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13. Complex Measures, Radon-Nikodym Theorem and the Dual of Lp

Definition 13.1. A signed measure ν on a measurable space (X,M) is a function
ν :M→ R such that

(1) Either ν(M) ⊂ (−∞,∞] or ν(M) ⊂ [−∞,∞).
(2) ν is countably additive, this is to say if E =

`∞
j=1Ej with Ej ∈M, then

ν(E) =
∞P
j=1

ν(Ej).
31

(3) ν(∅) = 0.
If there exists Xn ∈M such that |ν(Xn)| <∞ and X = ∪∞n=1Xn, then ν is said

to be σ — finite and if ν(M) ⊂ R then ν is said to be a finite signed measure.
Similarly, a countably additive set function ν :M→ C such that ν(∅) = 0 is called
a complex measure.

A finite signed measure is clearly a complex measure.

Example 13.2. Suppose that µ+ and µ− are two positive measures on M such
that either µ+(X) <∞ or µ−(X) <∞, then ν = µ+ − µ− is a signed measure. If
both µ+(X) and µ−(X) are finite then ν is a finite signed measure.

Example 13.3. Suppose that g : X → R is measurable and either
R
E
g+dµ orR

E
g−dµ <∞, then

(13.1) ν(A) =

Z
A

gdµ∀A ∈M

defines a signed measure. This is actually a special case of the last example with
µ±(A) ≡

R
A
g±dµ. Notice that the measure µ± in this example have the property

that they are concentrated on disjoint sets, namely µ+ “lives” on {g > 0} and µ−
“lives” on the set {g < 0} .
Example 13.4. Suppose that µ is a positive measure on (X,M) and g ∈ L1(µ),
then ν given as in Eq. (13.1) is a complex measure on (X,M). Also if

©
µr±, µi±

ª
is

any collection of four positive measures on (X,M), then

(13.2) ν := µr+ − µr− + i
¡
µi+ − µi−

¢
is a complex measure.

If ν is given as in Eq. 13.1, then ν may be written as in Eq. (13.2) with
dµr± = (Re g)± dµ and dµi± = (Im g)± dµ.

Definition 13.5. Let ν be a complex or signed measure on (X,M). A set E ∈M is
a null set or precisely a ν — null set if ν(A) = 0 for all A ∈M such that A ⊂ E, i.e.
ν|ME = 0. Recall thatME := {A ∩ E : A ∈M} = i−1E (M) is the “trace of M on
E.

31If ν(E) ∈ R then the series
∞P
j=1

ν(Ej) is absolutely convergent since it is independent of

rearrangements.
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13.1. Radon-Nikodym Theorem I. We will eventually show that every complex
and σ — finite signed measure ν may be described as in Eq. (13.1). The next theorem
is the first result in this direction.

Theorem 13.6. Suppose (X,M) is a measurable space, µ is a positive finite mea-
sure on M and ν is a complex measure on M such that |ν(A)| ≤ µ(A) for all
A ∈M. Then dν = ρdµ where |ρ| ≤ 1. Moreover if ν is a positive measure, then
0 ≤ ρ ≤ 1.
Proof. For a simple function, f ∈ S(X,M), let ν(f) :=

P
a∈C aν(f = a). Then

|ν(f)| ≤
X
a∈C

|a| |ν(f = a)| ≤
X
a∈C

|a|µ(f = a) =

Z
X

|f | dµ.

So, by the B.L.T. theorem, ν extends to a continuous linear functional on L1(µ)
satisfying the bounds

|ν(f)| ≤
Z
X

|f | dµ ≤
p
µ(X) kfkL2(µ) for all f ∈ L1(µ).

The Riesz representation Theorem (Proposition 10.15) then implies there exists a
unique ρ ∈ L2(µ) such that

ν(f) =

Z
X

fρdµ for all f ∈ L2(µ).

Taking f = sgn(ρ)1A in this equation showsZ
A

|ρ| dµ = ν(sgn(ρ)1A) ≤ µ(A) =

Z
A

1dµ

from which it follows that |ρ| ≤ 1, µ — a.e. If ν is a positive measure, then for real
f, 0 = Im [ν(f)] =

R
X
Im ρfdµ and taking f = Im ρ shows 0 =

R
X
[Im ρ]

2
dµ, i.e.

Im(ρ(x)) = 0 for µ — a.e. x and we have shown ρ is real a.e. Similarly,

0 ≤ ν(Re ρ < 0) =

Z
{Re ρ<0}

ρdµ ≤ 0,

shows ρ ≥ 0 a.e.
Definition 13.7. Let µ and ν be two signed or complex measures on (X,M). Then
µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M such
that A is a ν — null set and Ac is a µ — null set. The measure ν is absolutely
continuous relative to µ (written as ν ¿ µ) provided ν(A) = 0 whenever A is a
µ — null set, i.e. all µ — null sets are ν — null sets as well.

Remark 13.8. If µ1, µ2 and ν are signed measures on (X,M) such that µ1 ⊥ ν and
µ2 ⊥ ν and µ1 + µ2 is well defined, then (µ1 + µ2) ⊥ ν. If {µi}∞i=1 is a sequence of
positive measures such that µi ⊥ ν for all i then µ =

P∞
i=1 µi ⊥ ν as well.

Proof. In both cases, choose Ai ∈M such that Ai is ν — null and Ac
i is µi-null

for all i. Then by Lemma 13.17, A := ∪iAi is still a ν —null set. Since

Ac = ∩iAc
i ⊂ Ac

m for all m

we see that Ac is a µi - null set for all i and is therefore a null set for µ =
P∞

i=1 µi.
This shows that µ ⊥ ν.
Throughout the remainder of this section µ will be always be a positive measure.
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Definition 13.9 (Lebesgue Decomposition). Suppose that ν is a signed (complex)
measure and µ is a positive measure on (X,M). Two signed (complex) measures
νa and νs form a Lebesgue decomposition of ν relative to µ if

(1) If ν = νa + νs where implicit in this statement is the assertion that if ν
takes on the value ∞ (−∞) then νa and νs do not take on the value −∞
(∞).

(2) νa ¿ µ and νs ⊥ µ.

Lemma 13.10. Let ν is a signed (complex) measure and µ is a positive measure
on (X,M). If there exists a Lebesgue decomposition of ν relative to µ then it is
unique. Moreover, the Lebesgue decomposition satisfies the following properties.

(1) If ν is a positive measure then so are νs and νa.
(2) If ν is a σ — finite measure then so are νs and νa.

Proof. Since νs ⊥ µ, there exists A ∈ M such that µ(A) = 0 and Ac is νs —
null and because νa ¿ µ, A is also a null set for νa. So for C ∈M, νa(C ∩A) = 0
and νs (C ∩Ac) = 0 from which it follows that

ν(C) = ν(C ∩A) + ν(C ∩Ac) = νs(C ∩A) + νa(C ∩Ac)

and hence,

νs(C) = νs(C ∩A) = ν(C ∩A) and
νa(C) = νa(C ∩Ac) = ν(C ∩Ac).(13.3)

Item 1. is now obvious from Eq. (13.3). For Item 2., if ν is a σ — finite measure
then there exists Xn ∈M such that X = ∪∞n=1Xn and |ν(Xn)| <∞ for all n. Since
ν(Xn) = νa(Xn) + νs(Xn), we must have νa(Xn) ∈ R and νs(Xn) ∈ R showing νa
and νs are σ — finite as well.
For the uniqueness assertion, if we have another decomposition ν = ν̃a+ ν̃s with

ν̃s ⊥ µ̃ and ν̃a ¿ µ̃ we may choose Ã ∈M such that µ(Ã) = 0 and Ãc is ν̃s — null.
Letting B = A ∪ Ã we have

µ(B) ≤ µ(A) + µ(Ã) = 0

and Bc = Ac ∩ Ãc is both a νs and a ν̃s null set. Therefore by the same arguments
that proves Eqs. (13.3), for all C ∈M,

νs(C) = ν(C ∩B) = ν̃s(C) and

νa(C) = ν(C ∩Bc) = ν̃a(C).

Lemma 13.11. Suppose µ is a positive measure on (X,M) and f, g : X → R̄ are
extended integrable functions such that

(13.4)
Z
A

fdµ =

Z
A

gdµ for all A ∈M,R
X
f−dµ < ∞,

R
X
g−dµ < ∞, and the measures |f | dµ and |g| dµ are σ — finite.

Then f(x) = g(x) for µ — a.e. x.

Proof. By assumption there exists Xn ∈M such that Xn ↑ X and
R
Xn
|f | dµ <

∞ and
R
Xn
|g| dµ <∞ for all n. Replacing A by A ∩Xn in Eq. (13.4) impliesZ

A

1Xnfdµ =

Z
A∩Xn

fdµ =

Z
A∩Xn

gdµ =

Z
A

1Xngdµ
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for all A ∈M. Since 1Xn
f and 1Xn

g are in L1(µ) for all n, this equation implies
1Xn

f = 1Xn
g, µ — a.e. Letting n→∞ then shows that f = g, µ — a.e.

Remark 13.12. Suppose that f and g are two positive measurable functions on
(X,M, µ) such that Eq. (13.4) holds. It is not in general true that f = g, µ —
a.e. A trivial counter example is to takeM = P(X), µ(A) =∞ for all non-empty
A ∈M, f = 1X and g = 2 · 1X . Then Eq. (13.4) holds yet f 6= g.

Theorem 13.13 (Radon Nikodym Theorem for Positive Measures). Suppose that
µ, ν are σ — finite positive measures on (X,M). Then ν has a unique Lebesgue
decomposition ν = νa + νs relative to µ and there exists a unique (modulo sets of
µ — measure 0) function ρ : X → [0,∞) such that dνa = ρdµ. Moreover, νs = 0 iff
ν ¿ µ.

Proof. The uniqueness assertions follow directly from Lemmas 13.10 and 13.11.
Existence. (Von-Neumann’s Proof.) First suppose that µ and ν are finite

measures and let λ = µ+ ν. By Theorem 13.6, dν = hdλ with 0 ≤ h ≤ 1 and this
implies, for all non-negative measurable functions f, that

(13.5) ν(f) = λ(fh) = µ(fh) + ν(fh)

or equivalently

(13.6) ν(f(1− h)) = µ(fh).

Taking f = 1{h=1} and f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (13.6)
µ ({h = 1}) = 0 and ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg)

where ρ := 1{h<1} h
1−h and νs(g) := ν(g1{h=1}). This gives the desired decomposi-

tion32 since
ν(g) = ν(g1{h=1}) + ν(g1{h<1}) = νs(g) + µ(ρg)

and
νs (h 6= 1) = 0 while µ (h = 1) = µ({h 6= 1}c) = 0.

If ν ¿ µ, then µ (h = 1) = 0 implies ν (h = 1) = 0 and hence that νs = 0. If
νs = 0, then dν = ρdµ and so if µ(A) = 0, then ν(A) = µ(ρ1A) = 0 as well.
For the σ — finite case, write X =

`∞
n=1Xn where Xn ∈M are chosen so that

µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let dµn = 1Xndµ and dνn = 1Xndν. Then
by what we have just proved there exists ρn ∈ L1(X,µn) and measure νsn such that

32Here is the motivation for this construction. Suppose that dν = dνs + ρdµ is the Radon-
Nikodym decompostion and X = A

`
B such that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(fg) = ν(fg) + µ(fg).

Letting f → 1Af then implies that

νs(1Af) = ν(1Afg)

which show that g = 1 ν —a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf(1− g)) = ν(1Bf(1− g)) = µ(1Bfg) = µ(fg)

which shows that

ρ(1− g) = ρ1B(1− g) = g µ− a.e..
This shows that ρ = g

1−g µ — a.e.
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dνn = ρndµn + dνsn with νsn ⊥ µn, i.e. there exists An, Bn ∈MXn
and µ(An) = 0

and νsn(Bn) = 0. Define νs :=
P∞

n=1 ν
s
n and ρ :=

P∞
n=1 1Xn

ρn, then

ν =
∞X
n=1

νn =
∞X
n=1

(ρnµn + νsn) =
∞X
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs

and letting A := ∪∞n=1An and B := ∪∞n=1Bn, we have A = Bc and

µ(A) =
∞X
n=1

µ(An) = 0 and ν(B) =
∞X
n=1

ν(Bn) = 0.

Theorem 13.14. Let (X,M, µ) be a σ — finite measure space and suppose that
p, q ∈ [1,∞] are conjugate exponents. Then for p ∈ [1,∞), the map g ∈ Lq →
φg ∈ (Lp)∗ is an isometric isomorphism of Banach spaces. (Recall that φg(f) :=R
X

fgdµ.) We summarize this by writing (Lp)∗ = Lq for all 1 ≤ p <∞.

Proof. The only point that we have not yet proved is the surjectivity of the
map g ∈ Lq → φg ∈ (Lp)∗. When p = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that µ(X) < ∞ in
which cased bounded functions are in Lp(µ) for all p. So let φ ∈ (Lp)∗ . We need
to find g ∈ Lq(µ) such that φ = φg. When p ∈ [1, 2], L2(µ) ⊂ Lp(µ) so that we
may restrict φ to L2(µ) and again the result follows fairly easily from the Riesz
Theorem, see Exercise 13.1 below.
To handle general p ∈ [1,∞), define ν(A) := φ(1A). If A =

`∞
n=1An with

An ∈M, then

k1A −
NX
n=1

1AnkLp = k1∪∞n=N+1An
kLp =

£
µ(∪∞n=N+1An)

¤ 1
p → 0 as N →∞.

Therefore

ν(A) = φ(1A) =
∞X
1

φ(1An) =
∞X
1

ν(An)

showing ν is a complex measure.33

For A ∈M, let |ν| (A) be the “total variation” of A defined by

|ν| (A) := sup {|φ(f1A)| : |f | ≤ 1}
and notice that

(13.7) |ν(A)| ≤ |ν| (A) ≤ kφk(Lp)∗ µ(A)1/p for all A ∈M.

You are asked to show in Exercise 13.2 that |ν| is a measure on (X,M). (This can
also be deduced from Lemma 13.31 and Proposition 13.35 below.) By Eq. (13.7)
|ν| ¿ µ, by Theorem 13.6 dν = hd |ν| for some |h| ≤ 1 and by Theorem 13.13
d |ν| = ρdµ for some ρ ∈ L1(µ). Hence, letting g = ρh ∈ L1(µ), dν = gdµ or
equivalently

(13.8) φ(1A) =

Z
X

g1Adµ ∀ A ∈M.

33It is at this point that the proof breaks down when p =∞.
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By linearity this equation implies

(13.9) φ(f) =

Z
X

gfdµ

for all simple functions f on X. Replacing f by 1{|g|≤M}f in Eq. (13.9) shows

φ(f1{|g|≤M}) =
Z
X

1{|g|≤M}gfdµ

holds for all simple functions f and then by continuity for all f ∈ Lp(µ). By the
converse to Holder’s inequality, (Proposition 7.26) we learn that°°1{|g|≤M}g

°°
q
= sup
kfkp=1

¯̄
φ(f1{|g|≤M})

¯̄ ≤ sup
kfkp=1

kφk(Lp)∗
°°f1{|g|≤M}

°°
p
≤ kφk(Lp)∗ .

Using the monotone convergence theorem we may letM →∞ in the previous equa-
tion to learn kgkq ≤ kφk(Lp)∗ .With this result, Eq. (13.9) extends by continuity to
hold for all f ∈ Lp(µ) and hence we have shown that φ = φg.
Case 2. Now suppose that µ is σ — finite and Xn ∈M are sets such that µ(Xn) <

∞ and Xn ↑ X as n → ∞. We will identify f ∈ Lp(Xn, µ) with f1Xn ∈ Lp(X,µ)
and this way we may consider Lp(Xn, µ) as a subspace of Lp(X,µ) for all n and
p ∈ [1,∞].
By Case 1. there exits gn ∈ Lq(Xn, µ) such that

φ(f) =

Z
Xn

gnfdµ for all f ∈ Lp(Xn, µ)

and

kgnkq = sup
©|φ(f)| : f ∈ Lp(Xn, µ) and kfkLp(Xn,µ) = 1

ª ≤ kφk[Lp(µ)]∗ .
It is easy to see that gn = gm a.e. on Xn ∩Xm for all m,n so that g := limn→∞ gn
exists µ — a.e. By the above inequality and Fatou’s lemma, kgkq ≤ kφk[Lp(µ)]∗ <∞
and since φ(f) =

R
Xn

gfdµ for all f ∈ Lp(Xn, µ) and n and ∪∞n=1Lp(Xn, µ) is dense
in Lp(X,µ) it follows by continuity that φ(f) =

R
X
gfdµ for all f ∈ Lp(X,µ),i.e.

φ = φg.

Example 13.15. Theorem 13.14 fails in general when p =∞. Consider X = [0, 1],
M = B, and µ = m. Then (L∞)∗ 6= L1.

Proof. Let M := C([0, 1])“ ⊂ ”L∞([0, 1], dm). It is easily seen for f ∈ M, that
kfk∞ = sup {|f(x)| : x ∈ [0, 1]} for all f ∈M. Therefore M is a closed subspace of
L∞. Define (f) = f(0) for all f ∈ M. Then ∈ M∗ with norm 1. Appealing to
the Hahn-Banach Theorem 16.15 below, there exists an extension L ∈ (L∞)∗ such
that L = on M and kLk = 1. If L 6= φg for some g ∈ L1, i.e.

L(f) = φg(f) =

Z
[0,1]

fgdm for all f ∈ L∞,

then replacing f by fn(x) = (1− nx) 1x≤n−1 and letting n→∞ implies, (using the
dominated convergence theorem)

1 = lim
n→∞L(fn) = lim

n→∞

Z
[0,1]

fngdm =

Z
{0}

gdm = 0.

From this contradiction, we conclude that L 6= φg for any g ∈ L1.
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13.2. Exercises.

Exercise 13.1. Prove Theorem 13.14 for p ∈ [1, 2] by directly applying the Riesz
theorem to φ|L2(µ).
Exercise 13.2. Show |ν| be defined as in Eq. (13.7) is a positive measure. Here is
an outline.

(1) Show

(13.10) |ν| (A) + |ν| (B) ≤ |ν| (A ∪B).
when A,B are disjoint sets inM.

(2) If A =
`∞

n=1An with An ∈M then

(13.11) |ν| (A) ≤
∞X
n=1

|ν| (An).

(3) From Eqs. (13.10) and (13.11) it follows that ν is finitely additive, and
hence

|ν| (A) =
NX
n=1

|ν| (An) + |ν| (∪n>NAn) ≥
NX
n=1

|ν| (An).

Letting N → ∞ in this inequality shows |ν| (A) ≥ P∞
n=1 |ν| (An) which

combined with Eq. (13.11) shows |ν| is countable additive.
Exercise 13.3. Suppose µi, νi are σ — finite positive measures on measurable
spaces, (Xi,Mi), for i = 1, 2. If νi ¿ µi for i = 1, 2 then ν1 ⊗ ν2 ¿ µ1 ⊗ µ2
and in fact

d(ν1 ⊗ ν2)

d(µ1 ⊗ µ2)
(x1, x2) = ρ1 ⊗ ρ2(x1, x2) := ρ1(x1)ρ2(x2)

where ρi := dνi/dµi for i = 1, 2.

Exercise 13.4. Folland 3.13 on p. 92.

13.3. Signed Measures.

Definition 13.16. Let ν be a signed measure on (X,M) and E ∈M, then
(1) E is positive if for all A ∈M such that A ⊂ E, ν(A) ≥ 0, i.e. ν|ME

≥ 0.
(2) E is negative if for all A ∈M such that A ⊂ E, ν(A) ≤ 0, i.e. ν|ME

≤ 0.
Lemma 13.17. Suppose that ν is a signed measure on (X,M). Then

(1) Any subset of a positive set is positive.
(2) The countable union of positive (negative or null) sets is still positive (neg-

ative or null).
(3) Let us now further assume that ν(M) ⊂ [−∞,∞) and E ∈ M is a set

such that ν (E) ∈ (0,∞). Then there exists a positive set P ⊂ E such that
ν(P ) ≥ ν(E).

Proof. The first assertion is obvious. If Pj ∈ M are positive sets, let P =
∞S
n=1

Pn. By replacing Pn by the positive set Pn \
Ã
n−1S
j=1

Pj

!
we may assume that

the {Pn}∞n=1 are pairwise disjoint so that P =
∞̀

n=1
Pn. Now if E ⊂ P and E ∈M,
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E =
∞̀

n=1
(E ∩ Pn) so ν(E) =

P∞
n=1 ν(E ∩ Pn) ≥ 0.which shows that P is positive.

The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of negative

measure from E. The set remaining from this procedure will be P.We now proceed
to the formal proof.
For all A ∈M let n(A) = 1 ∧ sup{−ν(B) : B ⊂ A}. Since ν(∅) = 0, n(A) ≥ 0

and n(A) = 0 iff A is positive. Choose A0 ⊂ E such that −ν(A0) ≥ 1
2n(E) and

set E1 = E \ A0, then choose A1 ⊂ E1 such that −ν(A1) ≥ 1
2n(E1) and set

E2 = E \ (A0 ∪A1) . Continue this procedure inductively, namely if A0, . . . , Ak−1

have been chosen let Ek = E \
³ k−1̀

i=0
Ai

´
and choose Ak ⊂ Ek such that −ν(Ak) ≥

1
2n(Ek). We will now show that

P := E \
∞a
k=0

Ak =
∞\
k=0

Ek

is a positive set such that ν(P ) ≥ ν(E).

Since E = P ∪
∞̀

k=0

Ak,

(13.12) ν(E)− ν(P ) = ν(E \ P ) =
∞X
k=0

ν(Ak) ≤ −1
2

∞X
k=0

n(Ek)

and hence ν(E) ≤ ν(P ). Moreover, ν(E)− ν(P ) > −∞ since ν(E) ≥ 0 and ν(P ) 6=
∞ by the assumption ν(M) ⊂ [−∞,∞). Therefore we may conclude from Eq.
(13.12) that

P∞
k=0 n(Ek) <∞ and in particular limk→∞ n(Ek) = 0. Now if A ⊂ P

then A ⊂ Ek for all k and this implies that ν(A) ≥ 0 since by definition of n(Ek),

−ν(A) ≤ n(Ek)→ 0 as k →∞.

13.3.1. Hahn Decomposition Theorem.

Definition 13.18. Suppose that ν is a signed measure on (X,M). A Hahn de-
composition for ν is a partition {P,N} of X such that P is positive and N is
negative.

Theorem 13.19 (Hahn Decomposition Theorem). Every signed measure space
(X,M, ν) has a Hahn decomposition, {P,N}. Moreover, if {P̃ , Ñ} is another Hahn
decomposition, then P∆P̃ = N∆Ñ is a null set, so the decomposition is unique
modulo null sets.

Proof. With out loss of generality we may assume that ν(M) ⊂ [−∞,∞). If
not just consider −ν instead. Let us begin with the uniqueness assertion. Suppose
that A ∈M, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) ≤ ν(A ∩ P ) ≤ ν(P )

and similarly ν(A) ≤ ν(P̃ ) for all A ∈M.Therefore

ν(P ) ≤ ν(P ∪ P̃ ) ≤ ν(P̃ ) and ν(P̃ ) ≤ ν(P ∪ P̃ ) ≤ ν(P )

which shows that
s := ν(P̃ ) = ν(P ∪ P̃ ) = ν(P ).
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Since
s = ν(P ∪ P̃ ) = ν(P ) + ν(P̃ )− ν(P ∩ P̃ ) = 2s− ν(P ∩ P̃ )

we see that ν(P ∩ P̃ ) = s and since

s = ν(P ∪ P̃ ) = ν(P ∩ P̃ ) + ν(P̃∆P )

it follows that ν(P̃∆P ) = 0. ThusN∆Ñ = P̃∆P is a positive set with zero measure,
i.e. N∆Ñ = P̃∆P is a null set and this proves the uniqueness assertion.
Let

s ≡ sup{ν(A) : A ∈M}
which is non-negative since ν(∅) = 0. If s = 0, we are done since P = ∅ and
N = X is the desired decomposition. So assume s > 0 and choose An ∈M such
that ν(An) > 0 and limn→∞ ν(An) = s. By Lemma 13.17here exists positive sets
Pn ⊂ An such that ν(Pn) ≥ ν(An). Then s ≥ ν(Pn) ≥ ν(An) → s as n → ∞
implies that s = limn→∞ ν(Pn). The set P ≡ ∪∞n=1Pn is a positive set being the
union of positive sets and since Pn ⊂ P for all n,

ν(P ) ≥ ν(Pn)→ s as n→∞.

This shows that ν(P ) ≥ s and hence by the definition of s, s = ν(P ) <∞.
We now claim that N = P c is a negative set and therefore, {P,N} is the desired

Hahn decomposition. If N were not negative, we could find E ⊂ N = P c such that
ν(E) > 0. We then would have

ν(P ∪E) = ν(P ) + ν(E) = s+ ν(E) > s

which contradicts the definition of s.

13.3.2. Jordan Decomposition.

Definition 13.20. Let X = P ∪N be a Hahn decomposition of ν and define

ν+(E) = ν(P ∩E) and ν−(E) = −ν(N ∩E) ∀ E ∈M.

Suppose X = eP ∪ eN is another Hahn Decomposition and eν± are define as above
with P and N replaced by eP and eN respectively. Theneν+(E) = ν(E ∩ eP ) = ν(E ∩ eP ∩ P ) + ν((E ∩ eP ∩N) = ν(E ∩ eP ∩ P )
since N ∩ P̃ is both positive and negative and hence null. Similarly ν+(E) =

ν(E ∩ eP ∩ P ) showing that ν+ = eν+ and therefore also that ν− = eν−.
Theorem 13.21 (Jordan Decomposition). There exists unique positive measure
ν± such that ν+ ⊥ ν− and ν = ν+ − ν−.

Proof. Existence has been proved. For uniqueness suppose ν = ν+ − ν− is a
Jordan Decomposition. Since ν+ ⊥ ν− there exists P,N = P c ∈ M such that
ν+(N) = 0 and ν−(P ) = 0. Then clearly P is positive for ν and N is negative for
ν. Now ν(E ∩ P ) = ν+(E) and ν(E ∩ N) = ν−(E). The uniqueness now follows
from the remarks after Definition 13.20.

Definition 13.22. |ν|(E) = ν+(E) + ν−(E) is called the total variation of ν. A
signed measure is called σ — finite provided that |ν| := ν+ + ν− is a σ finite
measure.



270 BRUCE K. DRIVER†

Lemma 13.23. Let ν be a signed measure on (X,M) and A ∈M. If ν(A) ∈ R
then ν(B) ∈ R for all B ⊂ A. Moreover, ν(A) ∈ R iff |ν| (A) <∞. In particular, ν
is σ finite iff |ν| is σ — finite. Furthermore if P,N ∈M is a Hahn decomposition
for ν and g = 1P − 1N , then dν = gd |ν| , i.e.

ν(A) =

Z
A

gd |ν| for all A ∈M.

Proof. Suppose that B ⊂ A and |ν(B)| =∞ then since ν(A) = ν(B)+ν(A\B)
we must have |ν(A)| =∞. Let P,N ∈M be a Hahn decomposition for ν, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) = |ν(A ∩ P )|− |ν(A ∩N)| and
|ν| (A) = ν(A ∩ P )− ν(A ∩N) = |ν(A ∩ P )|+ |ν(A ∩N)| .(13.13)

Therefore ν(A) ∈ R iff ν(A ∩ P ) ∈ R and ν(A ∩N) ∈ R iff |ν| (A) <∞. Finally,

ν(A) = ν(A ∩ P ) + ν(A ∩N)
= |ν|(A ∩ P )− |ν|(A ∩N)
=

Z
A

(1P − 1N )d|ν|

which shows that dν = gd |ν| .
Definition 13.24. Let ν be a signed measure on (X,M), let

L1(ν) := L1(ν+) ∩ L1(ν−) = L1(|ν|)
and for f ∈ L1(ν) we defineZ

X

fdν =

Z
X

fdν+ −
Z
X

fdν−.

Lemma 13.25. Let µ be a positive measure on (X,M), g be an extended integrable
function on (X,M, µ) and dν = gdµ. Then L1(ν) = L1(|g| dµ) and for f ∈ L1(ν),Z

X

fdν =

Z
X

fgdµ.

Proof. We have already seen that dν+ = g+dµ, dν− = g−dµ, and d |ν| = |g| dµ
so that L1(ν) = L1(|ν|) = L1(|g| dµ) and for f ∈ L1(ν),Z

X

fdν =

Z
X

fdν+ −
Z
X

fdν− =
Z
X

fg+dµ−
Z
X

fg−dµ

=

Z
X

f (g+ − g−) dµ =
Z
X

fgdµ.

Lemma 13.26. Suppose that µ is a positive measure on (X,M) and g : X → R
is an extended integrable function. If ν is the signed measure dν = gdµ, then
dν± = g±dµ and d |ν| = |g| dµ. We also have
(13.14) |ν|(A) = sup{

Z
A

f dν : |f | ≤ 1} for all A ∈M.

Proof. The pair, P = {g > 0} and N = {g ≤ 0} = P c is a Hahn decomposition
for ν. Therefore

ν+(A) = ν(A ∩ P ) =
Z
A∩P

gdµ =

Z
A

1{g>0}gdµ =
Z
A

g+dµ,
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ν−(A) = −ν(A ∩N) = −
Z
A∩N

gdµ = −
Z
A

1{g≤0}gdµ = −
Z
A

g−dµ.

and

|ν| (A) = ν+(A) + ν−(A) =
Z
A

g+dµ−
Z
A

g−dµ

=

Z
A

(g+ − g−) dµ =
Z
A

|g| dµ.
If A ∈M and |f | ≤ 1, then¯̄̄̄Z

A

f dν

¯̄̄̄
=

¯̄̄̄Z
A

f dν+ −
Z
A

f dν−
¯̄̄̄
≤
¯̄̄̄Z
A

f dν+

¯̄̄̄
+

¯̄̄̄Z
A

f dν−
¯̄̄̄

≤
Z
A

|f |dν+ +
Z
A

|f |dν− =
Z
A

|f | d|ν| ≤ |ν| (A).
For the reverse inequality, let f ≡ 1P − 1N thenZ

A

f dν = ν(A ∩ P )− ν(A ∩N) = ν+(A) + ν−(A) = |ν|(A).

Lemma 13.27. Suppose ν is a signed measure, µ is a positive measure and ν =
νa + νs is a Lebesgue decomposition of ν relative to µ, then |ν| = |νa|+ |νs| .
Proof. Let A ∈ M be chosen so that A is a null set for νa and Ac is a null

set for νs. Let A = P 0
`

N 0 be a Hahn decomposition of νs|MA and Ac = P̃
`

Ñ

be a Hahn decomposition of νa|MAc
. Let P = P 0 ∪ P̃ and N = N 0 ∪ Ñ . Since for

C ∈M,

ν(C ∩ P ) = ν(C ∩ P 0) + ν(C ∩ P̃ )
= νs(C ∩ P 0) + νa(C ∩ P̃ ) ≥ 0

and

ν(C ∩N) = ν(C ∩N 0) + ν(C ∩ Ñ)
= νs(C ∩N 0) + νa(C ∩ Ñ) ≤ 0

we see that {P,N} is a Hahn decomposition for ν. It also easy to see that {P,N}
is a Hahn decomposition for both νs and νa as well. Therefore,

|ν| (C) = ν(C ∩ P )− ν(C ∩N)
= νs(C ∩ P )− νs(C ∩N) + νa(C ∩ P )− νa(C ∩N)
= |νs| (C) + |νa| (C).

Lemma 13.28. 1) Let ν be a signed measure and µ be a positive measure on
(X,M) such that ν ¿ µ and ν ⊥ µ, then ν ≡ 0. 2) Suppose that ν =

P∞
i=1 νi

where νi are positive measures on (X,M) such that νi ¿ µ, then ν ¿ µ. Also if ν1
and ν2 are two signed measure such that νi ¿ µ for i = 1, 2 and ν = ν1+ ν2 is well
defined, then ν ¿ µ.

Proof. (1) Because ν ⊥ µ, there exists A ∈M such that A is a ν — null set and
B = Ac is a µ - null set. Since B is µ — null and ν ¿ µ, B is also ν — null. This
shows by Lemma 13.17 that X = A ∪B is also ν — null, i.e. ν is the zero measure.
The proof of (2) is easy and is left to the reader.
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Theorem 13.29 (Radon Nikodym Theorem for Signed Measures). Let ν be a σ —
finite signed measure and µ be a σ — finite positive measure on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa+νs relative to µ and there exists a unique
(modulo sets of µ — measure 0) extended integrable function ρ : X → R such that
dνa = ρdµ. Moreover, νs = 0 iff ν ¿ µ, i.e. dν = ρdµ iff ν ¿ µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 13.10 and 13.11.
Existence. Let ν = ν+−ν− be the Jordan decomposition of ν. Assume, without

loss of generality, that ν+(X) < ∞, i.e. ν(A) < ∞ for all A ∈M. By the Radon
Nikodym Theorem 13.13 for positive measures there exist functions f± : X → [0,∞)
and measures λ± such that ν± = µf± + λ± with λ± ⊥ µ. Since

∞ > ν+(X) = µf+(X) + λ+(X),

f+ ∈ L1(µ) and λ+(X) <∞ so that f = f+−f− is an extended integrable function,
dνa := fdµ and νs = λ+−λ− are signed measures. This finishes the existence proof
since

ν = ν+ − ν− = µf+ + λ+ −
¡
µf− + λ−

¢
= νa + νs

and νs = (λ+ − λ−) ⊥ µ by Remark 13.8.
For the final statement, if νs = 0, then dν = ρdµ and hence ν ¿ µ. Conversely

if ν ¿ µ, then dνs = dν − ρdµ¿ µ, so by Lemma 13.17, νs = 0. Alternatively just
use the uniqueness of the Lebesgue decomposition to conclude νa = ν and νs = 0.
Or more directly, choose B ∈ M such that µ(Bc) = 0 and B is a νs — null set.
Since ν ¿ µ, Bc is also a ν — null set so that, for A ∈M,

ν(A) = ν(A ∩B) = νa(A ∩B) + νs(A ∩B) = νa(A ∩B).

Notation 13.30. The function f is called the Radon-Nikodym derivative of ν
relative to µ and we will denote this function by dν

dµ .

13.4. Complex Measures II. Suppose that ν is a complex measure on (X,M),
let νr := Re ν, νi := Im ν and µ := |νr| + |νi|. Then µ is a finite positive measure
onM such that νr ¿ µ and νi ¿ µ. By the Radon-Nikodym Theorem 13.29, there
exists real functions h, k ∈ L1(µ) such that dνr = h dµ and dνi = k dµ. So letting
g := h+ ik ∈ L1(µ),

dν = (h+ ik)dµ = gdµ

showing every complex measure may be written as in Eq. (13.1).

Lemma 13.31. Suppose that ν is a complex measure on (X,M), and for i = 1, 2
let µi be a finite positive measure on (X,M) such that dν = gidµi with gi ∈ L1(µi).
Then Z

A

|g1| dµ1 =
Z
A

|g2| dµ2 for all A ∈M.

In particular, we may define a positive measure |ν| on (X,M) by

|ν| (A) =
Z
A

|g1| dµ1 for all A ∈M.

The finite positive measure |ν| is called the total variation measure of ν.
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Proof. Let λ = µ1 + µ2 so that µi ¿ λ. Let ρi = dµi/dλ ≥ 0 and hi = ρigi.
Since

ν(A) =

Z
A

gidµi =

Z
A

giρidλ =

Z
A

hidλ for all A ∈M,

h1 = h2, λ —a.e. ThereforeZ
A

|g1| dµ1 =
Z
A

|g1| ρ1dλ =
Z
A

|h1| dλ =
Z
A

|h2| dλ =
Z
A

|g2| ρ2dλ =
Z
A

|g2| dµ2.

Definition 13.32. Given a complex measure ν, let νr = Re ν and νi = Im ν so
that νr and νi are finite signed measures such that

ν(A) = νr(A) + iνi(A) for all A ∈M.

Let L1(ν) := L1(νr) ∩ L1(νi) and for f ∈ L1(ν) defineZ
X

fdν :=

Z
X

fdνr + i

Z
X

fdνi.

Example 13.33. Suppose that µ is a positive measure on (X,M), g ∈ L1(µ) and
ν(A) =

R
A
gdµ as in Example 13.4, then L1(ν) = L1(|g| dµ) and for f ∈ L1(ν)

(13.15)
Z
X

fdν =

Z
X

fgdµ.

To check Eq. (13.15), notice that dνr = Re g dµ and dνi = Im g dµ so that
(using Lemma 13.25)

L1(ν) = L1(Re gdµ) ∩ L1(Im gdµ) = L1(|Re g| dµ) ∩ L1(|Im g| dµ) = L1(|g| dµ).
If f ∈ L1(ν), thenZ

X

fdν :=

Z
X

f Re gdµ+ i

Z
X

f Im gdµ =

Z
X

fgdµ.

Remark 13.34. Suppose that ν is a complex measure on (X,M) such that dν = gdµ
and as above d |ν| = |g| dµ. Letting

ρ = sgn(ρ) :=

½ g
|g| if |g| 6= 0
1 if |g| = 0

we see that

dν = gdµ = ρ |g| dµ = ρd |ν|
and |ρ| = 1 and ρ is uniquely defined modulo |ν| — null sets. We will denote ρ by
dν/d |ν| . With this notation, it follows from Example 13.33 that L1(ν) := L1 (|ν|)
and for f ∈ L1(ν), Z

X

fdν =

Z
X

f
dν

d |ν|d |ν| .

Proposition 13.35 (Total Variation). Suppose A ⊂ P(X) is an algebra, M =
σ(A), ν is a complex (or a signed measure which is σ — finite on A) on (X,M)
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and for E ∈M let

µ0(E) = sup

(
nX
1

|ν(Ej)| : Ej ∈ AE 3 Ei ∩Ej = δijEi, n = 1, 2, . . .

)

µ1(E) = sup

(
nX
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩Ej = δijEi, n = 1, 2, . . .

)

µ2(E) = sup

( ∞X
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩Ej = δijEi

)

µ3(E) = sup

½¯̄̄̄Z
E

fdν

¯̄̄̄
: f is measurable with |f | ≤ 1

¾
µ4(E) = sup

½¯̄̄̄Z
E

fdν

¯̄̄̄
: f ∈ Sf (A, |ν|) with |f | ≤ 1

¾
.

then µ0 = µ1 = µ2 = µ3 = µ4 = |ν| .
Proof. Let ρ = dν/d |ν| and recall that |ρ| = 1, |ν| — a.e. We will start by

showing |ν| = µ3 = µ4. If f is measurable with |f | ≤ 1 then¯̄̄̄Z
E

f dν

¯̄̄̄
=

¯̄̄̄Z
E

f ρd |ν|
¯̄̄̄
≤
Z
E

|f | d|ν| ≤
Z
E

1d|ν| = |ν|(E)

from which we conclude that µ4 ≤ µ3 ≤ |ν|. Taking f = ρ̄ above shows¯̄̄̄Z
E

f dν

¯̄̄̄
=

Z
E

ρ̄ ρ d|ν| =
Z
E

1 d|ν| = |ν| (E)

which shows that |ν| ≤ µ3 and hence |ν| = µ3. To show |ν| = µ4 as well let Xm ∈ A
be chosen so that |ν| (Xm) < ∞ and Xm ↑ X as m → ∞. By Theorem 9.3 of
Corollary 11.27, there exists ρn ∈ Sf (A, µ) such that ρn → ρ1Xm in L1(|ν|) and
each ρn may be written in the form

(13.16) ρn =
NX
k=1

zk1Ak

where zk ∈ C and Ak ∈ A and Ak ∩ Aj = ∅ if k 6= j. I claim that we may assume
that |zk| ≤ 1 in Eq. (13.16) for if |zk| > 1 and x ∈ Ak,

|ρ(x)− zk| ≥
¯̄̄
ρ(x)− |zk|−1 zk

¯̄̄
.

This is evident from Figure 26 and formally follows from the fact that

d

dt

¯̄̄
ρ(x)− t |zk|−1 zk

¯̄̄2
= 2

h
t− Re(|zk|−1 zkρ(x))

i
≥ 0

when t ≥ 1.
Therefore if we define

wk :=

½ |zk|−1 zk if |zk| > 1
zk if |zk| ≤ 1

and ρ̃n =
NP
k=1

wk1Ak then

|ρ(x)− ρn(x)| ≥ |ρ(x)− ρ̃n(x)|
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Figure 26. Sliding points to the unit circle.

and therefore ρ̃n → ρ1Xm in L
1(|ν|). So we now assume that ρn is as in Eq. (13.16)

with |zk| ≤ 1.
Now¯̄̄̄Z
E

ρ̄ndν −
Z
E

ρ̄1Xmdν

¯̄̄̄
≤
¯̄̄̄Z
E

(ρ̄ndν − ρ̄1Xm) ρd |ν|
¯̄̄̄
≤
Z
E

|ρ̄n − ρ̄1Xm | d |ν|→ 0 as n→∞

and hence

µ4(E) ≥
¯̄̄̄Z
E

ρ̄1Xmdν

¯̄̄̄
= |ν| (E ∩Xm) for all m.

Letting m ↑ ∞ in this equation shows µ4 ≥ |ν| .
We will now show µ0 = µ1 = µ2 = |ν| . Clearly µ0 ≤ µ1 ≤ µ2. Suppose Ej ∈ME

such that Ei ∩Ej = δijEi, thenX
|ν(Ej)| =

X
|
Z
Ej

ρd |ν| ≤
X

|ν|(Ej) = |ν|(∪Ej) ≤ |ν| (E)

which shows that µ2 ≤ |ν| = µ4. So it suffices to show µ4 ≤ µ0. But if f ∈ Sf (A, |ν|)
with |f | ≤ 1, then f may be expressed as f =

PN
k=1 zk1Ak with |zk| ≤ 1 and

Ak ∩Aj = δijAk. Therefore,¯̄̄̄Z
E

fdν

¯̄̄̄
=

¯̄̄̄
¯
NX
k=1

zkν(Ak ∩E)
¯̄̄̄
¯ ≤

NX
k=1

|zk| |ν(Ak ∩E)| ≤
NX
k=1

|ν(Ak ∩E)| ≤ µ0(A).

Since this equation holds for all f ∈ Sf (A, |ν|) with |f | ≤ 1, µ4 ≤ µ0 as claimed.

13.5. Absolute Continuity on an Algebra. The following results will be useful
in Section 14.4 below.

Lemma 13.36. Let ν be a complex or a signed measure and µ be a positive measure
on (X,M). Then ν ¿ µ iff |ν| ¿ µ.

Proof. In all cases we have |ν(A)| ≤ |ν| (A) for all A ∈M which clearly shows
ν ¿ µ if |ν| ¿ µ.
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Now suppose that ν is a signed measure such that ν ¿ µ. Let P ∈M be chosen
so that {P,N = P c} is a Hahn decomposition for ν. If A ∈M and µ(A) = 0 then
ν(A ∩ P ) = 0 and ν(A ∩N) = 0 since µ(A ∩ P ) = 0 and µ(A ∩N) = 0. Therefore

|ν| (A) = ν(A ∩ P )− ν(A ∩N) = 0
and this shows |ν| ¿ µ.
Now suppose that ν is a complex measure such that ν ¿ µ, then νr := Re ν ¿ µ

and νi := Im ν ¿ µ which implies that |νr| ¿ µ and |νi| ¿ µ. Since |ν| ≤ |νr|+|νi| ,
this shows that |ν| ¿ µ.
Here are some alternative proofs in the complex case.
1) Let ρ = dν

d|ν| . If A ∈M and µ(A) = 0 then by assumption

0 = ν(B) =

Z
B

ρd |ν|

for all B ∈MA. This shows that ρ1A = 0 for |ν| — a.e. and hence

|ν| (A) =
Z
A

|ρ| d |ν| =
Z
X

1A |ρ| d |ν| = 0,

i.e. µ(A) = 0 implies |ν| (A) = 0.
2) If ν ¿ µ and µ(A) = 0, then by Proposition 13.35

|ν| (A) = sup
( ∞X

1

|ν(Ej)| : Ej ∈MA 3 Ei ∩Ej = δijEi

)
= 0

since Ej ⊂ A implies µ(Ej) = 0 and hence ν(Ej) = 0.

Theorem 13.37 ( — δ Definition of Absolute Continuity). Let ν be a complex
measure and µ be a positive measure on (X,M). Then ν ¿ µ iff for all > 0 there
exists a δ > 0 such that |ν(A)| < whenever A ∈M and µ(A) < δ.

Proof. (=⇒) If µ(A) = 0 then |ν(A)| < for all > 0 which shows that
ν(A) = 0, i.e. ν ¿ µ.
(⇐=) Since |ν(A)| ≤ |ν|(A) it suffices to assume ν ≥ 0 with ν(X) <∞. Suppose

for the sake of contradiction there exists > 0 and An ∈M such that ν(An) ≥ > 0
while µ(An) ≤ 1

2n . Let

A = {An i.o.} =
∞\

N=1

[
n≥N

An

so that

µ(A) = lim
N→∞

µ (∪n≥NAn) ≤ lim
N→∞

∞X
n=N

µ(An) ≤ lim
N→∞

2−(N−1) = 0.

On the other hand,

ν(A) = lim
N→∞

ν (∪n≥NAn) ≥ lim
n→∞ inf ν(An) ≥ > 0

showing that ν is not absolutely continuous relative to µ.

Corollary 13.38. Let µ be a positive measure on (X,M) and f ∈ L1(dµ). Then

for all > 0 there exists δ > 0 such that

¯̄̄̄R
A

f dµ

¯̄̄̄
< for all A ∈ M such that

µ(A) < δ.
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Proof. Apply theorem 13.37 to the signed measure ν(A) =
R
A

f dµ for all A ∈M.

Theorem 13.39 (Absolute Continuity on an Algebra). Let ν be a complex measure
and µ be a positive measure on (X,M). Suppose that A ⊂M is an algebra such
that σ(A) =M and that µ is σ — finite on A. Then ν ¿ µ iff for all > 0 there
exists a δ > 0 such that |ν(A)| < for all A ∈ A with µ(A) < δ.

Proof. (=⇒) This implication is a consequence of Theorem 13.37.
(⇐=) Let us begin by showing the hypothesis |ν(A)| < for all A ∈ A with

µ(A) < δ implies |ν| (A) ≤ 4 for all A ∈ A with µ(A) < δ. To prove this decompose
ν into its real and imaginary parts; ν = νr + iνi.and suppose that A =

`n
j=1Aj

with Aj ∈ A. Then
nX
j=1

|νr(Aj)| =
X

j:νr(Aj)≥0
νr(Aj)−

X
j:νr(Aj)≤0

νr(Aj)

= νr(∪j:νr(Aj)≥0Aj)− νr(∪j:νr(Aj)≤0Aj)

≤ ¯̄ν(∪j:νr(Aj)≥0Aj)
¯̄
+
¯̄
ν(∪j:νr(Aj)≤0Aj)

¯̄
< 2

using the hypothesis and the fact µ
¡∪j:νr(Aj)≥0Aj

¢ ≤ µ(A) < δ and µ
¡∪j:νr(Aj)≤0Aj

¢ ≤
µ(A) < δ. Similarly,

Pn
j=1 |νi(Aj)| < 2 and therefore

nX
j=1

|ν(Aj)| ≤
nX
j=1

|νr(Aj)|+
nX
j=1

|νi(Aj)| < 4 .

Using Proposition 13.35, it follows that

|ν| (A) = sup


nX
j=1

|ν(Aj)| : A =
na
j=1

Aj with Aj ∈ A and n ∈ N
 ≤ 4 .

Because of this argument, we may now replace ν by |ν| and hence we may assume
that ν is a positive finite measure.
Let > 0 and δ > 0 be such that ν(A) < for all A ∈ A with µ(A) < δ. Suppose

that B ∈M with µ(B) < δ. Use the regularity Theorem 6.40 or Corollary 11.27 to
find A ∈ Aσ such that B ⊂ A and µ(B) ≤ µ(A) < δ.Write A = ∪nAn with An ∈ A.
By replacing An by ∪nj=1Aj if necessary we may assume that An is increasing in
n. Then µ(An) ≤ µ(A) < δ for each n and hence by assumption ν(An) < . Since
B ⊂ A = ∪nAn it follows that ν(B) ≤ ν(A) = limn→∞ ν(An) ≤ . Thus we have
shown that ν(B) ≤ for all B ∈M such that µ(B) < δ.

13.6. Dual Spaces and the Complex Riesz Theorem.

Proposition 13.40. Let S be a vector lattice of bounded real functions on a set
X. We equip S with the sup-norm topology and suppose I ∈ S∗. Then there exists
I± ∈ S∗ which are positive such that then I = I+ − I−.

Proof. For f ∈ S+, let
I+(f) := sup

©
I(g) : g ∈ S+ and g ≤ f

ª
.



278 BRUCE K. DRIVER†

One easily sees that |I+(f)| ≤ kIk kfk for all f ∈ S+ and I+(cf) = cI+(f) for all
f ∈ S+ and c > 0. Let f1, f2 ∈ S+. Then for any gi ∈ S+ such that gi ≤ fi, we have
S+ 3 g1 + g2 ≤ f1 + f2 and hence

I(g1) + I(g2) = I(g1 + g2) ≤ I+(f1 + f2).

Therefore,

(13.17) I+(f1) + I+(f2) = sup{I(g1) + I(g2) : S+ 3 gi ≤ fi} ≤ I+(f1 + f2).

For the opposite inequality, suppose g ∈ S+ and g ≤ f1 + f2. Let g1 = f1 ∧ g, then

0 ≤ g2 := g − g1 = g − f1 ∧ g =
½

0 if g ≤ f1
g − f1 if g ≥ f1

≤
½

0 if g ≤ f1
f1 + f2 − f1 if g ≥ f1

≤ f2.

Since g = g1 + g2 with S+ 3 gi ≤ fi,

I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2)

and since S+ 3 g ≤ f1 + f2 was arbitrary, we may conclude

(13.18) I+(f1 + f2) ≤ I+(f1) + I+(f2).

Combining Eqs. (13.17) and (13.18) shows that

(13.19) I+(f1 + f2) = I+(f1) + I+(f2) for all fi ∈ S+.
We now extend I+ to S by defining, for f ∈ S,

I+(f) = I+(f+)− I+(f−)

where f+ = f ∨ 0 and f− = − (f ∧ 0) = (−f) ∨ 0. (Notice that f = f+ − f−.) We
will now shows that I+ is linear.
If c ≥ 0, we may use (cf)± = cf± to conclude that

I+(cf) = I+(cf+)− I+(cf−) = cI+(f+)− cI+(f−) = cI+(f).

Similarly, using (−f)± = f∓ it follows that I+(−f) = I+(f−)− I+(f+) = −I+(f).
Therefore we have shown

I+(cf) = cI+(f) for all c ∈ R and f ∈ S.
If f = u− v with u, v ∈ S+ then

v + f+ = u+ f− ∈ S+

and so by Eq. (13.19), I+(v) + I+(f+) = I+(u) + I+(f−) or equivalently

(13.20) I+(f) = I+(f+)− I+(f−) = I+(u)− I+(v).

Now if f, g ∈ S, then
I+(f + g) = I+(f+ + g+ − (f− + g−))

= I+(f+ + g+)− I+(f− + g−)

= I+(f+) + I+(g+)− I+(f−)− I+(g−)

= I+(f) + I+(g),

wherein the second equality we used Eq. (13.20).
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The last two paragraphs show I+ : S→ R is linear. Moreover,
|I+(f)| = |I+(f+)− I+(f−)| ≤ max (|I+(f+)| , |I+(f−)|)

≤ kIkmax (kf+k , kf−k) = kIk kfk
which shows that kI+k ≤ kIk . That is I+ is a bounded positive linear functional
on S. Let I− = I+− I ∈ S∗. Then by definition of I+(f), I−(f) = I+(f)− I(f) ≥ 0
for all S 3 f ≥ 0. Therefore I = I+ − I− with I± being positive linear functionals
on S.

Corollary 13.41. Suppose X is a second countable locally compact Hausdorff space
and I ∈ C0(X,R)∗, then there exists µ = µ+−µ− where µ is a finite signed measure
on BR such that I(f) =

R
R fdµ for all f ∈ C0(X,R). Similalry if I ∈ C0(X,C)∗

there exists a complex measure µ such that I(f) =
R
R fdµ for all f ∈ C0(X,C).

Proof. Let I = I+ − I− be the decomposition given as above. Then we know
there exists finite measure µ± such that

I±(f) =
Z
X

fdµ± for all f ∈ C0(X,R).

and therefore I(f) =
R
X
fdµ for all f ∈ C0(X,R) where µ = µ+−µ−.Moreover the

measure µ is unique. Indeed if I(f) =
R
X
fdµ for some finite signed measure µ, then

the next result shows that I±(f) =
R
X
fdµ± where µ± is the Hahn decomposition

of µ. Now the measures µ± are uniquely determined by I±. The complex case is a
consequence of applying the real case just proved to Re I and Im I.

Proposition 13.42. Suppose that µ is a signed Radon measure and I = Iµ. Let µ+
and µ− be the Radon measures associated to I±, then µ = µ+ − µ− is the Jordan
decomposition of µ.

Proof. Let X = P ∪P c where P is a positive set for µ and P c is a negative set.
Then for A ∈ BX ,
(13.21) µ(P ∩A) = µ+(P ∩A)− µ−(P ∩A) ≤ µ+(P ∩A) ≤ µ+(A).

To finish the proof we need only prove the reverse inequality. To this end let > 0
and choose K @@ P ∩A ⊂ U ⊂o X such that |µ| (U \K) < . Let f, g ∈ Cc(U, [0, 1])
with f ≤ g, then

I(f) = µ(f) = µ(f : K) + µ(f : U \K) ≤ µ(g : K) +O( )

≤ µ(K) +O( ) ≤ µ(P ∩A) +O( ).

Taking the supremum over all such f ≤ g, we learn that I+(g) ≤ µ(P ∩A) +O( )
and then taking the supremum over all such g shows that

µ+(U) ≤ µ(P ∩A) +O( ).

Taking the infimum over all U ⊂o X such that P ∩A ⊂ U shows that

(13.22) µ+(P ∩A) ≤ µ(P ∩A) +O( )

From Eqs. (13.21) and (13.22) it follows that µ(P ∩A) = µ+(P ∩A). Since
I−(f) = sup

0≤g≤f
I(g)− I(f) = sup

0≤g≤f
I(g − f) = sup

0≤g≤f
−I(f − g) = sup

0≤h≤f
−I(h)

the same argument applied to −I shows that
−µ(P c ∩A) = µ−(P c ∩A).
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Since

µ(A) = µ(P ∩A) + µ(P c ∩A) = µ+(P ∩A)− µ−(P c ∩A) and
µ(A) = µ+(A)− µ−(A)

it follows that
µ+(A \ P ) = µ−(A \ P c) = µ−(A ∩ P ).

Taking A = P then shows that µ−(P ) = 0 and taking A = P c shows that µ+(P c) =
0 and hence

µ(P ∩A) = µ+(P ∩A) = µ+(A) and

−µ(P c ∩A) = µ−(P c ∩A) = µ−(A)

as was to be proved.

13.7. Exercises.

Exercise 13.5. Let ν be a σ — finite signed measure, f ∈ L1(|ν|) and defineZ
X

fdν =

Z
X

fdν+ −
Z
X

fdν−.

Suppose that µ is a σ — finite measure and ν ¿ µ. Show

(13.23)
Z
X

fdν =

Z
X

f
dν

dµ
dµ.

Exercise 13.6. Suppose that ν is a signed or complex measure on (X,M) and
An ∈ M such that either An ↑ A or An ↓ A and ν(A1) ∈ R, then show ν(A) =
limn→∞ ν(An).

Exercise 13.7. Suppose that µ and λ are positive measures and µ(X) < ∞. Let
ν := λ− µ, then show λ ≥ ν+ and µ ≥ ν−.

Exercise 13.8. Folland Exercise 3.5 on p. 88 showing |ν1 + ν2| ≤ |ν1|+ |ν2| .
Exercise 13.9. Folland Exercise 3.7a on p. 88.

Exercise 13.10. Show Theorem 13.37 may fail if ν is not finite. (For a hint, see
problem 3.10 on p. 92 of Folland.)

Exercise 13.11. Folland 3.14 on p. 92.

Exercise 13.12. Folland 3.15 on p. 92.

Exercise 13.13. Folland 3.20 on p. 94.



REAL ANALYSIS LECTURE NOTES 281

14. Lebesgue Differentiation and the Fundamental Theorem of
Calculus

Notation 14.1. In this chapter, let B = BRn denote the Borel σ — algebra on Rn
and m be Lebesgue measure on B. If V is an open subset of Rn, let L1loc(V ) :=
L1loc(V,m) and simply write L

1
loc for L

1
loc(Rn).We will also write |A| for m(A) when

A ∈ B.
Definition 14.2. A collection of measurable sets {E}r>0 ⊂ B is said to shrink
nicely to x ∈ Rn if (i) Er ⊂ Bx(r) for all r > 0 and (ii) there exists α > 0 such that
m(Er) ≥ αm(Bx(r)). We will abbreviate this by writing Er ↓ {x} nicely.
The main result of this chapter is the following theorem.

Theorem 14.3. Suppose that ν is a complex measure on (Rn,B) , then there exists
g ∈ L1(Rn,m) and a complex measure λ such that λ ⊥ m, dν = gdm+ dλ, and for
m - a.e. x,

(14.1) g(x) = lim
r↓0

ν(Er)

m(Er)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} .
Proof. The existence of g and λ such that λ ⊥ m and dν = gdm + dλ is a

consequence of the Radon-Nikodym theorem. Since

ν(Er)

m(Er)
=

1

m(Er)

Z
Er

g(x)dm(x) +
λ(Er)

m(Er)

Eq. (14.1) is a consequence of Theorem 14.13 and Corollary 14.15 below.
The rest of this chapter will be devoted to filling in the details of the proof of

this theorem.

14.1. A Covering Lemma and Averaging Operators.

Lemma 14.4 (Covering Lemma). Let E be a collection of open balls in Rn and
U = ∪B∈EB. If c < m(U), then there exists disjoint balls B1, . . . , Bk ∈ E such that
kP

j=1
m(Bj) > 3

−nc.

Proof. Choose a compact set K ⊂ U such that m(K) > c and then let E1 ⊂ E
be a finite subcover of K. Choose B1 ∈ E1 to be a ball with largest diameter in E1.
Let E2 = {A ∈ E1 : A ∩ B1 = ∅}. If E2 is not empty, choose B2 ∈ E2 to be a ball
with largest diameter in E2. Similarly Let E3 = {A ∈ E2 : A ∩ B2 = ∅} and if E3
is not empty, choose B3 ∈ E3 to be a ball with largest diameter in E3. Continue
choosing Bi ∈ E for i = 1, 2, . . . , k this way until Ek+1 is empty.
If B = B(x0, r) ⊂ Rn, let B∗ = B(x0, 3r) ⊂ Rn, that is B∗ is the ball concentric

with B which has three times the radius of B. We will now show K ⊂ ∪ki=1B∗i . For
each A ∈ E1 there exists a first i such that Bi ∩ A 6= ∅. In this case diam(A) ≤
diam(Bi) and A ⊂ B∗i . Therefore A ⊂ ∪ki=1B∗i for all j and hence K ⊂ ∪{A : A ∈
E1}⊂ ∪ki=1B∗i . Hence by subadditivity,

c < m(K) ≤
kX
i=1

m(B∗i ) ≤ 3n
kX
i=1

m(Bi).
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Definition 14.5. For f ∈ L1loc, x ∈ Rn and r > 0 let

(14.2) (Arf)(x) =
1

|Bx(r)|
Z

Bx(r)

fdm

where Bx(r) = B(x, r) ⊂ Rn, and |A| := m(A).

Lemma 14.6. Let f ∈ L1loc, then for each x ∈ Rn, (0,∞)such that r → (Arf)(x)
is continuous and for each r > 0, Rn such that x→ (Arf) (x) is measurable.

Proof. Recall that |Bx(r)| = m(E1)r
n which is continuous in r. Also

limr→r0 1Bx(r)(y) = 1Bx(r0)(y) if |y| 6= r0 and since m ({y : |y| 6= r0}) = 0 (you
prove!), limr→r0 1Bx(r)(y) = 1Bx(r0)(y) for m -a.e. y. So by the dominated conver-
gence theorem,

lim
r→r0

Z
Bx(r)

fdm =

Z
Bx(r0)

fdm

and therefore

(Arf)(x) =
1

m(E1)rn

Z
Bx(r)

fdm

is continuous in r. Let gr(x, y) := 1Bx(r)(y) = 1|x−y|<r. Then gr is B ⊗ B — mea-
surable (for example write it as a limit of continuous functions or just notice that
F : Rn × Rn → R defined by F (x, y) := |x− y| is continuous) and so that by
Fubini’s theorem

x→
Z

Bx(r)

fdm =

Z
Bx(r)

gr(x, y)f(y)dm(y)

is B — measurable and hence so is x→ (Arf) (x).

14.2. Maximal Functions.

Definition 14.7. For f ∈ L1(m), the Hardy - Littlewood maximal function Hf is
defined by

(Hf)(x) = sup
r>0

Ar|f |(x).

Lemma 14.6 allows us to write

(Hf)(x) = sup
r∈Q, r>0

Ar|f |(x)

and then to concluded that Hf is measurable.

Theorem 14.8 (Maximal Inequality). If f ∈ L1(m) and α > 0, then

m (Hf > α) ≤ 3
n

α
kfkL1 .

This should be compared with Chebyshev’s inequality which states that

m (|f | > α) ≤ kfkL1
α

.

Proof. Let Eα ≡ {Hf > α}. For all x ∈ Eα there exists rx such that
Arx |f |(x) > α. Hence Eα ⊂ ∪x∈EαBx(rx). By Lemma 14.4, if c < m(Eα) ≤
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m(∪x∈EαBx(rx)) then there exists x1, . . . , xk ∈ Eα and disjoint balls Bi = Bxi(rxi)
for i = 1, 2, . . . , k such that

P |Bi| > 3−nc. Since
|Bi|−1

Z
Bi

|f |dm = Arxi
|f |(xi) > α,

we have |Bi| < α−1
R
Bi
|f |dm and hence

3−nc <
1

α

XZ
Bi

|f |dm ≤ 1

α

Z
Rn
|f |dm =

1

α
kfkL1 .

This shows that c < 3nα−1kfkL1 for all c < m(Eα) which proves m(Eα) ≤
3nα−1kfk
Theorem 14.9. If f ∈ L1loc then lim

r↓0
(Arf)(x) = f(x) for m — a.e. x ∈ Rn.

Proof. With out loss of generality we may assume f ∈ L1(m). We now begin
with the special case where f = g ∈ L1(m) is also continuous. In this case we find:

|(Arg)(x)− g(x)| ≤ 1

|Bx(r)|
Z
Bx(r)

|g(y)− g(x)|dm(y)

≤ sup
y∈Bx(r)

|g(y)− g(x)|→ 0 as r → 0.

In fact we have shown that (Arg)(x)→ g(x) as r → 0 uniformly for x in compact
subsets of Rn.
For general f ∈ L1(m),

|Arf(x)− f(x)| ≤ |Arf(x)−Arg(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
= |Ar(f − g)(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
≤ H(f − g)(x) + |Arg(x)− g(x)|+ |g(x)− f(x)|

and therefore,

lim
r↓0
|Arf(x)− f(x)| ≤ H(f − g)(x) + |g(x)− f(x)|.

So if α > 0, then

Eα ≡
½
lim
r↓0
|Arf(x)− f(x)| > α

¾
⊂
n
H(f − g) >

α

2

o
∪
n
|g − f | > α

2

o
and thus

m(Eα) ≤ m
³
H(f − g) >

α

2

´
+m

³
|g − f | > α

2

´
≤ 3n

α/2
kf − gkL1 + 1

α/2
kf − gkL1

≤ 2(3n + 1)α−1kf − gkL1 ,
where in the second inequality we have used the Maximal inequality (Theorem 14.8)
and Chebyshev’s inequality. Since this is true for all continuous g ∈ C(Rn)∩L1(m)
and this set is dense in L1(m), we may make kf − gkL1 as small as we please. This
shows that

m

µ½
x : lim

r↓0
|Arf(x)− f(x)| > 0

¾¶
= m(∪∞n=1E1/n) ≤

∞X
n=1

m(E1/n) = 0.
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Corollary 14.10. If dµ = gdm with g ∈ L1loc then

µ(Bx(r))

|Bx(r)| = Arg(x)→ g(x) for m — a.e. x.

14.3. Lebesque Set.

Definition 14.11. For f ∈ L1loc(m), the Lebesgue set of f is

Lf ≡

x ∈ Rn : lim
r↓0

1

|Bx(r)|
Z

Bx(r)

|f(y)− f(x)|dy = 0

 .

Theorem 14.12. For all f ∈ L1loc(m), 0 = m(Lcf ) = m(Rn \ Lf ).
Proof. For w ∈ C define gw(x) = |f(x)−w| andEw ≡ {x : limr↓0 (Argw) (x) 6= gw(x)} .

Then by Theorem 14.9 m(Ew) = 0 for all w ∈ C and therefore m(E) = 0 where
E =

[
w∈Q+iQ

Ew.

By definition of E, if x 6∈ E then.

lim
r↓0
(Ar|f(·)− w|)(x) = |f(x)− w|

for all w ∈ Q+ iQ. Since

|f(·)− f(x)| ≤ |f(·)− w|+ |w − f(x)|,

(Ar|f(·)− f(x)|)(x) ≤ (Ar |f(·)− w|) (x) + (Ar|w − f(x)|) (x)
= (Ar |f(·)− w|) (x) + |w − f(x)|

and hence for x 6∈ E,

lim
r↓0
(Ar|f(·)− f(x)|)(x) ≤ |f(x)− w|+ |w − f(x)|

≤ 2|f(x)− w|.
Since this is true for all w ∈ Q+ iQ, we see that

lim
r↓0
(Ar|f(·)− f(x)|)(x) = 0 for all x /∈ E,

i.e. Ec ⊂ Lf or equivalently Lcf ⊂ E. So m(Lcf ) ≤ m(E) = 0.

Theorem 14.13 (Lebesque Differentiation Theorem). Suppose f ∈ L1loc for all
x ∈ Lf (so in particular for m — a.e. x)

lim
r↓0

1

m(Er)

Z
Er

|f(y)− f(x)|dy = 0

and

lim
r↓0

1

m(Er)

Z
Er

f(y)dy = f(x)

when Er ↓ {x} nicely.
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Proof. For all x ∈ Lf ,¯̄̄̄
1

m(Er)

Z
Er

f(y)dy − f(x)

¯̄̄̄
=

¯̄̄̄
1

m(Er)

Z
Er

(f(y)− f(x)) dy

¯̄̄̄
≤ 1

m(Er)

Z
Er

|f(y)− f(x)|dy

≤ 1

αm(Bx(r))

Z
Bx(r)

|f(y)− f(x)|dy

which tends to zero as r ↓ 0 by Theorem 14.12. In the second inequality we have
used the fact that m(Bx(r) \Bx(r)) = 0.

Lemma 14.14. Suppose λ is positive σ — finite measure on B ≡ BRn such that
λ ⊥ m. Then for m — a.e. x,

lim
r↓0

λ(Bx(r))

m(Bx(r))
= 0.

Proof. Let A ∈ B such that λ(A) = 0 andm(Ac) = 0. By the regularity theorem
(Exercise 6.4), for all > 0 there exists an open set V ⊂ Rn such that A ⊂ V and
λ(V ) < . Let

Fk ≡
½
x ∈ A : lim

r↓0
λ(Bx(r))

m(Bx(r))
>
1

k

¾
the for x ∈ Fk choose rx > 0 such that Bx(rx) ⊂ V (see Figure 27)and λ(Bx(rx))

m(Bx(rx))
>

1
k , i.e.

m(Bx(rx)) < k λ(Bx(rx)).

Figure 27. Covering a small set with balls.
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Let E = {Bx(rx)}x∈Fk and U ≡ S
x∈Fk

Bx(rx) ⊂ V . Heuristically if all the balls

in E were disjoint and E were countable, then
m(Fk) ≤

X
x∈Fk

m(Bx(rx)) < k
X
x∈Fk

λ(Bx(rx))

= kλ(U) ≤ k λ(V ) ≤ k .

Since > 0 is arbitrary this would imply that m(Fk) = 0.
To fix the above argument, suppose that c < m(U) and use the covering lemma

to find disjoint balls B1, . . . , BN ∈ E such that

c < 3n
NX
i=1

m(Bi) < k3n
nX
i=1

λ(Bi)

≤ k3nλ(U) ≤ k3nλ(V ) ≤ k3n .

Since c < m(U) is arbitrary we learn that m(Fk) ≤ m(U) ≤ k3n and in particular
that m(Fk) ≤ k3n . Since > 0 is arbitrary, this shows that m(Fk) = 0. This
implies, letting

F∞ ≡
½
x ∈ A : lim

r↓0
λ(Bx(r))

m(Bx(r))
> 0

¾
,

that m(F∞) = limk→∞m(Fk) = 0. Since m(Ac) = 0, this shows that

m({x ∈ Rn : lim
r↓0

λ(Bx(r))

m(Bx(r))
> 0}) = 0.

Corollary 14.15. Let λ be a complex or a σ — finite signed measure such that
λ ⊥ m. Then for m — a.e. x,

lim
r↓0

λ(Er)

m(Er)
= 0

whenever Er ↓ {x} nicely.
Proof. Recalling the λ ⊥ m implies |λ| ⊥ m, Lemma 14.14 and the inequalities,

|λ(Er)|
m(Er)

≤ |λ|(Er)

αm(Bx(r))
≤ |λ|(Bx(r))

αm(Bx(r))
≤ |λ|(Bx(2r))

α2−nm(Bx(2r))

proves the result.

14.4. The Fundamental Theorem of Calculus. In this section we will restrict
the results above to the one dimensional setting. So for the rest of this chapter,
n = 1 and m denotes one dimensional Lebesgue measure on B := BR.
Notation 14.16. Given a function F : R→ R̄ or F : R→ C, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) whenever the
limits exist. Notice that if F is a monotone functions then F (±∞) and F (x±)
exist for all x.

Theorem 14.17. Let F : R→ R be increasing and define G(x) = F (x+). Then
(a) {x ∈ R : F (x+) > F (x−)} is countable.
(b)The function G increasing and right continuous.
(c) For m — a.e. x, F 0(x) and G0(x) exists and F 0(x) = G0(x).
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Proof. Properties (a) and (b) have already been proved in Theorem 11.34.
(c) Let µG denote the unique measure on B such that µG((a, b]) = G(b)−G(a)

for all a < b. By Theorem 14.3, for m - a.e. x, for all sequences {Er}r>0 which
shrink nicely to {x} , lim

r↓0
(µG(Er)/m(Er)) exists and is independent of the choice

of sequence {Er}r>0 shrinking to {x} . Since (x, x + r] ↓ {x} and (x − r, x] ↓ {x}
nicely,

lim
r↓0

µG(x, x+ r])

m((x, x+ r])
= lim

r↓0
G(x+ r)−G(x)

r
=

d

dx+
G(x)

and

lim
r↓0

µG((x− r, x])

m((x− r, x])
= lim

r↓0
G(x)−G(x− r)

r
= lim

r↓0
G(x− r)−G(x)

−r =
d

dx−
G(x)

exist and are equal for m - a.e. x, i.e. G0(x) exists for m -a.e. x.
For x ∈ R, let

H(x) ≡ G(x)− F (x) = F (x+)− F (x) ≥ 0.
The proof will be completed by showing that H 0(x) = 0 for m — a.e. x. Let

Λ ≡ {x ∈ R : F (x+) > F (x)} ⊂ Γ.
Then Λ ⊂ R is a countable set and H(x) = 0 if x /∈ Λ. Let λ be the measure on
(R,B) defined by

λ =
X
x∈R

H(x)δx =
X
x∈Λ

H(x)δx.

Since

λ((−N,N)) =
X

x∈(−N,N)
H(x) =

X
x∈Λ∩(−N,N)

(F (x+)− F (x))

≤
X

x∈(−N,N)
(F (x+)− F (x−)),

Eq. (11.26) guarantees that λ is finite on bounded sets. Since λ(Λc) = 0 and
m(Λ) = 0, λ ⊥ m and so by Corollary 14.15 for m - a.e. x,¯̄̄̄

H(x+ r)−H(x)

r

¯̄̄̄
≤ 2H(x+ |r|) +H(x− |r|) +H(x)

|r| ≤ 2λ([x− |r| , x+ |r|])|r|
and the last term goes to zero as r → 0 because {[x− r, x+ r]}r>0 shrinks nicely
to {x} . Hence we conclude for m — a.e. x that H 0(x) = 0.

Definition 14.18. For −∞ ≤ a < b < ∞, a partition P of (a, b] is a finite subset
of [a, b] ∩R such that {a, b} ∩R ⊂ P. For x ∈ P\ {b} , let x+ = min {y ∈ P : y > x}
and if x = b let x+ = b.

Proposition 14.19. Let µ be a complex measure on B and let F be a function
such that

F (b)− F (a) = µ((a, b]) for all a < b,

for example let F (x) = µ((−∞, x]) in which case F (−∞) = 0. The function F is
right continuous and for −∞ < a < b <∞,

(14.3) |µ|(a, b] = sup
P

X
x∈P

|µ(x, x+]| = sup
P

X
x∈P

|F (x+)− F (x)|
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where supremum is over all partitions P of (a, b]. Moreover µ¿ m iff for all > 0
there exists δ > 0 such that

(14.4)
nX
i=1

|µ ((ai, bi])| =
nX
i=1

|F (bi)− F (ai)| <

whenever {(ai, bi)}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1

(bi−ai) < δ.

Proof. Eq. (14.3) follows from Proposition 13.35 and the fact that B = σ(A)
where A is the algebra generated by (a, b]∩R with a, b ∈ R̄. Suppose that Eq. (14.4)
holds under the stronger condition that {(ai, bi]}ni=1 are disjoint intervals in (a, b].
If {(ai, bi)}ni=1 are disjoint open intervals in (a, b] such that

nP
i=1

(bi−ai) < δ, then for

all ρ > 0, {(ai + ρ, bi]}ni=1 are disjoint intervals in (a, b] and
nP
i=1
(bi − (ai + ρ)) < δ

so that by assumption,
nX
i=1

|F (bi)− F (ai + ρ)| < .

Since ρ > 0 is arbitrary in this equation and F is right continuous, we conclude
that

nX
i=1

|F (bi)− F (ai)| ≤

whenever {(ai, bi)}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi−ai) < δ.

So it suffices to prove Eq. (14.4) under the stronger condition that {(ai, bi]}ni=1
are disjoint intervals in (a, b]. But this last assertion follows directly from Theorem
13.39 and the fact that B = σ(A).
Definition 14.20. A function F : R→ C is absolutely continuous if for all
> 0 there exists δ > 0 such that

nX
i=1

|F (bi)− F (ai)| <

whenever {(ai, bi)}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi−ai) < δ.

Definition 14.21. Given a function F : R→ C let µF be the unique additive
measure on A (the algebra of half open intervals) such that µF ((a, b]) = F (b)−F (a)
for all a < b. For a ∈ R define

TF (a) ≡ sup
P

X
x∈P

|F (x+)− F (x)| = sup
P

X
x∈P

|µF (x, x+]|

where the supremum is taken over all partitions of (−∞, a].More generally if −∞ ≤
a < b, let

TF (a, b] = sup
P

X
x∈P

|µF (x, x+]| = sup
P

X
x∈P

|F (x+)− F (x)|

where supremum is over all partitions P of (a, b]. A function F : R→ C is said to
be of bounded variation if TF (∞) <∞ and we write F ∈ BV.More generally we
will let BV ((a, b]) denote the functions, F : [a, b]∩R→ C, such that TF (a, b] <∞.
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Lemma 14.22. Let F : R→ C be any funtion and −∞ ≤ a < b < c, then

(1)

(14.5) TF (a, c] = TF (a, b] + TF (b, c].

(2) Letting a = −∞ in this expression implies

(14.6) TF (c) = TF (b) + TF (b, c]

and in particular TF is monotone increasing.
(3) If TF (b) <∞ for some b ∈ R then TF (−∞) = 0 and

(14.7) TF (a+)− TF (a) ≤ lim sup
y↓a

|F (y)− F (a)|

for all a ∈ (−∞, b). In particular TF is right continuous if F is right con-
tinuous.

Proof. By the triangle inequality, if P and P0 are partition of (a, c] such that
P ⊂ P0, then X

x∈P
|F (x+)− F (x)| ≤

X
x∈P0

|F (x+)− F (x)|.

So if P is a partition of (a, c], then P ⊂ P0 := P∪ {b} impliesX
x∈P

|F (x+)− F (x)| ≤
X
x∈P0

|F (x+)− F (x)|

=
X

x∈P0∩[a,b]
|F (x+)− F (x)|+

X
x∈P0∩[b,c]

|F (x+)− F (x)|

≤ TF (a, b] + TF (b, c].

Thus we see that TF (a, c] ≤ TF (a, b]+TF (b, c]. Similarly if P1 is a partition of (a, b]
and P2 is a partition of (b, c], then P = P1 ∪ P2 is a partition of (a, c] andX

x∈P1
|F (x+)− F (x)|+

X
x∈P2

|F (x+)− F (x)| =
X
x∈P

|F (x+)− F (x)| ≤ TF (a, c].

From this we conclude TF (a, b]+TF (b, c] ≤ TF (a, c] which finishes the proof of Eqs.
(14.5) and (14.6).
Suppose that TF (b) < ∞ and given > 0 let P be a partition of (−∞, b] such

that

TF (b) ≤
X
x∈P

|F (x+)− F (x)|+ .

Let x0 = minP then TF (b) = TF (x0) + TF (x0, b] and by the previous equation

TF (x0) + TF (x0, b] ≤
X
x∈P

|F (x+)− F (x)|+ ≤ TF (x0, b] +

which shows that TF (x0) ≤ . Since TF is monotone increasing and > 0, we
conclude that TF (−∞) = 0.
Finally let a ∈ (−∞, b) and given > 0 let P be a partition of (a, b] such that

(14.8) TF (b)− TF (a) = TF (a, b] ≤
X
x∈P

|F (x+)− F (x)|+ .
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Let y ∈ (a, a+), thenX
x∈P

|F (x+)− F (x)|+ ≤
X

x∈P∪{y}
|F (x+)− F (x)|+

= |F (y)− F (a)|+
X

x∈P\{y}
|F (x+)− F (x)|+

≤ |F (y)− F (a)|+ TF (y, b] + .(14.9)

Combining Eqs. (14.8) and (14.9) shows

TF (y)− TF (a) + TF (y, b] = TF (b)− TF (a)

≤ |F (y)− F (a)|+ TF (y, b] + .

Since y ∈ (a, a+) is arbitrary we conclude that
TF (a+)− TF (a) = lim sup

y↓a
TF (y)− TF (a) ≤ lim sup

y↓a
|F (y)− F (a)|+

which proves Eq. (14.7) since > 0 is arbitrary.
The following lemma should help to clarify Proposition 14.19 and Definition

14.20.

Lemma 14.23. Let µ and F be as in Proposition 14.19 and A be the algebra
generated by (a, b] ∩ R with a, b ∈ R̄.. Then the following are equivalent:

(1) µF ¿ m
(2) |µF | ¿ m
(3) For all > 0 there exists a δ > 0 such that TF (A) < whenever m(A) < δ.
(4) For all > 0 there exists a δ > 0 such that |µF (A)| < whenever m(A) < δ.

Moreover, condition 4. shows that we could replace the last statement in Propo-
sition 14.19 by: µ¿ m iff for all > 0 there exists δ > 0 such that¯̄̄̄

¯
nX
i=1

µ ((ai, bi])

¯̄̄̄
¯ =

¯̄̄̄
¯
nX
i=1

[F (bi)− F (ai)]

¯̄̄̄
¯ <

whenever {(ai, bi)}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi−ai) < δ.

Proof. This follows directly from Lemma 13.36 and Theorem 13.39.

Lemma 14.24.
(1) Monotone functions F : R→ R are in BV (a, b] for all −∞ < a < b <∞.
(2) Linear combinations of functions in BV are in BV, i.e. BV is a vector

space.
(3) If F : R→ C is absolutely continuous then F is continuous and F ∈

BV (a, b] for all −∞ < a < b <∞.
(4) If F : R→ R is a differentiable function such that supx∈R |F 0(x)| = M <
∞, then F is absolutely continuous and TF (a, b] ≤M(b− a) for all −∞ <
a < b <∞.

(5) Let f ∈ L1((a, b],m) and set

(14.10) F (x) =

Z
(a,x]

fdm

for x ∈ (a, b]. Then F is absolutely continuous.
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Proof.
(1) If F is monotone increasing and P is a partition of (a, b] thenX

x∈P
|F (x+)− F (x)| =

X
x∈P

(F (x+)− F (x)) = F (b)− F (a)

so that TF (a, b] = F (b)−F (a). Also note that F ∈ BV iff F (∞)−F (−∞) <
∞.

(2) Item 2. follows from the triangle inequality.
(3) Since F is absolutely continuous, there exists δ > 0 such that whenever

a < b < a+ δ and P is a partition of (a, b],X
x∈P

|F (x+)− F (x)| ≤ 1.

This shows that TF (a, b] ≤ 1 for all a < b with b − a < δ. Thus using Eq.
(14.5), it follows that TF (a, b] ≤ N <∞ if b− a < Nδ for an N ∈ N.

(4) Suppose that {(ai, bi)}ni=1 ⊂ (a, b] are disjoint intervals, then by the mean
value theorem,

nX
i=1

|F (bi)− F (ai)| ≤
nX
i=1

|F 0(ci)| (bi − ai) ≤Mm (∪ni=1(ai, bi))

≤M
nX
i=1

(bi − ai) ≤M(b− a)

form which it clearly follows that F is absolutely continuous. Moreover we
may conclude that TF (a, b] ≤M(b− a).

(5) Let µ be the positive measure dµ = |f | dm on (a, b]. Let {(ai, bi)}ni=1 ⊂ (a, b]
be disjoint intervals as above, then

nX
i=1

|F (bi)− F (ai)| =
nX
i=1

¯̄̄̄
¯
Z
(ai,bi]

fdm

¯̄̄̄
¯

≤
nX
i=1

Z
(ai,bi]

|f | dm

=

Z
∪ni=1(ai,bi]

|f | dm = µ(∪ni=1(ai, bi]).(14.11)

Since µ is absolutely continuous relative to m for all > 0 there exist
δ > 0 such that µ(A) < if m(A) < δ. Taking A = ∪ni=1(ai, bi] in Eq.
(14.11) shows that F is absolutely continuous. It is also easy to see from
Eq. (14.11) that TF (a, b] ≤

R
(a,b]

|f | dm.

Theorem 14.25. Let F : R→ C be a function, then
(1) F ∈ BV iff ReF ∈ BV and ImF ∈ BV.
(2) If F : R → R is in BV then the functions F± := (TF ± F ) /2 are bounded

and increasing functions.
(3) F : R → R is in BV iff F = F+ − F− where F± are bounded increasing

functions.
(4) If F ∈ BV then F (x±) exist for all x ∈ R̄. Let G(x) := F (x+).
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(5) F ∈ BV then {x : limy→x F (y) 6= F (x)} is a countable set and in particular
G(x) = F (x+) for all but a countable number of x ∈ R.

(6) If F ∈ BV, then for m — a.e. x, F 0(x) and G0(x) exist and F 0(x) = G0(x).

Proof.

(1) Item 1. is a consequence of the inequalities

|F (b)− F (a)| ≤ |ReF (b)−ReF (a)|+ |ImF (b)− ImF (a)| ≤ 2 |F (b)− F (a)| .
(2) By Lemma 14.22, for all a < b,

(14.12) TF (b)− TF (a) = TF (a, b] ≥ |F (b)− F (a)|
and therefore

TF (b)± F (b) ≥ TF (a)± F (a)

which shows that F± are increasing. Moreover from Eq. (14.12), for b ≥ 0
and a ≤ 0,

|F (b)| ≤ |F (b)− F (0)|+ |F (0)| ≤ TF (0, b] + |F (0)|
≤ TF (0,∞) + |F (0)|

and similarly
|F (a)| ≤ |F (0)|+ TF (−∞, 0)

which shows that F is bounded by |F (0)|+TF (∞). Therefore F± is bounded
as well.

(3) By Lemma 14.24 if F = F+ − F−, then

TF (a, b] ≤ TF+(a, b] + TF−(a, b] = |F+(b)− F+(a)|+ |F−(b)− F−(a)|
which is bounded showing that F ∈ BV. Conversely if F is bounded varia-
tion, then F = F+ − F− where F± are defined as in Item 2.

Items 4. — 6. follow from Items 1. — 3. and Theorem 14.17.

Theorem 14.26. Suppose that F : R→ C is in BV, then

(14.13) |TF (x+)− TF (x)| ≤ |F (x+)− F (x)|
for all x ∈ R. If we further assume that F is right continuous then there exists a
unique measure µ on B = BR. such that
(14.14) µ((−∞, x]) = F (x)− F (−∞) for all x ∈ R.
Proof. Since F ∈ BV, F (x+) exists for all x ∈ R and hence Eq. (14.13) is a

consequence of Eq. (14.7). Now assume that F is right continuous. In this case
Eq. (14.13) shows that TF (x) is also right continuous. By considering the real
and imaginary parts of F separately it suffices to prove there exists a unique finite
signed measure µ satisfying Eq. (14.14) in the case that F is real valued. Now
let F± = (TF ± F ) /2, then F± are increasing right continuous bounded functions.
Hence there exists unique measure µ± on B such that

µ±((−∞, x]) = F±(x)− F±(−∞) ∀x ∈ R.
The finite signed measure µ ≡ µ+ − µ− satisfies Eq. (14.14). So it only remains to
prove that µ is unique.



REAL ANALYSIS LECTURE NOTES 293

Suppose that µ̃ is another such measure such that (14.14) holds with µ replaced
by µ̃. Then for (a, b],

|µ| (a, b] = sup
P

X
x∈P

|F (x+)− F (x)| = |µ̃| (a, b]

where the supremum is over all partition of (a, b]. This shows that |µ| = |µ̃| on
A ⊂ B — the algebra generated by half open intervals and hence |µ| = |µ̃| . It now
follows that |µ|+ µ and |µ̃|+ µ̃ are finite positive measure on B such that

(|µ|+ µ) ((a, b]) = |µ| ((a, b]) + (F (b)− F (a))

= |µ̃| ((a, b]) + (F (b)− F (a))

= (|µ̃|+ µ̃) ((a, b])

from which we infer that |µ|+ µ = |µ̃|+ µ̃ = |µ|+ µ̃ on B. Thus µ = µ̃.
Alternatively, one may prove the uniqueness by showing that C := {A ∈ B :

µ(A) = eµ(A)} is a monotone class which contains A or using the π — λ theorem.
Remark 14.27. One may also construct the measure µF by appealing to the complex
Riesz Theorem (Corollary 13.41). Indeed suppose that F has bounded variation
and let I(f) :=

R
R fdF be defined analogously to the real incresing case in Notation

11.6 above. Then one easily shows that |I(f)| ≤ TF (∞) · kfku and therefore I ∈
C0(R,C)∗. So there exists a unique complex measure µF such thatZ

R
fdF =

Z
R
fdµ for all f ∈ C0(R,C).

Letting φ be as in the proof of Theorem 11.35, then one may show¯̄̄̄Z
R
φ dF − (F (b+ )− F (a+ 2 ))

¯̄̄̄
≤ TF ((a, a+2 ])+TF ((b+ , ba+2 ])→ 0 as ↓ 0

and hence

µ((a, b]) = lim
↓0

Z
R
φ dµ = lim

↓0

Z
R
φ dF = F (b)− F (a).

Definition 14.28. A function F : R→ C is said to be of normalized bounded
variation if F ∈ BV, F is right continuous and F (−∞) = 0.We will abbreviate this
by saying F ∈ NBV. (The condition: F (−∞) = 0 is not essential and plays no role
in the discussion below.)

Theorem 14.29. Suppose that F ∈ NBV and µF is the measure defined by Eq.
(14.14), then

(14.15) dµF = F 0dm+ dλ

where λ ⊥ m and in particular for −∞ < a < b <∞,

(14.16) F (b)− F (a) =

Z b

a

F 0dm+ λ((a, b]).

Proof. By Theorem 14.3, there exists f ∈ L1(m) and a complex measure λ such
that for m -a.e. x,

(14.17) f(x) = lim
r↓0

µ(Er)

m(Er)
,

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} , λ ⊥ m and

dµF = fdm+ dλ.
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From Eq. (14.17) it follows that

lim
h↓0

F (x+ h)− F (x)

h
= lim

h↓0
µF ((x, x+ h])

h
= f(x) and

lim
h↓0

F (x− h)− F (x)

−h = lim
h↓0

µF ((x− h, x])

h
= f(x)

for m — a.e. x, i.e. d
dx+F (x) =

d
dx−F (x) = f(x) for m —a.e. x. This implies that F

is m — a.e. differentiable and F 0(x) = f(x) for m — a.e. x.

Corollary 14.30. Let F : R→ C be in NBV, then

(1) µF ⊥ m iff F 0 = 0 m a.e.
(2) µF ¿ m iff λ = 0 iff

(14.18) µF ((a, b]) =

Z
(a,b]

F 0(x)dm(x) for all a < b.

Proof.
(1) If F 0(x) = 0 for m a.e. x, then by Eq. (14.15), µF = λ ⊥ m. If µF ⊥ m,

then by Eq. (14.15), F 0dm = dµF −dλ ⊥ dm and by Remark 13.8 F 0dm =
0, i.e. F 0 = 0 m -a.e.

(2) If µF ¿ m, then dλ = dµF − F 0dm¿ dm which implies by Lemma 13.28
that λ = 0. Therefore Eq. (14.16) becomes (14.18). Now let

ρ(A) :=

Z
A

F 0(x)dm(x) for all A ∈ B.

Recall by the Radon - Nikodym theorem that
R
R |F 0(x)| dm(x) < ∞ so

that ρ is a complex measure on B. So if Eq. (14.18) holds, then ρ = µF
on the algebra generated by half open intervals. Therefore ρ = µF as in
the uniqueness part of the proof of Theorem 14.26. Therefore dµF = F 0dm
and hence λ = 0.

Theorem 14.31. Suppose that F : [a, b] → C is a measurable function. Then the
following are equivalent:

(1) F is absolutely continuous on [a, b].
(2) There exists f ∈ L1([a, b]), dm) such that

(14.19) F (x)− F (a) =

Z x

a

fdm ∀x ∈ [a, b]

(3) F 0 exists a.e., F 0 ∈ L1([a, b], dm) and

(14.20) F (x)− F (a) =

Z x

a

F 0dm∀x ∈ [a, b].

Proof. In order to apply the previous results, extend F to R by F (x) = F (b) if
x ≥ b and F (x) = F (a) if x ≤ a.
1. =⇒ 3. If F is absolutely continuous then F is continuous on [a, b] and

F −F (a) = F −F (−∞) ∈ NBV by Lemma 14.24. By Proposition 14.19, µF ¿ m
and hence Item 3. is now a consequence of Item 2. of Corollary 14.30. The assertion
3. =⇒ 2. is trivial.
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2. =⇒ 1. If 2. holds then F is absolutely continuous on [a, b] by Lemma 14.24.

14.5. Counter Examples: These are taken from I. P. Natanson,“Theory of func-
tions of a real variable,” p.269. Note it is proved in Natanson or in Rudin that the
fundamental theorem of calculus holds for f ∈ C([0, 1]) such that f 0(x) exists for
all x ∈ [0, 1] and f 0 ∈ L1. Now we give a couple of examples.

Example 14.32. In each case f ∈ C([−1, 1]).
(1) Let f(x) = |x|3/2 sin 1

x with f(0) = 0, then f is everywhere differentiable
but f 0 is not bounded near zero. However, the function f 0 ∈ L1([−1, 1]).

(2) Let f(x) = x2 cos π
x2 with f(0) = 0, then f is everywhere differentiable but

f 0 /∈ L1loc(− , ). Indeed, if 0 /∈ (α, β) thenZ β

α

f 0(x)dx = f(β)− f(α) = β2 cos
π

β2
− α2 cos

π

α2
.

Now take αn :=
q

2
4n+1 and βn = 1/

√
2n. ThenZ βn

αn

f 0(x)dx =
2

4n+ 1
cos

π(4n+ 1)

2
− 1

2n
cos 2nπ =

1

2n

and noting that {(αn, βn)}∞n=1 are all disjoint, we find
R
0
|f 0(x)| dx =∞.

14.6. Exercises.

Exercise 14.1. Folland 3.22 on p. 100.

Exercise 14.2. Folland 3.24 on p. 100.

Exercise 14.3. Folland 3.25 on p. 100.

Exercise 14.4. Folland 3.27 on p. 107.

Exercise 14.5. Folland 3.29 on p. 107.

Exercise 14.6. Folland 3.30 on p. 107.

Exercise 14.7. Folland 3.33 on p. 108.

Exercise 14.8. Folland 3.35 on p. 108.

Exercise 14.9. Folland 3.37 on p. 108.

Exercise 14.10. Folland 3.39 on p. 108.




