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13. CoMPLEX MEASURES, RADON-NIKODYM THEOREM AND THE DUAL OF LP

Deﬁnitioll 13.1. A signed measure v on a measurable space (X, M) is a function
v: M — R such that

(1) Either v(M) C (=00, 0] or ¥(M) C [—o0, 0).

(2) v is countably additive, this is to say if £ = [[;2, E; with E; € M, then

V(E) = i V(E;) 3
(3) v(0) =0.

If there exists X,, € M such that |v(X,,)| < co and X = U2, X,,, then v is said
to be o — finite and if (M) C R then v is said to be a finite signed measure.
Similarly, a countably additive set function v : M — C such that v(}) = 0 is called
a complex measure.

A finite signed measure is clearly a complex measure.

Example 13.2. Suppose that g and p_ are two positive measures on M such
that either p4 (X) < oo or p—(X) < oo, then v = iy — pu— is a signed measure. If
both py(X) and p—(X) are finite then v is a finite signed measure.

Example 13.3. Suppose that g : X — R is measurable and either i} B gtdu or
S 9~ dp < oo, then

(13.1) V(A) = / gdp¥A € M
A

defines a signed measure. This is actually a special case of the last example with
pe(A) = fA gTdp. Notice that the measure 4 in this example have the property
that they are concentrated on disjoint sets, namely py “lives” on {g > 0} and p_
“lives” on the set {g < 0}.

Example 13.4. Suppose that p is a positive measure on (X, M) and g € L'(p),
then v given as in Eq. (13.1) is a complex measure on (X, M). Also if {u, pify } is
any collection of four positive measures on (X, M), then

(13.2) vi=pl —pl 4 (pf — pl)
is a complex measure.

If v is given as in qu. 13.1, then v may be written as in Eq. (13.2) with
dpy = (Reg), dp and dply = (Img), dp.

Definition 13.5. Let v be a complex or signed measure on (X, M). A set E € M is
a null set or precisely a v — null set if v(A) = 0 for all A € M such that A C E, i.e.
Vimp = 0. Recall that Mg := {ANE: A€ M} =i,' (M) is the “trace of M on
E.

o0
31t y(E) € R then the series Y. v(Ej) is absolutely convergent since it is independent of
j=1
rearrangements.
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13.1. Radon-Nikodym Theorem I. We will eventually show that every complex
and o — finite signed measure v may be described as in Eq. (13.1). The next theorem
is the first result in this direction.

Theorem 13.6. Suppose (X, M) is a measurable space, p is a positive finite mea-
sure on M and v is a complex measure on M such that [v(A)| < wp(A) for all
A € M. Then dv = pdu where |p| < 1. Moreover if v is a positive measure, then
0<p<L

Proof. For a simple function, f € S(X, M), let v(f) := >, ccav(f = a). Then

N1 L lal s =l < X laln(s =) = [ 17]dn

acC acC

So, by the B.L.T. theorem, v extends to a continuous linear functional on L*(u)
satisfying the bounds

e /X [l di < /i) ]l oy for all £ € LY ().

The Riesz representation Theorem (Proposition 10.15) then implies there exists a
unique p € L?(u) such that

v(f) = /Xfpdu for all f € L?(p).

Taking f =sgn(p)la in this equation shows

/ 1ol dyt = v(ER(P) 1) < u(A) = / Ly
A A

from which it follows that |p| <1, u — a.e. If v is a positive measure, then for real
[ 0=Im[v(f)] = [y Impfdu and taking f = Imp shows 0 = [ [Im p)° dy, i.e.
Im(p(z)) =0 for u — a.e. 2 and we have shown p is real a.e. Similarly,

0§1/(R€p<0)=/ pdp <0,
{Re p<0}

shows p >0 ae =

Definition 13.7. Let p and v be two signed or complex measures on (X, M). Then
p and v are mutually singular (written as p L v) if there exists A € M such
that A is a v — null set and A¢ is a g — null set. The measure v is absolutely
continuous relative to p (written as v < u) provided v(A) = 0 whenever A is a
w — null set, i.e. all g — null sets are v — null sets as well.

Remark 13.8. If py, po and v are signed measures on (X, M) such that p; L v and
po L vand pg + po is well defined, then (p1 + po) L v If {g;};2, is a sequence of
positive measures such that p; L v for all ¢ then g =2, p; L v as well.

Proof. In both cases, choose A; € M such that A; is v — null and A is p;-null
for all 7. Then by Lemma 13.17, A := U; A; is still a v —null set. Since

A = M AS C AC

m for all m

we see that A® is a p; - null set for all 7 and is therefore a null set for = >0, ;.
This shows that ¢ L v. m
Throughout the remainder of this section p will be always be a positive measure.
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Definition 13.9 (Lebesgue Decomposition). Suppose that v is a signed (complex)
measure and y is a positive measure on (X, M). Two signed (complex) measures
v, and vs form a Lebesgue decomposition of v relative to p if
(1) If v = v, + vs where implicit in this statement is the assertion that if v
takes on the value co (—o0) then v, and v, do not take on the value —oco
(00).
(2) vy < pand vs L p.
Lemma 13.10. Let v is a signed (complex) measure and p is a positive measure
on (X, M). If there exists a Lebesgue decomposition of v relative to p then it is
unique. Moreover, the Lebesgue decomposition satisfies the following properties.

(1) If v is a positive measure then so are vy and v,.
(2) Ifv is a o — finite measure then so are vs and v,.

Proof. Since vs L pu, there exists A € M such that p(A) = 0 and A° is vs —
null and because v, < p, A is also a null set for v,. So for C € M, v,(CNA)=0
and vs (C'N A°) = 0 from which it follows that

v(C)=v(CNA)+v(CNA°) =v,(CNA)+v,(CNA°
and hence,
vs(C) =vs(CNA)=v(CNA)and
(13.3) V(C) = v, (C N A°) = v(C N A).
Item 1. is now obvious from Eq. (13.3). For Item 2., if v is a o — finite measure
then there exists X,, € M such that X = U2, X, and |v(X,,)| < oo for all n. Since
V(X)) = vo(Xn) + vs(X,), we must have v,(X,,) € R and v4(X,,) € R showing v,
and v, are o — finite as well.
For the uniqueness assertion, if we have another decomposition v = v, + s with
s L fand 7, < fi we may choose A € M such that p(A) =0 and A is 75 — null.
Letting B = AU A we have
p(B) < p(A) + p(A) =0
and B¢ = A°N A€ is both a v, and a 7, null set. Therefore by the same arguments
that proves Egs. (13.3), for all C € M,
vs(C) =v(CNB)=1,(C) and
va(C) = v(C N B = 7,(C).

Lemma 13.11. Suppose i is a positive measure on (X, M) and f,g: X — R are
extended integrable functions such that

(13.4) / fdu = / gdp for all A € M,

A A
Jx f-dp < oo, [y g—dp < oo, and the measures |f|dp and |g|dp are o — finite.
Then f(x) = g(x) for p — a.e. x.

Proof. By assumption there exists X,, € M such that X,, T X and fX" |fldp <
oo and an lg| dp < oo for all n. Replacing A by AN X, in Eq. (13.4) implies

/MJW=/ fw:/ ngfuww
A ANX, ANX, A
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for all A € M. Since 1x, f and 1x,g are in L'(p) for all n, this equation implies
1x,f =1x,9, i — a.e. Letting n — oo then shows that f =g, 4 —ae. ®m

Remark 13.12. Suppose that f and g are two positive measurable functions on
(X, M, i) such that Eq. (13.4) holds. It is not in general true that f = g, u —
a.e. A trivial counter example is to take M = P(X), p(A) = oo for all non-empty
AeM, f=1x and g =2-1x. Then Eq. (13.4) holds yet f # g.

Theorem 13.13 (Radon Nikodym Theorem for Positive Measures). Suppose that
w,v are o — finite positive measures on (X, M). Then v has a unique Lebesgue
decomposition v = v, + v, relative to p and there exists a unique (modulo sets of
w — measure 0) function p : X — [0,00) such that dv, = pdp. Moreover, vy = 0 iff
v W

Proof. The uniqueness assertions follow directly from Lemmas 13.10 and 13.11.

Existence. (Von-Neumann’s Proof.) First suppose that p and v are finite
measures and let A = p+ v. By Theorem 13.6, dv = hdX with 0 < h < 1 and this
implies, for all non-negative measurable functions f, that

(13.5) v(f) = A(fh) = u(fh) + v(fh)
or equivalently
(13.6) v(f(1— h)) = p(fh).

Taking f = 1g,—1} and f = glgu<13(1 —h)~! with g > 0 in Eq. (13.6)

p({h =1}) = 0 and v(glgnay) = plglincay (1 —h)~'h) = u(pg)

where p := 1{h<1}1Thh and v,(g) := v(gl{p=1y). This gives the desired decomposi-

32 gince

tion
v(9) = v(glin=1}) + v(9l{n<1y) = vs(g) + plpg)
and
vs (h #1) =0 while u(h=1) = p({h # 1}°) = 0.
If v < p, then p(h=1) = 0 implies v (h=1) = 0 and hence that vy, = 0. If
vs = 0, then dv = pdp and so if u(A) =0, then v(A) = u(pla) =0 as well.
For the o — finite case, write X = I_[Zozl X, where X,, € M are chosen so that
w(X,) < oo and v(X,,) < oo for all n. Let du, = 1x,dp and dv,, = 1x, dv. Then
by what we have just proved there exists p,, € L' (X, 1,,) and measure v such that

32Here is the motivation for this construction. Suppose that dv = dvs + pdp is the Radon-
Nikodym decompostion and X = A]] B such that vs(B) = 0 and u(A) = 0. Then we find

vs(f) + upf) = v(f) = Mfg) =v(fg) + u(f9).

Letting f — 14 f then implies that
Vs(lAf) = V(lAfg)
which show that g =1 v —a.e. on A. Also letting f — 1p f implies that
wplpf(1—9)) =v(pf(1—9)) = u(lpfg) = p(f9)
which shows that
p(l—g)=plp(l—g) =g u—ae.

This shows that p = ﬁ - a.e.
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dvy, = ppduy, + dvi with v3 L p,, ie. there exists A,, B, € Mx, and p(A,) =0
and v$(B,) = 0. Define v, := 3" v3 and p:= " | 1x, pn, then

o0 o0 o0
v=> vn= (patin+v3) =D (pnlx,p+vy) = pp+vs
n=1 n=1 n=1
and letting A := U2 A, and B := U2, B,,, we have A = B¢ and
p(A) = p(An) =0and v(B) = v(B,) =0.
n=1 n=1

Theorem 13.14. Let (X, M, pu) be a o — finite measure space and suppose that
p,q € [1,00] are conjugate exponents. Then for p € [1,00), the map g € LT —
¢q € (LP)* is an isometric isomorphism of Banach spaces. (Recall that ¢4(f) :=
fX fgdu.) We summarize this by writing (LP)* = L? for all 1 < p < oco.

Proof. The only point that we have not yet proved is the surjectivity of the
map g € L? — ¢4 € (LP)*. When p = 2 the result follows directly from the Riesz
theorem. We will begin the proof under the extra assumption that p(X) < oo in
which cased bounded functions are in LP(p) for all p. So let ¢ € (LP)". We need
to find g € L9(u) such that ¢ = ¢,. When p € [1,2], L?*(u) C LP(u) so that we
may restrict ¢ to L?(u) and again the result follows fairly easily from the Riesz
Theorem, see Exercise 13.1 below.

To handle general p € [1,00), define v(A4) = ¢(1a). If A = [[52,4,, with
A, € M, then
N
- 1
11a=> Tallee = o, A e = (U511 40)]7 — 0 as N — oo.

n=1

Therefore
v(A) = ¢(1a) = > _¢(la,) => v(Ay)

showing v is a complex measure.*?

For A € M, let |v| (A) be the “total variation” of A defined by
w[(A) == sup{lo(fla)] : |f] < 1}
and notice that
(13.7) (A)] < |v] (A) < (18]l 1oy w(A)P for all A € M.

You are asked to show in Exercise 13.2 that |v| is a measure on (X, M). (This can
also be deduced from Lemma 13.31 and Proposition 13.35 below.) By Eq. (13.7)
|v| < p, by Theorem 13.6 dv = hd|v| for some |h| < 1 and by Theorem 13.13
dlv| = pdu for some p € L(u). Hence, letting g = ph € LY(u), dv = gdu or
equivalently

(13.8) (1) = /X gladu ¥ A M.

33Tt is at this point that the proof breaks down when p = co.



266 BRUCE K. DRIVER'
By linearity this equation implies

(13.9) o(f) = /X ofdu

for all simple functions f on X. Replacing f by 1yg<aryf in Eq. (13.9) shows

o(fLiig1<my) :/Xl{\g\SM}gfd“

holds for all simple functions f and then by continuity for all f € LP(u). By the
converse to Holder’s inequality, (Proposition 7.26) we learn that

Ragi<angll, = sup [6(FLga)| < sup 116l oy- [ FLigi<anll, < 10llza -
P

I£1,=1 Il

Using the monotone convergence theorem we may let M — oo in the previous equa-
tion to learn ||g[|, < [|@|[ - -With this result, Eq. (13.9) extends by continuity to
hold for all f € LP(u1) and hence we have shown that ¢ = ¢,.

Case 2. Now suppose that y is o — finite and X,, € M are sets such that u(X,,) <
oo and X, T X as n — oo. We will identify f € LP(X,,p) with flx, € LP(X, pu)
and this way we may consider LP(X,,, 1) as a subspace of LP(X, u) for all n and
p € [1,00].

By Case 1. there exits g, € LY(X,, 1) such that

o(f) = /X g fdp for all f € LP(Xo, 1)

and

lgnllq = sup {|6()] : f € LP (X, 1) and [|fllzo(x, 00 = 1} < [6llmegay--

It is easy to see that g, = g, a.e. on X,, N X,, for all m,n so that g :=lim,, ., g,
exists y — a.e. By the above inequality and Fatou’s lemma, ||gllq < [[0|{zr(u)* < 00
and since ¢(f) = [ gfdp for all f € LP(X,, p) and n and U2 LP (X, 1) is dense
in LP(X, ) it follows by continuity that ¢(f) = [y gfdu for all f € LP(X, ) ie.
p=¢y N

Example 13.15. Theorem 13.14 fails in general when p = co. Consider X = [0, 1],
M = B, and u = m. Then (L>®)* # L.

Proof. Let M := C([0,1])“ C "L°([0, 1], dm). It is easily seen for f € M, that
oo =sup{|f(z)|:z €[0,1]} for all f € M. Therefore M is a closed subspace of
L>°. Define ¢(f) = f(0) for all f € M. Then { € M* with norm 1. Appealing to
the Hahn-Banach Theorem 16.15 below, there exists an extension L € (L°)* such
that L =¢ on M and ||L|| = 1. If L # ¢, for some g € L', i.e.

L(f) = 6(f) = /[ | Jodm for all f € 1,

then replacing f by fn(z) = (1 — nx) 1,<,-1 and letting n — oo implies, (using the
dominated convergence theorem)

n—oo n—00

1= lim L(f,) = lim / fngdm = gdm = 0.
[0,1] {0}

From this contradiction, we conclude that L # ¢, for any g € L.
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13.2. Exercises.

Exercise 13.1. Prove Theorem 13.14 for p € [1,2] by directly applying the Riesz
theorem to ¢[r2(,)

Exercise 13.2. Show |v| be defined as in Eq. (13.7) is a positive measure. Here is
an outline.

(1) Show
(13.10) V| (A) + |v| (B) < |v| (AU B).

when A, B are disjoint sets in M.
(2) If A= ]_[n 1 A, with A,, € M then

(13.11) lv| (A Z lv| (A

(3) From Egs. (13.10) and (13.11) it follows that v is finitely additive, and
hence

V] (A Z W] (An) + V] (Un>nAn) Z vl (A

Letting N — oo in this inequality shows |v|(4) > >°7° | |v|(A,) which
combined with Eq. (13.11) shows |v| is countable additive.

Exercise 13.3. Suppose u;,v; are o — finite positive measures on measurable
spaces, (X;, M;), for i = 1,2. If v; < p; for i = 1,2 then 11 @ vy K 1 @ po
and in fact
d(ry ® va)
d(p1 @ pz)
where p; := dv; /dy; for i =1, 2.

Exercise 13.4. Folland 3.13 on p. 92.

(z1,72) = p1 @ pa(x1,22) = p1(z1)p2(T2)

13.3. Signed Measures.

Definition 13.16. Let v be a signed measure on (X, M) and E € M, then

(1) E is positive if for all A € M such that A C E, v(A) >0, i.e. v|ap,, > 0.
(2) FE is negative if for all A € M such that A C E, v(4) <0, i.e. v|p, <O0.

Lemma 13.17. Suppose that v is a signed measure on (X, M). Then
(1) Any subset of a positive set is positive.
(2) The countable union of positive (negative or null) sets is still positive (neg-
ative or null).
(3) Let us now further assume that v(M) C [—o00,00) and E € M is a set
such that v (E) € (0,00). Then there exists a positive set P C E such that
v(P) > v(E).

Proof. The first assertion is obvious. If P; € M are positive sets, let P =

U P,. By replacing P, by the positive set P, \ U P) we may assume that

n=1 Jj=1

the {P,} 2, are pairwise disjoint so that P = H P,.Nowif EC P and E € M,

n=1
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E = ]_[ (ENP,) sov(E)=>"",v(ENP,) > 0.which shows that P is positive.

The proof for the negative and the null case is analogous.

The idea for proving the third assertion is to keep removing “big” sets of negative
measure from E. The set remaining from this procedure will be P. We now proceed
to the formal proof.

For all A € M let n(A) = 1 Asup{—v(B) : B C A}. Since v(0) =0, n(4) >0
and n(A) = 0 iff A is positive. Choose Ay C E such that —I/(AO) > in(E) and
set By = E\ Ay, then choose A; C Ej such that —v(A;) > 3n(E;1) and set
Ey; = E\ (Ap U A;y). Continue this procedure inductively, namely 1f Ag, ..., Ap_1

k—1

have been chosen let Fp, = E'\ ( 11 Ai) and choose Ay, C Ej such that —v(Ay) >
i=0

in(E}). We will now show that

P::E\HAk: ﬂEk
k=0 k=0
is a positive set such that v(P) > v(FE).
Since E=PU [] Ag,

k=0

(13.12) W(E) — v(P) = v(E\ P) = 2:: V(A < — %Zn(Ek)

and hence v(E) < v(P). Moreover, v(F) —v(P) > —oo since v(E) > 0 and v(P) #
oo by the assumption v(M) C [—o0,00). Therefore we may conclude from Eq.
(13.12) that > ;- n(Ey) < oo and in particular limy_.. n(Ey) = 0. Now if A C P
then A C Ej, for all k and this implies that v(A) > 0 since by definition of n(E}),

—v(A) <n(E) — 0 as k — oo.
]
13.3.1. Hahn Decomposition Theorem.

Definition 13.18. Suppose that v is a signed measure on (X, M). A Hahn de-
composition for v is a partition {P, N} of X such that P is positive and N is
negative.

Theorem 13.19 (Hahn Decomposition Theorem). Every signed measure space
(X, M, v) has a Hahn decomposition, { P, N'}. Moreover, if {P,N} is another Hahn
decomposition, then PAP = NAN is a null set, so the decomposition is unique
modulo null sets.

Proof. With out loss of generality we may assume that v(M) C [—o0,00). If
not just consider —v instead. Let us begin with the uniqueness assertion. Suppose
that A € M, then

v(A)=v(ANP)+v(ANN)<v(ANP) <v(P)
and similarly v(A) < v(P) for all A € M.Therefore
v(P) < v(PUP) <v(P)and v(P) < v(PUP) < v(P)
which shows that
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Since
s =v(PUP)=v(P)+v(P)—v(PNP)=2s—v(PNP)
we see that (P N P) = s and since
s=v(PUP)=uv(PNP)+uv(PAP)

it follows that v(PAP) = 0. Thus NAN = PAP is a positive set with zero measure,
ie. NAN = PAP is a null set and this proves the uniqueness assertion.
Let
s=sup{r(A): Ae M}
which is non-negative since v()) = 0. If s = 0, we are done since P = ) and
N = X is the desired decomposition. So assume s > 0 and choose A,, € M such
that v(A,) > 0 and lim, . v(A4,) = s. By Lemma 13.17here exists positive sets
P, C A, such that v(P,) > v(A,). Then s > v(P,) > v(A,) — sasn —
implies that s = lim,, . v(P,). The set P = U2, P, is a positive set being the
union of positive sets and since P,, C P for all n,
v(P) > v(P,) — s asn — 0.

This shows that v(P) > s and hence by the definition of s, s = v(P) < oc.

We now claim that N = P¢ is a negative set and therefore, {P, N} is the desired
Hahn decomposition. If N were not negative, we could find E C N = P¢ such that
v(E) > 0. We then would have

v(IPUE)=v(P)+v(E)=s+v(E)>s
which contradicts the definition of 5. m

13.3.2. Jordan Decomposition.
Definition 13.20. Let X = P U N be a Hahn decomposition of v and define
vi(E)=v(PNE)and v_(FE)=—-v(NNE)V E € M.

Suppose X = PUN is ar}vother Iiahn Decomposition and v are define as above
with P and N replaced by P and N respectively. Then

7. (E)=v(ENP)=v(ENPNP)+v((ENPNN)=v(ENPNP)

since N N P is both positive and negative and hence null. Similarly v, (E) =
v(E N PN P) showing that v, = ¥y and therefore also that v_ =v_.

Theorem 13.21 (Jordan Decomposition). There exists unique positive measure
vy such thatvy Lv_ andv =vy —v_.

Proof. Existence has been proved. For uniqueness suppose v = v, —v_ is a
Jordan Decomposition. Since v; L v_ there exists P, N = P¢ € M such that
v4(N) =0 and v_(P) = 0. Then clearly P is positive for v and N is negative for
v. Now v(ENP) = vy(F) and v(ENN) = v_(E). The uniqueness now follows
from the remarks after Definition 13.20. m

Definition 13.22. |v|(F) = v4(E) + v_(E) is called the total variation of v. A
signed measure is called ¢ — finite provided that |v| := vy + v_ is a o finite
measure.
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Lemma 13.23. Let v be a signed measure on (X, M) and A € M. If v(A) € R
then v(B) € R for all B C A. Moreover, v(A) € R iff |v|(A) < oo. In particular, v
is o finite iff |v| is o — finite. Furthermore if P,N € M is a Hahn decomposition
forv and g =1p — 1, then dv = gd|v], i.e.

v(A) = / gd|v| for all A e M.
A

Proof. Suppose that B C A and |v(B)| = oo then since v(A) = v(B)+v(A\ B)
we must have |v(A)| = co. Let P, N € M be a Hahn decomposition for v, then

)
v(A)=v(ANP)+v(ANN)=|v(ANP)| - [v(ANN)| and
(13.13) v (A) =v(ANP)—v(ANN)=|v(ANP)|+ |v(ANN)|.
Therefore v(A) e Riff (AN P) € Rand v(ANN) € Riff |v| (A) < co. Finally,
v(A)=v(ANP)+v(ANN)
= V(AN P) = v[(ANN)

— [ e = 1)
A

which shows that dv = gd|v|. =

Definition 13.24. Let v be a signed measure on (X, M), let
L'(v) = L'(v") N L' (v7) = L} (Iv])
and for f € L'(v) we define

/deV:/deVJr—/deu,.

Lemma 13.25. Let u be a positive measure on (X, M), g be an extended integrable
function on (X, M, u) and dv = gdu. Then L*(v) = L*(|g| du) and for f € L'(v),

/deV=/ngdu~

Proof. We have already seen that dvy = gidu, dv_ = g_du, and d|v| = |g| dp
so that L'(v) = LY(|v]) = L'(|g| dp) and for f € L*(v),

[ sav= [ givi— [ i~ [ gordu= [ so-d
:/Xf(g+*g—)du:/xfgdu-

Lemma 13.26. Suppose that p is a positive measure on (X, M) and g : X — R
is an extended integrable function. If v is the signed measure dv = gdu, then
dvy = grdp and d|v| = |g| dp. We also have

(13.14) lv|(A) = sup{/Af dv: |f] <1} for all A € M.

Proof. The pair, P = {g > 0} and N = {g < 0} = P° is a Hahn decomposition
for v. Therefore

V+(A)=V(AFWP)=/A Pgdu=/Al{g>0}gdu=/Ag+du,
n
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v_(4) =-v(ANN) = */ gdp = */ Lg<oygdp = */ g—dp.
ANN A A

and

V] (4) = vy (A) + v_(4) = /A gadps — /A g—dp

= [ @ =g ydu= [ loldn

If Ae M and |f| <1, then
Iz
A

/Afdy /Afdmr—/Afdzf +‘/Afdu

< /A fldvy + /A [l = /A 1 div] < V] (4).

For the reverse inequality, let f = 1p — 1y then

/Af dv=v(ANP)—v(ANN)=vH(A)+ v (4) = |v|(4).

= <

Lemma 13.27. Suppose v is a signed measure, [ is a positive measure and v =
Vg + Vs is a Lebesgue decomposition of v relative to p, then |v| = |v,| + |vs| .

Proof. Let A € M be chosen so that A is a null set for v, and A° is a null
set for vy. Let A = P'][ N’ be a Hahn decomposition of vs|a, and A° = P[[N
be a Hahn decomposition of v4|a,.. Let P =P’ UP and N = N’ UN. Since for
C e M,

v(CNP)=v(CNP)+v(CNP)
=1, (CNP)41,(CNP)>0

and

v(CNN)=v(CNN')+v(CNN)
= v (CNN')+1v,(CNN)<0

we see that {P, N} is a Hahn decomposition for v. It also easy to see that {P, N}
is a Hahn decomposition for both v; and v, as well. Therefore,
lv| (C)=v(CNP)—v(CNN)
=1v,(CNP)—vs(CNN)+1v,(CNP)—v,(CNN)
vs] (C) + [val (C).

Lemma 13.28. 1) Let v be a signed measure and p be a positive measure on
(X, M) such that v < p and v L p, then v = 0. 2) Suppose that v = ;2 v;
where v; are positive measures on (X, M) such that v; < u, then v < u. Also if 1y
and ve are two signed measure such that v; < p fori=1,2 and v = vy + 1o is well
defined, then v < p.

Proof. (1) Because v L y, there exists A € M such that A is a v — null set and
B = A°is a p - null set. Since B is g — null and v < pu, B is also v — null. This
shows by Lemma 13.17 that X = AU B is also v — null, i.e. v is the zero measure.
The proof of (2) is easy and is left to the reader. m
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Theorem 13.29 (Radon Nikodym Theorem for Signed Measures). Let v be a o —
finite signed measure and p be a o — finite positive measure on (X, M). Then v has
a unique Lebesque decomposition v = v, + v, relative to p and there exists a unique
(modulo sets of p — measure 0) extended integrable function p : X — R such that
dv, = pdu. Moreover, vy =0 iff v < u, i.e. dv = pdu iff v < p.

Proof. Uniqueness. Is a direct consequence of Lemmas 13.10 and 13.11.

Existence. Let v = vy —v_ be the Jordan decomposition of v. Assume, without
loss of generality, that v (X) < oo, i.e. ¥(A) < oo for all A € M. By the Radon
Nikodym Theorem 13.13 for positive measures there exist functions f : X — [0, 00)
and measures Ay such that vy =y, + Ay with Ay L p. Since

oo > V+(X) = Mf+(X) +)‘+(X)7

f+ € LY () and A\ (X) < oo so that f = fy — f_ is an extended integrable function,
dvg = fdp and vs = Ay — A_ are signed measures. This finishes the existence proof
since

v=vy—v_=pp + A — (B +AD) =ve + g

and vs = (Ay — A_) L u by Remark 13.8.

For the final statement, if vs = 0, then dv = pdy and hence v < p. Conversely
if v <« p, then dvs = dv — pdp < i, so by Lemma 13.17, v = 0. Alternatively just
use the uniqueness of the Lebesgue decomposition to conclude v, = v and v = 0.
Or more directly, choose B € M such that u(B°¢) = 0 and B is a vs — null set.
Since v < p, B¢ is also a v — null set so that, for A € M,

v(A)=v(ANB)=v,(ANB)+v;(ANB) =v,(AN B).
]

Notation 13.30. The function f is called the Radon-Nikodym derivative of v
relative to p and we will denote this function by g—;.

13.4. Complex Measures II. Suppose that v is a complex measure on (X, M),
let v, := Rev, v; ;== Imv and u := |v,| + || Then p is a finite positive measure
on M such that v, < p and v; < p. By the Radon-Nikodym Theorem 13.29, there
exists real functions h,k € L'(u) such that dv, = h du and dv; = k du. So letting
g:=h+ike L (p),
dv = (h+ik)dp = gdp
showing every complex measure may be written as in Eq. (13.1).
Lemma 13.31. Suppose that v is a complex measure on (X, M), and for i =1,2

let u; be a finite positive measure on (X, M) such that dv = g;du; with g; € L*(u;).
Then

[ nldis = [ laald for att 4 € .
A A

In particular, we may define a positive measure |v| on (X, M) by

v (A) = / 91| dpy for all A € M.
A

The finite positive measure |v| is called the total variation measure of v.
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Proof. Let A = p1 + pe so that pu; < A Let p; = dp;/d\ > 0 and h; = p;g;.
Since

v(A) = / gidpi = / gipidA = / hidX for all A € M,
A A A

h1 = ha, X —a.e. Therefore

L/mﬂ@u:/medk=/WMMA=/WMMA=/WmMﬂA=/mem.
A A A A A A
| |

Definition 13.32. Given a complex measure v, let v, = Rev and v; = Imv so
that v, and v; are finite signed measures such that

v(A) = v.(A) +iv;(A) for all A e M.
Let L'(v) := L'(v,) N L*(v;) and for f € L*(v) define

/deV::/del/rJri/deui.

Example 13.33. Suppose that y is a positive measure on (X, M), g € L*(u) and
v(A) = [, gdpas in Example 13.4, then L'(v) = L'(|g|dp) and for f € L'(v)

(13.15) /deV:/ngdu.

To check Eq. (13.15), notice that dv,. = Reg dp and dy; = Img dp so that
(using Lemma 13.25)

L'(v) = L'(Re gdp) N L' (Im gdp) = L' (|Re g| dp) N L' (|Tm g| dp) = L' (|g| dps).
If f € LY(v), then

/deV1=/XfRegd,u—l—i/XfImng:/ngd,u.

Remark 13.34. Suppose that v is a complex measure on (X, M) such that dv = gdpu
and as above d|v| = |g| du. Letting

it gl #0
p=sen(p) ::{ T i gl=o

we see that
dv = gdp = p|g|dp = pd|v|

and |p| = 1 and p is uniquely defined modulo |v| — null sets. We will denote p by
dv/d|v|. With this notation, it follows from Example 13.33 that L(v) := L (|v])

and for f € L'(v),
dv
dv :/ —dlv|.
f o= [ Tamem

Proposition 13.35 (Total Variation). Suppose A C P(X) is an algebra, M =
o(A), v is a complex (or a signed measure which is o — finite on A) on (X, M)
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and for E € M let

n

:bup{2|l/ EjE.AE BEiﬁEj:(sijEi,n:LZ...}
1
n

:bup{2|l/ EjEME SEiﬁEjzéijEi,n:LQ,...}
1

—W{z:l% @eMEaam@_%a}
1

= sup{ / fdv| : f is measurable with |f| < 1}
E

1a(E) —sup{ / fdv|: feS¢(A,|v|) with |f] < 1}

E

then po = 1 = po = p3 = pua = [v|.

Proof. Let p = dv/d|v| and recall that |p| = 1, |v| — a.e. We will start by
showing |v| = us = pg. If f is measurable with |f| < 1 then

[ 1 =]/Efpd|u| < [ < [ 1= 1wl

from which we conclude that py < s < |v|. Taking f = p above shows

Jra=[soavi= [ 1w =1

which shows that |v| < ps and hence |v| = pg. To show |v| = p4 as well let X,,, € A
be chosen so that |v|(X,,) < oo and X,,, T X as m — oo. By Theorem 9.3 of
Corollary 11.27, there exists p, € Sf(A,u) such that p, — plx, in L'(|v|) and
each p, may be written in the form

N
k=1

where z; € C and Ay € A and Ay N A; = 0 if k # j. I claim that we may assume
that |zx| <1 in Eq. (13.16) for if |z;| > 1 and x € Ay,
Ip(@) = 24l = |pl@) — |20 ™" 2

This is evident from Figure 26 and formally follows from the fact that
d 3 2 P
= Jp@) =1z | =2 [t Re(la] ! 2pl@))] 2 0
when ¢t > 1.
Therefore if we define

-1 .
Wy, = |2k ™ 2k 1f |zk| > 1
2k if |z <1

N
and p, = > wla, then
k=1

p(z) = pu()] = |p(x) — pn ()|
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FIGURE 26. Sliding points to the unit circle.

and therefore p,, — plx, in L'(|v]). So we now assume that p,, is as in Eq. (13.16)
with |zx| < 1.
Now

/ﬁndu—/ﬁlxmdy <
E E

and hence

/E (Pudv — plx,.) pd V]

/ plx, dv
E

Letting m 1 oo in this equation shows py > |v|.
We will now show o = p1 = pe = |v|. Clearly po < 11 < po. Suppose E; € Mg
such that £; N E; = 0;; I;, then

> lw(E)l = ZI/ pdlv] <Y IVI(E)) = VI(VE;) < |v] (B)

which shows that po < [v]| = p4. So it suffices to show p4 < po. Butif f € S¢(A, |v|)
with |f| < 1, then f may be expressed as f = Zszl zila, with |z;| < 1 and
Ap M A; = 6;;Ar. Therefore,

/Efdu

Since this equation holds for all f € S¢(A, |v|) with |f] <1, pa < po as claimed. m

S/ |Pn = Plx,, | d]v| — 0 asn — oo
E

pa(E) >

= [v|(ENX,,) for all m.

N

Z Zkl/(Ak N E
k=1

N N

< ekl (A N E) <) (A N E)| < po(A).
k=1 k=1

13.5. Absolute Continuity on an Algebra. The following results will be useful
in Section 14.4 below.

Lemma 13.36. Let v be a complex or a signed measure and p be a positive measure
on (X, M). Then v < p iff |v| < p.

Proof. In all cases we have |v(A)| < |v|(A) for all A € M which clearly shows
v pif [v] < p.
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Now suppose that v is a signed measure such that v < u. Let P € M be chosen
so that {P, N = P°} is a Hahn decomposition for v. If A € M and u(A) = 0 then
v(ANP)=0and v(ANN) =0 since u(ANP) =0 and (AN N) = 0. Therefore

V| (A) =v(ANP)—v(ANN)=0
and this shows |v| < p.

Now suppose that v is a complex measure such that v < pu, then v, ;== Rev < p
and v; := Imv < g which implies that |v,| < p and |v;| < p. Since |v| < |vp|+|vi],
this shows that |v| < p.

Here are some alternative proofs in the complex case.

1) Let p = %. If Ae M and pu(A) =0 then by assumption

0=v(B)= /de|1/|

for all B € M 4. This shows that pl4 = 0 for |v| — a.e. and hence

] <A>=/ \p\d\m:/ Laloldl] =0,
A X
0

i.e. u(A) =0 implies |v| (4) =
2) If v < p and p(A) = 0, then by Proposition 13.35

|l/| (A) = sup {Z|V(E])| NS My 3 E; NE; = 6szz} =0
1

since E; C A implies u(E;) = 0 and hence v(E;) =0. &

Theorem 13.37 (¢ — ¢ Definition of Absolute Continuity). Let v be a complex
measure and p be a positive measure on (X, M). Then v < p iff for all € > 0 there
exists a § > 0 such that |v(A)| < € whenever A € M and u(A) < 6.

Proof. (=) If u(A4) = 0 then |[v(A)| < € for all € > 0 which shows that
v(A)=0,ie v < pu.

(<) Since |v(A)] < |v|(A) it suffices to assume v > 0 with v(X) < co. Suppose
for the sake of contradiction there exists e > 0 and A,, € M such that v(4,) > € >0

while p(A4,) < 5. Let

A={4,io}= ) |J 4n

N=1n>N
so that
_ 7 : ; —(N-1) _
p(A) = Jim g (Up>nAn) < lim ZNM(An) < Jlim 2 =0.

On the other hand,
v(A)= lim v(Uy,>nyAy,) > lim infr(4,) >e>0

N—o0 n— 00
showing that v is not absolutely continuous relative to p. ®
Corollary 13.38. Let u be a positive measure on (X, M) and f € L*(du). Then
for all € > 0 there exists 6 > 0 such that |[ f du' < € for all A € M such that

u(A) < 4.

A




REAL ANALYSIS LECTURE NOTES 277

Proof. Apply theorem 13.37 to the signed measure v(A) = [ f dp for all A € M.
A

|

Theorem 13.39 (Absolute Continuity on an Algebra). Let v be a complex measure
and p be a positive measure on (X, M). Suppose that A C M is an algebra such
that o(A) = M and that p is o — finite on A. Then v < p iff for all € > 0 there
exists a 0 > 0 such that |v(A)| < e for all A € A with u(A) < 9.

Proof. (=) This implication is a consequence of Theorem 13.37.

(«<=) Let us begin by showing the hypothesis [v(A)| < € for all A € A with
w(A) < § implies |v| (A) < 4e for all A € A with ;i(A) < 6. To prove this decompose
v into its real and imaginary parts; v = v, + iv;.and suppose that A = H?Zl Aj
with A; € A. Then

SA= Y wd) - Y w4

Jiwr(A;)>0 Jwr(A;)<0
= Vr(Uju, (4,)>045) = vr(Uju,(4,)<045)
< U canz040)| + [V (Uj, ) <045)]
< 2¢

using the hypothesis and the fact 1 (Uj.,, (4,)>04;) < u(A) < and p (Ui, (4,)<04;) <
(A) < 6. Similarly, 37, [vi(A;)| < 2¢ and therefore

Z |V(A]>‘ < Z |Vr(Aj)‘ + Z |l/i(Aj)‘ < 4e.
j=1 j=1 j=1

Using Proposition 13.35, it follows that

|v] (A) = sup Z lv(A;)| - A= HAj with A; € Aandn e N <4e
j=1 j=1

Because of this argument, we may now replace v by |v| and hence we may assume
that v is a positive finite measure.

Let € > 0 and ¢ > 0 be such that v(A) < e for all A € A with p(A) < 6. Suppose
that B € M with u(B) < §. Use the regularity Theorem 6.40 or Corollary 11.27 to
find A € A, such that B C A and u(B) < u(A) < 6. Write A = U, A,, with A4,, € A.
By replacing A, by UJ_;A; if necessary we may assume that A, is increasing in
n. Then p(A,) < p(A) < § for each n and hence by assumption v(4,,) < e. Since
B C A =U,A, it follows that v(B) < v(A) = lim, . ¥(A,) < €. Thus we have
shown that v(B) < € for all B € M such that u(B) <d. ®

13.6. Dual Spaces and the Complex Riesz Theorem.

Proposition 13.40. Let S be a vector lattice of bounded real functions on a set
X. We equip S with the sup-norm topology and suppose I € S*. Then there exists
I € S* which are positive such that then I =1, —1_.

Proof. For f € ST, let
I (f) :==sup{I(9): g €ST and g < f}.
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One easily sees that | (f)| < |I|| || f|| for all f € ST and I (cf) = eI, (f) for all
f €St and ¢> 0. Let f1, fo € ST. Then for any g; € ST such that g; < f;, we have
St 5 g1+ g2 < f1 + f» and hence

I(g1) + 1(g2) = I(g1 + g2) < Ly (f1 + fo).
Therefore,
(13.17) T4 (f1) + 11(f2) = sup{I(g1) + I(g2) : ST 3 g < fi} < I (f1 + f2)-
For the opposite inequality, suppose g € ST and g < f1 + fa. Let g1 = f1 A g, then

0 it g<fi
0<go:i=g—gi=g—fiNg= .
<gpi=g9g-—-qgn=9-hNiNg {g—ﬁ it 9> f

0 if g<fi
S{f1+f2—f1 it > =I

Since g = g1 + go with ST 3 ¢; < f;,
I(g) = I(g1) + 1(g92) < I+(f1) + I+(f2)

and since St 3 g < fi + f2 was arbitrary, we may conclude

(13.18) Li(fi+ f2) < Ly (f1) + L (fo)-
Combining Eqs. (13.17) and (13.18) shows that
(13.19) Li(fi+ f2) = I (f1) + L (f2) for all f; € ST.

We now extend I, to S by defining, for f €S,

I (f) = L (f+) = I+ (f-)

where f = fVvO0and f- = —(fA0) = (—f) V0. (Notice that f = fy — f_.) We
will now shows that I, is linear.
If ¢ > 0, we may use (cf), = cf+ to conclude that

Ii(cf) = Li(cfy) = Ip(cf-) = el (f4) — el (f-) = L (f).

Similarly, using (—f)+ = f+ it follows that I (—f) = I (f-) — I+ (fy) = —IL(f).
Therefore we have shown

Ii(cf)=cli(f) forallce R and f €S.
If f=u—v with u,v € ST then
v+ fr=u+f_ St
and so by Eq. (13.19), I+ (v) + I+ (f+) = I+ (u) + L+ (f-) or equivalently
(13.20) L (f) = Le(f4) = I+(f-) = L+ (uw) — 11 (v).
Now if f,g € S, then
Li(f+9)=1L(f+ +9+ — (f- +9-))

=1 (f+ +9+) — I+(f- +9-)

= Lo (f4) + 1 (94) — L (F-) — 14(g-)

=L(f)+1(9),

wherein the second equality we used Eq. (13.20).
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The last two paragraphs show I : S — R is linear. Moreover,

(L (Pl = - (f4) = L (f)] < max ([ ()] [ (F-)])
< U max (£ 111D = IZIIA

which shows that ||I|| < ||I||. That is I is a bounded positive linear functional
onS. Let I_ =1, —1I € S*. Then by definition of I, (f), I_(f) = I+(f)—I(f) >0
for all S 5 f > 0. Therefore I = I, — I_ with I being positive linear functionals
onS. m

Corollary 13.41. Suppose X is a second countable locally compact Hausdorff space
and I € Co(X,R)", then there exists i = iy — ju— where y is a finite signed measure
on Bg such that I(f) = [, fdu for all f € Co(X,R). Similalry if I € Co(X,C)”
there exists a complex measure p such that I(f) = fR fdu for all f € Cy(X,C).

Proof. Let I = I, — I_ be the decomposition given as above. Then we know
there exists finite measure pu4 such that

I(f) = /deui for all f € Co(X,R).

and therefore I(f) = [ fdpu for all f € Cy(X,R) where pu = 1y — . Moreover the
measure /. is unique. Indeed if I(f) = [, fdu for some finite signed measure i, then
the next result shows that I (f) = [ « fdp+ where py is the Hahn decomposition
of u. Now the measures u+ are uniquely determined by /.. The complex case is a
consequence of applying the real case just proved to Re/ and Im /. m

Proposition 13.42. Suppose that i is a signed Radon measure and I = 1I,,. Let ji4
and p— be the Radon measures associated to Iy, then = py — p— is the Jordan
decomposition of p.

Proof. Let X = PU P¢ where P is a positive set for p and P€ is a negative set.
Then for A € By,

(13.21) w(PNA)=p (PNA)—p(PNA) < p(PNA) < pg(A)
To finish the proof we need only prove the reverse inequality. To this end let € > 0
and choose K CC PNA CU C, X such that |u| (U\K) < e. Let f,g € C.(U,[0,1])
with f < g, then

I(f) = u(f) = pf - K) + p(f: UNK) < p(g: K)+0(e)

< u(K) +0(e) < u(PNA)+O(e).
Taking the supremum over all such f < g, we learn that I (g) < u(P N A)+ O(e)
and then taking the supremum over all such g shows that
p+(U) < p(P 0 A)+O(e).

Taking the infimum over all U C, X such that PN A C U shows that
(13.22) ur(PNA) <u(PNA)+ Ofe)
From Egs. (13.21) and (13.22) it follows that u(P N A) = uy (P N A). Since

I_(f)= sup I(g) = I(f)= sup I(g—f)= sup —I(f—g)= sup —I(h)
0<g<f 0<g<f 0<g<f 0<h<f
the same argument applied to —I shows that

—u(P°NA)=p_(P°NA).
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Since
H(A) = p(P 0 A) + pu(PE 0V A) = i (P A) — i (P° 1 A) and
m(A) = py(A) = p—(A)
it follows that
pa (AN P) = p_(A\ P°) = p_(ANP).
Taking A = P then shows that py_(P) = 0 and taking A = P¢ shows that py(P¢) =
0 and hence

wPNA)=p(PNA) = p(A) and
—u(P°NA)=p(P°NA)=p_(A4)
as was to be proved. m
13.7. Exercises.

Exercise 13.5. Let v be a o — finite signed measure, f € L!(|v|) and define

/deu:/xfdzq_f/xfdu_.

Suppose that p is a o — finite measure and v < u. Show

(13.23) /deV:/XfZ—:du.

Exercise 13.6. Suppose that v is a signed or complex measure on (X, M) and
A, € M such that either A4,, 7 A or A4, | A and v(A;) € R, then show v(A4) =
lim,, 00 V(An).

Exercise 13.7. Suppose that p and A are positive measures and p(X) < oo. Let
v:=\—u, then show A > v, and p > v_.

Exercise 13.8. Folland Exercise 3.5 on p. 88 showing |v1 + vo| < |v1] + |v2].
Exercise 13.9. Folland Exercise 3.7a on p. 88.

Exercise 13.10. Show Theorem 13.37 may fail if v is not finite. (For a hint, see
problem 3.10 on p. 92 of Folland.)

Exercise 13.11. Folland 3.14 on p. 92.
Exercise 13.12. Folland 3.15 on p. 92.
Exercise 13.13. Folland 3.20 on p. 94.
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14. LEBESGUE DIFFERENTIATION AND THE FUNDAMENTAL THEOREM OF
CALCULUS

Notation 14.1. In this chapter, let B = Bgrn denote the Borel o — algebra on R™
and m be Lebesgue measure on B. If V is an open subset of R™, let L}, (V) :=
L}, .(V,m) and simply write L}, for L}, .(R™). We will also write |A| for m(A) when
AeB.

Definition 14.2. A collection of measurable sets {E}, ., C B is said to shrink

nicely to x € R™ if (i) E, C B,(r) for all » > 0 and (ii) there exists o > 0 such that
m(E,) > am(B;(r)). We will abbreviate this by writing £, | {z} nicely.

The main result of this chapter is the following theorem.

Theorem 14.3. Suppose that v is a complex measure on (R™, B), then there exists
g € L*(R™,m) and a complex measure X such that X\ L m, dv = gdm + d\, and for
m - a.e. T,

. u(E)
(14.1) g(w) =lim ()

for any collection of {E.}, ., C B which shrink nicely to {z}.

Proof. The existence of g and A such that A L m and dv = gdm + d\ is a
consequence of the Radon-Nikodym theorem. Since
v(E,) 1 A(E;)
= d
m(E,)  m(E,) / gl@)dm(@) + g

s

Eq. (14.1) is a consequence of Theorem 14.13 and Corollary 14.15 below. m
The rest of this chapter will be devoted to filling in the details of the proof of
this theorem.

14.1. A Covering Lemma and Averaging Operators.

Lemma 14.4 (Covering Lemma). Let £ be a collection of open balls in R™ and
U =UpeceB. If c <m(U), then there exists disjoint balls By, ..., B € £ such that

k
> m(Bj) >3 "c.
j=1

Proof. Choose a compact set K C U such that m(K) > ¢ and then let & C €
be a finite subcover of K. Choose B; € £ to be a ball with largest diameter in &;.
Let & = {A € & : AN By = 0}. If & is not empty, choose By € & to be a ball
with largest diameter in &. Similarly Let &3 = {A € & : AN By = 0} and if &
is not empty, choose B3 € £ to be a ball with largest diameter in £3. Continue
choosing B; € € for i = 1,2,...,k this way until 1 is empty.

If B = B(xo,r) C R™, let B* = B(x¢,3r) C R", that is B* is the ball concentric
with B which has three times the radius of B. We will now show K C U¥_, B. For
each A € &; there exists a first ¢ such that B; N A # 0. In this case diam(A4) <
diam(B;) and A C B}. Therefore A C U¥_; By for all j and hence K C U{A: A €
&1}C UK, Br. Hence by subadditivity,

k k
c<m(K) < Zm(B;) <3r Zm(Bi).
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Definition 14.5. For f € L},., z € R" and r > 0 let

(14.2) (Arf>(x>:wz—l(r)| | sam

By (r)
where B, (r) = B(z,r) C R", and |A| := m(A).
Lemma 14.6. Let f € L}, then for each x € R™, (0,00)such that r — (A, f)(z)

locy
is continuous and for each r > 0, R"™ such that x — (A, f) (x) is measurable.

Proof. Recall that |B,(r)] = m(E1)r™ which is continuous in 7. Also
lim, .y 15, () (¥) = 1B, (o) (¥) if ly| # 70 and since m ({y : |y| #7r0}) = 0 (you
prove!), lim, ., 15, (y) = 1B, () (y) for m -a.e. y. So by the dominated conver-
gence theorem,

lim fdm = / fdm

T—70

B, ("") B (""0)

1
(AN)@) = g [ pam
Bz(r)

is continuous in 7. Let g,(z,y) := 1p,(+)(¥) = ljz—y|<r- Then g, is B® B — mea-
surable (for example write it as a limit of continuous functions or just notice that
F : R*" x R" — R defined by F(z,y) := |z — y| is continuous) and so that by
Fubini’s theorem

and therefore

T — / fdm = / 9r(z,y) f(y)dm(y)

By (r) By (r)
is B — measurable and hence so is z — (A, f) (z). =
14.2. Maximal Functions.
Definition 14.7. For f € L'(m), the Hardy - Littlewood maximal function H f is

defined by
(Hf)(z) = sup Al fl(=).

Lemma 14.6 allows us to write

(@) = swp Alfl(a)

reQ, r>

and then to concluded that H f is measurable.

Theorem 14.8 (Maximal Inequality). If f € L'(m) and o > 0, then
37L
m(Hf > ) < L)l

This should be compared with Chebyshev’s inequality which states that

[AIVA
m(|f]>a) < B

Proof. Let E, = {Hf > a}. For all x € E, there exists r, such that
A |fl(z) > a. Hence E, C Ugep, By(ry). By Lemma 14.4, if ¢ < m(E,) <
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m(Uzer, Bx(rz)) then there exists x1, ...z, € E, and disjoint balls B; = By, (ry;)
for i =1,2,...,k such that > |B;| > 37"c. Since

B! /B Fldm = Ar, |fl(1) > a,

we have |B;| < a™! fB |f\dm and hence

3o o3 [ am < L [ iflam = 21l

This shows that ¢ < 3"a~!||f|z: for all ¢ < m(E,) which proves m(E,) <
3ra”lf] w

Theorem 14.9. If f € L.

loc

then liﬂ}(Arf)(x) = f(x) form — a.e. x € R™

Proof. With out loss of generality we may assume f € L'(m). We now begin
with the special case where f = g € L'(m) is also continuous. In this case we find:

1
|(Arg)(x) — g(z)| < B oo l9(y) — g(z)|dm(y)

< sup |g(y) —g(x)] —0asr—D0.
yGBI("‘)

In fact we have shown that (A,¢)(xz) — g(z) as r — 0 uniformly for z in compact
subsets of R"™.
For general f € L'(m),

‘Arf(:B) - f(.’E)| < |Arf($) - Arg(x)| + ‘Arg(x) - g(.’lﬁ)| + |g($) - f(l')‘
=14 (f = 9)(@) + [Arg(z) — g(z)| + |g(z) — f(2)]
< H(f = 9)(@) + [Arg(z) — g(2)| + |g(z) — f(2)|

and therefore,
%IAJ(%) = f@)| < H(f - 9)(@) + |g(x) = f(z)].

So if a > 0, then

Eo = {TplA )~ @) > o < {#(7=0) > 5} 0l — 11> 5}
and thus

m(E,) < m(H(f—g) > %) +m(lg—f| > %)
/2||f gl + /QHf gl
<23"+a Y f = gz,

where in the second inequality we have used the Maximal inequality (Theorem 14.8)
and Chebyshev’s inequality. Since this is true for all continuous g € C(R™)N L (m)
and this set is dense in L'(m), we may make || f — g||z: as small as we please. This
shows that

o ({ s gl @) - @1 > 0} ) = m(Ui By gi (B ) =



284 BRUCE K. DRIVER'

Corollary 14.10. If du = gdm with g € L},, then

1(Ba(r))
| B (r)]
14.3. Lebesque Set.

= A,g(x) — g(x) for m —a.e. z.

Definition 14.11. For f € L}, .(m), the Lebesgue set of f is

Lr=(zeR": 1:{8|B /\f x)ldy =0

Theorem 14.12. For all f € Lj,.(m), 0 =m(L}) = m(R™ \ Ly).

Proof. For w € Cdefine g,,(z) = |f(z)—w| and E,, = {z : lim, ¢ (Argw) (z) # gw(2)}.
Then by Theorem 14.9 m(E,,) = 0 for all w € C and therefore m(E) = 0 where

By definition of E, if 2 ¢ E then.
lim(A|f() —w)(@) = |f(2) — w|
for all w € Q + iQ. Since
IFC) = f@)] < 1fC) —wl+ [w = f(2)],

(A f() = f@)D)(@) < (A |F() = w]) (2) + (Ar]w = f(2)]) (z)
(Ar [f() = wl) () + [w — f(2)|

and hence for x ¢ E,
(A1) = S@))(@) < [£() = wl + o - (z)
< 2/f(2) - wl.
Since this is true for all w € Q 4+ iQ, we see that
%(Arlf(-) — [(@))(z) =0 for all = ¢ E,
lLe. B C Ly or equivalently £$ C E. So m(L$) <m(E)=0. =

Theorem 14.13 (Lebesque Differentiation Theorem). Suppose f € L} . for all
x € Ly (so in particular form — a.e. x)

. 1
Eggm/]frf(y)—f(w)dyZO

and

when E,. | {z} nicely.



REAL ANALYSIS LECTURE NOTES 285

Proof. For all z € Ly,

1
5 ), T - 5@

I
-2
—_
=
~—
S
S
=
<
~—
|
~
—
&
U
=

IN

which tends to zero as r | 0 by Theorem 14.12. In the second inequality we have
used the fact that m(B;(r) \ By(r)) =0. m

Lemma 14.14. Suppose X\ is positive o — finite measure on B = Bgrn such that
A L m. Then for m — a.e. z,

o ABL(0))

rl0 m(By(r)) 0.

Proof. Let A € B such that A(A) = 0 and m(A°) = 0. By the regularity theorem
(Exercise 6.4), for all € > 0 there exists an open set V. C R™ such that A C V, and

A(Ve) < e. Let
— A(Bs(r) _ 1 }
Fo=<zeA:lim———— > —
F { riom(By(r)) ~ k
the for z € Fy, choose 1, > 0 such that B,(r,) C V. (see Figure 27)and % >

1 -
T 1.€.

m<Bz(rm)) <k )\(BI(TI)).

F1GURE 27. Covering a small set with balls.
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Let &€ = {By(72)}uer, and U = |J Bi(ry) C V.. Heuristically if all the balls
x€Fy
in £ were disjoint and £ were countable, then

m(Fy) < Y m(Ba(ra)) <k Y MBu(ra))

zEF} zEF},
= kAU) < k A(V,) < ke.

Since € > 0 is arbitrary this would imply that m(F}) = 0.
To fix the above argument, suppose that ¢ < m(U) and use the covering lemma
to find disjoint balls By,..., By € & such that

N n

c< 3"y m(B) < k3" Y B
=1 =1

< k3"A\NU) < k3"A\(V.) < k3"e.

Since ¢ < m(U) is arbitrary we learn that m(Fy) < m(U) < k3™e and in particular
that m(Fy) < k3™e. Since € > 0 is arbitrary, this shows that m(F)) = 0. This

implies, letting
— A\(B
Foo_{$€A:1imw>0},

)
that m(Foo) = limg_0o m(F)) = 0. Since m(A°) = 0, this shows that

m({r € R" : lim B (r)

) _
By~ O =0

Corollary 14.15. Let X be a complex or a o — finite signed measure such that
A L m. Then form — a.e. x,

- A(Er)
1 =0
r10 m(E,)
whenever E,. | {x} nicely.
Proof. Recalling the A L m implies |A| L m, Lemma 14.14 and the inequalities,

IME,)| I\ (E:) I\[(Ba(r)) I\|(Bz(2r))
m(Ey) = am(Bo(r) = am(Ba(r) = a2 "m(B,(2r))

proves the result. m

14.4. The Fundamental Theorem of Calculus. In this section we will restrict
the results above to the one dimensional setting. So for the rest of this chapter,
n =1 and m denotes one dimensional Lebesgue measure on B := By.

Notation 14.16. Given a function F : R—R or F : R—C, let F(z—) =
limy, F(y), F(z+) = limy), F(y) and F(+oo) = limg 4o F(z) whenever the
limits exist. Notice that if F' is a monotone functions then F(+o00) and F(z+)
exist for all x.

Theorem 14.17. Let F: R — R be increasing and define G(x) = F(x+). Then
(a) {x e R: F(z+) > F(z—)} is countable.
(b)The function G increasing and right continuous.
(c) For m — a.e. z, F'(z) and G'(z) exists and F'(z) = G'(z).
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Proof. Properties (a) and (b) have already been proved in Theorem 11.34.

(c) Let ug denote the unique measure on B such that pg((a,b]) = G(b) — G(a)
for all a < b. By Theorem 14.3, for m - a.e. x, for all sequences {E,}, ., which
shrink nicely to {z}, lriﬁ)l(NG(Er)/m(Er)) exists and is independent of the choice

of sequence {E.}, . shrinking to {z}. Since (z,z + 7| | {z} and (z —r, 2] | {2}
nicely,

po@a+rl) Gt -G _ d
rio m((z, x4+ 1)) 13?8 T B dx—‘*‘G(x)
and
pe((x—rx]) (x) -Gz —r) Glx—r)—Gx) d
rlo m((z —r,x]) lrlﬁ)l r N lrlﬁjl —r da— Ga)

exist and are equal for m - a.e. z, i.e. G'(x) exists for m -a.e. z.
For x € R, let

H(z)=G(z) — F(z) = F(z+) — F(z) > 0.
The proof will be completed by showing that H'(z) = 0 for m — a.e. x. Let
A={zeR: F(z+) > F(z)} CT.

Then A C R is a countable set and H(xz) = 0 if x ¢ A. Let A be the measure on
(R, B) defined by

A=Y H(x)s, =Y _ H(x)d,.
z€R zEA
Since

MENN)= Y H@= ) (Fla+) - F()

z€(—N,N) z€AN(—N,N)
< > (Fla4) = F(z—)),
ze(—N,N)

Eq. (11.26) guarantees that A is finite on bounded sets. Since A(A¢) = 0 and
m(A) =0, A L m and so by Corollary 14.15 for m - a.e. x,

H(z+1) - H(z) H(z+|r)) + H(z — |r]) + H(z)

r 7]

Az = Il & +|r[])

<2
Ir|

<2

and the last term goes to zero as r — 0 because {[z —r,x +r]}, ., shrinks nicely
to {z}. Hence we conclude for m —a.e. = that H'(z) =0. m

Definition 14.18. For —oo < a < b < 00, a partition P of (a,b] is a finite subset
of [a,b] N R such that {a,b} "R C P. For z € P\ {b}, let zy =min{y € P:y > x}
and if x = b let x; =b.

Proposition 14.19. Let p be a complex measure on B and let F be a function
such that
F(b) — F(a) = u((a,b]) for all a < b,

for example let F(x) = p((—oo,z]) in which case F(—oo) = 0. The function F is
right continuous and for —oo < a < b < 0,

143 et =swp Y lule ol = sup 3 [Fa) - Fo)
P rep P rep
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where supremum is over all partitions P of (a,b]. Moreover u < m iff for all e > 0
there exists § > 0 such that

(14.4) Zm i i) = Z|F Flai)| < e

n
whenever {(a;, b;)}i_, are disjoint open intervals in (a,b] such that > (b; —a;) < 4.
i=1
Proof. Eq. (14.3) follows from Proposition 13.35 and the fact that B = o(A)
where A is the algebra generated by (a, b)NR with a,b € R. Suppose that Eq. (14.4)
holds under the stronger condition that {(a;,b;]};—, are disjoint intervals in (a, b].
If {(ai, b;)};_, are disjoint open intervals in (a,b] such that Y (b; —a;) < 6, then for

i=1
n
all p > 0, {(a; + p, b;]}}_, are disjoint intervals in (a,b] and Y (b; — (a; + p)) <&
i=1
so that by assumption,

Z|F F(a; +p)| <e.

Since p > 0 is arbitrary in thlb equation and F' is right continuous, we conclude
that

D IF(b:) = Flag)| < e

n
whenever {(a;,b;)};, are disjoint open intervals in (a, b] such that Y (b; —a;) < 6.
i=1
So it suffices to prove Eq. (14.4) under the stronger condition that {(a;,b;]};,
are disjoint intervals in (a, b]. But this last assertion follows directly from Theorem

13.39 and the fact that B =o(A). =

Definition 14.20. A function F : R — C is absolutely continuous if for all
€ > 0 there exists § > 0 such that

Z|F F(a;)| <€

whenever {(a;,b;)};_, are disjoint open intervals in (a,b] such that Y (b; —a;) < 6.
i=1

Definition 14.21. Given a function F' : R — C let ur be the unique additive

measure on A (the algebra of half open intervals) such that pg ((a,b]) = F(b)—F(a)
for all a < b. For a € R define

(@)= sup Y [F(a) — F@)] = sup Y e, 24
zeP z€P

where the supremum is taken over all partitions of (—oo, a]. More generally if —co <
a <b, let

Tr(a,b] = S;PZ lup(z,xy]| =sup > |F(zy) — F(x)|
z€lP zeP

where supremum is over all partitions P of (a,b]. A function F : R — C is said to
be of bounded variation if Tr(c0) < oo and we write F' € BV. More generally we
will let BV ((a,b]) denote the functions, F' : [a,b] "R — C, such that Tr(a,d] < co.
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Lemma 14.22. Let F': R — C be any funtion and —oco < a < b < ¢, then

(1)
(14.5) Tr(a,c] = Tr(a,b] + Tr(b,cl.
(2) Letting a = —oo in this expression implies
(14.6) Tr(c) =Tp(b) + Tr(b, ]

and in particular Tr is monotone increasing.
(3) If Tr(b) < oo for some b € R then Tp(—oc0) =0 and

(14.7) Tr(a+) — Tr(a) < limsup|F(y) — F(a)|
yla
for all a € (—o0,b). In particular Tg is right continuous if F is right con-
tinuous.

Proof. By the triangle inequality, if P and P’ are partition of (a,c] such that
P C P, then

S F@) ~ F@) < Y F(es) — Fla)l.

zeP zel’
So if P is a partition of (a,c], then P C P' := PU{b} implies

o IF(xy) = F(a)| < ) |F(ay) — F(a)]

el el
= Y |Fla)-F@)|+ Y |F(zy)~F(z)
z€P'N[a,b) z€P'Nb,c]

<Tp(a,b]+ Tr (b, .
Thus we see that Tr(a,c] < Tr(a,b] + Tr(b, c]. Similarly if P; is a partition of (a, b]
and Py is a partition of (b, ¢, then P =Py UP5 is a partition of (a, c] and

Yo IF(@s) = F(@)| + ) [F(ay) = F(a)| = ) |F(z+) — F(2)| < Tr(a,d.

zeP; r€Py zelP

From this we conclude T (a, b] +Tr(b, ¢] < Tr(a, c] which finishes the proof of Egs.
(14.5) and (14.6).

Suppose that Tr(b) < oo and given € > 0 let P be a partition of (—oo,b] such
that

To(d) < 3 IF(y) — F@)| +e.
zeP
Let o = minP then Tr(b) = Tr(z¢) + Tr (20, b] and by the previous equation
Tp(xo) + Tr(wo,0) < Y |F(a4) — F(x)| + ¢ < Tr(0,b] + ¢
z€eP

which shows that Tr(zg) < e. Since T is monotone increasing and ¢ > 0, we
conclude that Tr(—o00) = 0.
Finally let a € (—o0,b) and given € > 0 let P be a partition of (a,b] such that

(14.8) Tr(b) — Tr(a) = Tr(a,b] < Y |F(zy) — F(z)| +e.
zelP
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Let y € (a,a4), then

Yo IF(ey) —Fl@)+e< Y |F(ay) = Fla)| +e

zeP zePU{y}
=|F(y) - Fla)|+ > |F(ay)—F(z)+e€
z€P\{y}
(14.9) <|F(y) — F(a)| + Tr(y,b] + €.

Combining Eqs. (14.8) and (14.9) shows

Tr(y) — Tr(a) + Tr(y,b] = Tp(b) — Tr(a)
< |F(y) — Fla)| + Tr(y,b] + e
Since y € (a,a4) is arbitrary we conclude that
Tr(a+) — Tr(a) = limsup Tr(y) — Te(a) < limsup |F(y) — F(a)| +¢
yla yla
which proves Eq. (14.7) since € > 0 is arbitrary. m

The following lemma should help to clarify Proposition 14.19 and Definition
14.20.

Lemma 14.23. Let p and F be as in Proposition 14.19 and A be the algebra
generated by (a,b] "R with a,b € R.. Then the following are equivalent:

(1) pp<m

(2) |prl <m

(3) For all € > 0 there exists a 6 > 0 such that Tp(A) < € whenever m(A) < 4.
(4) For all e > 0 there exists a 6 > 0 such that |pp(A)| < € whenever m(A) < 4.

Moreover, condition 4. shows that we could replace the last statement in Propo-
sition 14.19 by: p << m iff for all € > 0 there exists § > 0 such that

ZM((aivbi])

n

D IF(b) — Flai)]

=1

<€

n
whenever {(a;, b;)};_, are disjoint open intervals in (a,b] such that Y (b; —a;) < 4.
i=1

Proof. This follows directly from Lemma 13.36 and Theorem 13.39. m

Lemma 14.24.

(1) Monotone functions F : R — R are in BV (a,b] for all —0o < a <b < 0.

(2) Linear combinations of functions in BV are in BV, i.e. BV s a vector
space.

(3) If F : R— C is absolutely continuous then F is continuous and F €
BV (a,b] for all —o00 < a <b < 0.

(4) If F : R — R is a differentiable function such that sup,cp |F'(z)| = M <
00, then F is absolutely continuous and Tr(a,b] < M(b—a) for all —oco <
a<b<oo.

(5) Let f € L*((a,b],m) and set

(14.10) F(z)= fdm

(a,x]

for x € (a,b]. Then F is absolutely continuous.
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Proof.

(1) If F is monotone increasing and P is a partition of (a,b] then

Yo IF(ey) = Fa)| =) (F(ay) = Flz)) = F(b) - F(a)
el z€eP
so that Tr(a,b] = F (b)—F(a). Also note that F' € BV iff F((co)—F(—00) <
0.
(2) Item 2. follows from the triangle inequality.
(3) Since F is absolutely continuous, there exists § > 0 such that whenever
a<b<a+ 4§ and P is a partition of (a, b,

S IPay) - F@) <1
z€eP
This shows that Tr(a,b] < 1 for all ¢ < b with b — a < §. Thus using Eq.
(14.5), it follows that Tr(a,b] < N < oo if b—a < N¢ for an N € N.
(4) Suppose that {(a;,b;)};—; C (a,b] are disjoint intervals, then by the mean
value theorem,

N
=
&

|

3
£
In

M=

, |F'(ci)| (b — a;) < Mm (Ui (as, b))

Mi(bz—al)gM(b—a)
i=1

s
Il
_
-
Il

IN

form which it clearly follows that F' is absolutely continuous. Moreover we
may conclude that Tr(a,b] < M(b— a).
(5) Let p be the positive measure du = | f| dm on (a, b]. Let {(a;,b;)}:—; C (a,b]

be disjoint intervals as above, then
S 1P~ Fladl = 3| [ fdm‘
i=1 i=1 |V (@i,bi]

<M |f| dm
i=1

(ai,bi]

n

(14.11) - / |ldm = (U2 (az, bi]).
U7, (ai,bi]

Since p is absolutely continuous relative to m for all € > 0 there exist
0 > 0 such that pu(A) < e if m(A4) < 6. Taking A = U ,(a;,b;] in Eq.
(14.11) shows that F' is absolutely continuous. It is also easy to see from
Eq. (14.11) that Tr(a,b] < f(a,b] |f| dm.

Theorem 14.25. Let F' : R — C be a function, then

(1) F € BV iff ReF € BV and ImF € BV.

(2) If F: R — R is in BV then the functions Fy := (Tr £ F) /2 are bounded
and increasing functions.

(3) F:R—Risin BV iff F = F,. — F_ where Fy are bounded increasing
functions.

(4) If F € BV then F(x%) emist for all x € R. Let G(x) := F(x+).
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(5) F € BV then {x :lim,_,, F(y) # F(x)} is a countable set and in particular
G(z) = F(x+) for all but a countable number of x € R.
(6) If F' € BV, then for m — a.e. x, F'(z) and G'(z) exist and F'(z) = G'(x).
Proof.
(1) Ttem 1. is a consequence of the inequalities
|F(b) — F(a)] < |Re F(b) — Re F(a)| + Im F(b) — Im F(a)| < 2|F(b) — F(a)|.
(2) By Lemma 14.22, for all a < b,
(14.12) Tp(b) — Tp(a) = Tp(a,b] > |F(b) — F(a)]
and therefore
Tp(b) = F(b) > Tr(a) = F(a)
which shows that Fy are increasing. Moreover from Eq. (14.12), for b > 0
and a < 0,
[ ()] < [F(b) = F(0)| + [F(0)] < Tr(0,6] + [F(0)]
< Tr(0,00) +|F(0)|
and similarly
[F(a)] <[F(0)| + Tr(—00,0)
which shows that F' is bounded by |F/(0)|+7#(c0). Therefore F. is bounded
as well.
(3) By Lemma 14.24 if F = F, — F_, then
Tr(a,b) <Tr, (a,b] +Tr_(a,b] = |Fy(b) — Fy(a)| + |[F-(b) — F_(a)|
which is bounded showing that F' € BV. Conversely if F' is bounded varia-
tion, then F' = Fy — F_ where F are defined as in Item 2.
Items 4. — 6. follow from Items 1. — 3. and Theorem 14.17. m

Theorem 14.26. Suppose that F': R — C is in BV, then
(14.13) Tr(z+4) = Tr(z)| < |F(z+) — F(z)]

for all x € R. If we further assume that F' is right continuous then there exists a
unique measure [ on B = Br. such that

(14.14) pu((—o0,z]) = F(z) — F(—o0) for all z € R.

Proof. Since F' € BV, F(z+) exists for all € R and hence Eq. (14.13) is a
consequence of Eq. (14.7). Now assume that F is right continuous. In this case
Eq. (14.13) shows that Tp(x) is also right continuous. By considering the real
and imaginary parts of F' separately it suffices to prove there exists a unique finite
signed measure p satisfying Eq. (14.14) in the case that F' is real valued. Now
let Fy = (Tr £ F) /2, then Fy are increasing right continuous bounded functions.
Hence there exists unique measure p4+ on B such that

pt((—o00,z]) = Fy(x) — Fy(—o0) Vo € R.

The finite signed measure u = py — p— satisfies Eq. (14.14). So it only remains to
prove that p is unique.
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Suppose that i is another such measure such that (14.14) holds with u replaced
by fi. Then for (a,b],

|l (a,b] = Sg}pz |F(zy) — F(z)| = || (a,b]

where the supremum is over all partition of (a,b]. This shows that |u| = |&| on
A C B — the algebra generated by half open intervals and hence |u| = || . It now
follows that |u| + p and || + f are finite positive measure on B such that

(el + 1) ((a, b)) = |l ((a, b)) + (F(b) — F(a))
= |al ((a,b]) + (F(b) — F(a))
= (lal + ) ((a, 0])
from which we infer that |u| + p = |a| + & = |u| + & on B. Thus p = fi.

Alternatively, one may prove the uniqueness by showing that C := {4 € B :
w(A) = i(A)} is a monotone class which contains A or using the 7 — A theorem. m

Remark 14.27. One may also construct the measure pr by appealing to the complex
Riesz Theorem (Corollary 13.41). Indeed suppose that F has bounded variation
and let I(f) := fR fdF be defined analogously to the real incresing case in Notation
11.6 above. Then one easily shows that [I(f)| < Tr(oco) - | f||, and therefore I €
Co(R,C)". So there exists a unique complex measure px such that

/de = / fdu for all f € Cy(R,C).
R R

Letting ¢, be as in the proof of Theorem 11.35, then one may show

/ ¢dF — (F(b+¢) — F(a+ 26))‘ < Tr((a,a+2¢€))+Tr((b+€,ba+2¢]) —» 0 ase | 0
R

and hence
1((a,b]) = lim / bedpt = lim / 6.dF = F(b) — F(a).
SLO R EJ,O R

Definition 14.28. A function F' : R — C is said to be of normalized bounded
variation if F' € BV, F' is right continuous and F(—c0) = 0. We will abbreviate this
by saying F' € NBV. (The condition: F(—o0) = 0 is not essential and plays no role
in the discussion below.)

Theorem 14.29. Suppose that F' € NBV and pr is the measure defined by Ejq.
(14.14), then
(14.15) dpp = F'dm + d\
where A L m and in particular for —oo < a < b < o0,
b
(14.16) F(b) — F(a) = / Fldm + A((a,b]).

Proof. By Theorem 14.3, there exists f € L!(m) and a complex measure \ such
that for m -a.e. x,

- W(Er)
14.1 =1
(14.17) f(z) = lim (B’
for any collection of {£,},_, C B which shrink nicely to {z}, A L m and
dpp = fdm + dx.
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From Eq. (14.17) it follows that

. Fx+h)-F(x) . pr((z,z+h])
M ST R /@
 Fle—h)—F(@) . pr(@—haz])
i —h =lm h = /(@)
for m — ae. z,ie. 7% F(z) = 7 F(z) = f(z) for m —a.e. . This implies that F

is m — a.e. differentiable and F'(z) = f(x) for m — a.e. . m

Corollary 14.30. Let F : R — C be in NBV, then
(1) ppLm ¢ff FF=0 m a.e.
(2) prp <m iff \=0 iff

(14.18) pr((a, b)) = / F'(z)dm(zx) for all a <b.
(a,b]

Proof.

(1) If F'(x) =0 for m a.e. x, then by Eq. (14.15), uyp =X L m. If up L m,
then by Eq. (14.15), F'dm = dup —dX L dm and by Remark 13.8 F'dm =
0,ie. I/ =0m -a.e.

(2) If pp < m, then d\ = dup — F'dm < dm which implies by Lemma 13.28
that A = 0. Therefore Eq. (14.16) becomes (14.18). Now let

p(A) = /F’(x)dm(x) for all A € B.
A
Recall by the Radon - Nikodym theorem that [ |[F'(z)|dm(z) < oo so
that p is a complex measure on B. So if Eq. (14.18) holds, then p = up
on the algebra generated by half open intervals. Therefore p = pp as in

the uniqueness part of the proof of Theorem 14.26. Therefore dur = F'dm
and hence A = 0.

Theorem 14.31. Suppose that F : [a,b] — C is a measurable function. Then the
following are equivalent:

(1) F is absolutely continuous on [a,b].
(2) There exists f € L*([a,b]),dm) such that

(14.19) F(z) — F(a) = /w fdm vz € [a,b]
(3) F' exists a.e., F' € L'([a,b],dm) and

x
(14.20) F(z) — F(a) = / FldmVz € [a,b].
a

Proof. In order to apply the previous results, extend F to R by F(x) = F(b) if
x>band F(z) = F(a) if z < a.

1. = 3. If F is absolutely continuous then F' is continuous on [a,b] and
F—F(a) =F—F(—x) € NBV by Lemma 14.24. By Proposition 14.19, ur < m
and hence Item 3. is now a consequence of Item 2. of Corollary 14.30. The assertion
3. = 2. is trivial.
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2. = 1. If 2. holds then F is absolutely continuous on [a,b] by Lemma 14.24.
]

14.5. Counter Examples: These are taken from I. P. Natanson, “Theory of func-
tions of a real variable,” p.269. Note it is proved in Natanson or in Rudin that the
fundamental theorem of calculus holds for f € C([0,1]) such that f’(z) exists for
all z € [0,1] and f’ € L'. Now we give a couple of examples.

Example 14.32. In each case f € C([-1,1]).
(1) Let f(z) = |x\3/2 sin L with f(0) = 0, then f is everywhere differentiable

but f’ is not bounded near zero. However, the function f’ € L'([-1,1]).
(2) Let f(z) = x? cos & with f(0) = 0, then f is everywhere differentiable but
f' ¢ Ll (—e¢,¢). Indeed, if 0 ¢ (c, 3) then

loc
B
/a f'(x)dx = f(B) — f(a) = B> COS% — a2 cos %.
Now take o, := ,/ﬁﬂ and B, = 1/v/2n. Then
2 m(dn+1) 1

/Bn
5 f(z)dx = RS 5 - 5. cos 2nm = o

and noting that {(an,Bn)}ne; are all disjoint, we find [; |f/(z)| dz = oo.

14.6. Exercises.

Exercise 14.1. Folland 3.22 on p. 100.
Exercise 14.2. Folland 3.24 on p. 100.
Exercise 14.3. Folland 3.25 on p. 100.
Exercise 14.4. Folland 3.27 on p. 107.
Exercise 14.5. Folland 3.29 on p. 107.
Exercise 14.6. Folland 3.30 on p. 107.
Exercise 14.7. Folland 3.33 on p. 108.
Exercise 14.8. Folland 3.35 on p. 108.
Exercise 14.9. Folland 3.37 on p. 108.
Exercise 14.10. Folland 3.39 on p. 108.





