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11. CONSTRUCTION OF MEASURES

Now that we have developed integration theory relative to a measure on a o —
algebra, it is time to show how to construct the measures that we have been using.
This is a bit technical because there tends to be no “explicit” description of the
general element of the typical o — algebras. On the other hand, we do know how
to explicitly describe algebras which are generated by some class of sets £ C P(X).
Therefore, we might try to define measures on o(€) by there restrictions to A(E).
Theorem 6.5 shows this is a plausible method.

So the strategy of this section is as follows: 1) construct finitely additive mea-
sure on an algebra, 2) construct “integrals” associated to such finitely additive
measures, 3) extend these integrals (Daniell’s method) when possible to a larger
class of functions, 4) construct a measure from the extended integral (Daniell —
Stone construction theorem).

11.1. Finitely Additive Measures and Associated Integrals.

Definition 11.1. Suppose that £ C P(X) is a collection of subsets of a set X and
p: & —[0,00] is a function. Then

1. p is additive on & if u(E) = Y| p(E;) whenever E = [[I_| E; € £ with
E,effori=1,2,...,n < o0.

2. pis 0 —additive (or countable additive) on & if Item 1. holds even when
n = oo.

3. p is subadditive on & if pu(E) < 37" | p(E;) whenever E = [['_ | E; € €
with E; € £ and n € NU{oo} .

4. pis o — finite on £ if there exist FE,, € £ such that X = U, E,, and u(E,) <
00.

The reader should check if £ = A is an algebra and p is additive on A, then
is 0 — finite on A iff there exists X,, € A such that X,, T X and p(X,) < oo for
all n.

Proposition 11.2. Suppose € C P(X) is an elementary family (see Definition
4.11) and A = A(E) is the algebra generated by E. Then every additive function
w: & — [0,00] extends uniquely to an additive measure (which we still denote by )

on A.

Proof. Since by Proposition 4.12, every element A € A is of the form A = [ [, E;
with E; € &, it is clear that if y extends to a measure the extension is unique and
must be given by

(11.1) p(A) = ZM(EJ

To prove the existence of the extension, the main point is to show that defining
1(A) by Eq. (11.1) is well defined, i.e. if we also have A = ][, F}; with Fj € &, then
we must show

(11.2) ST H(E) = Y ulF).
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But E; = [[; (E; N Fj) and the property that u is additive on & implies u(E;) =
>_;j W(E; N F}) and hence

S wE) =YD WENF) =Y u(E;nF).
i i j 4,
By symmetry or an analogous argument,
> ulFy) =Y wENF)
J 4,

which combined with the previous equation shows that Eq. (11.2) holds. It is now
easy to verify that p extended to A as in Eq. (11.1) is an additive measure on .A.
|

Proposition 11.3. Let X =R and & be the elementary class
E={(a,b]NR: —o0 <a<b< oo},

and A = A(E) be the algebra of disjoint union of elements from E. Suppose that
i A —[0,00] is an additive measure such that p((a,b]) < oo for all -co < a <
b < co. Then there is a unique increasing function F : R — R such that F(0) =0,
F=1({—o0}) € {—o0}, F7!({oo}) C {oo} and

(11.3) p((a,b] NR) = F(b) — F(a) YVa <binR.
Conversely, given an increasing function F : R — R such that F~'({—cc}) C

{—o00}, F 1({oo}) C {oo} there is a unique measure p = pp on A such that
the relation in Eq. (11.3) holds.

So the finitely additive measures p on A(E) which are finite on bounded sets
are in one to one correspondence with increasing functions F' : R — R such that

F(0) =0, F*({—o0}) C {—oo}, F!({oo}) C {oo}.
Proof. If F is going to exist, then
w((0,8) NR) = F(b) — F(0) = F(b) if b € [0, 0],
1((a,0]) = F(0) — F(a) = —F(a) if a € [—00,0]
from which we learn

_ —u((z,0) if x<0
F(z) = { u((g, z]NR) if z>0.

Moreover, one easily checks using the additivity of p that Eq. (11.3) holds for this
F.

Conversely, suppose F : R — R is an increasing function such that F~1({—occo}) C
{—o0}, F71({oo}) C {oo}. Define y on & using the formula in Eq. (11.3). I claim
that u is additive on € and hence has a unique extension to A which will finish the
argument. Suppose that

(a,8] = [ J(asbi]-
i=1
By reordering (a;, b;] if necessary, we may assume that

a=a1>bi=aa<by=a3<---<a,<b, =0b.
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Therefore,

pl(a.8)) = F() = F(a) = 3 [F() = F(a)] = 3 pl(as,bi)

i=1 i=1
as desired. m

11.1.1. Integrals associated to finitely additive measures.

Definition 11.4. Let ;1 be a finitely additive measure on an algebra A C P(X),
S = S¢(A, i) be the collection of simple functions defined in Notation 9.1 and for
[ €S defined the integral I(f) = I,(f) by

(11.4) L(f) = yu(f =v).

The same proof used for Proposition 5.14 shows I, : S — R is linear and positive,
i.e. I(f) > 0if f > 0. Taking absolute values of Eq. (11.4) gives

(11.5) IO <Dyl il =y) < | fllo p(f #0)
yeR
where || f|| = sup,cx |f(z)]. For A€ A, let Sy :={f € S: {f #0} C A}. The
estimate in Eq. (11.5) implies
(11.6) ()] < #(A) || fllo for all f € Sa.

The B.L.T. theorem then implies that I has a unique extension I4 to S4 C B(X)
for any A € A such that pu(A) < co. The extension Iy4 is still positive. Indeed, let
f € Sa with f >0 and let f, € Sa be a sequence such that ||f — f,[ ., — 0 as
n — o0o. Then f,, V0 € S4 and

1f = fa VOl < IIf = fulle — 0 as n— oo.

Therefore, I4(f) = limy,— oo La(fn V0) > 0.

Suppose that A, B € A are sets such that u(A)+up(B) < oo, then S4USp C Saus
and so Sy USp C Saup. Therefore 14(f) = Taup(f) = Ip(f) for all f € S4NSg.
The next proposition summarizes these remarks.

Proposition 11.5. Let (A, pu, I = 1,,) be as in Definition 11.4, then we may extend
I to

S:=U{S4: A € A with u(A) < oo}

by defining I(f) = I4(f) when f € Sa with u(A) < co. Moreover this extension is
still positive.

Notation 11.6. Suppose X = R, A=A(E), F and p are as in Proposition 11.3.
For f €S, we will write I(f) as [*_ fdF or [ f(x)dF(z) and refer to [ fdF
as the Riemann Stieljtes integral of f relative to F.

Lemma 11.7. Using the notation above, the map f € §—>ffooo fdF is linear,
positive and satisfies the estimate

(11.7) \ I de\ < (F() - F(@) /]

if supp(f) C (a,b). Moreover C.(R,R) C S.
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Proof. The only new point of the lemma is to prove C.(R,R) C S, the remaining
assertions follow directly from Proposition 11.5. The fact that C.(R,R) C S has
essentially already been done in Example 5.24. In more detail, let f € C.(R,R)
and choose a < b such that supp(f) C (a,b). Then define f; € S as in Example
5.24, i.e.

nk-—l
fle) =Y min{f(2):af <@ <afys} Lapar (@)
=0
where m, = {a = af < af <--- <ak =10}, for k =1,2,3,..., is a sequence of

refining partitions such that mesh(m;) — 0 as k& — oo. Since supp(f) is compact
and f is continuous, f is uniformly continuous on R. Therefore || f — fi|| ., — 0 as

k — oo, showing f € S. Incidently, for f € C.(R,R), it follows that

o np—1
(11.8) / fdF = lengo Z min { f(z) : ay <x < aﬁrl} [F(a;ﬂrl) — F(af)] .
- =0

L]

The most important special case of a Riemann Stieljtes integral is when F(z) = x
in which case [*_ f(z)dF(x) = [ f(z)dx is the ordinary Riemann integral. The
following Exercise is an abstraction of Lemma 11.7.

Exercise 11.1. Continue the notation of Definition 11.4 and Proposition 11.5.
Further assume that X is a metric space, there exists open sets X,, C, X such
that X,, T X and for each n € N and 6 > 0 there exists a finite collection of
sets {Ai}le C A such that diam(A;) < 6, u(A4;) < oo and X,, C U¥_, A;. Then
C.(X,R) C S and so I is well defined on C.(X,R).

Proposition 11.8. Suppose that (X, T) is locally compact Hausdorff space and I
is a positive linear functional on C.(X,R). Then for each compact subset K C X
there is a constant Cx < 0o such that |I(f)| < Ck || fl|., for all f € Co(X,R) with
supp(f) C K. Moreover, if f, € Cc(X,[0,00)) and f, | 0 (pointwise) as n — oo,
then I(f,) | 0 as n — oc.

Proof. Let f € C.(X,R) with supp(f) C K. By Lemma 8.15 there exists
g < X such that g =1 on K. Since ||f|| ¥k £ f >0,

0 <I(Ifllo ¥r = f) = I flloc T(¥c) £ I(f)

from which it follows that [I(f)| < I(¢k) || f||o - So the first assertion holds with
Ck = I(’L/JK) < 00.

Now suppose that f,, € C.(X,[0,00)) and f, | 0 as n — oo. Let K = supp(f1)
and notice that supp(f,) C K for all n. By Dini’s Theorem (see Exercise 3.11),
| fnllo | 0 as n — oo and hence

0 < I(fu) < Crc |l falloo 10 a5 n — ox.

[

This result applies to the Riemann Stieljtes integral in Lemma 11.7 restricted to
C.(R,R). However it is not generally true in this case that I(f,) | 0 for all f,, €S
such that f, | 0. Proposition 11.10 below addresses this question.

Definition 11.9. A countably additive function x on an algebra A C 2% is called
a premeasure.
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As for measures (see Remark 5.2 and Proposition 5.3), one easily shows if p is a
premeasure on A, {A,} 7~ C Aandif 4, T A € A then p(A,) 1 u(A) as n — oo
or if u(Ay) < oo and A,, | ¥ then u(A,) | 0 as n — oo Now suppose that p in
Proposition 11.3 were a premeasure on A(E). Letting A,, = (a,b,] with b, | b as
n — oo we learn,

F(bn) = F(a) = p((a,bn]) | p((a, b)) = F(b) = F(a)
from which it follows that lim,, F'(y) = F(b), i.e. F is right continuous. We will
see below that in fact p is a premeasure on A(E) iff F' is right continuous.

Proposition 11.10. Let (A, u,S = Sy¢(A, i), I = 1,,) be as in Definition 11.4. If

i is a premeasure on A, then
(11.9) Vfn€Swith fr, | 0= I(f,) |0 as n — 0.
Proof. Let € > 0 be given. Then
fro=Falpsep + fulpa<en < filg,>ep + €1,

I(fa) ST (filp,sep) Tel(f1) =Y au(fi = a, fu > ea) +el(f1),

a>0
and hence
(11.10) limsup I(f,) < Zalimsupu(fl =a, fn, > €a) +el(f1).

a>0
Because, for a > 0,

As{fi=a, fp>ea}:={fi=a}N{fn>ea} | Dasn— oo

and p(fi =a) < oo, limsup,,_,. 1 (f1 =a, fn > €ea) = 0. Combining this with
Eq. (11.10) and making use of the fact that e > 0 is arbitrary we learn
limsup,,_,o I[(f,) =0. m

11.2. The Daniell-Stone Construction Theorem.

Definition 11.11. A vector subspace S of real valued functions on a set X is a
lattice if it is closed under the lattice operations; f V ¢ = max(f,g) and f A g =

min(f, g).
Remark 11.12. Notice that a lattice S is closed under the absolute value operation
since |f| = fVO0— f AO. Furthermore if S is a vector space of real valued functions,

to show that S is a lattice it suffices to show f+ = fVv 0 € S for all f € S. This is
because

fl=fr+(=Hr,
f\/g:%(f—f—g—i—\f—gD and

frg=5(F+g—If—a).

Notation 11.13. Given a collection of extended real valued functions C on X, let
Ct:={f€C:f>0}— denote the subset of positive functions f € C.

Definition 11.14. A linear functional I on S is said to be positive (i.e. non-
negative) if I(f) > 0 for all f € ST. (This is equivalent to the statement the

I(f) <I(g)if f,gcSand f <g.)
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Definition 11.15 (Property (D)). A non-negative linear functional I on S is said
to be continuous under monotone limits if I(f,,) | 0 for all { f,,},—, C ST satisfying
(pointwise) f, | 0. A positive linear functional on S Satlsfymg property (D) is
called a Daniell integral on S. We will also write S as D(I) — the domain of I.

Example 11.16. Let (X,7) be a locally compact Hausdorff space and I be a
positive linear functional on S := C.(X,R). It is easily checked that S is a lattice
and Proposition 11.8 shows I is automatically a Daniell integral. In particular if
X = R and F is an increasing function on R, then the corresponding Riemann
Stieljtes integral restricted to S := Co(R,R) (f € Ce(R,R) — [, fdF) is a Daniell
integral.

Example 11.17. Let (A, 1, S = Sy(A,u), I = I,) be as in Definition 11.4. It is
easily checked that S is a lattice. Proposition 11.10 guarantees that I is a Daniell
integral on S when p is a premeasure on A.

Lemma 11.18. Let I be a non-negative linear functional on a lattice S. Then prop-
erty (D) is equivalent to either of the following two properties:

Dl: If d)? d)n €S Satié’fy; d)n < d)n+1 fO?" all n and d) < hmn—)oo d)na then I(d)) <
Dy: Ifuj € ST and ¢ €S is such that ¢ < 2;21 u; then I(¢) < Z]Oi1 I(uy ).

Proof. (D) = (D;) Let ¢, ¢, € Sbe asin Dy. Then ¢A¢p, T ¢ and p—(pAPy,) |
0 which implies
I(¢) = I(p N pp) =1(¢ — (P Abn)) L O

Hence
I(6) = lim I(6 A dn) < lm ().

(D1) = (D2) Apply (D) with ¢, = 2?21 u;.
(D3) = (D) Suppose ¢, € S with ¢, | 0 and let w,, = ¢, — dpy1. Then

ijzl Up = @1 — ¢n41 | @1 and hence

I(¢1) SZ Up) = hHl ZI Up) = hm I(pr — dny1) = 1(P1) — hm I(¢N+1)

from which it follows that imy_,co I(¢pn4+1) < 0. Since I(¢ny1) > 0 for all N we
conclude that limy_,e0 [(¢n41) =0. W

In the remainder of this section, S will denote a lattice of bounded real valued
functions on a set X and I : S — R will be a Daniell integral on S.

Lemma 11.19. Suppose that {fn},{gn} CS.
1. Iffu 0 f and gn T g with f,g: X — (—o00,00] such that f < g, then

(11.11) lim I(f,) < lim I(gy,).

2. If ful fand g, | g with f,g : X — [—00,00) such that f < g, then Eq.
(11.11) still holds.

In particular, in either case if f = g, then lim,, o I(f,) = lim,— o0 I(gn)-

Proof.
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1. Fix n € N, then g A f,, T fr as kK — oo and gi A f,, < gr and hence
I(fn) = lim I(ge A fn) < lim I(gx).

Passing to the limit n — oo in this equation proves Eq. (11.11).
2. Since —f, 1 (—f) and —g,, T (—¢) and —g < (—f), what we just proved shows

— lim I(gn) = lim I(—gn) < lim I(—f,) = — lim I(f,)
which is equivalent to Eq. (11.11).
L]
Definition 11.20. Let
St ={f:X — (—o00,00] : 3 f,, € S such that f,, T f}
and for f € Sy let I(f) = limy,_.oo I(fn) € (—00, 00].
Lemma 11.19 shows this extension of I to S; is well defined and positive, i.e.
I(f) <1(g)if f<g.

Definition 11.21. Let S| = {f : X — [—00,00) : 3 f,, € S such that f,, | f} and
define I(f) =limp—oo I(fn) on S;.

Exercise 11.2. Show S| = —S; and for f € S| US; that I(—f) = —I(f) € R.

We are now in a position to state the main construction theorem. The theorem
we state here is not as general as possible but it will suffice for our present purposes.
See Section 12 for a more general version and the full proof.

Theorem 11.22 (Daniell-Stone). Let S be a lattice of bounded functions on a set
X such that 1A ¢ € S and let I be a Daniel integral on S. Further assume there
exists x € Sy such that I(x) < oo and x(x) > 0 for all x € X. Then there exists a
unique measure (1 on M := o (S) such that

(11.12) I(f) = / fdu for all f €S.
X
Moreover, for all g € L*(X, M, p),
(11.13) sup {I(f):S, 5 f < g} = /ngu —inf {I(h):g<heS).

Proof. Only a sketch of the proof will be given here. Full details may be found
in Section 12 below. ~
Existence. For g : X — R, define

I(g) :=inf{I(h) : g < h €S},

I(g) :=sup{I(f):S; > f<g}
and set
LYI):={g: X - R:I(g) = I(g) € R}.

For g € LY(I), let f(g) = I(g) = I(g). Then, as shown in Proposition 12.10, L*(I)
is a “extended” vector space and I : L}(I) — R is linear as defined in Definition
12.1 below. By Proposition 12.6, if f € S; with I(f) < oo then f € L(I).
Moreover, I obeys the monotone convergence theorem, Fatou’s lemma, and the
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dominated convergence theorem, see Theorem 12.11, Lemma 12.12 and Theorem
12.15 respectively.
Let

R:={ACX:14AfeL'(I)forall feS}

and for A € R set u(A) := I(14). It can then be shown: 1) R is a o algebra (Lemma
12.23) containing o(S) (Lemma 12.24), u is a measure on R (Lemma 12.25), and
that Eq. (11.12) holds. In fact it is shown in Theorem 12.28 and Proposition 12.29
below that L!(X, M, u) C LY(I) and

I(g) = / gdu for all g € L (X, M, p).
X

The assertion in Eq. (11.13) is a consequence of the definition of L'(I) and I and
this last equation.
Uniqueness. Suppose that v is another measure on o(S) such that

:/ fdv for all f €8S.
X

By the monotone convergence theorem and the definition of I on Sy,

:/ fdv for all f € ;.
X

Therefore if A € 0(S) C R,
pw(A) =I(14) =inf{I(h): 14 <h €S}

:inf{/ hdyzlAShEST}Z/ 1adv =v(A)
X X

which showsy < p. If A € 0(S) C R with u(A) < oo, then, by Remark 12.22 below,
14 € L'(I) and therefore

p(A) = I(1a) = I(1a) = I(1a) = sup{I(f) : S, 3 f < 1a}
:sup{/X fdv:S; > f <1a} <v(A).

Hence pu(A) < v(A) for all A € o(S) and v(A) = u(A) when p(4) < co.
To prove v(A) = p(A) for all A € o(S), let X,, := {x >1/n} € o(S). Since
]-X,,, < nx,

(X)) = / lx, dp < / nxdp =nl(x) < oo.
X X
Since x > 0 on X, X,, T X and therefore by continuity of v and g,
v(A) = lim v(ANX,)= lim pu(ANX,)=u(A)

for all A€ o(S). m
The rest of this chapter is devoted to applications of the Daniell — Stone con-
struction theorem.

Remark 11.23. To check the hypothesis in Theorem 11.22 that there exists x € St
such that I(x) < oo and x(z) > 0 for all z € X, it suffices to find ¢,, € ST such
that Y02 1gf>n > 0 on X. To see this let M,, := max(Hg/)nHu, I(¢,),1) and define
X =D 1 7T, <77 Pn, then x € S, 0 < x <1 and I(x) <1< oo.
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11.3. Extensions of premeasures to measures I. In this section let X be a
set, A be a subalgebra of 2% and po : A — [0, 00] be a premeasure on A.

Definition 11.24. Let & be a collection of subsets of X, let £, denote the collection
of subsets of X which are finite or countable unions of sets from £. Similarly let s
denote the collection of subsets of X which are finite or countable intersections of
sets from €. We also write £,5 = (£5)5 and &5 = (5),, , etc

Remark 11.25. Let pg be a premeasure on an algebra A. Any A = U2 Al € A,
with A) € A may be written as A = ][ A,, with A, € A by setting A4,

n=1

AN (AU~ U Al ). If we also have A = [] B,, with B,, € A, then 4,, =
n=1
[Tre; (A, N By) and therefore because pg is a premeasure,

po(An) =Y po(Ay N By).
k=1

Summing this equation on n shows,

S pold) = 33l )

n=1 k=1
By symmetry (i.e. the same argument with the A’s and B’s interchanged) and
Fubini’s theorem for sums,

Zuo(Bk) =3 wo(An N Bi) =Y > pio(An N By)

k=1n=1 n=1 k=1
and hence Zn 1 Ho(An) = Y pe | to(Bg). Therefore we may extend pg to A, by
setting

) :Zuo(A )

if A= ]_[ A, with A, € A. In future we will tacitly assume this extension has
been made

Theorem 11.26. Let X be a set, A be a subalgebra of 2% and g be a premeasure
on A which is o — finite on A, i.e. there exists X,, € A such that 11o(X,) < oo
and X, T X as n — oco. Then pug has a unique extension to a measure, [, on
M :=oc(A). Moreover, if A € M and e > 0 is given, there exists B € A, such that
A C B and (B \ A) < e. In particular,

(11.14) w(A) =inf{po(B): AC Be Ay}
(11.15) = inf{i po(Ap): AC ]O_OI A, with A,, € A}.

Proof. Let (A, o, I =1,,) be as in Definition 11.4. As mentioned in Example
11.17, I is a Daniell integral on the lattice S = Sy (A, o). It is clear that 1A ¢ € S
for all $ € S. Since 1x, € St and Y7 1x, > 0 on X,by Remark 11.23 there
exists x € Sy such that I(x) < oo and x > 0. So the hypothesis of Theorem 11.22
hold and hence there exits a unique measure y on M such that I(f) = [, fdu for
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all f € S. Taking f = 14 with A € A and pg(A) < oo shows p(A) = po(A). For
general A € A, we have
w(A) = lim p(ANX,)= lim u(ANX,) = pu(A).

The fact that p is the only extension of pg to M follows from Theorem 6.5 or
Theorem 6.8. Tt is also can be proved using Theorem 11.22. Indeed, if v is another
measure on M such that v = pon A, then I,, = I on S. Therefore by the uniqueness
assertion in Theorem 11.22, 4 = v on M.

By Eq. (11.13), for A € M,

w(A) = I(14) =inf {I(f): f €S; with 14 < f}
_inf{/ fdu: f €Sy with 1A<f}.
X

For the moment suppose p(A) < oo and € > 0 is given. Choose f € S; such that
14 < fand

u(le)S/deu:I(f)<M(A)+6-

Let f, € S be a sequence such that f, T f as n — oo and set B,, :=
U, {fn>1—1/m} € A,. Then By, | {f > 1} as m — o0,

AC{f>1}CBuC{f>1-1/m)

and p(f>1-1/m) < oo for m > 1 by Chebyshev’s inequality. Therefore
w(Bp) | 1 (f > 1) as m — oo and hence, for m sufficiently large, p(B;,) < p(A4)+e.
Therefore, there exists B = B,,, € A, such that A C B and u(B\ A) <e.

For general A € A, choose X,, T X with X,, € A. Then there exists B, € A,
such that u(By \ (A4, N X,)) < €27 Define B := U2 B, € A,. Then

B\ A) = p (U2, (B, \ A)) Z ((Ba\ 4))

i (Ba\ (AN X,)) <

Eq. (11.14) is an easy consequence of this result and the fact that u(B) = po(B).
|

Corollary 11.27 (Regularity of u). Let A C P(X) be an algebra of sets, M =
o(A) and p : M — [0, 0] be a measure on M which is o — finite on A. Then

1. For all Ae M,

(11.16) w(A) =inf{p(B): AC Be As}.
2. If A e M and € > 0 are given, there exists B € A, such that A C B and
w(B\ A) <e.

3. Forall A € M and e > 0 there exists B € As such that B C A and u(A\B) <
€.

4. For any B € M there exists A € As, and C € Ays such that A C B C C
and p(C'\ A) =0.

5. The linear space S := S¢(A, ) is dense in LP(p) for all p € [1,00), briefly

—LP( )
put, Sp(A ) " = LP().
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Proof. Ttems 1. and 2. follow by applying Theorem 11.26 to pg = pf4. Items
3. and 4. follow from Items 1. and 2. as in the proof of Corollary 6.41 above.

Item 5. This has already been proved in Theorem 9.3 but we will give yet
another proof here. When p = 1 and g € L'(u;R), there exists, by Eq. (11.13),
h € Sy such that g < h and |[h—gl; = [((h = g)du < €. Let {hn},~; C S be
chosen so that h, T h as n — oo. Then by the dominated convergence theorem,
|hn —gll; — ||h —g|l; < € as n — oo. Therefore for n large we have h,, € S with

1
|hn — gll; < €. Since € > 0 is arbitrary this shows, S(A, ,u)L " _ L' (p).

Now suppose p > 1, g € LP(;R) and X,, € A are sets such that X,, T X and
p(Xn) < co. By the dominated convergence theorem, 1x, - [(g An)V (—n)] — g in
LP(u) as m — o0, so it suffices to consider g € LP(u; R) with {g # 0} C X,, and
lg] < n for some large n € N. By Holder’s inequality, such a g is in L*(p). So if
€ > 0, by the p = 1 case, we may find h € S such that ||h — g||; < e. By replacing
h by (hAn)V (—n) € S, we may assume h is bounded by n as well and hence

1k — gl :/ \h—gr‘“du:/ Ih— gl |h — g du
X X

< @ny ! / Ih— gldp < (2n)"e.
X
Since € > 0 was arbitrary, this shows S is dense in L”(;; R). =

Remark 11.28. If we drop the o — finiteness assumption on pg we may loose unique-
ness assertion in Theorem 11.26. For example, let X = R, Bgr and A be the algebra
generated by £ := {(a,b] "R : —00 < a < b < co}. Recall Bg = c(€). Let D C R
be a countable dense set and define pp(A) := #(D N A). Then up(A) = oo for
all A € A such that A # (). So if D’ C R is another countable dense subset of R,
wpr = pp on A while up # ppr on Br. Also notice that up is o — finite on Bg but
not on A.

It is now possible to use Theorem 11.26 to give a proof of Theorem 5.8, see sub-
section 11.8 below. However rather than do this now let us give another application
of Theorem 11.26 based on Example 11.16 and use the result to prove Theorem 5.8.

11.4. Riesz Representation Theorem.

Definition 11.29. Given a second countable locally compact Hausdorff space
(X, 1), let M} denote the collection of positive measures, u, on Bx := o(7) with the
property that p(K) < oo for all compact subsets K C X. Such a measure p will be
called a Radon measure on X. For p € My and f € Co(X,R) let I,(f) := [ fdp.

Theorem 11.30 (Riesz Representation Theorem). Let (X, 7) be a second count-
able?S locally compact Hausdorff space. Then the map u — I, u taking ML to positive
linear functionals on C.(X,R) is bijective. Moreover every measure pn € My has
the following properties:

1. For alle > 0 and B € Bx, there exists ' C B C U such that U is open and
F is closed and (U \ F) < e. If u(B) < oo, F' may be taken to be a compact
subset of X.

26The second countability is assumed here in order to avoid certain technical issues. Recall from
Lemma 8.17 that under these assumptions, o(S) = Bx. Also recall from Uryshon’s metrizatoin
theorem that X is metrizable. We will later remove the second countability assumption.
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2. For all B € Bx there exists A € F, and C € 15 (75 is more conventionally
written as Gg) such that A C B C C and u(C'\ A) =0.
3. For all B € By,

(11.17) w(B) =inf{u(U): BCU and U is open}

(11.18) =sup{u(K) : K C B and K is compact}.
4. For all open subsets, U C X,

(1119) () = swpl [ fdu: <X} = sup{L (1) S < X).
5. For all compact subsets K C X,

(11.20) W(K) = inf{L,(f) : L < f < X}.

6. If ||1.|| denotes the dual norm on Ce(X,R)*, then ||1,| = u(X). In particular
I, is bounded iff u(X) < oco.
7. Co(X,R) is dense in LP(; R) for all 1 < p < oo.

Proof. First notice that I, is a positive linear functional on S := C.(X,R) for
all p € My and S is a lattice such that 1 A f € S for all f € S. Example 11.16
shows that any positive linear functional, I, on S := C.(X,R) is a Daniell integral
on S. By Lemma 8.10, there exists compact sets K,, C X such that K,, T X. By
Urysohn’s lemma, there exists ¢, < X such that ¢, = 1 on K,. Since ¢, € ST
and Y | ¢, >0 on X it follows from Remark 11.23 that there exists x € S; such
that x >0 on X and I(x) < co. So the hypothesis of the Daniell — Stone Theorem
11.22 hold and hence there exists a unique measure p on o(S) =Bx (Lemma 8.17)
such that I = I,,. Hence the map p — I, taking M to positive linear functionals
on C.(X,R) is bijective. We will now prove the remaining seven assertions of the
theorem.

1. Suppose € > 0 and B € Bx satisfies u(B) < oco. Then 15 € L*(p) so there

exists functions f, € C.(X,R) such that f, 1 f, 1z < f, and [y fdu <
w(B) + €. The condition 15 < f, implies 15 < 1{4>1} < f and hence

(11.21) w(B) < u(f > 1) < I(f) < pu(B) + €.

Letting Uy, := US2, {fr, > 1 —1/m} € 714, then U,,, C {f >1—1/m} which
has finite measure by Chebyshev’s inequality, U,, | {f > 1} D B and hence
w(Up) | p(f > 1) > p(B) as m — oo. Combining this observation with Eq.
(11.21), we may choose m sufficiently large so that B C U,, and

WU\ B) = p(Un) — p(B) < e.

Hence there exists U € 7 such that B C U and p(U \ B) < e.

For general B € Bx, by what we have just proved, there exists open sets
U,, C X such that BN K,, C U, and (U, \ (BN K,,)) < €27 for all n. Let
U=U52,U,, then BCU €7 and

WK

pUN\ B) = p(UpZy (Un \ B)) < ) p(Un \ B)

Il
=

n

< Zu(Un \(BNK,)) < 262_" =€
n=1 n=1
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Applying this result to B¢ shows there exists a closed set F' — X such that
B¢ C F¢ and
W(B\ F) = u(F*\ B) < <.
So we have produced F' C B C U such that p(U\ F) = p(U\ B)+u(B\F) <
2e.
If 1(B) < o0, using B\ (K,,NF) T B\ F as n — oo, we may choose n

sufficiently large so that (B \ (K, NF)) < €. Hence we may replace F' by
the compact set F'N K, if necessary.

. Choose F,, C B C U, such F, is closed, U, is open and u(U, \ F,) < 1/n.

Let B=U,F, € F, and C :=NU,, € 75. Then A C B C C and

,u(C’\A)§u(Fn\Un)<%H0aanoo.

. From Item 1, one easily concludes that

w(B)=inf {p(U): BCU C, X}
for all B € Bx and
w(B) =sup{u(K): K CC B}

for all B € Bx with u(B) < oo. So now suppose B € Bx and p(B) = oc.
Using the notation at the end of the proof of Item 1., we have p(F') = oo and
w(FNKy) T ooasn — oo, This shows sup {u(K) : K CC B} = 0o = u(B)
as desired.

. For U C, X, let

v(U) :=sup{l,.(f): f < U}.

It is evident that v(U) < u(U) because f < U implies f < 1y. Let K be a
compact subset of U. By Urysohn’s Lemma 8.15, there exists f < U such that
f =1 on K. Therefore,

(11.22) W) < [ fdu < u0)
X
and we have
(11.23) w(K) <v(U) <wuU) forallU c, X and K CC U.
By Item 3.,

w(U) =sup{u(K) : KCC U} < v(U) < u(U)
which shows that u(U) = v(U), i.e. Eq. (11.19) holds.

5. Now suppose K is a compact subset of X. From Eq. (11.22),

u(K) < inf{1,(f) 1 < f < X} < p(U)

for any open subset U such that K C U. Consequently by Eq. (11.17),
p(K) <inf{I,(f) :1xg < f < X} <inf{u(U) : K CU C, X} = pu(K)
which proves Eq. (11.20).

6. For f € C.(X,R),

(11.24) L(f)] < /X (Fldp < |Ifll, 1(supp(£)) < [IF]l, 1(X)



REAL ANALYSIS LECTURE NOTES 227

which shows [|1,,]] < u(X). Let K CC X and f < X such that f =1 on K.
By Eq. (11.22),

(K S/ fdp = L(F) < Ll £l = [[ 2l
X
and therefore,
u(X) = sup{u(K) : K CC X} <[]

7. This has already been proved by two methods in Proposition 9.6 but we will
give yet another proof here. When p = 1 and g € L (y; R), there exists, by Eq.
(11.13), h € Sy = Cc(X,R)y such that g < hand ||h — g, = [ (h—g)du < €.
Let {h,},-, CS = C.(X,R) be chosen so that h,, T h asn — oo. Then by the
dominated convergence theorem (notice that |h,| < |hi| + |h|), ||hn — gll; —
IIh —gl|l; < € as n — oo. Therefore for n large we have h,, € C.(X,R) with

1

lhn — gl|; < €. Since € > 0 is arbitrary this shows, Sf(A, ,u)L W_p (1).

Now suppose p > 1, g € LP(i;R) and {K,},., are as above. By the
dominated convergence theorem, 1, (g An)V (—n) — gin LP(i) as n — oo,
so it suffices to consider g € LP(y;R) with supp(g) C K, and |g| < n for
some large n € N. By Holder’s inequality, such a g is in L*(p). So if € > 0, by
the p = 1 case, there exists h € S such that ||k — g||; < €. By replacing h by
(h An)V (—n) € S, we may assume h is bounded by n in which case

1= gl :/ \h—gl”du:/ Ih— gl |h — g du
X X

< @ny" ! / Ih— gldu < (2n)" e
X

Since € > 0 was arbitrary, this shows S is dense in LP(yu; R).
]

Remark 11.31. We may give a direct proof of the fact that ; — I, is injective. In-
deed, suppose p, v € M satisfy I,,(f) = I,(f) for all f € C.(X,R). By Proposition
9.6, if A € Bx is a set such that u(A4)+v(A4) < oo, there exists f,, € C.(X,R) such
that f,, — 14 in L*(pu+ v). Since f,, — 14 in L'(u) and L' (v),
p(A) = i Tu(f) = Jim 1,() = ().
For general A € Bx, choose compact subsets K,, C X such that K, T X. Then
w(A) = lim pu(ANK,)= lim v(ANnK,)=v(A)

showing p = v. Therefore the map p — I, is injective.

Theorem 11.32 (Lusin’s Theorem). Suppose (X, T) is a locally compact and sec-
ond countable Hausdorff space, Bx is the Borel o — algebra on X, and p is a
measure on (X, Bx) which is finite on compact sets of X. Also let € > 0 be given. If
f: X — C is a measurable function such that u(f # 0) < oo, there exists a compact
set K C {f # 0} such that f|x is continuous and pu({f # 0} \ K) < e. Moreover
there exists ¢ € C.(X) such that u(f # ¢) < € and if f is bounded the function ¢
may be chosen so that ||¢[|, < ||f]l, := sup.ex | f(x)].

Proof. Suppose first that f is bounded, in which case
1< 15 #0) < o
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By Proposition 9.6 or Item 7. of Theorem 11.30, there exists f,, € C.(X) such that
fn — fin L'(p) as n — oo. By passing to a subsequence if necessary, we may
assume [|f — f,|l; < en™'27" for all n and thus p (|f — fu| > n™') < €27 for all
n. Let E:= U2, {|f — ful >n7'}, so that u(E) <e. On E°, |f — fu| < 1/n, ie.
frn — f uniformly on E° and hence f|ge is continuous.

Let A :={/f #0} \ E. By Theorem 11.30 (or see Exercises 6.4 and 6.5) there
exists a compact set K and open set V such that K C A C V such that p(V\K) < e.
Notice that

u({f # 03\ K) < p(A\ K) + p(E) < 2e.

By the Tietze extension Theorem 8.16, there exists F' € C'(X) such that f = F|k.
By Urysohn’s Lemma 8.15 there exists ¢ < V such that ¥» =1 on K. So letting ¢ =
VF € Ce(X), we have ¢ = f on K, ||¢[|, < [|f||, and since {¢ # f} C EU(V'\ K),
(¢ # f) < 3e. This proves the assertions in the theorem when f is bounded.

Suppose that f : X — C is (possibly) unbounded. By Lemmas 8.17 and 8.10,
there exists compact sets { Ky }x_, of X such that K T X. Hence By := Ky N
{0<|f| <N} 1T{f+#0} as N — oo. Therefore if € > 0 is given there exists an N
such that p({f # 0} \ By) < . We now apply what we have just proved to 1p,, f to
find a compact set K C {1p, f # 0}, and openset V C X and ¢ € C.(V) C C.(X)
such that u(V\ K) <e, u({1yf #0}\ K) < € and ¢ = f on K. The proof is now
complete since

{07 fi c{f 70\ By)U({1layf# 0} \ K)U(V\ K)

so that pu(¢ # f) < 3e. m

To illustrate Theorem 11.32, suppose that X = (0,1), 4 = m is Lebesgue measure
and f = 1(g,1)nq- Then Lusin’s theorem asserts for any € > 0 there exists a compact
set K C (0,1) such that m((0,1)\K) < e and f|x is continuous. To see this directly,
let {r,},~, be an enumeration of the rationales in (0, 1),

Tn = (rn — €27, ry +€277) N(0,1) and W = UpZ, .

Then W is an open subset of X and (W) < e. Therefore K, :== [1/n,1—1/n]\ W
is a compact subset of X and m(X \ K,,) < 2 + pu(W). Taking n sufficiently large
we have m(X \ K,,) < € and f|g, =0 is continuous.

11.4.1. The Riemann — Stieljtes — Lebesque Integral.

Notation 11.33. Given an increasing function F' : R —R, let F(z—) =
limy, F(y), F(z+) = limy , F(y) and F(+o0) = lim, 400 F(z) € R. Since F
is increasing all of theses limits exists.

Theorem 11.34. Let F: R — R be increasing and define G(x) = F(x+). Then

1. The function G is increasing and right continuous.
2. Forz € R, G(z) = limy |, F(y—).
3. The set {x € R : F(z+) > F(x—)} is countable and for each N > 0, and

(11.25) > [F(a+) — F(z—)] < F(N) = F(=N) < o.
z€(—N,N]

Proof.
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1. The following observation shows G is increasing: if x < y then
(11.26)  F(z—) < F(z) < F(z+4) = G(z) < F(y—) < F(y) < F(y+) = G(y)-
Since G is increasing, G(z) < G(z+). If y > x then G(z+) < F(y) and hence
G(z+) < F(z+) = G(2), i.e. G(z+) = G(z).
2. Since G(z) < F(y—) < F(y) for all y > z, it follows that

G(z) <lim F(y-) <lim F(y) = G(z)
ylx ylx
showing G(x) = lim,|, F(y—).
3. By Eq. (11.26), if  # y then
(F(z=), F(z+)] N (F(y=), Fy+)] = 0.
Therefore, {(F(x—), F(z+)]},cr are disjoint possible empty intervals in R.
Let N € Nand a CC (=N, N) be a finite set, then
[T (F =), Fla)] € (F(=N), F(N)]
TEQ

and therefore,

> [F(z+) — F(z—)] < F(N) = F(—=N) < 0.

rTEQ

Since this is true for all « CC (=N, N], Eq. (11.25) holds. Eq. (11.25) shows
I'y:={xz € (—N,N)|F(z+) — F(x—) > 0}
is countable and hence so is
I'={z eR|F(z+) — F(z—) >0} = Ux¥_T'n.
|

Theorem 11.35. If F' : R — R is an increasing function, there exists a unique
measure = pp on Br such that

(11.27) / fdF = / fdu for all f € C.(R,R).

—00 R
This measure may also be characterized as the unique measure on By such that
(11.28) p((a,b]) = F(b+) — F(a+) for all —oco < a<b< occ.

Moreover, if A € By then

MF(A) = inf {Z(F(bff’) - F(aﬁ—)) A C U;’il(ai, bz}}

= inf {Z(F(bmt) — Fla;+)): AC H(ai, bi]} .

Proof. An application of Theorem 11.30 implies there exists a unique measure
p on Br such Eq. (11.27) is valid. Let —oo < a < b < 00, € > 0 be small and
¢c(x) be the function defined in Figure 28, i.e. ¢ is one on [a + 2¢,b + €], linearly
interpolates to zero on [b+¢€,b+ 2¢] and on [a+ €, a + 2¢] and is zero on (a, b+ 2¢)°.
Since ¢ — 1(4,p) it follows by the dominated convergence theorem that
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On the other hand we have 1(4y2¢ 51 < Pe < l(ayepi2g and therefore,

Flb+€) — Fla+2€) = / LaszensqdF
R

< / P dF < / Liatepr2e)dF = F(b+2¢) — F(a +¢).
R R
Letting € | 0 in this equation and using Eq. (11.29) shows
F(b+) = F(a+) < p((a,b]) < F(b+) — F(a+).

The last assertion in the theorem is now a consequence of Corollary 11.27. m

11.5. Metric space regularity results resisted.

Proposition 11.36. Let (X,d) be a metric space and p be a measure on M = Bx
which is o — finite on T := 14.

1. For all e > 0 and B € M there exists an open set V € 7 and a closed set F
such that F C BCV and u(V\ F) <e.

2. For all B € M, there exists A € F, and C € Gg such that A C B C C and
w(C'\ A) = 0. Here F, denotes the collection of subsets of X which may be
written as a countable union of closed sets and Gs = Ts is the collection of
subsets of X which may be written as a countable intersection of open sets.

3. The space BC¢(X) of bounded continuous functions on X such that u(f #
0) < oo is dense in LP ().

Proof. Let S := BCy(X), I(f) := [y fdu for f € S and X,, € T be chosen
so that u(X,) < cocand X,, T X asn — oco. Then 1A f € Sfor all f € S and
if ¢, = 1A (ndx,cly) € S*, then ¢, T 1 as m — oo and so by Remark 11.23 there
exists x € Sy such that x > 0 on X and I(x) < oo. Similarly if V' € 7, the function
gn = 1A (nd(x,nv)c) €S and g, — 1y as n — oo showing o(S) =Bx. If f, € ST
and f, | 0 as n — oo, it follows by the dominated convergence theorem that
I(f,) | 0 as n — co. So the hypothesis of the Daniell — Stone Theorem 11.22 hold
and hence p is the unique measure on Bx such that I = I,, and for B € Bx and

w(B) = I(1p) = inf {I(f): f €S; with 15 < f}

—inf{/ fdu:feSTwithlggf}.
X
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Suppose € > 0 and B € Bx are given. There exists f, € BC¢(X) such that f, T
[y 1 < f, and pu(f) < u(B) + €. The condition 15 < f, implies 15 < 175513 < f
and hence that
(11.30) u(B) < p(f>1) <p(f) <p(B) +e
Moreover, letting V,,, := US>, {f, >1—1/m} € 74, we have V,, | {f >1} D B
hence u(V,,) | p(f > 1) > u(B) as m — oo. Combining this observation with Eq.
(11.30), we may choose m sufficiently large so that B C V;,, and

(Vi \ B) = Vi) — i(B) < .
Hence there exists V' € 7 such that B C V and p(V '\ B) < e. Applying this result
to B¢ shows there exists F' C X such that B¢ C F° and
B\ F) = pu(F°\ BY) <e.

So we have produced F' C B C V such that u(V\ F) = p(V\ B) + u(B\ F) < 2e.
The second assertion is an easy consequence of the first and the third follows in
similar manner to any of the proofs of Item 7. in Theorem 11.30. m

11.6. Measure on Products of Metric spaces. Let {(X,,dy)}nen be a se-
quence of compact metric spaces, for N € Nlet Xy := H 1 Xpand 7wy X — Xy
be the projection map 7y (x) = z[{1,2,... N} Recall from Exerc1se 3.27 and Ex-

ercise 4.15 that there is a metric d on X := [] X, such that 73 = ®2 74,
neN
(= 7(m, : n € N) — the product topology on X) and X is compact in this topology.

Also recall that compact metric spaces are second countable, Exercise 8.4.

Proposition 11.37. Continuing the notation above, suppose that {jn}ycy are
given probability measures®” on By 1= Bx, satisfying the compatibility conditions,
(7N), s = py for all N < M. Then there exists a unique measure p on Bx =
o(rq) = o(my, : n € N) such that (7n), = pn for all N € N, i.e.

(11.31) / Fr(@))dua / Fw)dun(y

for all N e N and f: Xy — R bounded a measumble.

Proof. An application of the Stone Weierstrass Theorem 9.43 shows that
D={feC(X): f=Fomy with F € C(Xy) and N € N}
is dense in C(X). For f = Fony €D let

I(f) = A Fomy(@)dun(z).

Let us verify that I is well defined. Suppose that f may also be expressed as
f=Gomy with M € Nand G € C(X)y). By interchanging M and N if necessary
we may assume M > N. By the compatibility assumption,

G (2) = [ Fomy@dun@) = [ Fdlm), on]

:/ Fomnduy.
XN

2TA typical example of such measures, p?, is to set p?V = p1 ® -+ ® pny where pp is a
probablity measure on By, for cach n € N.

Xm
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Since |I(f)| < [|f|loos the B.L.T. theorem allows us to extend I uniquely to a
continuous linear functional on C(X) which we still denote by I. Because I was
positive on D, it is easy to check that I is positive on C'(X) as well. So by the Riesz
Theorem 11.30, there exists a probability measure p on Bx such that I(f) = [ fdu

X

for all f € C(X). By the definition of I in now follows that

/Fd(?TN)*/J,: /FO’]TNd,u:I(FOﬂ'N) = /Fd/.LN

XN XN XN
for all F € C(Xy) and N € N. It now follows from Theorem 9.43 or the uniqueness
assertion in the Riesz theorem 11.30 (applied with X replaced by Xy ) that 7y« pu =
pn. H
Corollary 11.38. Keeping the same assumptions from Proposition 11.37. Further

assume, for each n € N, there exists measurable set'Y,, C X,, such that un(Yn) =1
with Yy :=Yy x --- x Yy. Then u(Y) =1 where Y =[]0, Y; C X.

Proof. Since Y = N¥_, 7' (Yn), we have X \ Y = U¥_ 7' (Xn \ Yv) and
therefore,

pX\Y) <> p(ny (XN \YN)) = ) uw (Xn \ Ya) =0.
N=1 N=1

Corollary 11.39. Suppose that {pin}, o are probability measures on Bga for all

neN X:= (Rd)N and B := ®52, (Bga) . Then there exists a unique measure (i
on (X, B) such that

(11.32) /Xf(xl,xg,...,xN)du(a:): / flzy, 9, . oen)dpr (1) ... dun(zy)

for all N € N and bounded measurable functions f : (Rd)N — R.

Proof. Let (Rd)* denote the Alexandrov compactification of R?. Recall form
Exercise 8.11 that (Rd)* is homeomorphic to S9! and hence (Rd)* is a compact
metric space. (Alternatively see Exercise 8.14.) Let ji,, := ispty, = 1, 07! where
i:RY— (Rd)* is the inclusion map. Then fi,, is a probability measure on Bga)
such that g, ({o0}) = 0. An application of Proposition 11.37 and Corollary 11.38
completes the proof. m

Exercise 11.3. Extend Corollary 11.39 to construct arbitrary (not necessarily
countable) products of R<.

11.7. Measures on general infinite product spaces. In this section we drop
the topological assumptions used in the last section.

Proposition 11.40. Let {(X4, Mq, tia) faca be a collection of probability spaces,
that is p1o(Xe) =1 for alla € A. Let X = [] Xa, M =0(ms : « € A) and for

acA
A CC Alet Xp:=[]aep Xa and mp : X — Xy be the projection map ma(x) = x|a

and pp = HaeA Lo be product measure on My := Raecp M. Then there exists a
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unique measure p on M such that (mp), pp = pa for all A CC A, d.e. if f: Xp — R
s a bounded measurable function then

(11.33) [ sa@naua) = [ 1),

Proof. Let S denote the collection of functions f : X — R such that there exists
A CC A and a bounded measurable function F' : X, — R such that f = F o m,.
For f=Fomy €8S, let I(f) = fXA Fduy.

Let us verify that I is well defined. Suppose that f may also be expressed as
f=Gomp withT' CC A and G : X1 — R bounded and measurable. By replacing
I' by TUA if necessary, we may assume that A C I'. Making use of Fubini’s theorem
we learn

G(z) dur(z) = / F o ma(2) djua (2)djira (9)

Xr XAXXF\A

— /XAFowA(x) dpn (z) / dpr\a(y)

Xr\a
= pr\a (Xra) - /

Xa

Fomp(z)dup(xz) = /X Fomp(z)dus(x),
A

wherein we have used the fact that ux(Xx) =1 for all A CC A since pq(Xao) =1

for all &« € A. It is now easy to check that I is a positive linear functional on the

lattice S. We will now show that [ is a Daniel integral.

Suppose that f, € ST is a decreasing sequence such that inf,, I(f,) = € > 0. We
need to show f := lim,,_.oc fy, is not identically zero. As in the proof that I is well
defined, there exits A,, CC A and bounded measurable functions F,, : X5, — [0, 00)
such that A,, is increasing in n and f, = F,, o my, for each n. For k < n, let
FF: X5, —[0,00) be the bounded measurable function

FF(z) = / Fo(z x y)dpp,\a, (V)
XAan\Ay

where x Xy € Xy, is defined by (z x y) (o) = z(a) if & € A and (z X y) () = y(«)
for € A, \ Ag. By convention we set F' = F,,. Since f, is decreasing it follows

that F¥,; < F¥ for all k and n > k and therefore F* := lim,,_,, F¥ exists. By

Fubini’s theorem,
FFz) = / FMY (2 x y)dpa, . \a, (y) when k+1<n
XA \Ag

and hence letting n — oo in this equation shows

(11.34) FF(z) = / FE (@ x y)dpn, \a, ()
XAn\Ag
for all k. Now

/ Fl(:zz)d,uAl (z) = lim F;(:zz)duAl(a:) = lim I(f,) =€¢>0
XAl n—oo

n—oo XAl
so there exists

1 € Xp, such that F! (x1) > €
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From Eq. (11.34) with &k =1 and = = x; it follows that
€< / F?(z1 X y)dpaa, (¥)
Xap\ay

and hence there exists
T3 € Xp,\a, such that FQ(xl X Tg) > €.
Working this way inductively using Eq. (11.34) implies there exists
r; € Xa\A,_, such that F™(zq X x9 X --- X 2,) > €
for all n. Now F}j} > F™ for all £ < n and in particular for £ = n, thus

Fpo(xy X @o X -+ X xy) = Fl (21 X g X -+ X Ty,)
(11.35) > F"(xp XTg X -+ X Tp) > €

for all n. Let x € X be any point such that
A, () =21 X g X -+ X Ty
for all n. From Eq. (11.35) it follows that
falx) =Fpoma, (x) = Fp(zy X 2o X -+ X Tp) > €

for all n and therefore f(z) := lim,— oo frn(x) > € showing f is not zero.
Therefore, I is a Daniel integral and there exists by Theorem 11.30 a unique
measure p on (X, 0(S) = M) such that

I(f) :/ fdu for all f €S.
X
Taking f = 14 o7y in this equation implies
pa(A) = I(f) = pomy ' (A)
and the result is proved. m

Remark 11.41. (Notion of kernel needs more explanation here.) The above theorem
may be Jazzed up as follows. Let {(Xa, Ma)}aca be a collection of measurable
spaces. Suppose for each pair A C I' CC A there is a kernel pp p(z,dy) for x € X,
and y € Xp\, such that if A CT'C K CC A then

pax (T, dy X dz) = pp (v, dy) pr k(v X y, dz).

Then there exists a unique measure p on M such that

/X F(ra () d(z) = / F)dpo A W)

for all A CC A and f: X5 — R bounded and measurable. To prove this assertion,
just use the proof of Proposition 11.40 replacing pip\a (dy) by pa,r(, dy) everywhere
in the proof.
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11.8. Extensions of premeasures to measures II.

Proposition 11.42. Suppose that A C P(X) is an algebra of sets and pu : A —
[0,¢] is a finitely additive measure on A. Then if A, A; € A and A =[] A; we

have =
(11.36) > (A < pu(A).

Proof. Since

(I (1)

we find using the finite additivity of u that

(A) =3 u(Ai) +p (A\ U Ai) > > uAs).

o0
Letting N — oo in this last expression shows that > p(A4;) < p(A). m
i=1
Because of Proposition 11.42, in order to prove that p is a premeasure on A, it
suffices to show p is subadditive on A, namely

(11.37) 1(A) < Zu(Ai)

whenever A = [] A; with A € A and each {4;};°, C A.
i=1

Proposition 11.43. Suppose that £ C P(X) is an elementary family (see Defi-
nition 4.11), A = A(E) and pn : A — [0,00] is an additive measure. Then the
following are equivalent:

1. p is a premeasure on A.

2. p is subadditivity on &, i.e. whenever E € £ is of the form E =[]~ E; € £

with E; € £ then

(11.38) u(E) < ZN(Ei)~

Proof. Item 1. trivially implies item 2. For the converse, it suffices to show,

by Proposition 11.42, that if A = [] A,, with A € A and each A4,, € A then Eq.

n=1
(11.37) holds. To prove this, write A = [[7_, E; with E; € £ and A, = [ En,;
with F, ; € £. Then

o oo N,
Ej=AnE; = [[AnE =[] EninE;
n=1 n=11=1

which is a countable union and hence by assumption,
oo Nn

WE) <D n(EniNE)).

n=1 i=1
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Summing this equation on j and using the additivity of y shows that

n n oo Np oo Nn n
pA) =D "B <IN S p(EninE) =33 > p(Bn N E))
j=1 j=1n=11i=1 n=1 =1 j=1

oo Ny
=22 n(End) =)
as desired. ®m
The following theorem summarizes the results of Proposition 11.2, Proposition

11.43 and Theorem 11.26 above.

Theorem 11.44. Suppose that £ C P(X) is an elementary family and po : € —
[0, 0] is a function.
1. If po is additive on &, then po has a unique extension to a finitely additive
measure jig on A= A(E).
2. If we further assume that g is countably subadditive on &, then ug is a pre-
measure on A.
3. If we further assume that ug is 0 — finite on &£, then there exists a unique
measure v on o(&) such that u|le = po. Moreover, for A € o(€),

w(A) =inf{po(B): AC B € Ay}

=inf{)  po(En) : AC [[ En with E, € £},
n=1 n=1

11.8.1. “Radon” measures on (R,Bg) Rewvisited. Here we will use Theorem 11.44
to give another proof of Theorem 5.8. The main point is to show that to each
right continuous function F' : R — R there exists a unique measure pp such that
pr((a,b]) = F(b) — F(a) for all —0o < a < b < co. We begin by extending F
to a function from R — R by defining F(+00) := lim, .1 F(z). As above let
E={(a,b]NR: —co < a < b< oo} and set pg ((a,b]) = F(b) — F(a) for all a,b € R
with a < b. The proof will be finished by Theorem 11.44 if we can show that pyg is
sub-additive on &£.

First suppose that —oco < a < b < o0, J = (a,b], J, = (an,by] such that
J = 1] Jn. We wish to show

(11.30) M@Siwu

To do this choose numbers @ > a, b, > by, and set [ = (a b € J, Jp = (an,bn] D Jn
and J? = (an,by,). Since I is compact and I € J C U J° there exists N < oo

n=1

such that
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Using the right continuity of F’ and letting a | a in the above inequality shows that

polla,6) = FO) = Flo) < 3o ()

(11.40) = po () + Y po(Jn \ Jn)
n=1 n=1

Given € > 0 we may use the right continuity of F' to choose by, so that
pi0(Jn \ Jn) = F(by) — F(b,) < 27 Vn.
Using this in Eq. (11.40s that

to(J) = po((a,b]) < ZMO (Jn) +€

and since € > 0 we have verified Eq. (11.39).
We have now done the hard work. We still have to check the cases where a = —oco
or b = oo or both. For example, suppose that b = co so that

J = (a,00) = IO_O[ In
n=1
with J,, = (an, b, NR. Then let I := (a, M|, and notice that
Iy=JNIy = ]O_OIJnQIM
n=1
So by what we have already proved,

F(M) = F(a) = po(Iar) <> po(Ju N Iar) <> po( )

Now let M — oo in this last inequality to find that

po((a,00)) = F(00) = F(a) < ) po(Jn)-

The other cases where a = —oo and b € R and a = —oo and b = oo are handled
similarly.
11.9. Supplement: Generalizations of Theorem 11.35 to R".
Theorem 11.45. Let A C P(X) and B C P(Y) be algebras. Suppose that
w:AxB—C
s a function such that for each A € A, the function
BeB—-uAxB)eC
is an additive measure on B and for each B € B, the function
Ac A— u(AxB)eC

is an additive measure on A. Then u extends uniquely to an additive measure on
the product algebra C gemerated by A x B.
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Proof. The collection
E=AxB={AxB:AeAand B € B}

is an elementary family, see Exercise 4.2. Therefore, it suffices to show p is additive
on &. To check this suppose that A x B € £ and

AXB:H(AkXBk)
k=1
with A x By € £. We wish to shows

pL(A X B) = Zﬂ(Ak X Bk)
k=1
For this consider the finite algebras A" C P(A) and B’ C P(B) generated by
{Ar}i_, and {By};_, respectively. Let B C A’ and G C B’ be partition of A and
B respectively as found Proposition 4.18. Then for each k we may write

Ak = H « and Bk = H 6

aEF,aCAp BEG,BC By
Therefore,
Ak x By) = p(Ar x | B) = D n(Ax x B)
BC Bk BC By
=y u(( U a) xB) = > paxp)
BCBk aCAg aCAg,BCBy
so that
Z (A x By) Z Z wla x B) = Z e x B)
k k aCAk,BCBy aCA,BCB
= > (A xp)=u(AxB)
BCB

as desired. m

Proposition 11.46. Suppose that A C P(X) is an algebra and for each t € R,
e+ A — C is a finitely additive measure. Let Y = (u,v] C R be a finite interval
and B C P(Y) denote the algebra generated by € := {(a,b] : (a,b] C Y'}. Then there
is a unique additive measure p on C, the algebra generated by A x B such that

(A x (a,b]) = up(A) — pa(A) V (a,b] € € and A € A.

Proof. By Proposition 11.3, for each A € A, the function (a,b] — (A4 x (a,d])
extends to a unique measure on 3 which we continue to denote by u. Now if B € B,
then B =[], I with I, € £, then

w(A x B) ZquIk

from which we learn that A — u(A x B) is still finitely additive. The proof is
complete with an application of Theorem 11.45. m

For a,b € R", write a < b (a < b) if a; < b; (a; < b;) for all i. For a < b, let (a, b]
denote the half open rectangle:

(a,b] = (a1,b1] X (ag,b2] X -+ X (an, by,
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&=1{(a,b:a<b}U{R"}

and A (R") C P(R™) denote the algebra generated by £. Suppose that F': R” — C
is a function, we wish to define a finitely additive complex valued measure pp on
A(R™) associated to F. Intuitively the definition is to be

nr((a. b)) —/(ab] F(dty,dty, ... dty,)
—/( , (0102 ... 0 F) (t1,ta, ... ty)dty, dta, ... dt,
N /( i (0102 .. Opa F) (tr,ta, o )| Zon dty, dta, . dia,
where ’
(a,b] = (ay,b1] X (ag,ba] X -+ X (Gn_1,bp_1].

Using this expression as motivation we are led to define pr by induction on n. For
n=1,let

pr((a,b]) = F(b) — F(a)

and then inductively using

pr((a,0]) = pre (@ B) [0

Proposition 11.47. The function pup extends uniquely to an additive function on
A(R™). Moreover,
(11.41) ue((a,8) = 37 (<1 F(ay x byo)

ACS
where S ={1,2,...,n} and

N [ oa(@) if ieA

@@ ={ 56 {58

Proof. Both statements of the proof will be by induction. For n = 1 we
have pup((a,b]) = F(b) — F(a) so that Eq. (11.41) holds and we have already
seen that pp extends to a additive measure on A (R). For general n, notice that
AR™) = AR 1) ® A(R). For t € R and A € A(R"™1), let

1243 (A) = MF(-,t)(A)
where fip(. 4) is defined by the induction hypothesis. Then
pp(A X (a,b]) = p(A) — pa(A)

and by Proposition 11.46 has a unique extension to A(R" ') ® A(R) as a finitely
additive measure.
For n =1, Eq. (11.41) says that

pr((a,b]) = F(b) = F(a)

where the first term corresponds to A = ) and second to A = {1}. This agrees with
the definition of up for n = 1. Now for the induction step. Let T'= {1,2,...,n—1}



240 BRUCE K. DRIVER'

and suppose that a,b € R", then
IJ‘F((avb]) = HF( t)((a’ bD t= a“

— § : DIMF(an x bae,t)[i=0
ACT

=Y (—DMF(@a x bae,b) = > (~1)MF(an x bae, ay)

ACT ACT

= Y (-)MFP(aa xbae)+ Y (—DIMF(ap x bye)

ACS:neAc ACS:neA
ACS

as desired. m

11.10. Exercises.

Exercise 11.4. Let (X, A, 1) be as in Definition 11.4 and Proposition 11.5, Y be a
Banach space and S(Y) := f(X A, 11;Y) be the collection of functions f: X — Y
such that #(f(X)) < oo, f1({y}) € Aforally € Y and u(f =y) < oo if y # 0.
We may define a linear functional I : S(Y) — Y by

= yu(f =)
yey
Verify the following statements.
1. Let || f|l.. = supyex ||f(x)]ly be the sup norm on ¢>(X,Y), then for f €

3

Ay < 1flloe n(f #0).
Hence if pu(X) < oo, I extends to a bounded linear transformation from
S(Y) c£°(X,Y) to Y.
2. Assuming (X, A, p1) satisfies the hypothesis in Exercise 11.1, then C(X,Y) C

S(Y).

3. Now assume the notation in Section 11.4.1, ie. X = [-M,M] for some
M € R and pu is determined by an increasing function F. Let m = {-M =
to < t1 < --- <t, = M} denote a partition of J := [—M, M] along with a

choice ¢; € [t;,tiy1] fori =0,1,2... ,n—1. For f € C([-M, M],Y), set

n—1
.fﬂ' = f(co)]-[to,tl] + Z f(ci)l(ti,twl]'
=1
Show that f; € S and

If — fzll7 — 0 as |7| = max{(ti+1 —t;) : ¢ =0,1,2... ,n—1} — 0.
Conclude from this that

= lim Zf ¢i)(F(tiy1) — F(t:)).

‘w‘—>0
As usual we will write this integral as f;M fdF and as fi\fu f(t)dt if F(t) =
Exercise 11.5. Folland problem 1.28.
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Exercise 11.6. Suppose that F' € C*(R) is an increasing function and ur is the
unique Borel measure on R such that pp ((a,b]) = F(b) — F(a) for all a < b. Show
that dup = pdm for some function p > 0. Find p explicitly in terms of F.

Exercise 11.7. Suppose that F(z) = el,>3 + ml;>7 and pp is the is the unique
Borel measure on R such that pp ((a,b]) = F(b) — F(a) for all @ < b. Give an
explicit description of the measure pp.

Exercise 11.8. Let E € Bg with m(E) > 0. Then for any a € (0,1) there exists
an open interval J C R such that m(E N J) > am(J). Hints: 1. Reduce to the
case where m(E) € (0,00). 2) Approximate E from the outside by an open set
V C R. 3. Make use of Exercise 3.43, which states that V may be written as a
disjoint union of open intervals.

11.10.1. The Laws of Large Number Exercises. For the rest of the problems of this
section, let v be a probability measure on Bg such that [, |z|dv(z) < oo, pn :=v
for n € N and p denote the infinite product measure as constructed in Corollary
11.39. So p is the unique measure on (X := RY B := Bgx) such that

(11.42) /Xf(xl,xg,...,xN)d,u(x):/f(xl,xg,...,xN)dy(xl)...du(acN)

for all N € N and bounded measurable functions f : RV — R. We will also use the
following notation:

Sp(z) = % Zxk for v € X,
k=1

m:i= / xdv(z) the average of v and
R

o? = /(x — m)?dy(x) the variance of v.
R

The variance may also be written as 02 = Je 22dv(x) — m2.

Exercise 11.9 (Weak Law of Large Numbers). Suppose further that o2

show [y Sndp =m,

< 00,

o2

1, — mf% = / (S —m)dp ="
X

n
and,u(\Snfm\>e)§g—;foralle>0andn€N.

Exercise 11.10 (A simple form of the Strong Law of Large Numbers). Suppose now
that v := [, 2*du(z) < oo, show for all € > 0 and n € N that

||Sﬂ - m”i = / (Sn - m)4 d,u = 7172 [3 (]. — nfl) 0'4 + nil’y] and
X

3 (1 — nfl) ot + n*IW
€tn? '

(1S, —ml| > ¢) <

Conclude from the last estimate and the first Borel Cantelli Lemma 5.22 that
lim,, oo Sp () =m for p — ae. z € X.
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Exercise 11.11. Suppose m # 0 and again assume 7y := fR x*du(z) < oo. For
A € Rlet Ty : RN — RN be defined by T\ (x) = (A1, ATa, ..., ATny, ... ), i = /wT/\_1
and

1 mn
Xy = Ny lim = P =
A zeR nh_)Irgoan] A
j=1
Show
1 if A=N
/J)\(X)\/) = 6)\7)\/ = { 0 1f )\ 7§ )\/
and use this to show if A # 0, that duy # pdu for any measurable function p :
RY — [0, 00].
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12. DANIELL INTEGRAL PROOFS

(This section follows the exposition in Royden and Loomis.) In this section we
let X be a given set. We will be interested in certain spaces of extended real valued
functions f : X — R on X.

Convention: Given functions f,g : X — R, let f + g denote the collection of
functions h : X — R such that h(x) = f(x) + g(z) for all  for which f(z) + g(x)
is well defined, i.e. not of the form co — co. For example, if X = {1,2,3} and
f(1) = o0, f(2) = 2 and f(3) = 5 and ¢g(1) = g(2) = —oo and ¢(3) = 4, then
h e f+giff h(2) = —oco and h(3) = 7. The value h(1) may be chosen freely. More
generally if a,b € R and f,g : X — R we will write af + bg for the collection
of functions h : X — R such that h(x) = af(x) + bg(z) for those * € X where
af(x)+ bg(x) is well defined with the values of h(z) at the remaining points being
arbitrary. It will also be useful to have some explicit representatives for af + bg
which we define, for o € R, by

« otherwise.

(12.1) (af + bg)a(z) = { af(x) + bg(x) when defined

We will make use of this definition with o« = 0 and o = oo below.

Definition 12.1. A set, L, of extended real valued functions on X is an extended
vector space (or a vector space for short) if L is closed under scalar multiplication
and addition in the following sense: if f,g € L and A\ € R then (f + Ag) C L. A
vector space L is said to be an extended lattice (or a lattice for short) if it is
also closed under the lattice operations; fV g = max(f,g) and f A g = min(f,g).
A linear functional [ on L is a function I : L — R such that

(12.2) I(f +X\g) = I(f) + M(g) for all f,g € L and A € R.

Eq. (12.2) is to be interpreted as I(h) = I(f) + M(g) for all h € (f + Ag), and
in particular I is required to take the same value on all members of (f + Ag). A
linear functional I is positive if I(f) > 0 when f € L*, where L™ denotes the
non-negative elements of L as in Notation 11.13.

Remark 12.2. Notice that an extended lattice L is closed under the absolute value
operation since |f| = fVO0— fAQ0 = fV (—f). Also if I is positive on L then
I(f) < I(g) when f,g € L and f < g. Indeed, f < g implies (g — f), > 0, so
0=1(0) =I((g — f)o) = 1(9) — I(f) and hence I(f) < I(g).

In the remainder of this chapter we fix a lattice, S, of bounded functions, f :
X — R, and a positive linear functional I : S — R satisfying Property (D) of
Definition 11.15.

12.1. Extension of Integrals.

Proposition 12.3. The set S; and the extension of I to Sy in Definition 11.20
satisfies:

1. (Monotonicity) I(f) <1(g) if f,g € Sy with f <g.

2. Sy is closed under the lattice operations, i.e. if f,g € Sy then f Ag € S; and
f Vg € S;. Moreover, if I(f) < oo and I(g) < oo, then I(fV g) < oo and
I(f Ng) < 0.

3. (Positive Linearity) I (f + Ag) = I(f)+ M(g) for all f,g € S; and X > 0.
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4. f e S}F iff there exists ¢y, € ST such that f = Y 0" | ¢n. Moreover, I(f) =
Zm:l I(q,)nz) oo oo
5 If fn € S}", then Y " fn=:f¢€ S}" and I(f)=>,"11(fn).
Remark 12.4. Similar results hold for the extension of I to S| in Definition 11.21.

Proof.

1. Monotonicity follows directly from Lemma 11.19.

2. If f.,g9n €S are chosen so that f,, T f and g, T ¢, then f, Ag, T f A g and
fuVan 1 fVg. If we further assume that I(g) < oo, then f A g < g and hence
I(f ANg) < I(g) < co. In particular it follows that I(f A 0) € (—o0,0] for all
f € S4. Combining this with the identity,

I(f)=1(fANO+fVO)=TI(fA0)+I(fVO),
shows I(f) < oo iff I(fV0) < 00. Since fVg < fVO+gVO0,if both I(f) < co
and I(g) < oo then
I(fvg) <I(fv0)+1(gVv0)< .

3. Let fn,gn € S be chosen so that f,, T f and g, T g, then (fn, + Agn) T (f + Ag)

and therefore
I(f+Xg) = lim I(fy+Aga) = lim I(f,) + A lim I(g,)
=I(f)+ M (g).

4. Let f € S}F and f,, € S be chosen so that f,, T f. By replacing f,, by f,, VO

if necessary we may assume that f,, € ST. Now set ¢, = fr — fu_1 € S for
n =1,2,3,... with the convention that fo =0 € S. Then > >~ | ¢, = f and

n—oo n—00

I(f) = lim I(fa) = lm I} ¢m) = lm D I(m) = D I(¢m)-

m=1 m=1

Conversely, if f = > 7" | ¢, with ¢, € ST, then f,, == Y0 ¢ 1 f as
n — oo and f, € St.
5. Using Item 4., f,, = > o) ¢y m With ¢y, ,,, € ST. Thus

=300 bnm=Jim D bumeS

n=1m=1 m,n<N

and

I(f) = Jim IC Y bnm)= lim > I(¢nm)

m,n<N m,n<N
n=1m=1 n=1

L]
Definition 12.5. Given an arbitrary function g : X — R, let
I(g) =inf{I(f): g < f€S;} €Rand

I(g) =sup{I(f):S; > f<g} eR.

with the convention that sup () = —co and inf () = +oco.
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Proposition 12.6. Given functions f,g: X — R, then:
1. I(\f) = M (f) for all X > 0.
2. (Chebyshev’s Inequality.) Suppose f : X — [0,00] is a function and o €
(0, 00), then I_(l{fza}) < 1I(f) and if I(f) < oo then I_(l{f=oo}) =0.
3. I is subadditive, i.e. if I(f) + I(g) is not of the form oo — o0 or —oo + oo,
then

(12.3) I(f+g) < I(f) + I(g).

This inequality is to be interpreted to mean,
I(h) < I(f) + I(g) for all h & (f +g).

I(—g) = —I(g).

I(g) <I(g9). _ B

If f < g then T(f) < I(g) and I(f) < I(g). )

Ifge St and I(g) < 00 or g €S| and I(g) > —oo then I(g) = I(g) = I(g).

Proof.
1. Suppose that A > 0 (the A = 0 case being trivial), then

IAf)=inf {I(h) : A\f <heS;} =inf {I(h): f <X 'he S}
=inf {I(Ag): f < g €S} =Ainf{I(g): f < g €St} = N(f).
2. For a € (0,00), alys>qy < f and therefore,

al(lij>ay) = I(alirsay) < I(f).
Since Nl{j—o) < f for all N € (0, 00),

NI(1{=ocy) = I(N1gp=cc}) < I(f).

So if I(f) < oo, this inequality implies I (1{f=cc}) = 0 because N is arbitrary.
3. If I(f)+1(g) = oo the inequality is trivial so we may assume that I(f), I(g) €

[—00,00). If I(f) + I(g) = —oo then we may assume, by interchanging f and

g if necessary, that I(f) = —oo and I(g) < oco. By definition of I, there exists

fn € Sy and g, € Sy such that f < f,, and g < g,, and I(f,) | —oo and

I(gy) | I(g). Since f+g < fn+gn €Sy, (ie. h < fr+gn forall h € (f +g)

which holds because f,, g, > —o0) and

I(fn +gn) :I(fn) +I(gn) l 700"’[(9) = —00,
it follows that I(f+g) = —oo, i.e. I(h) = —oco for all h € f+g. Henceforth we
may assume I(f), I(g) € R. Let k € (f +g)and f < h; € S;and g < hy € Sy,
Then k < hy + hy € Sy because if (for example) f(z) = oo and g(x) = —o0,
then hy(z) = oo and hg(x) > —oo since hy € Sy. Thus hy(z) + ho(x) = 00 >
k(xz) no matter the value of k(x). It now follows from the definitions that

I(k) < I(hy) + I(hg) for all f < hy €S; and g < hg € S;. Therefore,
f(k) < Hlf{](h1) +I(h2) cf<h € ST and g < ho GST}
=I(f)+1(g)

and since k € (f + g) is arbitrary we have proven Eq. (12.3).
4. From the definitions and Exercise 11.2,

I(—g) =sup {I(f): f < —g &S} =sup{I(f):9 <—feSi}
=sup{I(~h):g<heS;}=—inf{I(h):g<heS;}=-I(g).

N oot
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5. The assertion is trivially true if I(g) = I(g) = oo or I(g) = I(g) = —oc. So
we now assume that I(g) and I(g) are not both co or —oc. Since 0 € (g — g)
and I(g — g) < I(g) + I(—g) (by Item 1),

0=100) < I(g)+ I(—g) = I(g) — L(9)

provided the right side is well defined which it is by assumption. So again we
deduce that I(g) < I(g).
6. If f < g then

I(f) = inf {I(h): f <h €S} <imf{I(h): g < heS;} = I(g)
and
I(f) =sup{I(h) : S > h < f} <sup{I(h):S; >h<g}=1(g).
7. Let g € S; with I(g) < oo and choose g,, € S such that g,, | g. Then
I(9) > I(g9) > I(gn) — I(g) as n — oo.
Combining this with
I(g) =inf{I(f): g < feSi}=1(g)

shows

I(9) > I(g) > I(g) = I(9)

and hence I(g) = I(g) = I(g). If g € S| and I(g) > —oo, then by what we
have just proved,

I(~g) =I(~g) = I(~g).
This finishes the proof since I(—g) = —I(g) and I(—g) = —1I(g).
L]

Lemma 12.7. Let f, : X — [0,00] be a sequence of functions and F := 37" | fp.
Then

(12.4) IF) =10 fa) <> I(fn)
n=1 n=1
Proof. Suppose > 7, I(f,) < oo, for otherwise the result is trivial. Let € > 0
be given and choose g, € S}F such that f, < g, and I(gn) = I( fn) + €y, where
Za 1 €n < €. (For example take €, < 27"¢.) Then Y~ g, = G € S"TF, F<@G
and so

o0

I(F) < I(G ngn =D (I(fa) +€n) <D I(fn) +
= n=1

n=1

Since € > 0 is arbitrary, the proof is complete. m

Definition 12.8. A function g : X — R is integrable if I(g) = I(g) € R. Let
LI(I)::{g:XHR:l() I(g ER}

and for g € L'(I), let I(g) denote the common value I(g) = I(g).
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Remark 12.9. A function g : X — R is integrable iff there exists f € S;NLY(I) and
h € Sy N LY(I)?® such that f < g < h and I(h — f) < e. Indeed if g is integrable,
then I(g) = I(g) and there exists f € S| N L'(I) and h € S; N L*(I) such that
f<g<hand0<I(g9)—I(f) <e€/2and 0 < I(h)—I(g) < €/2. Adding these
two inequalities implies 0 < I'(h) — I(f) = I(h — f) < e. Conversely, if there exists
feS, NLYI)and h € Sy N LY(I) such that f < g < h and I(h — f) <€, then

I(f) = I(f) < I(g) < I(h) = I(h) and
I(f) = I(f) < I(g) < I(h) = I(h)

/\\_/

<
<

and therefore
0<I(9) —L(g) <I(h) —I(f) =I(h—f) <e
Since € > 0 is arbitrary, this shows I(g) = I(g).

Proposition 12.10. The space L'(I) is an extended lattice and I : L'(I) — R is
linear in the sense of Definition 12.1.

Proof. Let us begin by showing that L'(I) is a vector space. Suppose that
91,92 € L'(I), and g € (g1 + g2). Given € > 0 there exists f; € S; N L'(I) and
h; € Sy N LY(I) such that f; < g; < h; and I(h; — fi) < €/2. Let us now show

(12.5) filx) + fa(z) < g(z) < hy(z) + ha(z) Vo € X.

)
This is clear at points € X where g1(z) + g2(z) is well defined. The other case to
consider is where ¢;(z) = 0o = —ga(x) in which case hy(x) = 0o and fao(x) = —00
while , hg(z) > —oo and fi(x) < oo because hy € S; and f; € S|. Therefore,
fi(z) + fo(x) = —oo and hy(x) + he(z) = oo so that Eq. (12.5) is valid no matter
how g(z) is chosen.
Since f1 + fo € Si OLI(I) hi+ ho € ST ﬁLl(I) and

1(g:) < I(fi) + /2 and — /2 + I(h;) < 1(g2),

we find
1(g1) + I(g2) — € < I(f1) + I(f2) = I(f1 + f2) < L(g) < I(g)
< I(hy + he) = I(hn) + I(ha) < I(g1) + 1(g2) +
Because € > 0 is arbitrary, we have shown that g € L(I) and I(g1) + I(g2) = I(g),

Le. I(g1 +g2) = 1(g1) + 1(g2).

It is a simple matter to show Ag € L*(I) and I(A\g) = M (g) for all g € L'(I) and
A € R. For example if A = —1 (the most interesting case), choose f € S| N L(I)
and h € Sy N LY(I) such that f < g < h and I(h — f) < e. Therefore,

S NLYI) > -h< —g< —feS;NLY)
with I(—f — (—=h)) = I(h — f) < € and this shows that —g € L*(I) and I(—g) =

—1I(g). We have now shown that L!(I) is a vector space of extended real valued
functions and I : L' (I) — R is linear.

To show L'(I) is a lattice, let g1,90 € L'(I) and f; € S, N L*(I) and h; €
Sy N LY(I) such that f; < g; < h; and I(h; — f;) < €/2 as above. Then using
Proposition 12.3 and Remark 12.4,

SINLYI) 2> finfa<gi Aga < hi Ahy €Sy NLYI).

28Equivalently, f € S| with I{(f) > —oo and h € S; with I(h) < co.
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Moreover,
0<hiAhe— fiAfa<hy— fi+he— fa,
because, for example, if hy A ho = hy and f; A fo = f5 then
hi Nhg — fi A fa=h1 — fa < hg — fo.
Therefore,
I(haNha—fiNfa) <T(h1— fi+ha— f2) <e
and hence by Remark 12.9, g1 A g2 € L*(I). Similarly
0 < hiVhy — fiVfa < h1 — f1 + ha — fo,
because, for example, if h;Vhe = hy and f1V fo = fo then
hiVha — fiVfa = h1 — fo < hi — f1.
Therefore,
I(hyVhy — fiVfa) < I (hy — fi+hy — f2) <e€
and hence by Remark 12.9, g;Vgs € LY(I). m

Theorem 12.11 (Monotone convergence theorem). If f, € L'(I) and f, T f,
then f € LYI) iff lim, oo I[(f,) = sup, I(fn) < oo in which case I(f) =

1y, o0 1 (fr).

Proof. If f € L(I), then by monotonicity I(f,) < I(f) for all n and therefore
limy, o0 1(fn) < I(f) < oco. Conversely, suppose £ := lim, o0 I(f,,) < oo and let
g:= >0 (fu+1 — fu)o. The reader should check that f < (fi + g)eo € (f1 +9).
So by Lemma 12.7,

1() < I(f1 + 9)e0) < 1(1) +1(9)
<I(f) + > T ((farr = fudo) = Z (frgr —
n=1 n=1
(12.6) =100+ () = 1(£)| = I(R) + €~ 1(£) =

Il
—

Because f,, < f, it follows that I (fn) = L(fn) < I(f) which upon passing to limit
implies ¢ < I(f). This inequality and the one in Eq. (12.6) shows I(f) < ¢ < I(f)
and therefore, f € L'(I) and I(f) = £ =limy,_.co I(fn). W

Lemma 12.12 (Fatou’s Lemma). Suppose {f,} C [L* (I)]+, then inf f,, € L'(I).
If liminf,_ f(fn) < 00, then liminf, o fn, € LY (I) and in this case

I(liminf f,,) < liminf I(f,).

Proof. Let g := fi A--- A fr € L*(I), then gi | g := inf,, f,,. Since —gi T —g,
—gr € LY(I) for all k and I(—g;) < I(0) = 0, it follow from Theorem 12.11 that
—g € L'(I) and hence so is inf,, f,, = g € L(I).

By what we have just proved, uy := inf,> f, € L'(I) for all k. Notice that
wg T liminf,_ o fn, and by monotonicity that I (ug) < I (fx) for all k. Therefore,

klirn I(uy) = likminff(uk) < likrninff(fn) < 00
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and by the monotone convergence Theorem 12.11, liminf, .. fr = limg_,o0 up €
LY(I) and

I(hmlnf fn) = hm I(uk) < hrnlnf[(fn)

n—oo n—00

[

Before stating the dominated convergence theorem, it is helpful to remove some
of the annoyances of dealing with extended real valued functions. As we have
done when studying integrals associated to a measure, we can do this by modifying
integrable functions by a “null” function.

Definition 12.13. A function n : X — R is a null function if I(|n|) = 0. A
subset E' C X is said to be a null set if 1 is a null function. Given two functions
fi0: X — R we will write f = g a.e. if {f # g} is a null set.

Here are some basic properties of null functions and null sets.

Proposition 12.14. Suppose that n: X — R is a null function and f : X — R is
an arbitrary function. Then

n e LYI) and I(n) = 0.

The function n - f is a null function.

The set {x € X : n(z) # 0} is a null set.

If E is a null set and f € L'(I), then 1g-f € Ll( ) a f(f) = IA(lELf)
Ifge LV(I) and f = g a.e. then f € L'(I) and I(f) = I(g

If f € LY(1), then {|f| = oo} is a null set.

S AN S

Proof.

1. If n is null, using +n < |n| we find I(£n) < I(Jn]) = 0, i.e. I(n) < 0 and
—I(n) = I(—n) < 0. Thus it follows that I(n) < 0 < I( ) and therefore
n € L*(I) with I (n) = 0.

2. Since |n-f| < oo |n|, I(|n-f|]) < I(co-|n|). For k € N, k|n| € L'(I)
and I(k|n|) = kI(Jn|) = 0, so k|n| is a null function. By the monotone
convergence Theorem 12.11 and the fact k|n| | oo - |n| € L*(I) as k 1 oo,
I(co-|n|) = limg_oo I (k|n|) = 0. Therefore oo - |n| is a null function and
hence sois n - f.

3. Since 1y,20p < 00 - 120y = 00 - |nf, I_(l{n#o}) < I(oco-|n|) = 0 showing
{n # 0} is a null set.

4. Since 1pf € L'(I) and I (15f) =0,

flge =(f —1gf)o € (f — 1gf) C L'(1)
and [(flge) = I(f) = I(1af) = 1(f).

5. Letting E be the null set {f # g}, then 1gcf = 1geg € L*(I) and 1gf is a
null function and therefore, f = 1gf + 1gcf € L*(I) and

I(f) =1(gf) + I(flge) = I(1pe f) = I(1geg) = 1(g).

6. By Proposition 12.10, |f| € L(I) and so by Chebyshev’s inequality (Item 2
of Proposition 12.6), {\f\ oo} is a null set.
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Theorem 12.15 (Dominated Convergence Theorem). Suppose that {f, : n € N} C
LY(I) such that f := lim f,, exits pointwise and there exists g € L*(I) such that
|fnl < g for alln. Then f € L*(I) and

lim I(f,)=1I(lim f,)=1I(f).
Proof. By Proposition 12.14, the set E := {g = oo} is a null set and j(lEc fn) =
I(f,) and I(1gcg) = I(g). Since
I(1ge(g + fn)) < 20(1geg) = 21(g) < o0,
we may apply Fatou’s Lemma 12.12 to find 1g (g & f) € L*(I) and
I(1pe (9% ) < liminf I(1pe (9% f2))

— liminf {f(lEcg) + f(lchn)} — liminf {f(g) + f(fn)} .

n—oo n—00

Since f = 1gef a.e. and 1gef = 11ge (9+ f — (9 + f)) € L*(I), Proposition 12.14
implies f € L'(I). So the previous inequality may be written as

Ig) £ 1(f) =I(1geg) £ I(1pef)

A A liminf,,_, o f(fn)
- I ]. c :l: < I ~
(e (g ) < o)+ { Pt ()
wherein we have used liminf,,_,o.(—a,) = —limsup a,,. These two inequalities im-

ply limsup, . I(f,) < I(f) < liminf,_ o I(f,) which shows that lim I(f,)

exists and is equal to I(f). m

12.2. The Structure of L'(I). Let S| denote the collections of functions f :
X — R for which there exists f, € S; N L*(I) such that f, | f as n — oo and

limy, oo [ (fn) > —oo. Applying the monotone convergence theorem to fi; — fi,, it
follows that f; — f € L'(I) and hence —f € L*(I) so that Sy C L(I).

Lemma 12.16. Let f : X — R be a function. If I(f) € R, then there exists g € S|
such that f < g and I(f) = f(g) (Consequently, n: X — [0,,00) is a positive null
function iff there exists g € Sy such that g > n and I(g) = 0.) Moreover, f € L*(I)
iff there ewists g € S| such that g > f and f =g a.e.

Proof. By definition of I(f) we may choose a sequence of functions g € S; N
LY(I) such that g, > f and I(gx) | I(f). By replacing gi by g1 A- - - Agg if necessary
(g1 A -Agi, € S;NLY(I) by Proposition 12.3), we may assume that gy, is a decreasing
sequence. Then limg .o gr =: g > f and, since limy_, o f(gk) = I(f) > —o0,
g € Sq). By the monotone convergence theorem applied to g; — gk,

(g1 —9) :klijf)lo—f(gl —gr) = 1(g1) — I(f),

so 1(g) = I(f).
Now suppose that f € L'(I), then (g — f)o > 0 and
(g = fo) = 1(9) = 1(f) = 1(g) = I(f) = 0.
Therefore (g — f)o is a null functions and hence so is 0o - (¢ — f)o. Because

Lirzgy = Yp<gy <00 (9 — fo,
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{f # g} is a null set so if f € L*(I) there exists g € S;| such that f = g a.e. The
converse statement has already been proved in Proposition 12.14. m

Proposition 12.17. Suppose that I and S are as above and J is another Daniell
integral on a vector lattice T such that S C T and I = J|s. (We abbreviate this by
writing I C J.) Then L*(I) ¢ LY(J) and I = J on L(I), or in abbreviated form:
if I C J then I C J.

Proof. From the construction of the extensions, it follows that S; C T and the
I = J on S;. Similarly, it follows that S;; C Ty and I=Jon St). From Lemma
12.16 we learn, if n > 0 is an I — null function then there exists g € S;; C Ty such
that n < g and 0 = I(g) = J(g). This shows that n is also a J — null function and in
particular every I — null set is a J — null set. Again by Lemma 12.16, if f € L*(I)
there exists g € Sy C T4 such that {f # g} is an I — null set and hence a J — null
set. So by Proposition 12.14, f € L*(J) and I(f) = I(g9) = J(9) = J(f). =

12.3. Relationship to Measure Theory.

Definition 12.18. A function f : X — [0, 00| is said to measurable if f Ag € L*([)
for all g € L'(I).

Lemma 12.19. The set of non-negative measurable functions is closed under pair-
wise minimums and maximums and pointwise limits.

Proof. Suppose that f,g: X — [0, 00| are measurable functions. The fact that
fAgand fV g are measurable (i.e. (f Ag)Ahand (fVg)Vharein L'(I) for all
h € L*(I)) follows from the identities

(fAg)Nh=FfN(gAh)and (fVg)ANh=(fAR)V(gAh)

and the fact that L!(I) is a lattice. If f,, : X — [0, 00] is a sequence of measurable
functions such that f = lim,_ o f, exists pointwise, then for h € L'(I), we have
h A fn — h A f . By the dominated convergence theorem (using |h A f,| < |h])
it follows that h A f € LY(I). Since h € L(I) is arbitrary we conclude that f is
measurable as well. =

Lemma 12.20. A non-negative function f on X is measurable iff ¢ A f € L*(I)
for all p €S.

Proof. Suppose f : X — [0,00] is a function such that ¢ A f € L1(I) for all
¢ €S and let g € S; N L(I). Choose ¢,, € S such that ¢, | g as n — oo, then
¢n A f € LY(I) and by the monotone convergence Theorem 12.11, ¢, A f T gA f €
L(I). Similarly, using the dominated convergence Theorem 12.15, it follows that
gAfeLYI)for all g € Sy,. Finally for any h € L!(I), there exists g € S| such
that h = g a.e. and hence h A f = g A f a.e. and therefore by Proposition 12.14,
h A f € L*(I). This completes the proof since the converse direction is trivial. m

Definition 12.21. A set A C X is measurable if 14 is measurable and A inte-
grable if 14 € L'(I). Let R denote the collection of measurable subsets of X.

Remark 12.22. Suppose that f > 0, then f € L'(I) iff f is measurable and I(f) <
o0o. Indeed, if f is measurable and I(f) < oo, there exists g € St N L*(I) such that
f < g. Since f is measurable, f = f A g € L'(I). In particular if A € R, then A is
integrable iff I(14) < oo.
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Lemma 12.23. The set R is a ring which is a o — algebra if 1 is measurable.
(Notice that 1 is measurable iff 1 A ¢ € L*(I) for all ¢ € S. This condition is
clearly implied by assuming 1 AN ¢ € S for all ¢ € S. This will be the typical case in
applications.)

Proof. Suppose that A, B € R, then ANB and AUB are in R by Lemma 12.19
because
lanB=1aANlpand laup =14V 1p.
If A € R, then the identities,
1UI?-Q:1A"' = nh—)ngo 1U1'::1A"' and 1020:1141‘- = nh—{lgo ].ﬁ;\}:lAk
along with Lemma 12.19 shows that UZ2 ; A, and N2, Ay are in R as well. Also if
A, B € R and g €S, then
(12.7) gAIap=9gAla—gAlanp+gA0€ L)
showing the A\ B € R as well.2? Thus we have shown that R is a ring. If 1 = 1x
is measurable it follows that X € R and R becomes a 0 — algebra. m
Lemma 12.24 (Chebyshev’s Inequality). Suppose that 1 is measurable.
1. If f € [Ll(I)]+ then, for all @ € R, the set {f > a} is measurable. Moreover,
if a >0 then {f > a} is integrable and f(l{f>a}) < a_lf(f).
2. o(S) C R.
Proof.
1. fa<0,{f>a} =X e Rsince 1 is measurable. So now assume that o > 0.
Ifao=0letg=feL'(I)andifa>0let g =a~'f—(a~"f) AL (Notice that
g is a difference of two L!(I) — functions and hence in L*(I).) The function
g € [Ll(f)]+ has been manufactured so that {g > 0} = {f > a}. Now let
¢n = (ng) N1 € [Ll(I)]+ then ¢, T lifsq) as n — oo showing lyssqy is
measurable and hence that {f > a} is measurable. Finally if a > 0,
L>ap = lpsay A (a7 f) € LHD)
showing the {f > a} is integrable and

j(l{f>a}) = j(]-{f>a} A tf)) < (a7 f) = a ' 1(f).
2. Since f € S; is R measurable by (1) and S =S, — Sy, it follows that any
f €S is R measurable, o(S) C R.
|

Lemma 12.25. Let 1 be measurable. Define g : R — [0,00] by
pr(A) = I(1a) and p(A) = I(14)

Then py are measures on R such that p_ < py and p_(A) = puy(A) whenever
pi4-(A) < oo.

29Indeed, forz € ANB,z € A \ B and & € A%, Eq. (12.7) evaluated at z states, respectively,
that

gANO=gA1—gA1+gANQ,
gNAN1=gAN1—gAO0O+gA0and
gNANO=gA0—gAO0+gAQ,

all of which are true.
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Notice by Remark 12.22 that

(4) = I(1,) if A is integrable

Hy ) = oo if A€ R but A is not integrable.

_ Proof. Since 1y = 0, pu1(#) = 1(0) = 0 and if A, B € R, A C B then i (A) =
I(14) < I(1g) = py(B) and similarly, p_(A) = I(14) < I(1p) = u—_(B). Hence
p+ are monotonic. By Remark 12.22 if py (A) < oo then A is integrable so

Ho(A) = I(La) = F(1a) = I(1a) = s (A).

Now suppose that {E; }Oo C R is a sequence of pairwise disjoint sets and let
E = U2, E; € R If py (B ) = oo for some ¢ then by monotonicity py(E) = oo

as well. If yuy (Ej) < oo for all j then f, := Y7 | 1g, € [Ll(I)]+ with f, T 1&.
Therefore, by the monotone convergence theorem, 1g is integrable iff

dim I(f) = Zu+

in which case 1z € L*(I) and lim, o I(f,) = I(1g) = pi(E). Thus we have
shown that u4 is a measure and p (E) = py(E) whenever py (E) < oo. The fact
the p_ is a measure will be shown in the course of the proof of Theorem 12.28. m

Example 12.26. Suppose X is a set, S = {0} is the trivial vector space and
I(0) = 0. Then clearly T is a Daniel integral,

=+ [ oo if g(z)>0 for some x
Ig) = { 0 if g<0
and similarly,

(g) = —oco if g(z) <0 for some x
g 0 if g>0.

Therefore, L' (I) = {0} and for any A C X we have 14 A0 =0 € S so that R = 2.
Since 14 ¢ L'(I) = {0} unless A = () set, the measure . in Lemma 12.25 is given
by p+(A) =00 if A# 0 and py(0) =0, i.e. puy(A) = 1I(14) while u_ =0.

Lemma 12.27. For A € R, let
a(A) :=sup{p4+(B) : BER, B C A and u4+(B) < oo},

then o is a measure on R such that a(A) =
is any measure on R such that v(B) = py (B
Moreover, o < pi_.

w4 (A) whenever py(A) < oo. If v
) when py(B) < oo, then a < v.

Proof. Clearly a(A) = p4(A) whenever py(A) < oo. Now let A = US2, A,
with{4,},~; C R being a collection of pairwise disjoint subsets. Let B, C A,
with gy (Bp) < 0o, then BY := UY_ | B,, C A and py(BY) < oo and hence

a(A) > py (BY) = ZM+

and since B, C A, with puy(B,) < oo is arbitrary it follows that «(4) >
Zf:;l a(A,) and hence letting N — oo implies a(A) > > | a(A,,). Conversely,
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if B C A with py(B) < oo, then BN A,, C A,, and py (BN A,) < co. Therefore,

Z“+ (BN A,) <Z

for all such B and hence a(4) < Z a(Ay).

Using the definition of  and the assumptlon that v(B) = py(B) when 4 (B) <

o0,

a(A) =sup{v(B): Be R, BC A and u4(B) < oo} <v(A),
showing a < v. Similarly,
a(A) =sup{I(1g): B€ R, BC A and u, (B) < oo}
—sup{I(15): BER, BC Aand iy (B) < oo} < I(14) = u_(A),
]
Theorem 12.28 (Stone). Suppose that 1 is measurable and p, and p_ are as
defined in Lemma 12.25, then:
1. LY(I) = LY(X, R, uy) = LY () and for integrable f € L'(uy),

12.8 I(f)= [ fduy.
(128) (1= [ saus
2. If v is any measure on R such that S C L'(v) and
(12.9) I(f) = / fdv for all f €S
X

then pu_(A) < v(A) < us(A) for all A € R with p_(A) = v(A) = py(A4)
whenever p4(A) < 0.

3. Letting « be as defined in Lemma 12.27, 1 = « and hence p_ is a measure.
(So py is the mazimal and p_ is the minimal measure for which Eq. (12.9)
holds.)

4. Conversely if v is any measure on o(S) such that v(A) = pi(A) when A €
o(S) and py(A) < 00, then Eq. (12.9) is valid.
Proof.

1. Suppose that f € [LI(I )]+ , then Lemma 12.24 implies that f is R measur-
able. Given n € N, let

2271. 2211,

(12.10) Pn .—Z2n (dfetity =270 s gy
k=1

Then we know {£ < f} € R and that Liscpy =Lz A (%f) e LY(I),
ie. py (£ < f) < oo. Therefore ¢, € [Ll(I)]+ and ¢, T f. Suppose that
v is any measure such that v(A) = ui(A) when py(A) < oo, then by the
monotone convergence theorems for I and the Lebesgue integral,

2277, 2271

I(f) = lim I(¢,) = lim 2~ Z[ L <py) = lim 27 Z“+ (—<f>

n—oo n—00 n—00

2271
(1211) = lim 27") v <2£n < f> = lim g/)ndl/f/ fdv.
n—o0 n—oo X

k=1
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This shows that f € [Ll(v)]+ and that I(f) = Jx fdv. Since every f € L'(I)
is of the form f = f+ — f~ with f* e [L'(1)]", it follows that L'(I) C
LY(py) € LY(v) € LY (@) and Eq. (12.9) holds for all f € L(1).

Conversely suppose that f € [Ll(u+)]+. Define ¢,, as in Eq. (12.10).
Chebyshev’s inequality implies that pi (4 < f) < oo and hence {£ < f}
is I — integrable. Again by the monotone convergence for Lebesgue integrals
and the computations in Eq. (12.11),

00 >/ fduy = lim I(¢y,)
X n—oo
and therefore by the monotone convergence theorem for I, f € LY(I) and
/ fduy = Xim 1(6) = I(f).
X n—oo

2. Suppose that v is any measure such that Eq. (12.9) holds. Then by the
monotone convergence theorem,

I(f) :/dey for all f € S;US;.

Let A € R and assume that p4(A) < oo, i.e. 14 € L'(I). Then there exists
f €Sy NLYI) such that 14 < f and integrating this inequality relative to v
implies

V(A):/XlAdug/del/:f(f).

Taking the infinum of this equation over those f € Sy such that 14 < f implies
v(A) <I(1a) = py(A). If py(A) = oo in this inequality holds trivially.
Similarly, if A € R and f € S| such that 0 < f <14, then

V(A):/XlAduz/del/:f(f).

Taking the supremum of this equation over those f € S| such that 0 < f <14
then implies v(A) > p_(A). So we have shown that - <v < .

3. By Lemma 12.27, v = « is a measure as in (2) satisfying o < p— and therefore
t— < o and hence we have shown that o = p_. This also shows that u_ is a
measure.

4. This can be done by the same type of argument used in the proof of (1).

Proposition 12.29 (Uniqueness). Suppose that 1 is measurable and there exists a
function x € L*(I) such that x(x) > 0 for all x. Then there is only one measure u
on o(S) such that

I(f) = A fdu for all f €.

Remark 12.30. The existence of a function y € L'(I) such that x(z) > 0 for all =

is equivalent to the existence of a function x € Sy such that I(x) < o0 and x(z) > 0
for all x € X. Indeed by Lemma 12.16, if x € L'(I) there exists x € S; N L'(I)
such y > x.
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Proof. As in Remark 12.30, we may assume x € S; N L!(I). The sets X,, :=

{x>1/n} € o(S) C R satisty u(X,,) < nl(x) < co. The proof is completed using
Theorem 12.28 to conclude, for any A € o(S), that

p(A) = lim pyr(ANX,) = lim p_(ANX,) =p_(4).

Since pp- < p<py =p_ weseethat p=p =p_. m



