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15. More Point Set Topology

15.1. Connectedness.

Definition 15.1. (X, τ) is disconnected if there exists non-empty open sets U
and V of X such that U∩V = ∅ andX = U∪V . We say {U, V } is a disconnection
of X. The topological space (X, τ) is called connected if it is not disconnected,
i.e. if there are no disconnection of X. If A ⊂ X we say A is connected iff (A, τA)
is connected where τA is the relative topology on A. Explicitly, A is disconnected
in (X, τ) iff there exists U, V ∈ τ such that U ∩ A 6= ∅, U ∩ A 6= ∅, A ∩ U ∩ V = ∅
and A ⊂ U ∪ V.
The reader should check that the following statement is an equivalent definition

of connectivity. A topological space (X, τ) is connected iff the only sets A ⊂ X
which are both open and closed are the sets X and ∅.
Remark 15.2. Let A ⊂ Y ⊂ X. Then A is connected in X iff A is connected in Y .

Proof. Since

τA ≡ {V ∩A : V ⊂ X} = {V ∩A ∩ Y : V ⊂ X} = {U ∩A : U ⊂o Y },
the relative topology on A inherited from X is the same as the relative topology on
A inherited from Y . Since connectivity is a statement about the relative topologies
on A, A is connected in X iff A is connected in Y.
The following elementary but important lemma is left as an exercise to the reader.

Lemma 15.3. Suppose that f : X → Y is a continuous map between topological
spaces. Then f(X) ⊂ Y is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 15.4. Suppose that f : X → Y is a continuous map between topological
spaces, X is connected, Y is Hausdorff, and f is locally constant, i.e. for all x ∈ X
there exists an open neighborhood V of x in X such that f |V is constant. Then f
is constant, i.e. f(X) = {y0} for some y0 ∈ Y. To prove this, let y0 ∈ f(X) and
let W := f−1({y0}). Since Y is Hausdorff, {y0} ⊂ Y is a closed set and since f is
continuous W ⊂ X is also closed. Since f is locally constant, W is open as well
and since X is connected it follows that W = X, i.e. f(X) = {y0} .
Proposition 15.5. Let (X, τ) be a topological space.

(1) If B ⊂ X is a connected set and X is the disjoint union of two open sets
U and V, then either B ⊂ U or B ⊂ V.

(2) a) If A ⊂ X is connected, then Ā is connected.
b) More generally, if A is connected and B ⊂ acc(A), then A ∪ B is

connected as well. (Recall that acc(A) — the set of accumulation points of
A was defined in Defintion 3.19 above.)

(3) If {Eα}α∈A is a collection of connected sets such that
T
α∈AEα 6= ∅, then

Y :=
S
α∈AEα is connected as well.

(4) Suppose A,B ⊂ X are non-empty connected subsets of X such that Ā∩B 6=
∅, then A ∪B is connected in X.

(5) Every point x ∈ X is contained in a unique maximal connected subset Cx of
X and this subset is closed. The set Cx is called the connected component
of x.
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Proof.
(1) Since B is the disjoint union of the relatively open sets B∩U and B∩V, we

must have B ∩ U = B or B ∩ V = B for otherwise {B ∩ U,B ∩ V } would
be a disconnection of B.

(2) a. Let Y = Ā equipped with the relative topology from X. Suppose that
U,V ⊂o Y form a disconnection of Y = Ā. Then by 1. either A ⊂ U or
A ⊂ V. Say that A ⊂ U. Since U is both open an closed in Y, it follows that
Y = Ā ⊂ U. Therefore V = ∅ and we have a contradiction to the assumption
that {U, V } is a disconnection of Y = Ā. Hence we must conclude that
Y = Ā is connected as well.
b. Now let Y = A ∪B with B ⊂ acc(A), then

ĀY = Ā ∩ Y = (A ∪ acc(A)) ∩ Y = A ∪B.
Because A is connected in Y, by (2) b. Y = A∪B = ĀY is also connected.

(3) Let Y :=
S
α∈AEα. By Remark 15.2, we know that Eα is connected in Y

for each α ∈ A. If {U, V } were a disconnection of Y, By item (1), either
Eα ⊂ U or Eα ⊂ V for all α. Let Λ = {α ∈ A : Eα ⊂ U} then U = ∪α∈ΛEα

and V = ∪α∈A\ΛEα. (Notice that neither Λ or A \Λ can be empty since U
and V are not empty.) Since

∅ = U ∩ V =
[

α∈Λ,β∈Λc (Eα ∩Eβ) ⊃
\
α∈A

Eα 6= ∅.

we have reached a contradiction and hence no such disconnection exists.
(4) (A good example to keep in mind here is X = R, A = (0, 1) and B = [1, 2).)

For sake of contradiction suppose that {U,V } were a disconnection of Y =
A∪B. By item (1) either A ⊂ U or A ⊂ V, say A ⊂ U in which case B ⊂ V.
Since Y = A∪B we must have A = U and B = V and so we may conclude:
A and B are disjoint subsets of Y which are both open and closed. This
implies

A = ĀY = Ā ∩ Y = Ā ∩ (A ∪B) = A ∪ ¡Ā ∩B¢
and therefore

∅ 6= Ā ∩B ⊂ A ∩B = ∅,
which gives us the desired contradiction.

(5) Let C denote the collection of connected subsets C ⊂ X such that x ∈ C.
Then by item 3., the set Cx := ∪C is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C̄x is also connected by item (2) and Cx is maximal, Cx = C̄x, i.e.
Cx is closed.

Theorem 15.6. The connected subsets of R are intervals.

Proof. Suppose that A ⊂ R is a connected subset and that a, b ∈ A with
a < b. If there exists c ∈ (a, b) such that c /∈ A, then U := (−∞, c) ∩ A and
V := (c,∞)∩A would form a disconnection of A. Hence (a, b) ⊂ A. Let α := inf(A)
and β := sup(A) and choose αn, βn ∈ A such that αn < βn and αn ↓ α and
βn ↑ β as n → ∞. By what we have just shown, (αn, βn) ⊂ A for all n and hence
(α, β) = ∪∞n=1(αn, βn) ⊂ A. From this it follows that A = (α, β), [α, β), (α, β] or
[α, β], i.e. A is an interval.
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Conversely suppose that A is an interval, and for sake of contradiction, suppose
that {U, V } is a disconnection of A with a ∈ U, b ∈ V. After relabeling U and
V if necessary we may assume that a < b. Since A is an interval [a, b] ⊂ A. Let
p = sup ([a, b] ∩ U) , then because U and V are open, a < p < b. Now p can not
be in U for otherwise sup ([a, b] ∩ U) > p and p can not be in V for otherwise
p < sup ([a, b] ∩ U) . From this it follows that p /∈ U ∪ V and hence A 6= U ∪ V
contradicting the assumption that {U, V } is a disconnection.
Definition 15.7. A topological space X is path connected if to every pair of
points {x0, x1} ⊂ X there exists a continuous path σ ∈ C([0, 1],X) such that
σ(0) = x0 and σ(1) = x1. The space X is said to be locally path connected if for
each x ∈ X, there is an open neighborhood V ⊂ X of x which is path connected.

Proposition 15.8. Let X be a topological space.

(1) If X is path connected then X is connected.
(2) If X is connected and locally path connected, then X is path connected.
(3) If X is any connected open subset of Rn, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 15.1 — 15.3
below.

15.2. Product Spaces. Let {(Xα, τα)}α∈A be a collection of topological spaces
(we assume Xα 6= ∅) and let XA =

Q
α∈A

Xα. Recall that x ∈ XA is a function

x : A→
a
α∈A

Xα

such that xα := x(α) ∈ Xα for all α ∈ A. An element x ∈ XA is called a choice
function and the axiom of choice states that XA 6= ∅ provided that Xα 6= ∅ for
each α ∈ A. If each Xα above is the same set X, we will denote XA =

Q
α∈A

Xα by

XA. So x ∈ XA is a function from A to X.

Notation 15.9. For α ∈ A, let πα : XA → Xα be the canonical projection map,
πα(x) = xα. The product topology τ = ⊗α∈Aτα is the smallest topology on XA

such that each projection πα is continuous. Explicitly, τ is the topology generated
by

(15.1) E = {π−1α (Vα) : α ∈ A, Vα ∈ τα}.
A “basic” open set in this topology is of the form

(15.2) V = {x ∈ XA : πα(x) ∈ Vα for α ∈ Λ}
where Λ is a finite subset of A and Vα ∈ τα for all α ∈ Λ. We will sometimes write
V above as

V =
Y
α∈Λ

Vα ×
Y
α6∈Λ

Xα = VΛ ×XA\Λ.

Proposition 15.10. Suppose Y is a topological space and f : Y → XA is a map.
Then f is continuous iff πα ◦ f : Y → Xα is continuous for all α ∈ A.

Proof. If f is continuous then πα ◦ f is the composition of two continuous
functions and hence is continuous. Conversely if πα ◦ f is continuous for all α ∈ A,
the (πα ◦f)−1(Vα) = f−1(π−1α (Vα)) is open in Y for all α ∈ A and Vα ⊂o Xα. That
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is to say, f−1(E) consists of open sets, and therefore f is continuous since E is a
sub-basis for the product topology.

Proposition 15.11. Suppose that (X, τ) is a topological space and {fn} ⊂ XA is
a sequence. Then fn → f in the product topology of XA iff fn(α) → f(α) for all
α ∈ A.

Proof. Since πα is continuous, if fn → f then fn(α) = πα(fn)→ πα(f) = f(α)
for all α ∈ A. Conversely, fn(α) → f(α) for all α ∈ A iff πα(fn) → πα(f) for all
α ∈ A. Therefore if V = π−1α (Vα) ∈ E and f ∈ V, then πα(f) ∈ Vα and πα(fn) ∈ Vα
a.a. and hence fn ∈ V a.a.. This shows that fn → f as n→∞.

Proposition 15.12. Let (Xα, τα) be topological spaces and XA be the product space
with the product topology.

(1) If Xα is Hausdorff for all α ∈ A, then so is XA.
(2) If each Xα is connected for all α ∈ A, then so is XA.

Proof.
(1) Let x, y ∈ XA be distinct points. Then there exists α ∈ A such that

πα(x) = xα 6= yα = πα(y). Since Xα is Hausdorff, there exists disjoint open
sets U, V ⊂ Xα such πα(x) ∈ U and πα(y) ∈ V. Then π−1α (U) and π−1α (V )
are disjoint open sets in XA containing x and y respectively.

(2) Let us begin with the case of two factors, namely assume that X and Y are
connected topological spaces, then we will show that X × Y is connected
as well. To do this let p = (x0, y0) ∈ X × Y and E denote the connected
component of p. Since {x0}×Y is homeomorphic to Y, {x0}×Y is connected
in X × Y and therefore {x0} × Y ⊂ E, i.e. (x0, y) ∈ E for all y ∈ Y. A
similar argument now shows that X × {y} ⊂ E for any y ∈ Y, that is to
X × Y = E. By induction the theorem holds whenever A is a finite set.
For the general case, again choose a point p ∈ XA = XA and let C =

Cp be the connected component of p in XA. Recall that Cp is closed and
therefore if Cp is a proper subset of XA, then XA \ Cp is a non-empty
open set. By the definition of the product topology, this would imply that
XA \ Cp contains an open set of the form

V := ∩α∈Λπ−1α (Vα) = VΛ ×XA\Λ
where Λ ⊂⊂ A and Vα ∈ τα for all α ∈ Λ. We will now show that no such
V can exist and hence XA = Cp, i.e. XA is connected.
Define φ : XΛ → XA by φ(y) = x where

xα =

½
yα if α ∈ Λ
pα if α /∈ Λ.

If α ∈ Λ, πα ◦ φ(y) = yα = πα(y) and if α ∈ A \ Λ then πα ◦ φ(y) = pα
so that in every case πα ◦ φ : XΛ → Xα is continuous and therefore φ is
continuous.
Since XΛ is a product of a finite number of connected spaces it is con-

nected by step 1. above. Hence so is the continuous image, φ(XΛ) =
XΛ × {pα}α∈A\Λ , of XΛ. Now p ∈ φ(XΛ) and φ(XΛ) is connected implies
that φ(XΛ) ⊂ C. On the other hand one easily sees that

∅ 6= V ∩ φ(XΛ) ⊂ V ∩ C
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contradicting the assumption that V ⊂ Cc.

15.3. Tychonoff ’s Theorem. The main theorem of this subsection is that the
product of compact spaces is compact. Before going to the general case an arbitrary
number of factors let us start with only two factors.

Proposition 15.13. Suppose that X and Y are non-empty compact topological
spaces, then X × Y is compact in the product topology.

Proof. Let U be an open cover of X × Y. Then for each (x, y) ∈ X × Y
there exist U ∈ U such that (x, y) ∈ U. By definition of the product topology,
there also exist Vx ∈ τXx and Wy ∈ τYy such that Vx ×Wy ⊂ U. Therefore V :=
{Vx ×Wy : (x, y) ∈ X × Y } is also an open cover of X × Y. We will now show that
V has a finite sub-cover, say V0 ⊂⊂ V. Assuming this is proved for the moment,
this implies that U also has a finite subcover because each V ∈ V0 is contained in
some UV ∈ U . So to complete the proof it suffices to show every cover V of the form
V = {Vα ×Wα : α ∈ A} where Vα ⊂o X and Wα ⊂o Y has a finite subcover.
Given x ∈ X, let fx : Y → X × Y be the map fx(y) = (x, y) and notice that

fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are continuous maps.
From this we conclude that {x} × Y = fx(Y ) is compact. Similarly, it follows that
X × {y} is compact for all y ∈ Y.
Since V is a cover of {x} × Y, there exist Γx ⊂⊂ A such that {x} × Y ⊂S

α∈Γx
(Vα×Wα) without loss of generality we may assume that Γx is chosen so that

x ∈ Vα for all α ∈ Γx. Let Ux ≡
T

α∈Γx
Vα ⊂o X, see Figure 34 below.

Figure 34. Constructing the open set Ux.
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Then {Ux}x∈X is an open cover of X which is compact, hence there exists
Λ ⊂⊂ X such that X = ∪x∈ΛUx. The proof is completed by showing that
V0 := ∪x∈Λ ∪α∈Γx {Vα ×Wα} is a cover of X × Y,

∪V0 = ∪x∈Λ∪α∈Γx (Vα ×Wα) ⊃ ∪x∈Λ∪α∈Γx (Ux ×Wα) = ∪x∈Λ (Ux × Y ) = X×Y.

The results of Exercises 3.28 and 4.15 prove Tychonoff’s Theorem for a countable
product of compact metric spaces. We now state the general version of the theorem.

Theorem 15.14 (Tychonoff’s Theorem). Let {Xα}α∈A be a collection of non-
empty compact spaces. Then X := XA =

Q
α∈A

Xα is compact in the product space

topology.

Proof. The proof requires Zorn’s lemma which is equivalent to the axiom of
choice, see Theorem B.7 of Appendix B below. For α ∈ A let πα denote the
projection map from X to Xα. Suppose that F is a family of closed subsets of X
which has the finite intersection property, see Definition 3.25. By Proposition 3.26
the proof will be complete if we can show ∩F 6= ∅.
The first step is to apply Zorn’s lemma to construct a maximal collection F0

of (not necessarily closed) subsets of X with the finite intersection property. To
do this, let Γ :=

©G ⊂ 2X : F ⊂ Gª equipped with the partial order, G1 < G2 if
G1 ⊂ G2. If Φ is a linearly ordered subset of Γ, then G:= ∪Φ is an upper bound for
Γ which still has the finite intersection property as the reader should check. So by
Zorn’s lemma, Γ has a maximal element F0.
The maximal F0 has the following properties.
(1) If {Fi}ni=1 ⊂ F0 then ∩ni=1Fi ∈ F0 as well. Indeed, if we let (F0)f denote

the collection of all finite intersections of elements from F0, then (F0)f has
the finite intersection property and contains F0. Since F0 is maximal, this
implies (F0)f = F0.

(2) If A ⊂ X and A ∩ F 6= ∅ for all F ∈ F0 then A ∈ F0. For if not F0 ∪
{A} would still satisfy the finite intersection property and would properly
contain F0. this would violate the maximallity of F0.

(3) For each α ∈ A, πa(F0) := {πα(F ) ⊂ Xα : F ∈ F0} has the finite intersec-
tion property. Indeed, if {Fi}ni=1 ⊂ F0, then ∩ni=1πα(Fi) ⊃ πα (∩ni=1Fi) 6= ∅.

Since Xα is compact, item 3. above along with Proposition 3.26 implies
∩F∈F0πα(F ) 6= ∅. Since this true for each α ∈ A, using the axiom of choice,
there exists p ∈ X such that pα = πα(p) ∈ ∩F∈F0πα(F ) for all α ∈ A. The
proof will be completed by showing p ∈ ∩F , hence ∩F is not empty as desired.
Since ∩©F̄ : F ∈ F0ª ⊂ ∩F , it suffices to show p ∈ C := ∩©F̄ : F ∈ F0ª . For
this suppose that U is an open neighborhood of p in X. By the definition of the
product topology, there exists Λ ⊂⊂ A and open sets Uα ⊂ Xα for all α ∈ Λ such
that p ∈ ∩α∈Λπ−1α (Uα) ⊂ U. Since pα ∈ ∩F∈F0πα(F ) and pα ∈ Uα for all α ∈ Λ,
it follows that Uα ∩ πα(F ) 6= ∅ for all F ∈ F0 and all α ∈ Λ and this implies
π−1α (Uα) ∩ F 6= ∅ for all F ∈ F0 and all α ∈ Λ. By item 2. above we concluded
that π−1α (Uα) ∈ F0 for all α ∈ Λ and by then by item 1., ∩α∈Λπ−1α (Uα) ∈ F0. In
particular ∅ 6= F ∩ ¡∩α∈Λπ−1α (Uα)

¢ ⊂ F ∩ U for all F ∈ F0 which shows p ∈ F̄ for
each F ∈ F0.
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15.4. Baire Category Theorem.

Definition 15.15. Let (X, τ) be a topological space. A set E ⊂ X is said to be
nowhere dense if

¡
Ē
¢o
= ∅ i.e. Ē has empty interior.

Notice that E is nowhere dense is equivalent to

X =
¡¡
Ē
¢o¢c

=
¡
Ē
¢c
= (Ec)o.

That is to say E is nowhere dense iff Ec has dense interior.

15.5. Baire Category Theorem.

Theorem 15.16 (Baire Category Theorem). Let (X, ρ) be a complete metric space.

(1) If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞T
n=1

Vn is dense in

X.
(2) If {En}∞n=1 is a sequence of nowhere dense sets, then X 6= S∞n=1En.

Proof. 1) We must shows that Ḡ = X which is equivalent to showing that
W ∩G 6= ∅ for all non-empty open sets W ⊂ X. Since V1 is dense, W ∩ V1 6= ∅ and
hence there exists x1 ∈ X and 1 > 0 such that

B(x1, 1) ⊂W ∩ V1.
Since V2 is dense, B(x1, 1)∩V2 6= ∅ and hence there exists x2 ∈ X and 2 > 0 such
that

B(x2, 2) ⊂ B(x1, 1) ∩ V2.
Continuing this way inductively, we may choose {xn ∈ X and n > 0}∞n=1 such that

B(xn, n) ⊂ B(xn−1, n−1) ∩ Vn ∀n.
Furthermore we can clearly do this construction in such a way that n ↓ 0 as
n ↑ ∞. Hence {xn}∞n=1 is Cauchy sequence and x = lim

n→∞xn exists in X since X

is complete. Since B(xn, n) is closed, x ∈ B(xn, n) ⊂ Vn so that x ∈ Vn for all
n and hence x ∈ G. Moreover, x ∈ B(x1, 1) ⊂ W ∩ V1 implies x ∈ W and hence
x ∈W ∩G showing W ∩G 6= ∅.
2) For the second assertion, since

S∞
n=1En ⊂

S∞
n=1 Ēn, it suffices to show X 6=S∞

n=1 Ēn or equivalently that ∅ 6=
T∞
n=1

¡
Ēn

¢c
=
T∞
n=1 (E

c
n)

o
. As we have observed,

En is nowhere dense is equivalent to (Ec
n)

o being a dense open set, hence by part
1),
T∞
n=1 (E

c
n)

o is dense in X and hence not empty.
Here is another version of the Baire Category theorem when X is a locally

compact Hausdorff space.

Proposition 15.17. Let X be a locally compact Hausdorff space.

(1) If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞T
n=1

Vn is dense in

X.
(2) If {En}∞n=1 is a sequence of nowhere dense sets, then X 6= S∞n=1En.

Proof. As in the previous proof, the second assertion is a consequence of the
first. To finish the proof, if suffices to show G ∩W 6= ∅ for all open sets W ⊂ X.
Since V1 is dense, there exists x1 ∈ V1 ∩W and by Proposition 8.13 there exists
U1 ⊂o X such that x1 ∈ U1 ⊂ Ū1 ⊂ V1∩W with Ū1 being compact. Similarly, there
exists a non-empty open set U2 such that U2 ⊂ Ū2 ⊂ U1 ∩ V2. Working inductively,
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we may find non-empty open sets {Uk}∞k=1 such that Uk ⊂ Ūk ⊂ Uk−1 ∩ Vk. Since
∩nk=1Ūk = Ūn 6= ∅ for all n, the finite intersection characterization of Ū1 being
compact implies that

∅ 6= ∩∞k=1Ūk ⊂ G ∩W.

Definition 15.18. A subset E ⊂ X is meager or of the first category if E =
∞S
n=1

En where each En is nowhere dense. And a set F ⊂ X is called residual if F c

is meager.

Remarks 15.19. The reader should think of meager as being the topological ana-
logue of sets of measure 0 and residual as being the topological analogue of sets of
full measure.

(1) F is residual iff F contains a countable intersection of dense open sets.
Indeed if F is a residual set, then there exists nowhere dense sets {En}
such that

F c = ∪∞n=1En ⊂ ∪∞n=1Ēn.

Taking complements of this equation shows that

∩∞n=1Ēc
n ⊂ F,

i.e. F contains a set of the form ∩∞n=1Vn with each Vn (= Ēc
n) being an

open dense subset of X.
Conversely, if ∩∞n=1Vn ⊂ F with each Vn being an open dense subset of

X, then F c ⊂ ∪∞n=1V c
n and hence F

c = ∪∞n=1En where each En = F c ∩ V c
n ,

is a nowhere dense subset of X.
(2) A countable union of meager sets is meager and any subset of a meager set

is meager.
(3) A countable intersection of residual sets is residual.

Remark 15.20. The Baire Category Theorems may now be stated as follows. If X
is a complete metric space or X is a locally compact Hausdorff space, then

(1) all residual sets are dense in X and
(2) X is not meager.

Here is an application of Theorem 15.16.

Theorem 15.21. Let N ⊂ C([0, 1],R) be the set of nowhere differentiable func-
tions. (Here a function f is said to be differentiable at 0 if f 0(0) := limt↓0

f(t)−f(0)
t

exists and at 1 if f 0(1) := limt↑0
f(1)−f(t)

1−t exists.) Then N is a residual set so the
“generic” continuous functions is nowhere differentiable.

Proof. If f /∈ N , then f 0(x0) exists for some x0 ∈ [0, 1] and by the defi-
nition of the derivative and compactness of [0, 1], there exists n ∈ N such that
|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]. Thus if we define
En := {f ∈ C([0, 1]) : ∃ x0 ∈ [0, 1] 3 |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]} ,

then we have just shown N c ⊂ E := ∪∞n=1En. So to finish the proof it suffices to
show (for each n) En is a closed subset of C([0, 1],R) with empty interior.
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1) To prove En is closed, let {fm}∞m=1 ⊂ En be a sequence of functions such that
there exists f ∈ C([0, 1],R) such that kf − fmku → 0 as m → ∞. Since fm ∈ En,
there exists xm ∈ [0, 1] such that
(15.3) |fm(x)− fm(xm)| ≤ n|x− xm| ∀ x ∈ [0, 1].
Since [0, 1] is a compact metric space, by passing to a subsequence if necessary, we
may assume x0 = limm→∞ xm ∈ [0, 1] exists. Passing to the limit in Eq. (15.3)
shows

|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]
and therefore that f ∈ En. This shows En is a closed subset of C([0, 1],R).
2) To finish the proof, we will show E0n = ∅ by showing for each f ∈ En and > 0

given, there exits g ∈ C([0, 1],R) \En such that kf − gku < .We now construct g.
Since [0, 1] is compact and f is continuous there exists N ∈ N such that

|f(x)− f(y)| < /2 whenever |y − x| < 1/N. Let k denote the piecewise linear
function on [0, 1] such that k(mN ) = f(mN ) for m = 0, 1, . . . , N and k00(x) = 0 for
x /∈ PN := {m/N : m = 0, 1, . . . , N} . Then it is easily seen that kf − kku < /2
and for x ∈ (mN , m+1N ) that

|k0(x)| = |f(m+1N )− f(mN )|
1
N

< N /2.

We now make k “rougher” by adding a small wiggly function h which we define
as follows. Let M ∈ N be chosen so that 4 M > 2n and define h uniquely by
h(mM ) = (−1)m /2 for m = 0, 1, . . . ,M and h00(x) = 0 for x /∈ PM . Then khku <
and |h0(x)| = 4 M > 2n for x /∈ PM . See Figure 35 below.

Figure 35. Constgructing a rough approximation, g, to a contin-
uous function f.

Finally define g := k + h. Then

kf − gku ≤ kf − kku + khku < /2 + /2 =

and

|g0(x)| ≥ |h0(x)|− |k0 (x)| > 2n− n = n ∀x /∈ PM ∪ PN .
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It now follows from this last equation and the mean value theorem that for any
x0 ∈ [0, 1], ¯̄̄̄

g(x)− g(x0)

x− x0

¯̄̄̄
> n

for all x ∈ [0, 1] sufficiently close to x0. This shows g /∈ En and so the proof is
complete.
Here is an application of the Baire Category Theorem in Proposition 15.17.

Proposition 15.22. Suppose that f : R→ R is a function such that f 0(x) exists
for all x ∈ R. Let

U := ∪ >0

(
x ∈ R : sup

|y|<
|f 0(x+ y)| <∞

)
.

Then U is a dense open set. (It is not true that U = R in general, see Example
14.34 above.)

Proof. It is easily seen from the definition of U that U is open. Let W ⊂o R be
an open subset of R. For k ∈ N, let

Ek :=

½
x ∈W : |f(y)− f(x)| ≤ k |y − x| when |y − x| ≤ 1

k

¾
=

\
z:|z|≤k−1

{x ∈W : |f(x+ z)− f(x)| ≤ k |z|} ,

which is a closed subset of R since f is continuous. Moreover, if x ∈ W and
M = |f 0(x)| , then

|f(y)− f(x)| = |f 0(x) (y − x) + o (y − x)|
≤ (M + 1) |y − x|

for y close to x. (Here o(y−x) denotes a function such that limy→x o(y−x)/(y−x) =
0.) In particular, this shows that x ∈ Ek for all k sufficiently large. Therefore
W= ∪∞k=1Ek and since W is not meager by the Baire category Theorem in Propo-
sition 15.17, some Ek has non-empty interior. That is there exists x0 ∈ Ek ⊂ W
and > 0 such that

J := (x0 − , x0 + ) ⊂ Ek ⊂W.

For x ∈ J, we have |f(x+ z)− f(x)| ≤ k |z| provided that |z| ≤ k−1 and therefore
that |f 0(x)| ≤ k for x ∈ J. Therefore x0 ∈ U ∩W showing U is dense.

Remark 15.23. This proposition generalizes to functions f : Rn → Rm in an obvious
way.

15.6. Exercises.

Exercise 15.1. Prove item 1. of Proposition 15.8. Hint: show X is not connected
implies X is not path connected.

Exercise 15.2. Prove item 2. of Proposition 15.8. Hint: fix x0 ∈ X and let W
denote the set of x ∈ X such that there exists σ ∈ C([0, 1],X) satisfying σ(0) = x0
and σ(1) = x. Then show W is both open and closed.

Exercise 15.3. Prove item 3. of Proposition 15.8.



310 BRUCE K. DRIVER†

Exercise 15.4. Let

X :=
©
(x, y) ∈ R2 : y = sin(x−1)ª ∪ {(0, 0)}

equipped with the relative topology induced from the standard topology on R2.
Show X is connected but not path connected.

Exercise 15.5. Prove the following strong version of item 3. of Proposition 15.8,
namely to every pair of points x0, x1 in a connected open subset V of Rn there
exists σ ∈ C∞(R, V ) such that σ(0) = x0 and σ(1) = x1. Hint: Use a convolution
argument.

Exercise 15.6. Folland 5.27. Hint: Consider the generalized cantor sets discussed
on p. 39 of Folland.

Exercise 15.7. Let (X, k·k) be an infinite dimensional normed space and E ⊂ X
be a finite dimensional subspace. Show that E ⊂ X is nowhere dense.

Exercise 15.8. Now suppose that (X, k·k) is an infinite dimensional Banach space.
Show that X can not have a countable algebraic basis. More explicitly, there is
no countable subset S ⊂ X such that every element x ∈ X may be written as a
finite linear combination of elements from S. Hint: make use of Exercise 15.7 and
the Baire category theorem.


