)$. Hence, letting $g = \rho h \in L^1(\mu)$, $d\nu = gd\mu$ or equivalently

(10.39)
$$\phi(1_A) = \int_X g 1_A d\mu \ \forall \ A \in \mathcal{M}.$$

²⁷It is at this point that the proof breaks down when $p = \infty$.

By linearity this equation implies

(10.40)
$$\phi(f) = \int_X gf d\mu$$

for all simple functions f on X. Replacing f by $1_{\{|g| \leq M\}} f$ in Eq. (10.40) shows

$$\phi(f1_{\{|g| \le M\}}) = \int_X 1_{\{|g| \le M\}} gfd\mu$$

holds for all simple functions f and then by continuity for all $f \in L^p(\mu)$. By the converse to Holder's inequality, (Proposition 7.26) we learn that

$$\left\| 1_{\{|g| \le M\}} g \right\|_{q} = \sup_{\|f\|_{p} = 1} \left| \phi(f 1_{\{|g| \le M\}}) \right| \le \sup_{\|f\|_{p} = 1} \|\phi\|_{(L^{p})^{*}} \left\| f 1_{\{|g| \le M\}} \right\|_{p} \le \|\phi\|_{(L^{p})^{*}}.$$

Using the monotone convergence theorem we may let $M \to \infty$ in the previous equation to learn $\|g\|_q \leq \|\phi\|_{(L^p)^*}$. With this result, Eq. (10.40) extends by continuity to hold for all $f \in L^p(\mu)$ and hence we have shown that $\phi = \phi_g$.

Case 2. Now suppose that μ is σ – finite and $X_n \in \mathcal{M}$ are sets such that $0 < \mu(X_n) < \infty$ and $X_n \uparrow X$ as $n \to \infty$. Then by Case 1. there exits $g_n \in L^q(X_n, \mu)$ such that

$$\phi(f) = \int_{X_n} g_n f d\mu$$
 for all $f \in L^p(X_n, \mu)$

and

$$||g_n||_q = \sup \{ |\phi(f)| : f \in L^p(X_n, \mu) \text{ and } ||f||_{L^p(X_n, \mu)} = 1 \} \le ||\phi||_{[L^p(\mu)]^*}.$$

It is easy to see that $g_n = g_m$ a.e. on $X_n \cap X_m$ for all m, n so that $g := \lim_{n \to \infty} g_n$ exists μ – a.e. By the above inequality and Fatou's lemma, we have $\|g\|_q \leq \|\phi\|_{[L^p(\mu)]^*} < \infty$ and since

$$\phi(f) = \int_{X_n} gfd\mu$$
 for all $f \in L^p(X_n, \mu)$ and n ,

it follows by continuity that

$$\phi(f) = \int_X gfd\mu \text{ for all } f \in L^p(X,\mu),$$

i.e. $\phi = \phi_g$.

Remark 10.52. We will show later that Theorem 10.51 fails in general when $p = \infty$.

10.9. Exercises.

Exercise 10.31. Show $|\nu|$ be defined as in Eq. (10.38) is a positive measure. Here is an outline.

(1) Show
(10.41)
$$|\nu|(A) + |\nu|(B) \le |\nu|(A \cup B).$$

when A, B are disjoint sets in $\mathcal{M}.$
(2) If $A = \coprod_{n=1}^{\infty} A_n$ with $A_n \in \mathcal{M}$ then
(10.42) $|\nu|(A) \le \sum_{n=1}^{\infty} |\nu|(A_n).$

(3) From Eqs. (10.41) and (10.42) it follows that ν is finitely additive, and hence

$$|\nu|(A) = \sum_{n=1}^{N} |\nu|(A_n) + |\nu|(\cup_{n>N}A_n) \ge \sum_{n=1}^{N} |\nu|(A_n).$$

Letting $N \to \infty$ in this inequality shows $|\nu|(A) \ge \sum_{n=1}^{\infty} |\nu|(A_n)$ which combined with Eq. (10.42) shows $|\nu|$ is countable additive.

Exercise 10.32. Suppose μ_i, ν_i are σ – finite measure on measurable spaces, (X_i, \mathcal{M}_i) , for i = 1, 2. If $\nu_i \ll \mu_i$ for i = 1, 2 then $\nu_1 \otimes \nu_2 \ll \mu_1 \otimes \mu_2$ and in fact $\frac{d(\nu_1 \otimes \nu_2)}{d(\mu_1 \otimes \mu_2)} = \rho_1 \otimes \rho_2$ when $\rho_i := d\nu_i/d\mu_i$ for i = 1, 2.

Exercise 10.33. Problem 3.13 from Folland.