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Addendum to Chapter 10
Notation 10.44. Let Ck

per(Rd) denote the 2π — periodic functions in Ck(Rd),

Ck
per(Rd) :=

©
f ∈ Ck(Rd) : f(x+ 2πei) = f(x) for all x ∈ Rd and i = 1, 2, . . . , d

ª
.

Also let h·, ·i denote the inner product on the Hilbert space H := L2([−π, π]d) given
by

hf, gi :=
µ
1

2π

¶d Z
[−π,π]d

f(x)ḡ(x)dx.

Recall that
©
χk(x) := eik·x : k ∈ Zdª is an orthonormal basis for H in particular

for f ∈ H,

(10.24) f =
X
k∈Zd

hf, χkiχk

where the convergence takes place in L2([−π, π]d). For f ∈ L1([−π, π]d), we will
write f̃(k) for the Fourier coefficient,

(10.25) f̃(k) := hf, χki =
µ
1

2π

¶d Z
[−π,π]d

f(x)e−ik·xdx.

Lemma 10.45. Let s > 0, then the following are equivalent,

(10.26)
X
k∈Zd

1

(1 + |k|)s <∞,
X
k∈Zd

1

(1 + |k|2)s/2 <∞ and s > d.

Proof. Let Q := (0, 1]d and k ∈ Zd. For x = k + y ∈ (k +Q),

2 + |k| = 2 + |x− y| ≤ 2 + |x|+ |y| ≤ 3 + |x| and
2 + |k| = 2 + |x− y| ≥ 2 + |x|− |y| ≥ |x|+ 1

and therefore for s > 0,
1

(3 + |x|)s ≤
1

(2 + |k|)s ≤
1

(1 + |x|)s .

Thus we have shown
1

(3 + |x|)s ≤
X
k∈Zd

1

(2 + |k|)s 1Q+k(x) ≤
1

(1 + |x|)s for all x ∈ R
d.

Integrating this equation then showsZ
Rd

1

(3 + |x|)s dx ≤
X
k∈Zd

1

(2 + |k|)s ≤
Z
Rd

1

(1 + |x|)s dx

from which we conclude that

(10.27)
X
k∈Zd

1

(2 + |k|)s <∞ iff s > d.

Because the functions 1+ t, 2+ t, and
√
1 + t2 all behave like t as t→∞, the sums

in Eq. (10.26) may be compared with the one in Eq. (10.27) to finish the proof.

Exercise 10.22 (Riemann Lebesgue Lemma for Fourier Series). Show for f ∈
L1([−π, π]d) that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) = 0. Hint: If
f ∈ H, this follows form Bessel’s inequality. Now use a density argument.
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Exercise 10.23. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ c1(Zd) and
set

g(x) :=
X
k∈Z

f̃(k)eik·x (pointwise).

(1) Show g ∈ Cper(Rd).
(2) Show g(x) = f(x) for m — a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and

then use approximation arguments to showZ
[−π,π]d

f(x)h(x)dx =

Z
[−π,π]d

g(x)h(x)dx ∀ h ∈ C([−π, π]d).

(3) Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Exercise 10.24. Suppose m ∈ N0, α is a multi-index such that |α| ≤ m and
f ∈ Cm

per(Rd)25.
(1) Using integration by parts, show

(ik)αf̃(k) = h∂αf, χki.
Note: This equality implies¯̄̄

f̃(k)
¯̄̄
≤ 1

kα
k∂αfkH ≤

1

kα
k∂αfku .

(2) Now let ∆f =
Pd

i=1 ∂
2f/∂x2i , Working as in part 1) show

(10.28) h(1−∆)mf, χki = (1 + |k|2)mf̃(k).
Remark 10.46. Suppose that m is an even integer, α is a multi-index and f ∈
C
m+|α|
per (Rd), thenX

k∈Zd
|kα|

¯̄̄
f̃(k)

¯̄̄2

=

X
k∈Zd

|h∂αf, χki| (1 + |k|2)m/2(1 + |k|2)−m/2

2

=

X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄
(1 + |k|2)−m/2

2

≤
X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄2
·
X
k∈Zd

(1 + |k|2)−m

= Cm

°°°(1−∆)m/2∂αf
°°°2
H

where Cm :=
P

k∈Zd(1 + |k|2)−m <∞ iff m > d/2. So the smoother f is the faster
f̃ decays at infinity. The next problem is the converse of this assertion and hence
smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 10.25. Suppose s ∈ R and ©ck ∈ C : k ∈ Zdª are coefficients such thatX
k∈Zd

|ck|2 (1 + |k|2)s <∞.

25We view Cper(R) as a subspace of H by identifying f ∈ Cper(R) with f |[−π,π] ∈ H.
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Show if s > d
2 +m, the function f defined by

f(x) =
X
k∈Zd

cke
ik·x

is in Cm
per(Rd). Hint: Work as in the above remark to showX

k∈Zd
|ck| |kα| <∞ for all |α| ≤ m.

Exercise 10.26 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
X
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)−d/2
Z
Rd

F (x)e−ik·xdx.

Further assume F̂ ∈ c1(Nd).
(1) Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: ComputeR

[−π,π]d
P

k∈Zd |F (x+ 2πk)| dx.
(2) Let

f(x) :=

½ P
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)
−d/2

F̂ (k).
(3) Using item 2) and the assumptions on F, show f ∈ L1([−π, π]d) ∩

L∞([−π, π]d) and
f(x) =

X
k∈Zd

f̃(k)eik·x =
X
k∈Zd

(2π)−d/2 F̂ (k)eik·x for m — a.e. x,

i.e.

(10.29)
X
k∈Zd

F (x+ 2πk) = (2π)
−d/2 X

k∈Zd
F̂ (k)eik·x for m — a.e. x.

(4) Suppose we now assume that F ∈ C(Rd) and F satisfies 1) |F (x)| ≤ C(1+

|x|)−s for some s > d and C <∞ and 2) F̂ ∈ c1(Zd), then show Eq. (10.29)
holds for all x ∈ Rd and in particularX

k∈Zd
F (2πk) = (2π)

−d/2 X
k∈Zd

F̂ (k).

For simplicity, in the remaining problems we will assume that d = 1.

Exercise 10.27 (Heat Equation 1.). Let (t, x) ∈ [0,∞)×R→ u(t, x) be a contin-
uous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and uxx exists
and are continuous when t > 0. Further assume that u satisfies the heat equation
u̇ = 1

2uxx. Let ũ(t, k) := hu(t, ·), χki for k ∈ Z. Show for t > 0 and k ∈ Z that
ũ(t, k) is differentiable in t and d

dt ũ(t, k) = −k2ũ(t, k)/2. Use this result to show
(10.30) u(t, x) =

X
k∈Z

e−
t
2k

2

f̃(k)eikx
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where f(x) := u(0, x) and as above

f̃(k) = hf, χki = 1

2π

Z π

−π
f(y)e−ikydy.

Notice from Eq. (10.30) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 10.28 (Heat Equation 2.). Let qt(x) := 1
2π

P
k∈Z e

− t
2k

2

eikx. Show that
Eq. (10.30) may be rewritten as

u(t, x) =

Z π

−π
qt(x− y)f(y)dy

and
qt(x) =

X
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2

. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=
Z
Rd

pt(x− y)f(y)dy.

Hint: To show qt(x) =
P

k∈Z pt(x + k2π), use the Poisson summation formula
along with the Gaussian integration formula

p̂t(ω) =
1√
2π

Z
R
pt(x)e

iωxdx =
1√
2π

e−
t
2ω

2

.

Exercise 10.29 (Wave Equation). Let u ∈ C2(R×R) such that u(t, ·) ∈ Cper(R)
for all t ∈ R. Further assume that u solves the wave equation, utt = uxx. Let
f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := hu(t, ·), χki for k ∈ Z is twice
continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use this result to show

(10.31) u(t, x) =
X
k∈Z

µ
f̃(k) cos(kt) + g̃(k)

sin kt

k

¶
eikx

with the sum converging absolutely. Also show that u(t, x) may be written as

(10.32) u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ τ)dτ.

Hint: To show Eq. (10.31) implies (10.32) use

cos kt =
eikt + e−ikt

2
, and sin kt =

eikt − e−ikt

2i
and

eik(x+t) − eik(x−t)

ik
=

Z t

−t
eik(x+τ)dτ.

Exercise 10.30. (Worked Example.) Let D := {z ∈ C : |z| < 1} be the open
unit disk in C ∼= R2, where we write z = x + iy = reiθ in the usual way. Also let
∆ = ∂2

∂x2 +
∂2

∂y2 and recall that ∆ may be computed in polar coordinates by the
formula,

∆u = r−1∂r
¡
r−1∂ru

¢
+
1

r2
∂2θu.

Suppose that u ∈ C(D̄) ∩C2(D) and ∆u(z) = 0 for z ∈ D.Let g = u|∂D and

g̃(k) :=
1

2π

Z π

−π
g(eikθ)e−ikθdθ.
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(We are identifying S1 = ∂D :=
©
z ∈ D̄ : |z| = 1ª with [−π, π]/π˜− π by the map

θ ∈ [−π, π]→ eiθ ∈ S1.) Let

(10.33) ũ(r, k) :=
1

2π

Z π

−π
u(reiθ)e−ikθdθ

then:

(1) ũ(r, k) satisfies the ordinary differential equation

r−1∂r (r∂rũ(r, k)) =
1

r2
k2ũ(r, k) for r ∈ (0, 1).

(2) Recall the general solution to

(10.34) r∂r (r∂ry(r)) = k2y(r)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) may be written as
ũ(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when k 6= 0. If

k = 0, the solution to Eq. (10.34) is gotten by simple integration and the
result is ũ(r, 0) = A0 + B0 ln r. Since ũ(r, k) bounded near the origin for
each k, it follows that Bk = 0 for all k ∈ Z.

(3) So we have shown

Akr
|k| = ũ(r, k) =

1

2π

Z π

−π
u(reiθ)e−ikθdθ

and letting r ↑ 1 in this equation implies

Ak =
1

2π

Z π

−π
u(eiθ)e−ikθdθ = g̃(k).

Therefore,

(10.35) u(reiθ) =
X
k∈Z

g̃(k)r|k|eikθ

for r < 1 or equivalently,

u(z) =
X
k∈N0

g̃(k)zk +
X
k∈N

g̃(−k)z̄k.

(4) Inserting the formula for g̃(k) into Eq. (10.35) shows that

u(reiθ) =
1

2π

Z π

−π

ÃX
k∈Z

r|k|eik(θ−α)
!
u(eiα)dα for all r < 1.

Now by simple geometric series considerations we find, setting δ = θ − α,
thatX
k∈Z

r|k|eikδ =
∞X
k=0

rkeikδ +
∞X
k=1

rke−ikδ

=
1

1− reiδ
+

re−iδ

1− re−iδ
=
1− re−iδ + re−iδ

¡
1− reiδ

¢
1− 2r cos δ + r2

=
1− r2

1− 2r cos δ + r2
.
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Putting this altogether we have shown

u(reiθ) =
1

2π

Z π

−π
Pr(θ − α)u(eiα)dα

where

Pr(δ) :=
1− r2

1− 2r cos δ + r2

is the so called Poisson kernel.
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10.8. Radon-Nikodym Theorem and the Dual of Lp.

Definition 10.47. A complex measure ν on a measurable space (X,M) is a count-
ably additive set function ν :M→ C such that ν(∅) = 0.
Theorem 10.48. Suppose (X,M) is a measurable space, µ is a positive finite
measure on M and ν is a complex measure on M such that |ν(A)| ≤ µ(A) for all
A ∈M. Then dν = ρdµ where |ρ| ≤ 1. Moreover if ν is a positive measure, then
0 ≤ ρ ≤ 1.
Proof. For a simple function, f ∈ S(X,M), let ν(f) :=

P
a∈C aν(f = a). Then

|ν(f)| ≤
X
a∈C

|a| |ν(f = a)| ≤
X
a∈C

|a|µ(f = a) =

Z
X

|f | dµ.

So, by the B.L.T. theorem, ν extends to a continuous linear functional on L1(µ)
satisfying the bounds

|ν(f)| ≤
Z
X

|f | dµ ≤
p
µ(X) kfkL2(µ) for all f ∈ L1(µ).

The Riesz representation Theorem (Proposition 10.15) then implies there exists a
unique ρ ∈ L2(µ) such that

ν(f) =

Z
X

fρdµ for all f ∈ L2(µ).

Taking f = sgn(ρ)1A in this equation showsZ
A

|ρ| dµ = ν(sgn(ρ)1A) ≤ µ(A) =

Z
A

1dµ

from which it follows that |ρ| ≤ 1, µ — a.e. If ν is a positive measure, then

0 = Im [ν(Im ρ > 0)] =

Z
{Im ρ>0}

Im ρdµ

which shows Im ρ ≤ 0, µ — a.e. Similarly,
0 = Im [ν(Im ρ < 0)] =

Z
{Im ρ<0}

Im ρdµ

and hence Im ρ ≥ 0, µ — a.e. and we have shown ρ is real a.e. Similarly,

0 ≤ ν(Re ρ < 0) =

Z
{Re ρ<0}

ρdµ ≤ 0,

shows ρ ≥ 0 a.e.
Definition 10.49. Let µ and ν be two positive measures on (X,M). Then µ and
ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M such that
ν (A) = 0 and µ(Ac) = 0. The measure ν is absolutely continuous relative to
µ (written as ν ¿ µ) provided ν(A) = 0 whenever µ(A) = 0.

Theorem 10.50 (Radon Nikodym Theorem). Suppose that µ, ν are σ — finite
positive measures on (X,M). Then there exists a unique measure νs and a unique
(modulo sets of µ — measure 0) function ρ : X → [0,∞) such that dν = dνs + ρdµ
and νs ⊥ µ. The measure νs in the Lebesgue decomposition of ν is unique and
ρ is unique modulo sets of µ — measure zero. Moreover, ν ¿ µ iff νs = 0.
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Proof. Uniqueness. Suppose that dν = ρ̃dµ + dν̃s with ρ̃ ≥ 0 and ν̃s ⊥ µ is
another such decomposition. Let A, Ã ∈M be chosen so that µ(A) = 0, νs(Ac) = 0,

µ(Ã) = 0 and ν̃s(Ã
c) = 0. Then for B ∈M, using µ(A) = 0 and νs(A

c) = 0,

ν(A ∩B) = νs(A ∩B) + µ(ρ1A∩B) = νs(B).

Now using ν̃s(Ãc) = 0 and µ(A) = 0,

ν(A ∩B) = ν(A ∩ Ã ∩B) + ν(A ∩ Ãc ∩B)
= ν(A ∩ Ã ∩B) + ν̃s(A ∩ Ãc ∩B) + µ(ρ̃1A∩Ãc∩B)

= ν(A ∩ Ã ∩B).
Combining these equations shows

νs(B) = ν(A ∩B) = ν(A ∩ Ã ∩B).
By symmetry (or a similar argument) ν̃s(B) = ν(A∩ Ã∩B) and therefore νs = ν̃s.
This then implies that ρ̃dµ = ρdµ, i.e. µ(1Bρ) = µ(1B ρ̃) for all B ∈M. Let Xn ↑ X
be chosen inM so that µ(Xn) and ν(Xn) < ∞. Since ν(Xn) < ∞, ρ1Xn ∈ L1(µ)
and ρ̃1Xn ∈ L1(µ) and

µ(1B · 1Xnρ) = µ(1B · 1Xn ρ̃) for all B ∈M
which implies 1Xnρ = 1Xn ρ̃ for µ— a.e. x. Letting n → ∞ then shows that ρ = ρ̃,
µ — a.e.
Existence: (Due to Von-Neumann.) First suppose that µ and ν are finite

measures and let λ = µ+ ν. By Theorem 10.48, dν = hdλ with 0 ≤ h ≤ 1 and this
implies, for all non-negative measurable functions f, that

(10.36) ν(f) = λ(fh) = µ(fh) + ν(fh)

or equivalently

(10.37) ν(f(1− h)) = µ(fh).

Taking f = 1{h=1} and f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (10.37)
µ ({h = 1}) = 0 and ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg)

where ρ := 1{h<1} h
1−h and νs(g) := ν(g1{h=1}). This gives the desired decomposi-

tion26 since
ν(g) = ν(g1{h=1}) + ν(g1{h<1}) = νs(g) + µ(ρg)

and
νs (h 6= 1) = 0 while µ (h = 1) = µ({h 6= 1}c) = 0.

26Here is the motivation for this construction. Suppose that dν = dνs + ρdµ is the Radon-
Nikodym decompostion and X = A

`
B such that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(fg) = ν(fg) + µ(fg).

Letting f → 1Af then implies that

νs(1Af) = ν(1Afg)

which show that g = 1 ν —a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf(1− g)) = ν(1Bf(1− g)) = µ(1Bfg) = µ(fg)

which shows that
ρ(1− g) = ρ1B(1− g) = g µ− a.e..

This shows that ρ = g
1−g µ — a.e.
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If ν ¿ µ, then µ (h = 1) = 0 implies ν (h = 1) = 0 and hence that νs = 0. If
νs = 0, then dν = ρdµ and so if µ(A) = 0, then ν(A) = µ(ρ1A) = 0 as well.
For the σ — finite case, write X =

`∞
n=1Xn where Xn ∈M are chosen so that

µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let dµn = 1Xndµ and dνn = 1Xndν. Then
by what we have just proved there exists ρn ∈ L1(X,µn) and measure νsn such that
dνn = ρndµn + dνsn with νsn ⊥ µn, i.e. there exists An, Bn ∈MXn

and µ(An) = 0
and νsn(Bn) = 0. Define νs :=

P∞
n=1 ν

s
n and ρ :=

P∞
n=1 1Xnρn, then

ν =
∞X
n=1

νn =
∞X
n=1

(ρnµn + νsn) =
∞X
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs

and letting A := ∪∞n=1An and B := ∪∞n=1Bn, we have A = Bc and

µ(A) =
∞X
n=1

µ(An) = 0 and ν(B) =
∞X
n=1

ν(Bn) = 0.

Theorem 10.51. Let (X,M, µ) be a σ — finite measure space and suppose that
p, q ∈ [1,∞] are conjugate exponents. Then for p ∈ [1,∞), the map g ∈ Lq →
φg ∈ (Lp)∗ is an isometric isomorphism of Banach spaces. (Recall that φg(f) :=R
X

fgdµ.) We summarize this by writing (Lp)∗ = Lq for all 1 ≤ p <∞.

Proof. The only point that we have not yet proved is the surjectivity of the
map g ∈ Lq → φg ∈ (Lp)∗. When p = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that µ(X) < ∞ in
which cased bounded functions are in Lp(µ) for all p.
Let φ ∈ (Lp)∗ and define ν(A) := φ(1A). Suppose that A =

`∞
n=1An with

An ∈M, then

k1A −
NX
n=1

1AnkLp = k1∪∞n=N+1An
kLp =

£
µ(∪∞n=N+1An)

¤ 1
p → 0 as N →∞.

Therefore

ν(A) = φ(1A) =
∞X
1

φ(1An) =
∞X
1

ν(An)

showing ν is a complex measure.27

Let us define
(10.38)

|ν| (A) := sup {|φ(f1A)| : |f | ≤ 1} ≤ kφk(Lp)∗ · k1AkLp = kφk(Lp)∗ · µ(A)1/p.
You are asked to show in Exercise 10.31 that |ν| is a measure on (X,M). (This also
can be deduced from Lemma 15.4 and Proposition 15.6 below.) From Eq. (10.38),

|ν(A)| ≤ |ν| (A) ≤ kφk(Lp)∗ µ(A)1/p for all A ∈M
from which if follows that |ν| ¿ µ and by Theorem 10.48, dν = hd |ν| for some
|h| ≤ 1 and by Theorem 10.50, d |ν| = ρdµ for some ρ ∈ L1(µ). Hence, letting
g = ρh ∈ L1(µ), dν = gdµ or equivalently

(10.39) φ(1A) =

Z
X

g1Adµ ∀ A ∈M.

27It is at this point that the proof breaks down when p =∞.
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By linearity this equation implies

(10.40) φ(f) =

Z
X

gfdµ

for all simple functions f on X. Replacing f by 1{|g|≤M}f in Eq. (10.40) shows

φ(f1{|g|≤M}) =
Z
X

1{|g|≤M}gfdµ

holds for all simple functions f and then by continuity for all f ∈ Lp(µ). By the
converse to Holder’s inequality, (Proposition 7.26) we learn that°°1{|g|≤M}g

°°
q
= sup
kfkp=1

¯̄
φ(f1{|g|≤M})

¯̄ ≤ sup
kfkp=1

kφk(Lp)∗
°°f1{|g|≤M}

°°
p
≤ kφk(Lp)∗ .

Using the monotone convergence theorem we may letM →∞ in the previous equa-
tion to learn kgkq ≤ kφk(Lp)∗ .With this result, Eq. (10.40) extends by continuity
to hold for all f ∈ Lp(µ) and hence we have shown that φ = φg.
Case 2. Now suppose that µ is σ — finite and Xn ∈ M are sets such that

0 < µ(Xn) < ∞ and Xn ↑ X as n → ∞. Then by Case 1. there exits gn ∈
Lq(Xn, µ) such that

φ(f) =

Z
Xn

gnfdµ for all f ∈ Lp(Xn, µ)

and

kgnkq = sup
©|φ(f)| : f ∈ Lp(Xn, µ) and kfkLp(Xn,µ) = 1

ª ≤ kφk[Lp(µ)]∗ .
It is easy to see that gn = gm a.e. on Xn ∩Xm for all m,n so that g := limn→∞ gn
exists µ — a.e. By the above inequality and Fatou’s lemma, we have kgkq ≤
kφk[Lp(µ)]∗ <∞ and since

φ(f) =

Z
Xn

gfdµ for all f ∈ Lp(Xn, µ) and n,

it follows by continuity that

φ(f) =

Z
X

gfdµ for all f ∈ Lp(X,µ),

i.e. φ = φg.

Remark 10.52. We will show later that Theorem 10.51 fails in general when p =∞.

10.9. Exercises.

Exercise 10.31. Show |ν| be defined as in Eq. (10.38) is a positive measure. Here
is an outline.

(1) Show

(10.41) |ν| (A) + |ν| (B) ≤ |ν| (A ∪B).
when A,B are disjoint sets inM.

(2) If A =
`∞

n=1An with An ∈M then

(10.42) |ν| (A) ≤
∞X
n=1

|ν| (An).
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(3) From Eqs. (10.41) and (10.42) it follows that ν is finitely additive, and
hence

|ν| (A) =
NX
n=1

|ν| (An) + |ν| (∪n>NAn) ≥
NX
n=1

|ν| (An).

Letting N → ∞ in this inequality shows |ν| (A) ≥ P∞
n=1 |ν| (An) which

combined with Eq. (10.42) shows |ν| is countable additive.
Exercise 10.32. Suppose µi, νi are σ — finite measure on measurable spaces,
(Xi,Mi), for i = 1, 2. If νi ¿ µi for i = 1, 2 then ν1 ⊗ ν2 ¿ µ1 ⊗ µ2 and in
fact d(ν1⊗ν2)

d(µ1⊗µ2) = ρ1 ⊗ ρ2 when ρi := dνi/dµi for i = 1, 2.

Exercise 10.33. Problem 3.13 from Folland.


