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16. BANACH SPACES II

Theorem 16.1 (Open Mapping Theorem). Let X,Y be Banach spaces, T €
L(X,Y). If T is surjective then T is an open mapping, i.e. T(V) is open in
Y for all open subsets V C X.

Proof. For all @« > 0 let BY = {z€X:|zl|y<a} C X, BY =
{yeY:|yly <a} C Y and E, = T(BZY) C Y. The proof will be carried out
by proving the following three assertions.

(1) There exists 6 > 0 such that BY C E, for all a > 0.

(2) For the same § > 0, BY C E,, i.e. we may remove the closure in assertion
1.

(3) The last assertion implies T is an open mapping,.

1. Since Y = |J E,, the Baire category Theorem 15.16 implies there exists

n—1
n such that EZ # 0, i.e. there exists y € E, and ¢ > 0 such that BY (y,¢) C E,.
Suppose ||y'|| < € then y and y + 3’ are in BY (y,¢) C E, hence there exists
2',x € BYX such that |T2' — (y +y')|| and ||Tx — y|| may be made as small as we
please, which we abbreviate as follows

172" = (y+y)|l & 0 and [|Tz — y|| ~ 0.
Hence by the triangle inequality,
1T —2) =yl = T2 — (y +y) — (Tz —y)|
< T2 = +y)l + 1Tz -yl ~0

with 2/ — z € Bs\,. This shows that 3’ € Es, which implies BY (0,¢) C E»,. Since
the map ¢, : Y — Y given by ¢.(y) = 5=y is a homeomorphism, ¢, (E2,) = Eq
and ¢ (BY (0,€)) = BY (0, &), it follows that B}, C E, where § = o= > 0.

2. Let § be as in assertion 1., y € BY and a; € (||y[| /d,1). Choose {a,}or, C
(0,00) such that Y>° ; ay, < 1. Since y € BY 5 C Eq, = T (BZ,) by assertion 1.
there exists z1 € B such that |ly — Tz1| < a2d. (Notice that ||y — T'zq|| can be
made as small as we please.) Similarly, since y—Tz1 € BY 5 C Eo, =T (B,) there
exists zp € BZ, such that ||y — Tzy — Txa|| < asd. Continuing this way inductively,
there exists z,, € Bo)fn such that

(16.1) ly = Takll < any16 for all n € N.
k=1

o0

o0 o0
Since Y ||lznll < D an <1,z =
n=1 n= n=

to the limit in Eq. (16.1) shows, ||y — Tx|| = 0 and hence y € T(B*) = Ej.
Therefore we have shown B C Ej. The same scaling argument as above then
shows Bé% C E, for all @ > 0.

3. Ifx € V C, X and y = Tx € TV we must show that TV contains a
ball BY (y,e) = Tz + BY for some € > 0. Now BY (y,¢) = Ta + BY C TV iff
BY cTV —Tx =T(V — ). Since V — z is a neighborhood of 0 € X, there exists
a > 0 such that BX C (V —z) and hence by assertion 2., BYs ¢ TBX c T(V —x)
and therefore BY (y,€) C TV with € := . m

x, exists and ||z|| < 1, i.e. z € B;*. Passing
1
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Corollary 16.2. If X,Y are Banach spaces and T € L(X,Y) is invertible (i.e. a
bijective linear transformation) then the inverse map, T~', is bounded, i.e. T~ €
L(Y,X). (Note that T~! is automatically linear.)

Theorem 16.3 (Closed Graph Theorem). Let X and Y be Banach space T : X —
Y linear is continuous iff T is closed i.e. T(T) C X x Y is closed.

Proof. If T continuous and (z,,Tz,) — (z,y) € X XY as n — oo then
Tx, — Tx =y which implies (z,y) = (z,Tz) € I'(T).
Conversely: If T is closed then the following diagram commutes

I(T)

X Y

T
where I'(z) := (x,Tz).

The map 73 : X x Y — X is continuous and 7 |pp) : ['(T) — X is continuous
bijection which implies ”1‘1:(17“) is bounded by the open mapping Theorem 16.1.
Hence T'= my 0 7r1|1?(1T) is bounded, being the composition of bounded operators.
|

As an application we have the following proposition.

Proposition 16.4. Let H be a Hilbert space. Suppose that T : H — H is a linear
(not necessarily bounded) map such that there exists T* : H — H such that

(Tz,Y)=(z,T*Y)Vz,y € H.
Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that z,, € H such
that (z,,Tz,) — (z,y) € H x H. Then for any z € H,

(Txp,z) = {(xp,T*2) — (x,T*z) = (Tz,z) asn — 0.
On the other hand lim, oo (Tx,, 2) = (y, z) as well and therefore (T'z, z) = (y, z)

for all z € H. This shows that Tz = y and proves that T is closed. m
Here is another example.

Example 16.5. Suppose that M C L?([0,1],m) is a closed subspace such that
each element of M has a representative in C([0, 1]). We will abuse notation and
simply write M C C([0, 1]). Then

(1) There exists A € (0,00) such that ||f]|cc < A f|lz2 for all f € M.

(2) For all x € [0,1] there exists g, € M such that
f(z) = (f, gs) for all f € M.

Moreover we have ||g.|| < A.
(3) The subspace M is finite dimensional and dim(M) < A?.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M, | - ||e) is a complete space. To prove this it suffices to show M
is a closed subspace of C([0,1]). So let {f,} € M and f € C([0,1]) such that
1o = fllog — 0 a5 1 — c0. Then llfn — fonllzs < I — foullos — 0 25 1,7 — 00,
and since M is closed in L2([0,1]), L? — lim, .o fn = g € M. By passing to a
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subsequence if necessary we know that g(x) = lim, . fn(z) = f(z) for m - a.e. z.
So f=g€ M.

DLet i : (M, - |lo) — (M, || - ||2) be the identity map. Then ¢ is bounded and
bijective. By the open mapping theorem, 7 = i~ ! is bounded as well. Hence there
exists A < oo such that || f|| ., = |l7(f)|| < Al f|, for all fe M.

ii) Let j: (M, ] -]l2) = (M, || - |lso) be the identity map. We will shows that j is
a closed operator and hence bounded by the closed graph theorem. Suppose that
fn € M such that f, — f in L? and f,, = j(f.) — g in C([0,1]). Then as in the
first paragraph, we conclude that g = f = j(f) a.e. showing j is closed. Now finish
as in last line of proof i).

2) For z € [0,1], let e, : M — C be the evaluation map e, (f) = f(x). Then

lea(F) < 1f (@) < [ flloe < Allfll 22

which shows that e, € M*. Hence there exists a unique element g, € M such that
f(x) =e.(f) = {f,gz) for all f e M.

Moreover ||gz|lr2 = |lex||lm> < A.
3) Let {f;}}—; be an L — orthonormal subset of M. Then

n n
A% > lealRe = Nlgallte = Y i 90) = Y 1F5(@)I
j=1 j=1

and integrating this equation over = € [0, 1] implies that
n 1 n
A% > Z/ fi(@)Pdz = 1=mn
j=1"0 j=1
which shows that n < A2%. Hence dim(M) < A%, m

Remark 16.6. Keeping the notation in Example 16.5, G(z,y) = g.(y) for all z,y €
[0,1]. Then

1
f@) = ex(P) = [ 1Tz dy for all £ € M.
0
The function G is called the reproducing kernel for M.
The above example generalizes as follows.

Proposition 16.7. Suppose that (X, M, u) is a finite measure space, p € [1,00)
and W is a closed subspace of LP (1) such that W C LP(p)NL>®(u). Then dim(W) <
00.

Proof. With out loss of generality we may assume that u(X) = 1. As in Example
16.5, we shows that W is a closed subspace of L (u) and hence by the open mapping
theorem, there exists a constant A < oo such that | f[|,, < A||f|, for all f € W.
Now if 1 < p < 2, then

£l < AllfIL, < Allfll2
and if p € (2,00), then ||f|[2 < || £]15 || £]%* or equivalently,

_ 1-2/p
171, < WA 1A < 1157 (Alf,)
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from which we learn that [f|, < A'"2/?|f|l, and therefore that |f|,, <

AA'72/P|f|l, so that in any case there exists a constant B < oo such that
[l < B IS -
Let {fn}ﬁf:1 be an orthonormal subset of W and f = 25:1 cn fn with ¢, € C,

then
2

N
< B en|* < B?|cf?

00 n=1

N
> enkn
n=1

where |¢|* := Zi:;l len|? . For each ¢ € CV, there is an exception set E, such that
for z ¢ E.,

2
< B?|¢|*.

N
Z Cnfn(x)

Let D := (Q+iQ)" and E = NeepE.. Then u(E) = 0 and for z ¢ E,
25:1 cnfn(m)} < B2|c|? for all ¢ € D. By continuity it then follows for ¢ E
that

2
< B?|cf’ forall ce CV.

Z Cnfn(m)

Taking ¢, = fn(z) in this inequality implies that

N
>l fa@)?
n=1

2 N
<B*) |fa(x)]? forallz ¢ E
n=1

and therefore that
N

3 fal@))* < B* for all 2 ¢ E.

n=1

Integrating this equation over z then implies that N < B2, i.e. dim(W) < B%. =

Theorem 16.8 (Uniform Boundedness Principle). Let X andY be a normed vector
spaces, A C L(X,Y) be a collection of bounded linear operators from X to'Y,

F=Fp={ze€X: sup |Azx| < oo} and
AcA
(16.2) R=Rs=F°={z € X : sup |Az| = o0}
AeA

(1) If sup ||A]] < oo then F = X.
AeA
(2) If F is not meager, then sup ||A|l < oo.
AcA
(3) If X is a Banach space, F is not meager iff sup ||A|| < co. In particular if
AeA
sup ||Az|| < oo for all x € X then sup || 4| < oo.
AcA AcA
(4) If X is a Banach space, then sup ||A]| = oo iff R is residual. In particular
AeA

if sup ||A|| = oo then sup ||Az|| = oo for x in a dense subset of X.
AcA AcA

Proof. 1. If M := sup ||A]| < oo, then sup ||[Az|| < M ||z]| < oo for all x € X
AeA AcA
showing F' = X.
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2. For each n € N, let E,, C X be the closed sets given by

E, ={x: sup [|Az| <n} = ﬂ {z :||Az| < n}.
AcA AcA

Then F' = U2, E, which is assumed to be non-meager and hence there exists
an n € N such that F, has non-empty interior. Let B,(é) be a ball such that
B, (d) C E,. Then for y € X with ||y|| = § we know & —y € B,(d) C E,, so that
Ay = Az — A(z — y) and hence for any A € A,

[Ay|| < | Az[| + | A(z = y)I| <n +n = 2n.

Hence it follows that ||A|| < 2n/d for all A € A, i.e. sup ||A]| < 2n/§ < .
AcA

3. If X is a Banach space, F' = X is not meager by the Baire Category Theorem
15.16. So item 3. follows from items 1. and 2 and the fact that FF = X iff
sup |Az|| < oo for all z € X.

AcA

4. Ttem 3. is equivalent to F' is meager iff sup ||A|| = co. Since R = F¢, R is
AcA

residual iff F' is meager, so R is residual iff sup ||A]| =occ. m
AeA

Example 16.9. Suppose that {c,} -, C C is a sequence of numbers such that

N
lim Z ancy exists in C for all a € £1.
n=1

N—o00

Then ¢ € £,

Proof. Let fy € (61)* be given by fy(a) = 22[21 anc, and set My =
max {|cy,| :n=1,...,N}. Then

|fn(a)] < My ||al|

and by taking a = e; with k such My = |cg|, we learn that || fx|| = My. Now by
assumption, limy .o, fn(a) exists for all a € £* and in particular,

sup |fn(a)| < oo for all a € £*.
N

So by the Theorem 16.8,

00 > sup ||[fn|| =sup My =sup{|e,| :n=1,2,3,...}.
N N

16.1. Applications to Fourier Series. Let T = S' be the unit circle in S! and m
denote the normalized arc length measure on 7. So if f : T'— [0, 00) is measurable,

then
/Tf(w)dw ::/dem :—%/z f(e®)ds.
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Also let ¢,,(z) = 2" for all n € Z. Recall that {¢,},, is an orthonormal basis for
L*(T). For n € N let

sn(f,2) = Xn: (f, dn)on(2) = Z (f,dn)2" = (/ fw kdw)

k=—n k=—n
/f (Z @bz )dw = / flw
k=—n
where d,, (@) :=>1_  a*. Now ad,(a) — d,(a) = o™ — ™", so that
n n+l _ . —n
a—1
k=—n
with the convention that
an+1 —a " an+1 — A
=i T gy - 2;1
Writing o = €, we find

i0(n+1) _ ,—ifn 0(n+1/2) _ ,—if(n+1/2)
; e e e e
Dy (0) == d, (") = 5 = = —
el — 1 ei0/2 _ —i0/2

sin(n + 1)6

sin %0 '
Recall by Hilbert space theory, L?(T) — lim, o 8, (f,) = f for all f € L?(T). We
will now show that the convergence is not pointwise for all f € C(T) C L*(T).

Proposition 16.10. For each z € T, there exists a residual set R, C C(T) such
that sup,, |sn(f, z)| = 0o for all f € R,. Recall that C(T) is a complete metric space,
hence R, is a dense subset of C(T).

Proof. By symmetry considerations, it suffices to take z =1 € T. Let A, f :=

$n(f,1). Then
m]/u (@) dw < 7l [ ()] du

HAM/W )| dw.

Since C(T) is dense in L*(T), there exists fi, € C(T,R) such that fi(w) — sgndy(0)
in L. By replacing fi by (fx A1)V (—1) we may assume that || fi|, < 1. It now

follows that
|Anfk‘ B '
ka”oo = /Tfk(w)dn(w)dw

and passing to the limit as k& — oo implies that ||A,|| > [, |d,(@)|dw. Hence we
have shown that

B 3 B i ™ _7]9 1 s
163) 18] = [ @)l =5 [ Jae o= [

—T

showing

[An]l >

sin(n + 3)0
sin %0

‘dG.
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Since
T xr
sin:c:/ cosydyg/ |cosy|dy < x
0 0

for all x > 0. Since sinz is odd, |sinz| < |z| for all z € R. Using this in Eq. (16.3)
implies that

1 (™ |sin(n+1)0 2 (™. 1. |do
> — 2 T =2 Y] By
AL > o [W 15 do 77/0 sin(n + 2)9 5
= %/0 sin(n + %)9‘ d??
Since
™ 1,[do [t d
/ sin(n + )6 —:/ |siny|—yﬂooaanoo,
0 2 0 0 Y

we learn that sup,, |A,| = co. So by Theorem 16.8,
Ry ={f € C(T) : sup A f| = oo}

is a residual set. m
See Rudin Chapter 5 for more details.

Lemma 16.11. For f € LY(T), let
) = (. 6u) = L f(w)a"dw.

Then f € co and the map f € L*(T) — co is a one to one bounded linear transfor-
mation into but not onto cg.

2
Proof. By Bessel’s inequality, ) ., ‘f(n)) < oo for all f € L*(T) and in
particular lim,|_ )f(n)‘ =0. Given f € LY(T) and g € L*(T) we have

F(m) = gm)| =

EAU@O—AWMWﬂﬁéﬂf—Nl

and hence
lim sup | f(m)| = tim sup |F(n) = g(m)| < IIf = gll,

for all g € L?(T). Since L*(T) is dense in L*(T), it follows that lim sup,, .

0 for all f € L, i.e. fe co-
Since ‘f(n)’ < [Ifll; , we have Hf” < |IfIl, showing that Af := f is a bounded
co

fm)| =

linear transformation from L(T) to co.

To see that A is injective, suppose f = Af = 0, then S fw)p(w, w)dw = 0
for all polynomials p in w and w. By the Stone - Wierestrass and the dominated
convergence theorem, this implies that

AfWMWMw=0

for all g € C(T). Lemma 9.7 now implies f = 0 a.e.
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If A were surjective, the open mapping theorem would imply that A=! : ¢y —
LY(T) is bounded. In particular this implies there exists C' < oo such that

(16.4) 1]l <C Hf for all f € LY(T).

co

Taking f = d,,, we find d, = 1 while lim,, . ||dn|| ;1 = oo contradicting Eq.
C€o

(16.4). Therefore ran(A) #co. ®

16.2. Hahn Banach Theorem. Our next goal is to show that continuous dual
X* of a Banach space X is always large. This will be the content of the Hahn —
Banach Theorem 16.15 below.

Proposition 16.12. Let X be a complex vector space over C. If f € X* and
u = Ref € Xy then

(16.5) f(z) = u(x) —iu(iz).
Conversely if u € Xy and f is defined by Eq. (16.5), then f € X* and ||lul|x; =
I/ llx~. More generally if p is a semi-norm on X, then
[fl<piffu<p.
Proof. Let v(z) =Im f(x), then
v(iz) =Im f(ix) = Im(if(x)) = Ref(z) = u(z).
Therefore
f(z) = u(x) +iv(z) = u(z) + wu(—iz) = u(x) — iu(iz).
Conversely for u € Xg let f(z) = u(x) — tu(iz). Then
f((a+ib)z) = u(ax + ibx) — iu(iax — bzr) = au(x) + bu(ix) — i(au(iz) — bu(x))
while
(a+1b)f(x) = au(z) + bu(iz) + i(bu(z) — au(iz)).
So f is complex linear.
Because |u(z)| = |[Ref(z)| < |f(z)], it follows that ||u]| < ||f||. For € X choose
A € St C C such that |f(x)| = A\f(x) so
[f(@)] = fAx) = u(Az) < lull Azl = [[ulll|z].
Since = € X is arbitrary, this shows that || f|| < [jul| so ||f|| = [|lu/.**

34
Proof. To understand better why || f|| = ||u||, notice that
I£12 = sup |f(@) = sup (lu(@)® + |u(iz)]?).
llzll=1 llzll=1
Supppose that M = sup |u(z)| and this supremum is attained at zg € X with [|zo] = 1.
llzll=1

Replacing xg by —xo if necessary, we may assume that wu(xg) = M. Since u has a maximum at

zo,
< xo + itxg )
u| ———
o \llwo +itzol|

(u(zo) + tu(z‘a:o))} = u(izo)

4
dt
4

{ 1
dt |y |1+t
since %|0|1 +it| = %h)\/l + t2 = 0.This explains why ||f|| = ||u|. ®
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For the last assertion, it is clear that |f| < p implies that v < |u| < |f| < p.
Conversely if u < p and z € X, choose A € S* C C such that |f(z)| = A\f(x). Then

[f(2)] = Af(z) = f(Az) = u(Az) < p(Az) = p(z)
holdsforallz € X. m

Definition 16.13 (Minkowski functional). p : X — R is a Minkowski functional if

(1) p(z+y) <p(z)+p(y) for all z,y € X and
(2) p(cx) =cp(z) for all ¢ > 0 and = € X.

Example 16.14. Suppose that X =R and
plz) =inf{A >0:2 € \-1,2] = [\, 2)]}.
Notice that if > 0, then p(z) = z/2 and if < 0 then p(z) = —z, i.e.

foz/2 if x>0
p(z)—{ || if z<O0.

From this formula it is clear that p(cx) = cp(z) for all ¢ > 0 but not for ¢ < 0.
Moreover, p satisfies the triangle inequality, indeed if p(z) = A and p(y) = p, then
x € A\[—1,2] and y € pu[—1,2] so that

z+yeA-1,2]4+p[-1,2] C (A +p) [-1,2]
which shows that p(x +y) < A+ p = p(x) + p(y). To check the last set inclusion
let a,b € [—1, 2], then

Aa+ b= A+ p) (LawLLb) € (A +p)[-1,2]

At p A+ p
since [—1,2] is a convex set and ﬁ + Xi_u =1.

TODO: Add in the relationship to convex sets and separation theorems, see Reed
and Simon Vol. 1. for example.

Theorem 16.15 (Hahn-Banach). Let X be a real vector space, M C X be a
subspace f : M — R be a linear functional such that f < p on M. Then there
exists a linear functional F: X — R such that Fly = f and F < p.

Proof. Step (1) We show for all x € X \ M there exists and extension F' to
M @& Rx with the desired properties. If F' exists and o = F(z), then for all y € M
and A € R we must have f(y)+Aa = F(y+Az) < p(y+Ax) i.e. Aa < p(y+Aiz)—f(y).
Equivalently put we must find « € R such that

o < Py +A2) — f(y)

- A

p(z — pz) — f(2)
1

So if @ € R is going to exist, we have to prove, for all y,z € M and A, u > 0 that

f(z) =p(z = pz) _ ply + ) = f(y)
I - A

for all y € M and A > 0

a >

for all z € M and p > 0.

or equivalently

(16.6) FAz + py) < ppy + Az) + Ap(z — px)
= p(py + pAz) + p(Az — Apx).
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But
fAz 4+ py) = f(Az + pAz) + f(Az — Apz)
< p(Az + pAz) + p(Az — Apx)

which shows that Eq. (16.6) is true and by working backwards, there exist an a € R
such that f(y) + A < p(y + Ax). Therefore F(y + Az) := f(y) + A« is the desired
extension.

Step (2) Let us now write F' : X — R to mean F' is defined on a linear subspace
D(F) C X and F : D(F) — R is linear. For F,G : X — R we will say F' < G if
D(F) ¢ D(G) and F = G|p(r), that is G is an extension of F. Let

F={F:X —>R:MCD(F), F<pon D(F)}.

Then (F, <) is a partially ordered set. If ® C F is a chain (i.e. a linearly ordered

subset of F) then ® has an upper bound G € F defined by D(G) = | D(F)
FE
and G(z) = F(z) for x € D(F). Then it is easily checked that D(G) is a linear

subspace, G € F, and F < G for all ' € ®. We may now apply Zorn’s Lemma
(see Theorem B.7) to conclude there exists a maximal element F' € F. Necessarily,
D(F) = X for otherwise we could extend F' by step (1), violating the maximality
of F. Thus F' is the desired extension of f. m

Corollary 16.16. Suppose that X is a complex vector space, p : X — [0,00) is a
semi-norm, M C X is a linear subspace, and f : M — C is linear functional such
that |f(z)| < p(x) for all x € M. Then there exists F' € X' (X' is the algebraic
dual of X) such that F|y = f and |F| < p.

Proof. Let u = Ref then u < p on M and hence by Theorem 16.15, there exists
U € X} such that Uly =wand U < p on M. Define F(z) = U(x) — iU(iz) then
as in Proposition 16.12, F'= f on M and |[F| <p. m

Theorem 16.17. Let X be a normed space M C X be a closed subspace and
x € X\ M. Then there exists f € X* such that ||f|| =1, f(z) =0 = d(z, M) and
f=0o0on M.

Proof. Define f: M §Cx — C by f(m+Azx) =X forallm e M and A € C.

Notice that

lm + Azl = |Alllz +m/Al = [Ald
and hence

[f(m + Az)[ = [Al§ < [[m + Az]]
which shows || f|| < 1. In fact, since |f(m +z)| = = ng |z +ml|, [|fll =1. By
Hahn-Banach theorem there exists F' € X* such that F|yqc, = f and |F(x)] < ||z]|
for all z € X, i.e. ||F|| <1.Since 1 =|f[| <[|F| <1 wesee|F|=]|f] =

Corollary 16.18. The linear map x € X — & € X** where &(f) = f(z) for all
x € X is an isometry. (This isometry need not be surjective.)

Proof. Since |Z(f)| = [f(z)] < ||f|lx- lz]x for all f € X*, it follows that
|Z]| o < lz|| 5 - Now applying Theorem 16.17 with M = {0}, there exists f € X*
such that || f|| = 1 and |&(f)| = f(z) = |lz||, which shows that ||Z||y.. > ||z]y -
This shows that x € X — & € X** is an isometry. Since isometries are necessarily
injective, we are done. m
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Definition 16.19. A Banach space X is reflexive if the map x € X — & € X** is
surjective.

Example 16.20. Every Hilbert space H is reflexive. This is a consequence of the
Riesz Theorem, Proposition 10.15.

Example 16.21. Suppose that p is a o — finite measure on a measurable space
(X, M), then LP(X, M, u) is reflexive for all p € (1,00), see Theorem 13.14.

Example 16.22 (Following Riesz and Nagy, p. 214). The Banach space X :=
C([0,1)) is not reflexive. To prove this recall that X* may be identified with complex
measures g on [0,1] which may be identified with right continuous functions of
bounded variation (F') on [0, 1], namely

1
F—pur—(feX— fdurp = [ fdF).
(0,1] 0

Define A € X** by
A=Y p{z})= Y (Fl2) - Fla-)),
z€[0,1] z€[0,1]
5o A(u) is the sum of the “atoms” of u. Suppose there existed an f € X such that
Ap) = f[o 1 fdu for all € X*. Choosing p =, for some = € (0,1) would then
imply that
flz) = for=A(0) =1
(0,1]
showing f would have to be the constant function,1, which clearly can not work.

Example 16.23. The Banach space X := L'(R,m) is not reflexive. As we have
seen in Theorem 13.14, X* = L*°(R,m). The argument in Example 13.15 shows
(L*°(R,m))" 2 L*(R, m).

16.3. Weak and Strong Topologies.

Definition 16.24. Let X and Y be be a normed vector spaces and L(X,Y) the
normed space of bounded linear transformations from X to Y.
(1) The weak topology on X is the topology generated by X*, i.e. sets of
the form
N =nifz € X :|fi(z) — fi(zo)| < e}
where f; € X* and € > 0 form a neighborhood base for the weak topology
on X at xg.
(2) The weak-* topology on X* is the topology generated by X, i.e.
N=n{g € X" :[f(2:) — g(zi)| < e}
where z; € X and € > 0 forms a neighborhood base for the weak—x topology
on X* at f e X*.
(3) The strong operator topology on L(X,Y) is the smallest topology such
that T € L(X,Y) — Tz €Y is continuous for all z € X.

(4) The weak operator topology on L(X,Y) is the smallest topology such
that T € L(X,Y) — f(Tx) € C is continuous for all z € X and f € Y*.

Theorem 16.25 (Alaoglu’s Theorem). If X is a normed space the unit ball in X*
is weak - * compact.
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Proof. For all z € X let D, = {z € C: |z| < ||z||}. Then D, C C is a

compact set and so by Tychonoff’s Theorem Q = [[ D, is compact in the product
zeX

topology. 1f f € B 1= {f € X"+ |fll < 1}, /()| < ] ll2]] < |lz]| which implies
that f(z) € D, for all x € X, i.e. B C . The topology on B inherited from
the weak—* topology on X™ is the same as that relative topology coming from the
product topology on Q. So to finish the proof it suffices to show B is a closed subset
of the compact space €. To prove this let 7, (f) = f(z) be the projection maps.
Then

B={f€Q: fis linear}
={feQ: flz+cy)— flx)—cf(y)=0forall z,y € X and c € C}
= [ (HFeQ:flatey) — fl)—cfly) =0}

z,yeX ceC

N ) (Fagey — 7 —cmy) " (0})

z,yeX ceC

which is closed because (Ty4cy — T — cmy) : Q& — C is continuous. m

Theorem 16.26 (Alaoglu’s Theorem for separable spaces). Suppose that X is a
separable Banach space, C* := {f € X* . ||f|| < 1} is the closed unit ball in X* and
{zn},2, is an countable dense subset of C:={x € X : ||z|| < 1}. Then

— 1
(16.7) o0 =Y o

n=1

‘f(xn> - g(xn)|

defines a metric on C* which is compatible with the weak topology on C*, Tox =
(Tw*)es ={VNC:V € Ty=}. Moreover (C*, p) is a compact metric space.

Proof. The routine check that p is a metric is left to the reader. Let 7, be
the topology on C* induced by p. For any g € X and n € N, the map f € X* —
(f(xn) — g(xy,)) €C is T+ continuous and since the sum in Eq. (16.7) is uniformly
convergent for f € C*, it follows that f — p(f, g) is 7¢+ — continuous. This implies
the open balls relative to p are contained in 7o+~ and therefore 7, C 7.

We now wish to prove 7¢~ C 7,. Since 7¢+ is the topology generated by
{Z|c+ : © € C}, it suffices to show & is 7, — continuous for all z € C. But given z € C
there exists a subsequence y;, := , of {xn}zo:l such that such that x = limy_ o Y-
Since

sup [Z(f) = gi(f)] = sup |f(z — k)| < [lz =yl — 0 as k — oo,
fec fec

Ur — & uniformly on C* and using ¢ is 7, — continuous for all k£ (as is easily
checked) we learn & is also 7, continuous. Hence 7o+ = 7(&|c+ : @ € X) C 7,,.

The compactness assertion follows from Theorem 16.25. The compactness as-
sertion may also be verified directly using: 1) sequential compactness is equivalent
to compactness for metric spaces and 2) a Cantor’s diagonalization argument as in
the proof of Theorem 10.35. =

16.4. Supplement: Quotient spaces, adjoints, and more reflexivity.

Definition 16.27. Let X and Y be Banach spaces and A : X — Y be a linear
operator. The transpose of A is the linear operator A : Y* — X* defined by
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(ATf) (z) = f(Az) for f € Y* and z € X. The null space of A is the subspace
nul(Ad) :={z € X : Az =0} C X. For M C X and N C X* let

M°:={f e X*: flar =0} and

Nt :={zeX: f(x)=0forall fe N}

Proposition 16.28 (Basic Properties). (1) |All = ||AT|| and AtTZ = Az for

allz € X.
(2) M° and N+ are always closed subspace of X* and X respectively.
(3) (M°)" = A
(4) N C (NJ-)O with equality when X is reflexive.
(5) nul(A) = ran(A")+ and nul(A") = ran(A)°. Moreover, ran(A) = nul(A)~+

and if X is reflevive, then ran(Af) = nul(A)°.
(6) X is reflexive iff X* is reflexive. More generally X*** = X* & X0,

Proof.

(1)
[Al = sup [[Az| = sup sup |f(Az)|
llzl=1 llzll=1 | fll=1
= s swp [4T(@)| = s (4] = A7)
LFlI=1 [l=ll=1 I fll=1

(2) This is an easy consequence of the assumed continuity off all linear func-
tionals involved. N
(3) If # € M, then f(z) =0 for all f € M° so that z € (M) . Therefore

M c (MO)J' .If 2 ¢ M, then there exists f € X* such that f|y; = 0 while
f(x) #0,ie. fe M°yet f(x) # 0. This shows z ¢ (MO)L and we have
shown (MO)L C M.

(4) Tt is again simple to show N C (NJ-)O and therefore N C (NJ-)O . Moreover,
as above if f ¢ N there exists ¢ € X** such that 9|5 = 0 while ¥(f) # 0.

If X is reflexive, ¢ = & for some x € X and since g(z) = ¥(g) = 0 for
all g € N, we have € N+. On the other hand, f(z) = ¥ (f) # 0 so

fé (NL)O. Thus again (NL)O C N.

()
nl(A)={xeX: Az=0}={z e X: f(Az) =0V f € X7}
={reX :Alf(z)=0V fe X"}
={ze X :g(z) =0V geran(A")} =ran(4A")" .
Similarly,

nl(AN) ={fey :Alf=0}={feY*: (ATf)(z)=0Vze X}
={feY*: f(Az) =0V z € X}
= {f €Y : flian(a) = 0} :ran(A)O.
(6) Let ¢ € X" and define fy, € X* by Ju(x) = ¥(&) for all € X and set
Y =1 — fy. For x € X (so & € X**) we have

¥(2) = (&) — fu(@) = fy(x) — 2(fy) = fe(x) — fu(z) = 0.
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This shows ¢’ € X9 and we have shown X*** = X* + X0. If ¢y € X* N X°,
then ¢ = f for some f € X* and 0 = f(2) = &(f) = f(z) for all z € X,
ie. f = 0so ¢ = 0. Therefore X*** = X* @ X0 as claimed. If X is
reflexive, then X = X** and so X° = {0} showing X*** = X*, ie. X*
is reflexive. Conversely if X* is reflexive we conclude that X° = {0} and
therefore X** = {O}l = ()A(O)J_ = X, so that X is reflexive.

Alternative proof. Notice that f, = Jt, where J : X — X** is given
by Jx = &, and the composition

. T R
fGX*HfEX***LJTfGX*

is the identity map since (Jlff) (z) = f(Jz) = f(2) = 2(f) = f(x) for all

z € X. Thus it follows that X* — X** is invertible iff JT is its inverse

which can happen iff nul(J") = {0} . But as above nul(Jt) = ran(J)® which

will be zero iff ran(J) = X** and since J is an isometry this is equivalent

to saying ran(J) = X**. So we have again shown X* is reflexive iff X is
reflexive.

Theorem 16.29. Let X be a Banach space, M C X be a proper closed subspace,
X/M the quotient space, m : X — X/M the projection map w(x) = x + M for
x € X and define the quotient norm on X/M by
= M = i f .
(@)l jar = o+ Ml ja = ind [+ mll

Then
(1) I llx/ar s @ norm on X/M.
) The projection map ©: X — X/M has norm 1, ||| = 1.
) (X/M, ||l x/ar) is a Banach space.
) IfY is another normed space and T : X — 'Y is a bounded linear transfor-

mation such that M C nul(T), then there exists a unique linear transfor-
mation S : X/M —'Y such that T = S on and moreover ||T|| = ||S] .

Proof. 1) Clearly ||z + M| > 0 and if ||z + M|| = 0, then there exists m,, € M

(2
(3
(4

such that || + m,|| — 0 as n — oo, i.e. = lim m, € M = M. Since z € M,
x+M=0ec X/M.If c e C\{0}, z € X, then
llex + M|l = inf flcz+m| =l|e| inf |lz+m/c| = l|c|lz+ M|
meM meM

because m/c runs through M as m runs through M. Let z1,22 € X and mq,mqa € M
then

|21 + 22 + M| < [lo1 4+ 22 + M1 +mal| < [lzg +ma || + |22 + m2].
Taking infinums over my, my € M then implies
21 4z + M| < |21 + M| 4 [Jz2 4 M]].

and we have completed the proof the (X/M, || - ||) is a normed space.
2) Since ||w(x)|| = infpenr ||z +m| < ||z for allz € X, ||7|| < 1. To see ||«|| = 1,
let x € X \ M so that 7(z) # 0. Given « € (0,1), there exists m € M such that

lz +mll < o™ |m ()] -
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Therefore,
[r(z+m)l| _ =@  elzt+m| _
le+ml  llzt+m] — lo+m]|
which shows ||7|| > «. Since a € (0, 1) is arbitrary we conclude that |7 (x)|| = 1.

3) Let m(z,,) € X/M be a sequence such that > ||7(z,)|| < co. As above there

exists m, € M such that |[7(z,)|| > %|z, + m,| and hence 3 ||z, + m,| <
(oo}

23" ||w(zy)|| < co. Since X is complete, z := > (z,+m,) exists in X and therefore

n=1

by the continuity of m,

7T(:E) = Z W(mn =+ mn) = Zﬂ—(xn)
n=1

n=1
showing X /M is complete.
4) The existence of S is guaranteed by the “factor theorem” from linear algebra.
Moreover ||S|| = ||T|| because

1N = WIS ol < IS il = [151]

and
S T
1] = sup ISE@_ T
egm |IT@ zgm [7(@)]]
T T
s gup 1Tl _ I
cgb |zl 20 |zl
| |

Theorem 16.30. Let X be a Banach space. Then

(1) Identifying X with X C X**, the weak — * topology on X** induces the
weak topology on X. More explicitly, the map v € X — & € X is a homeo-
morphism when X is equipped with its weak topology and X with the relative
topology coming from the weak-*x topology on X**.

(2) X C X** is dense in the weak-+ topology on X**.

(3) Letting C' and C** be the closed unit balls in X and X** respectively, then
C:={i e C™ :xeC}is dense in C** in the weak — * topology on X**.

(4) X is reflezive iff C is weakly compact.

Proof.
(1) The weak — x topology on X** is generated by

{Firex}=fvex=—up:fex.
So the induced topology on X is generated by
{reX—-2e X" —>2(f)=f(z): feX}=X"

and so the induced topology on X is precisely the weak topology.
(2) A basic weak - * neighborhood of a point A € X** is of the form

(16.8) N =0 {v € X7 1 [(fi) = A(fk)| < €}
for some {fi},_, C X* and € > 0. be given. We must now find z € X such
that £ € N, or equivalently so that

(169) |£i’(fk> — )\(fk>| = |fk(£l,'> — )\(fk)‘ <efork=1,2,...,n.
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In fact we will show there exists x € X such that A\(fx) = fr(z) for
k = 1,2,...,n. To prove this stronger assertion we may, by discard-
ing some of the fi’s if necessary, assume that {fy},_; is a linearly in-
dependent set. Since the {fx},_, are linearly independent, the map
z € X — (fai(x),...,fn(x)) € C" is surjective (why) and hence there
exists © € X such that

(fr(@), o (@) = Te = (A(f1),- -, A(fn))

as desired.

Let A € C** € X** and N be the weak - x open neighborhood of \ as
in Eq. (16.8). Working as before, given € > 0, we need to find z € C
such that Eq. (16.9). It will be left to the reader to verify that it suffices
again to assume { f;},_, is a linearly independent set. (Hint: Suppose that
{fi,..., fm} were a maximal linearly dependent subset of {fx};_,, then
each fi with k > m may be written as a linear combination {fi,..., fm}.)
As in the proof of item 2., there exists z € X such that Eq. (16.10)
holds. The problem is that z may not be in C. To remedy this, let N :=
Mp—ynul(fi) = nul(T), 7 : X — X/N = C" be the projection map and fx
€ (X/N)" be chosen so that fy = fr o for k= 1,2,...,n. Then we have
produced =z € X such that

A1) s M) = (fi(@), s fa(2) = (fi(m(2)), - s ful(m (@)
Since { f1,..., fn} is a basis for (X/N)* we find

Y aifi(m(@))] _ >oiny i)

[7(2)|| = sup s = -
accm\goy || X0y aifil] aecm\foy |12 =1 i fill
A aifi aifi
_ sup | (anzl o f )‘ S ||/\|| sup HZZA a f ” — 1
accm\for 1D oimy cifill aecm\foy 1Dy aafill

Hence we have shown ||7(z)|| < 1 and therefore for any o > 1 there
exists y = z +n € X such that ||y]| < a and (A (f1),...,A(fn)) =
(fi(y),- .-, fuly)). Hence

IA(fi) = fily/o)| < |fily) = fi(w)] < (L =) [ fi(y)]

which can be arbitrarily small (i.e. less than €) by choosing « sufficiently
close to 1.

Let C == {&:2 € C} C C*™* C X**.If X is reflexive, C' = C** is weak
- % compact and hence by item 1., C' is weakly compact in X. Conversely
if C' is weakly compact, then C c C* is weak — * compact being the
continuous image of a continuous map. Since the weak — % topology on
X** is Hausdorff, it follows that C is weak — * closed and so by item 3,

7Vx7eak—*

c* =C =C.Soif A e X**, A/ |\ € ¢ = C, i.e. there exists
x € C such that & = A/||A||. This shows A = (||\||z) and therefore
X =X

16.5. Exercises.
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16.5.1. More Examples of Banach Spaces.

Exercise 16.1. Let (X, M) be a measurable space and M (X) denote the space
of complex measures on (X, M) and for p € M(X) let ||p|| = |ul[(X). Show
(M(X), |||l is a Banach space. (Move to Section 14.)

Exercise 16.2. Folland 5.9.

Exercise 16.3. Folland 5.10.

Exercise 16.4. Folland 5.11.

16.5.2. Hahn-Banach Theorem Problems.
Exercise 16.5. Folland 5.17.

Exercise 16.6. Folland 5.18.

Exercise 16.7. Folland 5.19.

Exercise 16.8. Folland 5.20.

Exercise 16.9. Folland 5.21.

Exercise 16.10. Let X be a Banach space such that X™* is separable. Show X
is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e. suppose
D c X*\ {0} is a countable dense subset of X*, for £ € D choose z; € X such that
lzell = 1 and [€(z¢)] = 3]/¢]-

Exercise 16.11. Folland 5.26.
16.5.3. Baire Category Result Problems.

Exercise 16.12.
Exercise 16.13.
Exercise 16.14.
Exercise 16.15.
Exercise 16.16.
Exercise 16.17.
Exercise 16.18.
Exercise 16.19.
Exercise 16.20.
Exercise 16.21.
Exercise 16.22.
Exercise 16.23.
Exercise 16.24.

Folland 5.29.
Folland 5.30.
Folland 5.31.
Folland 5.32.
Folland 5.33.
Folland 5.34.
Folland 5.35.
Folland 5.36.
Folland 5.37.
Folland 5.38.
Folland 5.39.
Folland 5.40.
Folland 5.41.
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16.5.4. Weak Topology and Convergence Problems.
Exercise 16.25. Folland 5.47.

Definition 16.31. A sequence {z,},. ; C X is weakly Cauchy if for all V € 7,
such that 0 € V| x,, — x,,, € V for all m,n sufficiently large. Similarly a sequence
{fn}>2, C X* is weak—* Cauchy if for all V € 7« such that 0 € V, f,, — frn € V

n=1
for all m,n sufficiently large.

Remark 16.32. These conditions are equivalent to {f(z,)},—, being Cauchy for all
f € X* and {f,(z)},~, being Cauchy for all z € X respectively.

Exercise 16.26. Folland 5.48.
Exercise 16.27. Folland 5.49.
Exercise 16.28. land 5.50.

Exercise 16.29. Show every weakly compact subset X is norm bounded and every
weak—x compact subset of X™* is norm bounded.

Exercise 16.30. Folland 5.51.
Exercise 16.31. Folland 5.53.



