Addendum to Chapter 10

Notation 10.44. Let $C_{p e r}^{k}\left(\mathbb{R}^{d}\right)$ denote the 2π - periodic functions in $C^{k}\left(\mathbb{R}^{d}\right)$, $C_{p e r}^{k}\left(\mathbb{R}^{d}\right):=\left\{f \in C^{k}\left(\mathbb{R}^{d}\right): f\left(x+2 \pi e_{i}\right)=f(x)\right.$ for all $x \in \mathbb{R}^{d}$ and $\left.i=1,2, \ldots, d\right\}$.
Also let $\langle\cdot, \cdot\rangle$ denote the inner product on the Hilbert space $H:=L^{2}\left([-\pi, \pi]^{d}\right)$ given by

$$
\langle f, g\rangle:=\left(\frac{1}{2 \pi}\right)^{d} \int_{[-\pi, \pi]^{d}} f(x) \bar{g}(x) d x .
$$

Recall that $\left\{\chi_{k}(x):=e^{i k \cdot x}: k \in \mathbb{Z}^{d}\right\}$ is an orthonormal basis for H in particular for $f \in H$,

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}^{d}}\left\langle f, \chi_{k}\right\rangle \chi_{k} \tag{10.24}
\end{equation*}
$$

where the convergence takes place in $L^{2}\left([-\pi, \pi]^{d}\right)$. For $f \in L^{1}\left([-\pi, \pi]^{d}\right)$, we will write $\tilde{f}(k)$ for the Fourier coefficient,

$$
\begin{equation*}
\tilde{f}(k):=\left\langle f, \chi_{k}\right\rangle=\left(\frac{1}{2 \pi}\right)^{d} \int_{[-\pi, \pi]^{d}} f(x) e^{-i k \cdot x} d x . \tag{10.25}
\end{equation*}
$$

Lemma 10.45. Let $s>0$, then the following are equivalent,

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{d}} \frac{1}{(1+|k|)^{s}}<\infty, \quad \sum_{k \in \mathbb{Z}^{d}} \frac{1}{\left(1+|k|^{2}\right)^{s / 2}}<\infty \text { and } s>d . \tag{10.26}
\end{equation*}
$$

Proof. Let $Q:=(0,1]^{d}$ and $k \in \mathbb{Z}^{d}$. For $x=k+y \in(k+Q)$,

$$
\begin{aligned}
& 2+|k|=2+|x-y| \leq 2+|x|+|y| \leq 3+|x| \text { and } \\
& 2+|k|=2+|x-y| \geq 2+|x|-|y| \geq|x|+1
\end{aligned}
$$

and therefore for $s>0$,

$$
\frac{1}{(3+|x|)^{s}} \leq \frac{1}{(2+|k|)^{s}} \leq \frac{1}{(1+|x|)^{s}}
$$

Thus we have shown

$$
\frac{1}{(3+|x|)^{s}} \leq \sum_{k \in \mathbb{Z}^{d}} \frac{1}{(2+|k|)^{s}} 1_{Q+k}(x) \leq \frac{1}{(1+|x|)^{s}} \text { for all } x \in \mathbb{R}^{d} .
$$

Integrating this equation then shows

$$
\int_{\mathbb{R}^{d}} \frac{1}{(3+|x|)^{s}} d x \leq \sum_{k \in \mathbb{Z}^{d}} \frac{1}{(2+|k|)^{s}} \leq \int_{\mathbb{R}^{d}} \frac{1}{(1+|x|)^{s}} d x
$$

from which we conclude that

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{d}} \frac{1}{(2+|k|)^{s}}<\infty \text { iff } s>d . \tag{10.27}
\end{equation*}
$$

Because the functions $1+t, 2+t$, and $\sqrt{1+t^{2}}$ all behave like t as $t \rightarrow \infty$, the sums in Eq. (10.26) may be compared with the one in Eq. (10.27) to finish the proof.

Exercise 10.22 (Riemann Lebesgue Lemma for Fourier Series). Show for $f \in$ $L^{1}\left([-\pi, \pi]^{d}\right)$ that $\tilde{f} \in c_{0}\left(\mathbb{Z}^{d}\right)$, i.e. $\tilde{f}: \mathbb{Z}^{d} \rightarrow \mathbb{C}$ and $\lim _{k \rightarrow \infty} \tilde{f}(k)=0$. Hint: If $f \in H$, this follows form Bessel's inequality. Now use a density argument.

Exercise 10.23. Suppose $f \in L^{1}\left([-\pi, \pi]^{d}\right)$ is a function such that $\tilde{f} \in \ell^{1}\left(\mathbb{Z}^{d}\right)$ and set

$$
g(x):=\sum_{k \in \mathbb{Z}} \tilde{f}(k) e^{i k \cdot x} \text { (pointwise). }
$$

(1) Show $g \in C_{\text {per }}\left(\mathbb{R}^{d}\right)$.
(2) Show $g(x)=f(x)$ for m - a.e. x in $[-\pi, \pi]^{d}$. Hint: Show $\tilde{g}(k)=\tilde{f}(k)$ and then use approximation arguments to show

$$
\int_{[-\pi, \pi]^{d}} f(x) h(x) d x=\int_{[-\pi, \pi]^{d}} g(x) h(x) d x \forall h \in C\left([-\pi, \pi]^{d}\right) .
$$

(3) Conclude that $f \in L^{1}\left([-\pi, \pi]^{d}\right) \cap L^{\infty}\left([-\pi, \pi]^{d}\right)$ and in particular $f \in$ $L^{p}\left([-\pi, \pi]^{d}\right)$ for all $p \in[1, \infty]$.
Exercise 10.24. Suppose $m \in \mathbb{N}_{0}, \alpha$ is a multi-index such that $|\alpha| \leq m$ and $f \in C_{p e r}^{m}\left(\mathbb{R}^{d}\right)^{25}$.
(1) Using integration by parts, show

$$
(i k)^{\alpha} \tilde{f}(k)=\left\langle\partial^{\alpha} f, \chi_{k}\right\rangle
$$

Note: This equality implies

$$
|\tilde{f}(k)| \leq \frac{1}{k^{\alpha}}\left\|\partial^{\alpha} f\right\|_{H} \leq \frac{1}{k^{\alpha}}\left\|\partial^{\alpha} f\right\|_{u}
$$

(2) Now let $\Delta f=\sum_{i=1}^{d} \partial^{2} f / \partial x_{i}^{2}$, Working as in part 1) show

$$
\begin{equation*}
\left\langle(1-\Delta)^{m} f, \chi_{k}\right\rangle=\left(1+|k|^{2}\right)^{m} \tilde{f}(k) \tag{10.28}
\end{equation*}
$$

Remark 10.46. Suppose that m is an even integer, α is a multi-index and $f \in$ $C_{\text {per }}^{m+|\alpha|}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\left(\sum_{k \in \mathbb{Z}^{d}}\left|k^{\alpha}\right||\tilde{f}(k)|\right)^{2} & =\left(\sum_{k \in \mathbb{Z}^{d}}\left|\left\langle\partial^{\alpha} f, \chi_{k}\right\rangle\right|\left(1+|k|^{2}\right)^{m / 2}\left(1+|k|^{2}\right)^{-m / 2}\right)^{2} \\
& =\left(\sum_{k \in \mathbb{Z}^{d}}\left|\left\langle(1-\Delta)^{m / 2} \partial^{\alpha} f, \chi_{k}\right\rangle\right|\left(1+|k|^{2}\right)^{-m / 2}\right)^{2} \\
& \leq \sum_{k \in \mathbb{Z}^{d}}\left|\left\langle(1-\Delta)^{m / 2} \partial^{\alpha} f, \chi_{k}\right\rangle\right|^{2} \cdot \sum_{k \in \mathbb{Z}^{d}}\left(1+|k|^{2}\right)^{-m} \\
& =C_{m}\left\|(1-\Delta)^{m / 2} \partial^{\alpha} f\right\|_{H}^{2}
\end{aligned}
$$

where $C_{m}:=\sum_{k \in \mathbb{Z}^{d}}\left(1+|k|^{2}\right)^{-m}<\infty$ iff $m>d / 2$. So the smoother f is the faster \tilde{f} decays at infinity. The next problem is the converse of this assertion and hence smoothness of f corresponds to decay of \tilde{f} at infinity and visa-versa.
Exercise 10.25. Suppose $s \in \mathbb{R}$ and $\left\{c_{k} \in \mathbb{C}: k \in \mathbb{Z}^{d}\right\}$ are coefficients such that

$$
\sum_{k \in \mathbb{Z}^{d}}\left|c_{k}\right|^{2}\left(1+|k|^{2}\right)^{s}<\infty
$$

[^0]Show if $s>\frac{d}{2}+m$, the function f defined by

$$
f(x)=\sum_{k \in \mathbb{Z}^{d}} c_{k} e^{i k \cdot x}
$$

is in $C_{\text {per }}^{m}\left(\mathbb{R}^{d}\right)$. Hint: Work as in the above remark to show

$$
\sum_{k \in \mathbb{Z}^{d}}\left|c_{k}\right|\left|k^{\alpha}\right|<\infty \text { for all }|\alpha| \leq m
$$

Exercise 10.26 (Poisson Summation Formula). Let $F \in L^{1}\left(\mathbb{R}^{d}\right)$,

$$
E:=\left\{x \in \mathbb{R}^{d}: \sum_{k \in \mathbb{Z}^{d}}|F(x+2 \pi k)|=\infty\right\}
$$

and set

$$
\hat{F}(k):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} F(x) e^{-i k \cdot x} d x
$$

Further assume $\hat{F} \in \ell^{1}\left(\mathbb{N}^{d}\right)$.
(1) Show $m(E)=0$ and $E+2 \pi k=E$ for all $k \in \mathbb{Z}^{d}$. Hint: Compute $\int_{[-\pi, \pi]^{d}} \sum_{k \in \mathbb{Z}^{d}}|F(x+2 \pi k)| d x$.
(2) Let

$$
f(x):=\left\{\begin{array}{ccc}
\sum_{k \in \mathbb{Z}^{d}} F(x+2 \pi k) & \text { for } & x \notin E \\
0 & \text { if } & x \in E .
\end{array}\right.
$$

Show $f \in L^{1}\left([-\pi, \pi]^{d}\right)$ and $\tilde{f}(k)=(2 \pi)^{-d / 2} \hat{F}(k)$.
(3) Using item 2) and the assumptions on F, show $f \in L^{1}\left([-\pi, \pi]^{d}\right) \cap$ $L^{\infty}\left([-\pi, \pi]^{d}\right)$ and

$$
f(x)=\sum_{k \in \mathbb{Z}^{d}} \tilde{f}(k) e^{i k \cdot x}=\sum_{k \in \mathbb{Z}^{d}}(2 \pi)^{-d / 2} \hat{F}(k) e^{i k \cdot x} \text { for } m-\text { a.e. } x
$$

i.e.

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{d}} F(x+2 \pi k)=(2 \pi)^{-d / 2} \sum_{k \in \mathbb{Z}^{d}} \hat{F}(k) e^{i k \cdot x} \text { for } m \text { - a.e. } x . \tag{10.29}
\end{equation*}
$$

(4) Suppose we now assume that $F \in C\left(\mathbb{R}^{d}\right)$ and F satisfies 1$)|F(x)| \leq C(1+$ $|x|)^{-s}$ for some $s>d$ and $C<\infty$ and 2) $\hat{F} \in \ell^{1}\left(\mathbb{Z}^{d}\right)$, then show Eq. (10.29) holds for all $x \in \mathbb{R}^{d}$ and in particular

$$
\sum_{k \in \mathbb{Z}^{d}} F(2 \pi k)=(2 \pi)^{-d / 2} \sum_{k \in \mathbb{Z}^{d}} \hat{F}(k) .
$$

For simplicity, in the remaining problems we will assume that $d=1$.
Exercise 10.27 (Heat Equation 1.). Let $(t, x) \in[0, \infty) \times \mathbb{R} \rightarrow u(t, x)$ be a continuous function such that $u(t, \cdot) \in C_{p e r}(\mathbb{R})$ for all $t \geq 0, \dot{u}:=u_{t}, u_{x}$, and $u_{x x}$ exists and are continuous when $t>0$. Further assume that u satisfies the heat equation $\dot{u}=\frac{1}{2} u_{x x}$. Let $\tilde{u}(t, k):=\left\langle u(t, \cdot), \chi_{k}\right\rangle$ for $k \in \mathbb{Z}$. Show for $t>0$ and $k \in \mathbb{Z}$ that $\tilde{u}(t, k)$ is differentiable in t and $\frac{d}{d t} \tilde{u}(t, k)=-k^{2} \tilde{u}(t, k) / 2$. Use this result to show

$$
\begin{equation*}
u(t, x)=\sum_{k \in \mathbb{Z}} e^{-\frac{t}{2} k^{2}} \tilde{f}(k) e^{i k x} \tag{10.30}
\end{equation*}
$$

where $f(x):=u(0, x)$ and as above

$$
\tilde{f}(k)=\left\langle f, \chi_{k}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i k y} d y
$$

Notice from Eq. (10.30) that $(t, x) \rightarrow u(t, x)$ is C^{∞} for $t>0$.
Exercise 10.28 (Heat Equation 2.). Let $q_{t}(x):=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} e^{-\frac{t}{2} k^{2}} e^{i k x}$. Show that Eq. (10.30) may be rewritten as

$$
u(t, x)=\int_{-\pi}^{\pi} q_{t}(x-y) f(y) d y
$$

and

$$
q_{t}(x)=\sum_{k \in \mathbb{Z}} p_{t}(x+k 2 \pi)
$$

where $p_{t}(x):=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{1}{2 t} x^{2}}$. Also show $u(t, x)$ may be written as

$$
u(t, x)=p_{t} * f(x):=\int_{\mathbb{R}^{d}} p_{t}(x-y) f(y) d y
$$

Hint: To show $q_{t}(x)=\sum_{k \in \mathbb{Z}} p_{t}(x+k 2 \pi)$, use the Poisson summation formula along with the Gaussian integration formula

$$
\hat{p}_{t}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} p_{t}(x) e^{i \omega x} d x=\frac{1}{\sqrt{2 \pi}} e^{-\frac{t}{2} \omega^{2}}
$$

Exercise 10.29 (Wave Equation). Let $u \in C^{2}(\mathbb{R} \times \mathbb{R})$ such that $u(t, \cdot) \in C_{p e r}(\mathbb{R})$ for all $t \in \mathbb{R}$. Further assume that u solves the wave equation, $u_{t t}=u_{x x}$. Let $f(x):=u(0, x)$ and $g(x)=\dot{u}(0, x)$. Show $\tilde{u}(t, k):=\left\langle u(t, \cdot), \chi_{k}\right\rangle$ for $k \in \mathbb{Z}$ is twice continuously differentiable in t and $\frac{d^{2}}{d t^{2}} \tilde{u}(t, k)=-k^{2} \tilde{u}(t, k)$. Use this result to show

$$
\begin{equation*}
u(t, x)=\sum_{k \in \mathbb{Z}}\left(\tilde{f}(k) \cos (k t)+\tilde{g}(k) \frac{\sin k t}{k}\right) e^{i k x} \tag{10.31}
\end{equation*}
$$

with the sum converging absolutely. Also show that $u(t, x)$ may be written as

$$
\begin{equation*}
u(t, x)=\frac{1}{2}[f(x+t)+f(x-t)]+\frac{1}{2} \int_{-t}^{t} g(x+\tau) d \tau \tag{10.32}
\end{equation*}
$$

Hint: To show Eq. (10.31) implies (10.32) use

$$
\cos k t=\frac{e^{i k t}+e^{-i k t}}{2}, \text { and } \sin k t=\frac{e^{i k t}-e^{-i k t}}{2 i}
$$

and

$$
\frac{e^{i k(x+t)}-e^{i k(x-t)}}{i k}=\int_{-t}^{t} e^{i k(x+\tau)} d \tau
$$

Exercise 10.30. (Worked Example.) Let $D:=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk in $\mathbb{C} \cong \mathbb{R}^{2}$, where we write $z=x+i y=r e^{i \theta}$ in the usual way. Also let $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ and recall that Δ may be computed in polar coordinates by the formula,

$$
\Delta u=r^{-1} \partial_{r}\left(r^{-1} \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\theta}^{2} u
$$

Suppose that $u \in C(\bar{D}) \cap C^{2}(D)$ and $\Delta u(z)=0$ for $z \in D$.Let $g=\left.u\right|_{\partial D}$ and

$$
\tilde{g}(k):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g\left(e^{i k \theta}\right) e^{-i k \theta} d \theta
$$

(We are identifying $S^{1}=\partial D:=\{z \in \bar{D}:|z|=1\}$ with $[-\pi, \pi] / \pi^{\sim}-\pi$ by the map $\theta \in[-\pi, \pi] \rightarrow e^{i \theta} \in S^{1}$.) Let

$$
\begin{equation*}
\tilde{u}(r, k):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(r e^{i \theta}\right) e^{-i k \theta} d \theta \tag{10.33}
\end{equation*}
$$

then:
(1) $\tilde{u}(r, k)$ satisfies the ordinary differential equation

$$
r^{-1} \partial_{r}\left(r \partial_{r} \tilde{u}(r, k)\right)=\frac{1}{r^{2}} k^{2} \tilde{u}(r, k) \text { for } r \in(0,1)
$$

(2) Recall the general solution to

$$
\begin{equation*}
r \partial_{r}\left(r \partial_{r} y(r)\right)=k^{2} y(r) \tag{10.34}
\end{equation*}
$$

may be found by trying solutions of the form $y(r)=r^{\alpha}$ which then implies $\alpha^{2}=k^{2}$ or $\alpha= \pm k$. From this one sees that $\tilde{u}(r, k)$ may be written as $\tilde{u}(r, k)=A_{k} r^{|k|}+B_{k} r^{-|k|}$ for some constants A_{k} and B_{k} when $k \neq 0$. If $k=0$, the solution to Eq. (10.34) is gotten by simple integration and the result is $\tilde{u}(r, 0)=A_{0}+B_{0} \ln r$. Since $\tilde{u}(r, k)$ bounded near the origin for each k, it follows that $B_{k}=0$ for all $k \in \mathbb{Z}$.
(3) So we have shown

$$
A_{k} r^{|k|}=\tilde{u}(r, k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(r e^{i \theta}\right) e^{-i k \theta} d \theta
$$

and letting $r \uparrow 1$ in this equation implies

$$
A_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} u\left(e^{i \theta}\right) e^{-i k \theta} d \theta=\tilde{g}(k)
$$

Therefore,

$$
\begin{equation*}
u\left(r e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} \tilde{g}(k) r^{|k|} e^{i k \theta} \tag{10.35}
\end{equation*}
$$

for $r<1$ or equivalently,

$$
u(z)=\sum_{k \in \mathbb{N}_{0}} \tilde{g}(k) z^{k}+\sum_{k \in \mathbb{N}} \tilde{g}(-k) \bar{z}^{k} .
$$

(4) Inserting the formula for $\tilde{g}(k)$ into Eq. (10.35) shows that

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{k \in \mathbb{Z}} r^{|k|} e^{i k(\theta-\alpha)}\right) u\left(e^{i \alpha}\right) d \alpha \text { for all } r<1
$$

Now by simple geometric series considerations we find, setting $\delta=\theta-\alpha$, that

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} r^{|k|} e^{i k \delta} & =\sum_{k=0}^{\infty} r^{k} e^{i k \delta}+\sum_{k=1}^{\infty} r^{k} e^{-i k \delta} \\
& =\frac{1}{1-r e^{i \delta}}+\frac{r e^{-i \delta}}{1-r e^{-i \delta}}=\frac{1-r e^{-i \delta}+r e^{-i \delta}\left(1-r e^{i \delta}\right)}{1-2 r \cos \delta+r^{2}} \\
& =\frac{1-r^{2}}{1-2 r \cos \delta+r^{2}}
\end{aligned}
$$

Putting this altogether we have shown

$$
u\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(\theta-\alpha) u\left(e^{i \alpha}\right) d \alpha
$$

where

$$
P_{r}(\delta):=\frac{1-r^{2}}{1-2 r \cos \delta+r^{2}}
$$

is the so called Poisson kernel.

10.8. Radon-Nikodym Theorem and the Dual of L^{p}.

Definition 10.47. A complex measure ν on a measurable space (X, \mathcal{M}) is a countably additive set function $\nu: \mathcal{M} \rightarrow \mathbb{C}$ such that $\nu(\emptyset)=0$.

Theorem 10.48. Suppose (X, \mathcal{M}) is a measurable space, μ is a positive finite measure on \mathcal{M} and ν is a complex measure on \mathcal{M} such that $|\nu(A)| \leq \mu(A)$ for all $A \in \mathcal{M}$. Then $d \nu=\rho d \mu$ where $|\rho| \leq 1$. Moreover if ν is a positive measure, then $0 \leq \rho \leq 1$.

Proof. For a simple function, $f \in \mathcal{S}(X, \mathcal{M})$, let $\nu(f):=\sum_{a \in \mathbb{C}} a \nu(f=a)$. Then

$$
|\nu(f)| \leq \sum_{a \in \mathbb{C}}|a||\nu(f=a)| \leq \sum_{a \in \mathbb{C}}|a| \mu(f=a)=\int_{X}|f| d \mu
$$

So, by the B.L.T. theorem, ν extends to a continuous linear functional on $L^{1}(\mu)$ satisfying the bounds

$$
|\nu(f)| \leq \int_{X}|f| d \mu \leq \sqrt{\mu(X)}\|f\|_{L^{2}(\mu)} \text { for all } f \in L^{1}(\mu)
$$

The Riesz representation Theorem (Proposition 10.15) then implies there exists a unique $\rho \in L^{2}(\mu)$ such that

$$
\nu(f)=\int_{X} f \rho d \mu \text { for all } f \in L^{2}(\mu)
$$

Taking $f=\overline{\operatorname{sgn}(\rho)} 1_{A}$ in this equation shows

$$
\int_{A}|\rho| d \mu=\nu\left(\overline{\operatorname{sgn}(\rho)} 1_{A}\right) \leq \mu(A)=\int_{A} 1 d \mu
$$

from which it follows that $|\rho| \leq 1, \mu-$ a.e. If ν is a positive measure, then

$$
0=\operatorname{Im}[\nu(\operatorname{Im} \rho>0)]=\int_{\{\operatorname{Im} \rho>0\}} \operatorname{Im} \rho d \mu
$$

which shows $\operatorname{Im} \rho \leq 0, \mu$ - a.e. Similarly,

$$
0=\operatorname{Im}[\nu(\operatorname{Im} \rho<0)]=\int_{\{\operatorname{Im} \rho<0\}} \operatorname{Im} \rho d \mu
$$

and hence $\operatorname{Im} \rho \geq 0, \mu$ - a.e. and we have shown ρ is real a.e. Similarly,

$$
0 \leq \nu(\operatorname{Re} \rho<0)=\int_{\{\operatorname{Re} \rho<0\}} \rho d \mu \leq 0
$$

shows $\rho \geq 0$ a.e.
Definition 10.49. Let μ and ν be two positive measures on (X, \mathcal{M}). Then μ and ν are mutually singular (written as $\mu \perp \nu$) if there exists $A \in \mathcal{M}$ such that $\nu(A)=0$ and $\mu\left(A^{c}\right)=0$. The measure ν is absolutely continuous relative to μ (written as $\nu \ll \mu$) provided $\nu(A)=0$ whenever $\mu(A)=0$.

Theorem 10.50 (Radon Nikodym Theorem). Suppose that μ, ν are σ - finite positive measures on (X, \mathcal{M}). Then there exists a unique measure ν_{s} and a unique (modulo sets of $\mu-$ measure 0) function $\rho: X \rightarrow[0, \infty)$ such that $d \nu=d \nu_{s}+\rho d \mu$ and $\nu_{s} \perp \mu$. The measure ν_{s} in the Lebesgue decomposition of ν is unique and ρ is unique modulo sets of μ - measure zero. Moreover, $\nu \ll \mu$ iff $\nu_{s}=0$.

Proof. Uniqueness. Suppose that $d \nu=\tilde{\rho} d \mu+d \tilde{\nu}_{s}$ with $\tilde{\rho} \geq 0$ and $\tilde{\nu}_{s} \perp \mu$ is another such decomposition. Let $A, \tilde{A} \in \mathcal{M}$ be chosen so that $\mu(A)=0, \nu_{s}\left(A^{c}\right)=0$, $\mu(\tilde{A})=0$ and $\tilde{\nu}_{s}\left(\tilde{A}^{c}\right)=0$. Then for $B \in \mathcal{M}$, using $\mu(A)=0$ and $\nu_{s}\left(A^{c}\right)=0$,

$$
\nu(A \cap B)=\nu_{s}(A \cap B)+\mu\left(\rho 1_{A \cap B}\right)=\nu_{s}(B)
$$

Now using $\tilde{\nu}_{s}\left(\tilde{A}^{c}\right)=0$ and $\mu(A)=0$,

$$
\begin{aligned}
\nu(A \cap B) & =\nu(A \cap \tilde{A} \cap B)+\nu\left(A \cap \tilde{A}^{c} \cap B\right) \\
& =\nu(A \cap \tilde{A} \cap B)+\tilde{\nu}_{s}\left(A \cap \tilde{A}^{c} \cap B\right)+\mu\left(\tilde{\rho} 1_{A \cap \tilde{A}^{c} \cap B}\right) \\
& =\nu(A \cap \tilde{A} \cap B) .
\end{aligned}
$$

Combining these equations shows

$$
\nu_{s}(B)=\nu(A \cap B)=\nu(A \cap \tilde{A} \cap B)
$$

By symmetry (or a similar argument) $\tilde{\nu}_{s}(B)=\nu(A \cap \tilde{A} \cap B)$ and therefore $\nu_{s}=\tilde{\nu}_{s}$. This then implies that $\tilde{\rho} d \mu=\rho d \mu$, i.e. $\mu\left(1_{B} \rho\right)=\mu\left(1_{B} \tilde{\rho}\right)$ for all $B \in \mathcal{M}$. Let $X_{n} \uparrow X$ be chosen in \mathcal{M} so that $\mu\left(X_{n}\right)$ and $\nu\left(X_{n}\right)<\infty$. Since $\nu\left(X_{n}\right)<\infty, \rho 1_{X_{n}} \in L^{1}(\mu)$ and $\tilde{\rho} 1_{X_{n}} \in L^{1}(\mu)$ and

$$
\mu\left(1_{B} \cdot 1_{X_{n}} \rho\right)=\mu\left(1_{B} \cdot 1_{X_{n}} \tilde{\rho}\right) \text { for all } B \in \mathcal{M}
$$

which implies $1_{X_{n}} \rho=1_{X_{n}} \tilde{\rho}$ for $\mu-$ a.e. x. Letting $n \rightarrow \infty$ then shows that $\rho=\tilde{\rho}$, μ - a.e.

Existence: (Due to Von-Neumann.) First suppose that μ and ν are finite measures and let $\lambda=\mu+\nu$. By Theorem $10.48, d \nu=h d \lambda$ with $0 \leq h \leq 1$ and this implies, for all non-negative measurable functions f, that

$$
\begin{equation*}
\nu(f)=\lambda(f h)=\mu(f h)+\nu(f h) \tag{10.36}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\nu(f(1-h))=\mu(f h) \tag{10.37}
\end{equation*}
$$

Taking $f=1_{\{h=1\}}$ and $f=g 1_{\{h<1\}}(1-h)^{-1}$ with $g \geq 0$ in Eq. (10.37)

$$
\mu(\{h=1\})=0 \text { and } \nu\left(g 1_{\{h<1\}}\right)=\mu\left(g 1_{\{h<1\}}(1-h)^{-1} h\right)=\mu(\rho g)
$$

where $\rho:=1_{\{h<1\}} \frac{h}{1-h}$ and $\nu_{s}(g):=\nu\left(g 1_{\{h=1\}}\right)$. This gives the desired decomposition ${ }^{26}$ since

$$
\nu(g)=\nu\left(g 1_{\{h=1\}}\right)+\nu\left(g 1_{\{h<1\}}\right)=\nu_{s}(g)+\mu(\rho g)
$$

and

$$
\nu_{s}(h \neq 1)=0 \text { while } \mu(h=1)=\mu\left(\{h \neq 1\}^{c}\right)=0
$$

[^1]If $\nu \ll \mu$, then $\mu(h=1)=0$ implies $\nu(h=1)=0$ and hence that $\nu_{s}=0$. If $\nu_{s}=0$, then $d \nu=\rho d \mu$ and so if $\mu(A)=0$, then $\nu(A)=\mu\left(\rho 1_{A}\right)=0$ as well.

For the σ - finite case, write $X=\coprod_{n=1}^{\infty} X_{n}$ where $X_{n} \in \mathcal{M}$ are chosen so that $\mu\left(X_{n}\right)<\infty$ and $\nu\left(X_{n}\right)<\infty$ for all n. Let $d \mu_{n}=1_{X_{n}} d \mu$ and $d \nu_{n}=1_{X_{n}} d \nu$. Then by what we have just proved there exists $\rho_{n} \in L^{1}\left(X, \mu_{n}\right)$ and measure ν_{n}^{s} such that $d \nu_{n}=\rho_{n} d \mu_{n}+d \nu_{n}^{s}$ with $\nu_{n}^{s} \perp \mu_{n}$, i.e. there exists $A_{n}, B_{n} \in \mathcal{M}_{X_{n}}$ and $\mu\left(A_{n}\right)=0$ and $\nu_{n}^{s}\left(B_{n}\right)=0$. Define $\nu_{s}:=\sum_{n=1}^{\infty} \nu_{n}^{s}$ and $\rho:=\sum_{n=1}^{\infty} 1_{X_{n}} \rho_{n}$, then

$$
\nu=\sum_{n=1}^{\infty} \nu_{n}=\sum_{n=1}^{\infty}\left(\rho_{n} \mu_{n}+\nu_{n}^{s}\right)=\sum_{n=1}^{\infty}\left(\rho_{n} 1_{X_{n}} \mu+\nu_{n}^{s}\right)=\rho \mu+\nu_{s}
$$

and letting $A:=\cup_{n=1}^{\infty} A_{n}$ and $B:=\cup_{n=1}^{\infty} B_{n}$, we have $A=B^{c}$ and

$$
\mu(A)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)=0 \text { and } \nu(B)=\sum_{n=1}^{\infty} \nu\left(B_{n}\right)=0
$$

Theorem 10.51. Let (X, \mathcal{M}, μ) be a σ-finite measure space and suppose that $p, q \in[1, \infty]$ are conjugate exponents. Then for $p \in[1, \infty)$, the map $g \in L^{q} \rightarrow$ $\phi_{g} \in\left(L^{p}\right)^{*}$ is an isometric isomorphism of Banach spaces. (Recall that $\phi_{g}(f):=$ $\int_{X} f g d \mu$.) We summarize this by writing $\left(L^{p}\right)^{*}=L^{q}$ for all $1 \leq p<\infty$.

Proof. The only point that we have not yet proved is the surjectivity of the map $g \in L^{q} \rightarrow \phi_{g} \in\left(L^{p}\right)^{*}$. When $p=2$ the result follows directly from the Riesz theorem. We will begin the proof under the extra assumption that $\mu(X)<\infty$ in which cased bounded functions are in $L^{p}(\mu)$ for all p.

Let $\phi \in\left(L^{p}\right)^{*}$ and define $\nu(A):=\phi\left(1_{A}\right)$. Suppose that $A=\coprod_{n=1}^{\infty} A_{n}$ with $A_{n} \in \mathcal{M}$, then

$$
\left\|1_{A}-\sum_{n=1}^{N} 1_{A_{n}}\right\|_{L^{p}}=\left\|1_{\cup_{n=N+1}^{\infty} A_{n}}\right\|_{L^{p}}=\left[\mu\left(\cup_{n=N+1}^{\infty} A_{n}\right)\right]^{\frac{1}{p}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Therefore

$$
\nu(A)=\phi\left(1_{A}\right)=\sum_{1}^{\infty} \phi\left(1_{A_{n}}\right)=\sum_{1}^{\infty} \nu\left(A_{n}\right)
$$

showing ν is a complex measure. ${ }^{27}$
Let us define

$$
\begin{equation*}
|\nu|(A):=\sup \left\{\left|\phi\left(f 1_{A}\right)\right|:|f| \leq 1\right\} \leq\|\phi\|_{\left(L^{p}\right)^{*}} \cdot\left\|1_{A}\right\|_{L^{p}}=\|\phi\|_{\left(L^{p}\right)^{*}} \cdot \mu(A)^{1 / p} \tag{10.38}
\end{equation*}
$$

You are asked to show in Exercise 10.31 that $|\nu|$ is a measure on (X, \mathcal{M}). (This also can be deduced from Lemma 15.4 and Proposition 15.6 below.) From Eq. (10.38),

$$
|\nu(A)| \leq|\nu|(A) \leq\|\phi\|_{\left(L^{p}\right)^{*}} \mu(A)^{1 / p} \text { for all } A \in \mathcal{M}
$$

from which if follows that $|\nu| \ll \mu$ and by Theorem $10.48, d \nu=h d|\nu|$ for some $|h| \leq 1$ and by Theorem 10.50, $d|\nu|=\rho d \mu$ for some $\rho \in L^{1}(\mu)$. Hence, letting $g=\rho h \in L^{1}(\mu), d \nu=g d \mu$ or equivalently

$$
\begin{equation*}
\phi\left(1_{A}\right)=\int_{X} g 1_{A} d \mu \forall A \in \mathcal{M} \tag{10.39}
\end{equation*}
$$

${ }^{27}$ It is at this point that the proof breaks down when $p=\infty$.

By linearity this equation implies

$$
\begin{equation*}
\phi(f)=\int_{X} g f d \mu \tag{10.40}
\end{equation*}
$$

for all simple functions f on X. Replacing f by $1_{\{|g| \leq M\}} f$ in Eq. (10.40) shows

$$
\phi\left(f 1_{\{|g| \leq M\}}\right)=\int_{X} 1_{\{|g| \leq M\}} g f d \mu
$$

holds for all simple functions f and then by continuity for all $f \in L^{p}(\mu)$. By the converse to Holder's inequality, (Proposition 7.26) we learn that
$\left\|1_{\{|g| \leq M\}} g\right\|_{q}=\sup _{\|f\|_{p}=1}\left|\phi\left(f 1_{\{|g| \leq M\}}\right)\right| \leq \sup _{\|f\|_{p}=1}\|\phi\|_{\left(L^{p}\right)^{*}}\left\|f 1_{\{|g| \leq M\}}\right\|_{p} \leq\|\phi\|_{\left(L^{p}\right)^{*}}$.
Using the monotone convergence theorem we may let $M \rightarrow \infty$ in the previous equation to learn $\|g\|_{q} \leq\|\phi\|_{\left(L^{p}\right)^{*}}$.With this result, Eq. (10.40) extends by continuity to hold for all $f \in L^{p}(\mu)$ and hence we have shown that $\phi=\phi_{g}$.

Case 2. Now suppose that μ is σ - finite and $X_{n} \in \mathcal{M}$ are sets such that $0<\mu\left(X_{n}\right)<\infty$ and $X_{n} \uparrow X$ as $n \rightarrow \infty$. Then by Case 1. there exits $g_{n} \in$ $L^{q}\left(X_{n}, \mu\right)$ such that

$$
\phi(f)=\int_{X_{n}} g_{n} f d \mu \text { for all } f \in L^{p}\left(X_{n}, \mu\right)
$$

and

$$
\left\|g_{n}\right\|_{q}=\sup \left\{|\phi(f)|: f \in L^{p}\left(X_{n}, \mu\right) \text { and }\|f\|_{L^{p}\left(X_{n}, \mu\right)}=1\right\} \leq\|\phi\|_{\left[L^{p}(\mu)\right]^{*}}
$$

It is easy to see that $g_{n}=g_{m}$ a.e. on $X_{n} \cap X_{m}$ for all m, n so that $g:=\lim _{n \rightarrow \infty} g_{n}$ exists μ - a.e. By the above inequality and Fatou's lemma, we have $\|g\|_{q} \leq$ $\|\phi\|_{\left[L^{p}(\mu)\right]^{*}}<\infty$ and since

$$
\phi(f)=\int_{X_{n}} g f d \mu \text { for all } f \in L^{p}\left(X_{n}, \mu\right) \text { and } n
$$

it follows by continuity that

$$
\phi(f)=\int_{X} g f d \mu \text { for all } f \in L^{p}(X, \mu)
$$

i.e. $\phi=\phi_{g}$.

Remark 10.52. We will show later that Theorem 10.51 fails in general when $p=\infty$.

10.9. Exercises.

Exercise 10.31. Show $|\nu|$ be defined as in Eq. (10.38) is a positive measure. Here is an outline.
(1) Show

$$
\begin{equation*}
|\nu|(A)+|\nu|(B) \leq|\nu|(A \cup B) \tag{10.41}
\end{equation*}
$$

when A, B are disjoint sets in \mathcal{M}.
(2) If $A=\coprod_{n=1}^{\infty} A_{n}$ with $A_{n} \in \mathcal{M}$ then

$$
\begin{equation*}
|\nu|(A) \leq \sum_{n=1}^{\infty}|\nu|\left(A_{n}\right) \tag{10.42}
\end{equation*}
$$

(3) From Eqs. (10.41) and (10.42) it follows that ν is finitely additive, and hence

$$
|\nu|(A)=\sum_{n=1}^{N}|\nu|\left(A_{n}\right)+|\nu|\left(\cup_{n>N} A_{n}\right) \geq \sum_{n=1}^{N}|\nu|\left(A_{n}\right) .
$$

Letting $N \rightarrow \infty$ in this inequality shows $|\nu|(A) \geq \sum_{n=1}^{\infty}|\nu|\left(A_{n}\right)$ which combined with Eq. (10.42) shows $|\nu|$ is countable additive.
Exercise 10.32. Suppose μ_{i}, ν_{i} are σ - finite measure on measurable spaces, $\left(X_{i}, \mathcal{M}_{i}\right)$, for $i=1,2$. If $\nu_{i} \ll \mu_{i}$ for $i=1,2$ then $\nu_{1} \otimes \nu_{2} \ll \mu_{1} \otimes \mu_{2}$ and in fact $\frac{d\left(\nu_{1} \otimes \nu_{2}\right)}{d\left(\mu_{1} \otimes \mu_{2}\right)}=\rho_{1} \otimes \rho_{2}$ when $\rho_{i}:=d \nu_{i} / d \mu_{i}$ for $i=1,2$.
Exercise 10.33. Problem 3.13 from Folland.

[^0]: ${ }^{25}$ We view $C_{\text {per }}(\mathbb{R})$ as a subspace of H by identifying $f \in C_{p e r}(\mathbb{R})$ with $\left.f\right|_{[-\pi, \pi]} \in H$.

[^1]: ${ }^{26}$ Here is the motivation for this construction. Suppose that $d \nu=d \nu_{s}+\rho d \mu$ is the RadonNikodym decompostion and $X=A \coprod B$ such that $\nu_{s}(B)=0$ and $\mu(A)=0$. Then we find

 $$
 \nu_{s}(f)+\mu(\rho f)=\nu(f)=\lambda(f g)=\nu(f g)+\mu(f g)
 $$

 Letting $f \rightarrow 1_{A} f$ then implies that

 $$
 \nu_{s}\left(1_{A} f\right)=\nu\left(1_{A} f g\right)
 $$

 which show that $g=1 \nu$-a.e. on A. Also letting $f \rightarrow 1_{B} f$ implies that

 $$
 \mu\left(\rho 1_{B} f(1-g)\right)=\nu\left(1_{B} f(1-g)\right)=\mu\left(1_{B} f g\right)=\mu(f g)
 $$

 which shows that

 $$
 \rho(1-g)=\rho 1_{B}(1-g)=g \mu-\text { a.e.. }
 $$

 This shows that $\rho=\frac{g}{1-g} \mu$ - a.e.

