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16. Banach Spaces II

Theorem 16.1 (Open Mapping Theorem). Let X,Y be Banach spaces, T ∈
L(X,Y ). If T is surjective then T is an open mapping, i.e. T (V ) is open in
Y for all open subsets V ⊂ X.

Proof. For all α > 0 let BX
α = {x ∈ X : kxkX < α} ⊂ X, BY

α =
{y ∈ Y : kykY < α} ⊂ Y and Eα = T (BX

α ) ⊂ Y. The proof will be carried out
by proving the following three assertions.

(1) There exists δ > 0 such that BY
δα ⊂ Eα for all α > 0.

(2) For the same δ > 0, BY
δα ⊂ Eα, i.e. we may remove the closure in assertion

1.
(3) The last assertion implies T is an open mapping.

1. Since Y =
∞S
n−1

En, the Baire category Theorem 15.16 implies there exists

n such that E
0

n 6= ∅, i.e. there exists y ∈ En and > 0 such that BY (y, ) ⊂ En.
Suppose ky0k < then y and y + y0 are in BY (y, ) ⊂ En hence there exists
x0, x ∈ BX

n such that kTx0 − (y + y0)k and kTx− yk may be made as small as we
please, which we abbreviate as follows

kTx0 − (y + y0)k ≈ 0 and kTx− yk ≈ 0.
Hence by the triangle inequality,

kT (x0 − x)− y0k = kTx0 − (y + y0)− (Tx− y)k
≤ kTx0 − (y + y0)k+ kTx− yk ≈ 0

with x0 − x ∈ BX
2n. This shows that y

0 ∈ E2n which implies BY (0, ) ⊂ E2n. Since
the map φα : Y → Y given by φα(y) =

α
2ny is a homeomorphism, φα(E2n) = Eα

and φα(B
Y (0, )) = BY (0, α2n), it follows that B

Y
δα ⊂ Eα where δ ≡ 2n > 0.

2. Let δ be as in assertion 1., y ∈ BY
δ and α1 ∈ (kyk /δ, 1). Choose {αn}∞n=2 ⊂

(0,∞) such that P∞n=1 αn < 1. Since y ∈ BY
α1δ
⊂ Eα1 = T

¡
BX
α1

¢
by assertion 1.

there exists x1 ∈ BX
α1 such that ky − Tx1k < α2δ. (Notice that ky − Tx1k can be

made as small as we please.) Similarly, since y−Tx1 ∈ BY
α2δ
⊂ Ēα2 = T

¡
BX
α2

¢
there

exists x2 ∈ BX
α2 such that ky − Tx1 − Tx2k < α3δ. Continuing this way inductively,

there exists xn ∈ BX
αn such that

(16.1) ky −
nX

k=1

Txkk < αn+1δ for all n ∈ N.

Since
∞P
n=1

kxnk <
∞P
n=1

αn < 1, x ≡
∞P
n=1

xn exists and kxk < 1, i.e. x ∈ BX
1 . Passing

to the limit in Eq. (16.1) shows, ky − Txk = 0 and hence y ∈ T (BX
1 ) = E1.

Therefore we have shown BX
δ ⊂ E1. The same scaling argument as above then

shows BX
αδ ⊂ Eα for all α > 0.

3. If x ∈ V ⊂o X and y = Tx ∈ TV we must show that TV contains a
ball BY (y, ) = Tx + BY for some > 0. Now BY (y, ) = Tx + BY ⊂ TV iff
BY ⊂ TV − Tx = T (V − x). Since V − x is a neighborhood of 0 ∈ X, there exists
α > 0 such that BX

α ⊂ (V − x) and hence by assertion 2., BY
αδ ⊂ TBX

α ⊂ T (V − x)
and therefore BY (y, ) ⊂ TV with := αδ.
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Corollary 16.2. If X,Y are Banach spaces and T ∈ L(X,Y ) is invertible (i.e. a
bijective linear transformation) then the inverse map, T−1, is bounded, i.e. T−1 ∈
L(Y,X). (Note that T−1 is automatically linear.)

Theorem 16.3 (Closed Graph Theorem). Let X and Y be Banach space T : X →
Y linear is continuous iff T is closed i.e. Γ(T ) ⊂ X × Y is closed.

Proof. If T continuous and (xn, Txn) → (x, y) ∈ X × Y as n → ∞ then
Txn → Tx = y which implies (x, y) = (x, Tx) ∈ Γ(T ).
Conversely: If T is closed then the following diagram commutes

X Y-
T

Γ(T )

Γ

¡
¡
¡
¡µ

π2
@
@
@
@R

where Γ(x) := (x, Tx).
The map π2 : X × Y → X is continuous and π1|Γ(T ) : Γ(T ) → X is continuous

bijection which implies π1|−1Γ(T ) is bounded by the open mapping Theorem 16.1.

Hence T = π2 ◦ π1|−1Γ(T ) is bounded, being the composition of bounded operators.

As an application we have the following proposition.

Proposition 16.4. Let H be a Hilbert space. Suppose that T : H → H is a linear
(not necessarily bounded) map such that there exists T ∗ : H → H such that

hTx, Y i = hx, T ∗Y i ∀ x, y ∈ H.

Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that xn ∈ H such
that (xn, Txn)→ (x, y) ∈ H ×H. Then for any z ∈ H,

hTxn, zi = hxn, T ∗zi −→ hx, T ∗zi = hTx, zi as n→∞.

On the other hand limn→∞hTxn, zi = hy, zi as well and therefore hTx, zi = hy, zi
for all z ∈ H. This shows that Tx = y and proves that T is closed.
Here is another example.

Example 16.5. Suppose that M ⊂ L2([0, 1],m) is a closed subspace such that
each element of M has a representative in C([0, 1]). We will abuse notation and
simply writeM ⊂ C([0, 1]). Then

(1) There exists A ∈ (0,∞) such that kfk∞ ≤ AkfkL2 for all f ∈M.
(2) For all x ∈ [0, 1] there exists gx ∈M such that

f(x) = hf, gxi for all f ∈M.

Moreover we have kgxk ≤ A.
(3) The subspaceM is finite dimensional and dim(M) ≤ A2.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we first
show that (M, k · k∞) is a complete space. To prove this it suffices to show M
is a closed subspace of C([0, 1]). So let {fn} ⊂ M and f ∈ C([0, 1]) such that
kfn − fk∞ → 0 as n → ∞. Then kfn − fmkL2 ≤ kfn − fmk∞ → 0 as m,n → ∞,
and since M is closed in L2([0, 1]), L2 − limn→∞ fn = g ∈ M. By passing to a
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subsequence if necessary we know that g(x) = limn→∞ fn(x) = f(x) for m - a.e. x.
So f = g ∈M.
i)Let i : (M, k · k∞)→ (M, k · k2) be the identity map. Then i is bounded and

bijective. By the open mapping theorem, j = i−1 is bounded as well. Hence there
exists A <∞ such that kfk∞ = kj(f)k ≤ A kfk2 for all f ∈M.
ii) Let j : (M, k · k2)→ (M, k · k∞) be the identity map. We will shows that j is

a closed operator and hence bounded by the closed graph theorem. Suppose that
fn ∈M such that fn → f in L2 and fn = j(fn) → g in C([0, 1]). Then as in the
first paragraph, we conclude that g = f = j(f) a.e. showing j is closed. Now finish
as in last line of proof i).
2) For x ∈ [0, 1], let ex :M→ C be the evaluation map ex(f) = f(x). Then

|ex(f)| ≤ |f(x)| ≤ kfk∞ ≤ AkfkL2
which shows that ex ∈M∗. Hence there exists a unique element gx ∈M such that

f(x) = ex(f) = hf, gxi for all f ∈M.

Moreover kgxkL2 = kexkM∗ ≤ A.
3) Let {fj}nj=1 be an L2 — orthonormal subset ofM. Then

A2 ≥ kexk2M∗ = kgxk2L2 ≥
nX
j=1

|hfj , gxi|2 =
nX
j=1

|fj(x)|2

and integrating this equation over x ∈ [0, 1] implies that

A2 ≥
nX
j=1

Z 1

0

|fj(x)|2dx =
nX
j=1

1 = n

which shows that n ≤ A2. Hence dim(M) ≤ A2.

Remark 16.6. Keeping the notation in Example 16.5, G(x, y) = gx(y) for all x, y ∈
[0, 1]. Then

f(x) = ex(f) =

Z 1

0

f(y)G(x, y)dy for all f ∈M.

The function G is called the reproducing kernel forM.

The above example generalizes as follows.

Proposition 16.7. Suppose that (X,M, µ) is a finite measure space, p ∈ [1,∞)
andW is a closed subspace of Lp(µ) such thatW ⊂ Lp(µ)∩L∞(µ). Then dim(W ) <
∞.

Proof. With out loss of generality we may assume that µ(X) = 1. As in Example
16.5, we shows thatW is a closed subspace of L∞(µ) and hence by the open mapping
theorem, there exists a constant A < ∞ such that kfk∞ ≤ A kfkp for all f ∈ W.
Now if 1 ≤ p ≤ 2, then

kfk∞ ≤ A kfkp ≤ A kfk2
and if p ∈ (2,∞), then kfkpp ≤ kfk22 kfkp−2∞ or equivalently,

kfkp ≤ kfk2/p2 kfk1−2/p∞ ≤ kfk2/p2

³
A kfkp

´1−2/p
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from which we learn that kfkp ≤ A1−2/p kfk2 and therefore that kfk∞ ≤
AA1−2/p kfk2 so that in any case there exists a constant B < ∞ such that
kfk∞ ≤ B kfk2 .
Let {fn}Nn=1 be an orthonormal subset of W and f =

PN
n=1 cnfn with cn ∈ C,

then °°°°°
NX
n=1

cnfn

°°°°°
2

∞
≤ B2

NX
n=1

|cn|2 ≤ B2 |c|2

where |c|2 :=PN
n=1 |cn|2 . For each c ∈ CN , there is an exception set Ec such that

for x /∈ Ec, ¯̄̄̄
¯
NX
n=1

cnfn(x)

¯̄̄̄
¯
2

≤ B2 |c|2 .

Let D := (Q+ iQ)N and E = ∩c∈DEc. Then µ(E) = 0 and for x /∈ E,¯̄̄PN
n=1 cnfn(x)

¯̄̄
≤ B2 |c|2 for all c ∈ D. By continuity it then follows for x /∈ E

that ¯̄̄̄
¯
NX
n=1

cnfn(x)

¯̄̄̄
¯
2

≤ B2 |c|2 for all c ∈ CN .

Taking cn = fn(x) in this inequality implies that¯̄̄̄
¯
NX
n=1

|fn(x)|2
¯̄̄̄
¯
2

≤ B2
NX
n=1

|fn(x)|2 for all x /∈ E

and therefore that
NX
n=1

|fn(x)|2 ≤ B2 for all x /∈ E.

Integrating this equation over x then implies that N ≤ B2, i.e. dim(W ) ≤ B2.

Theorem 16.8 (Uniform Boundedness Principle). Let X and Y be a normed vector
spaces, A ⊂ L(X,Y ) be a collection of bounded linear operators from X to Y,

F = FA = {x ∈ X : sup
A∈A

kAxk <∞} and
R = RA = F c = {x ∈ X : sup

A∈A
kAxk =∞}.(16.2)

(1) If sup
A∈A

kAk <∞ then F = X.

(2) If F is not meager, then sup
A∈A

kAk <∞.

(3) If X is a Banach space, F is not meager iff sup
A∈A

kAk <∞. In particular if

sup
A∈A

kAxk <∞ for all x ∈ X then sup
A∈A

kAk <∞.

(4) If X is a Banach space, then sup
A∈A

kAk =∞ iff R is residual. In particular

if sup
A∈A

kAk =∞ then sup
A∈A

kAxk =∞ for x in a dense subset of X.

Proof. 1. If M := sup
A∈A

kAk < ∞, then sup
A∈A

kAxk ≤ M kxk < ∞ for all x ∈ X

showing F = X.
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2. For each n ∈ N, let En ⊂ X be the closed sets given by

En = {x : sup
A∈A

kAxk ≤ n} =
\
A∈A

{x : kAxk ≤ n}.

Then F = ∪∞n=1En which is assumed to be non-meager and hence there exists
an n ∈ N such that En has non-empty interior. Let Bx(δ) be a ball such that
Bx(δ) ⊂ En. Then for y ∈ X with kyk = δ we know x − y ∈ Bx(δ) ⊂ En, so that
Ay = Ax−A(x− y) and hence for any A ∈ A,

kAyk ≤ kAxk+ kA(x− y)k ≤ n+ n = 2n.

Hence it follows that kAk ≤ 2n/δ for all A ∈ A, i.e. sup
A∈A

kAk ≤ 2n/δ <∞.

3. If X is a Banach space, F = X is not meager by the Baire Category Theorem
15.16. So item 3. follows from items 1. and 2 and the fact that F = X iff
sup
A∈A

kAxk <∞ for all x ∈ X.

4. Item 3. is equivalent to F is meager iff sup
A∈A

kAk = ∞. Since R = F c, R is

residual iff F is meager, so R is residual iff sup
A∈A

kAk =∞.

Example 16.9. Suppose that {cn}∞n=1 ⊂ C is a sequence of numbers such that

lim
N→∞

NX
n=1

ancn exists in C for all a ∈ 1.

Then c ∈ ∞.

Proof. Let fN ∈
¡
1
¢∗
be given by fN (a) =

PN
n=1 ancn and set MN :=

max {|cn| : n = 1, . . . , N} . Then

|fN (a)| ≤MN kak 1

and by taking a = ek with k such MN = |ck| , we learn that kfNk = MN . Now by
assumption, limN→∞ fN (a) exists for all a ∈ 1 and in particular,

sup
N
|fN (a)| <∞ for all a ∈ 1.

So by the Theorem 16.8,

∞ > sup
N
kfNk = sup

N
MN = sup {|cn| : n = 1, 2, 3, . . . } .

16.1. Applications to Fourier Series. Let T = S1 be the unit circle in S1 andm
denote the normalized arc length measure on T. So if f : T → [0,∞) is measurable,
then Z

T

f(w)dw :=

Z
T

fdm :=
1

2π

Z π

−π
f(eiθ)dθ.
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Also let φn(z) = zn for all n ∈ Z. Recall that {φn}n∈Z is an orthonormal basis for
L2(T ). For n ∈ N let

sn(f, z) :=
nX

k=−n
hf, φniφk(z) =

nX
k=−n

hf, φnizk =
nX

k=−n

µZ
T

f(w)w̄kdw

¶
zk

=

Z
T

f(w)

Ã
nX

k=−n
w̄kzk

!
dw =

Z
T

f(w)dn(zw̄)dw

where dn(α) :=
Pn

k=−n α
k. Now αdn(α)− dn(α) = αn+1 − α−n, so that

dn(α) :=
nX

k=−n
αk =

αn+1 − α−n

α− 1
with the convention that

αn+1 − α−n

α− 1 |α=1 = lim
α→1

αn+1 − α−n

α− 1 = 2n+ 1 =
nX

k=−n
1k.

Writing α = eiθ, we find

Dn(θ) := dn(e
iθ) =

eiθ(n+1) − e−iθn

eiθ − 1 =
eiθ(n+1/2) − e−iθ(n+1/2)

eiθ/2 − e−iθ/2

=
sin(n+ 1

2 )θ

sin 12θ
.

Recall by Hilbert space theory, L2(T ) — limn→∞ sn(f, ·) = f for all f ∈ L2(T ). We
will now show that the convergence is not pointwise for all f ∈ C(T ) ⊂ L2(T ).

Proposition 16.10. For each z ∈ T, there exists a residual set Rz ⊂ C(T ) such
that supn |sn(f, z)| =∞ for all f ∈ Rz. Recall that C(T ) is a complete metric space,
hence Rz is a dense subset of C(T ).

Proof. By symmetry considerations, it suffices to take z = 1 ∈ T. Let Λnf :=
sn(f, 1). Then

|Λnf | =
¯̄̄̄Z
T

f(w)dn(w̄)dw

¯̄̄̄
≤
Z
T

|f(w)dn(w̄)| dw ≤ kfk∞
Z
T

|dn(w̄)| dw

showing

kΛnk ≤
Z
T

|dn(w̄)| dw.

Since C(T ) is dense in L1(T ), there exists fk ∈ C(T,R) such that fk(w)→ sgndk(w̄)
in L1. By replacing fk by (fk ∧ 1) ∨ (−1) we may assume that kfkk∞ ≤ 1. It now
follows that

kΛnk ≥ |Λnfk|
kfkk∞

≥
¯̄̄̄Z
T

fk(w)dn(w̄)dw

¯̄̄̄
and passing to the limit as k → ∞ implies that kΛnk ≥

R
T
|dn(w̄)| dw. Hence we

have shown that

(16.3) kΛnk =
Z
T

|dn(w̄)| dw = 1

2π

Z π

−π

¯̄
dn(e

−iθ)
¯̄
dθ =

1

2π

Z π

−π

¯̄̄̄
sin(n+ 1

2)θ

sin 12θ

¯̄̄̄
dθ.
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Since

sinx =

Z x

0

cos ydy ≤
Z x

0

|cos y| dy ≤ x

for all x ≥ 0. Since sinx is odd, |sinx| ≤ |x| for all x ∈ R. Using this in Eq. (16.3)
implies that

kΛnk ≥ 1

2π

Z π

−π

¯̄̄̄
sin(n+ 1

2)θ
1
2θ

¯̄̄̄
dθ =

2

π

Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ
.

=
2

π

Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ

Since Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ
=

Z (n+ 1
2 )π

0

|sin y| dy
y
→∞ as n→∞,

we learn that supn kΛnk =∞. So by Theorem 16.8,

R1 = {f ∈ C(T ) : sup
n
|Λnf | =∞}

is a residual set.
See Rudin Chapter 5 for more details.

Lemma 16.11. For f ∈ L1(T ), let

f̂(n) := hf, φni =
Z
T

f(w)w̄ndw.

Then f̂ ∈ c0 and the map f ∈ L1(T )→ c0 is a one to one bounded linear transfor-
mation into but not onto c0.

Proof. By Bessel’s inequality,
P

n∈Z
¯̄̄
f̂(n)

¯̄̄2
< ∞ for all f ∈ L2(T ) and in

particular lim|n|→∞
¯̄̄
f̂(n)

¯̄̄
= 0. Given f ∈ L1(T ) and g ∈ L2(T ) we have¯̄̄

f̂(n)− ĝ(n)
¯̄̄
=

¯̄̄̄Z
T

[f(w)− g(w)] w̄ndw

¯̄̄̄
≤ kf − gk1

and hence

lim sup
n→∞

¯̄̄
f̂(n)

¯̄̄
= lim sup

n→∞

¯̄̄
f̂(n)− ĝ(n)

¯̄̄
≤ kf − gk1

for all g ∈ L2(T ). Since L2(T ) is dense in L1(T ), it follows that lim supn→∞
¯̄̄
f̂(n)

¯̄̄
=

0 for all f ∈ L1, i.e. f̂ ∈ c0.

Since
¯̄̄
f̂(n)

¯̄̄
≤ kfk1 , we have

°°°f̂°°°
c0
≤ kfk1 showing that Λf := f̂ is a bounded

linear transformation from L1(T ) to c0.
To see that Λ is injective, suppose f̂ = Λf ≡ 0, then

R
T
f(w)p(w, w̄)dw = 0

for all polynomials p in w and w̄. By the Stone - Wierestrass and the dominated
convergence theorem, this implies thatZ

T

f(w)g(w)dw = 0

for all g ∈ C(T ). Lemma 9.7 now implies f = 0 a.e.



318 BRUCE K. DRIVER†

If Λ were surjective, the open mapping theorem would imply that Λ−1 : c0 →
L1(T ) is bounded. In particular this implies there exists C <∞ such that

(16.4) kfkL1 ≤ C
°°°f̂°°°

c0
for all f ∈ L1(T ).

Taking f = dn, we find
°°°d̂n°°°

c0
= 1 while limn→∞ kdnkL1 = ∞ contradicting Eq.

(16.4). Therefore ran(Λ) 6= c0.

16.2. Hahn Banach Theorem. Our next goal is to show that continuous dual
X∗ of a Banach space X is always large. This will be the content of the Hahn —
Banach Theorem 16.15 below.

Proposition 16.12. Let X be a complex vector space over C. If f ∈ X∗ and
u = Ref ∈ X∗R then

(16.5) f(x) = u(x)− iu(ix).

Conversely if u ∈ X∗R and f is defined by Eq. (16.5), then f ∈ X∗ and kukX∗R =kfkX∗ . More generally if p is a semi-norm on X, then

|f | ≤ p iff u ≤ p.

Proof. Let v(x) = Im f(x), then

v(ix) = Im f(ix) = Im(if(x)) = Ref(x) = u(x).

Therefore

f(x) = u(x) + iv(x) = u(x) + iu(−ix) = u(x)− iu(ix).

Conversely for u ∈ X∗R let f(x) = u(x)− iu(ix). Then

f((a+ ib)x) = u(ax+ ibx)− iu(iax− bx) = au(x) + bu(ix)− i(au(ix)− bu(x))

while
(a+ ib)f(x) = au(x) + bu(ix) + i(bu(x)− au(ix)).

So f is complex linear.
Because |u(x)| = |Ref(x)| ≤ |f(x)|, it follows that kuk ≤ kfk. For x ∈ X choose

λ ∈ S1 ⊂ C such that |f(x)| = λf(x) so

|f(x)| = f(λx) = u(λx) ≤ kuk kλxk = kukkxk.
Since x ∈ X is arbitrary, this shows that kfk ≤ kuk so kfk = kuk.34

34

Proof. To understand better why kfk = kuk, notice that
kfk2 = sup

kxk=1
|f(x)|2 = sup

kxk=1
(|u(x)|2 + |u(ix)|2).

Supppose that M = sup
kxk=1

|u(x)| and this supremum is attained at x0 ∈ X with kx0k = 1.

Replacing x0 by −x0 if necessary, we may assume that u(x0) = M. Since u has a maximum at
x0,

0 =
d

dt

¯̄̄̄
0

u

µ
x0 + itx0

kx0 + itx0k
¶

=
d

dt

¯̄̄̄
0

½
1

|1 + it| (u(x0) + tu(ix0))

¾
= u(ix0)

since d
dt
|0|1 + it| = d

dt
|0
√
1 + t2 = 0.This explains why kfk = kuk.
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For the last assertion, it is clear that |f | ≤ p implies that u ≤ |u| ≤ |f | ≤ p.
Conversely if u ≤ p and x ∈ X, choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x). Then

|f(x)| = λf(x) = f(λx) = u(λx) ≤ p(λx) = p(x)

holds for all x ∈ X.

Definition 16.13 (Minkowski functional). p : X → R is a Minkowski functional if
(1) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X and
(2) p(cx) = cp(x) for all c ≥ 0 and x ∈ X.

Example 16.14. Suppose that X = R and
p(x) = inf {λ ≥ 0 : x ∈ λ[−1, 2] = [−λ, 2λ]} .

Notice that if x ≥ 0, then p(x) = x/2 and if x ≤ 0 then p(x) = −x, i.e.

p(x) =

½
x/2 if x ≥ 0
|x| if x ≤ 0.

From this formula it is clear that p(cx) = cp(x) for all c ≥ 0 but not for c < 0.
Moreover, p satisfies the triangle inequality, indeed if p(x) = λ and p(y) = µ, then
x ∈ λ[−1, 2] and y ∈ µ[−1, 2] so that

x+ y ∈ λ[−1, 2] + µ[−1, 2] ⊂ (λ+ µ) [−1, 2]
which shows that p(x + y) ≤ λ + µ = p(x) + p(y). To check the last set inclusion
let a, b ∈ [−1, 2], then

λa+ µb = (λ+ µ)

µ
λ

λ+ µ
a+

µ

λ+ µ
b

¶
∈ (λ+ µ) [−1, 2]

since [−1, 2] is a convex set and λ
λ+µ +

µ
λ+µ = 1.

TODO: Add in the relationship to convex sets and separation theorems, see Reed
and Simon Vol. 1. for example.

Theorem 16.15 (Hahn-Banach). Let X be a real vector space, M ⊂ X be a
subspace f : M → R be a linear functional such that f ≤ p on M . Then there
exists a linear functional F : X → R such that F |M = f and F ≤ p.

Proof. Step (1) We show for all x ∈ X \M there exists and extension F to
M ⊕ Rx with the desired properties. If F exists and α = F (x), then for all y ∈M
and λ ∈ R we must have f(y)+λα = F (y+λx) ≤ p(y+λx) i.e. λα ≤ p(y+λx)−f(y).
Equivalently put we must find α ∈ R such that

α ≤ p(y + λx)− f(y)

λ
for all y ∈M and λ > 0

α ≥ p(z − µx)− f(z)

µ
for all z ∈M and µ > 0.

So if α ∈ R is going to exist, we have to prove, for all y, z ∈M and λ, µ > 0 that

f(z)− p(z − µx)

µ
≤ p(y + λx)− f(y)

λ

or equivalently

f(λz + µy) ≤ µp(y + λx) + λp(z − µx)(16.6)

= p(µy + µλx) + p(λz − λµx).



320 BRUCE K. DRIVER†

But

f(λz + µy) = f(λz + µλx) + f(λz − λµx)

≤ p(λz + µλx) + p(λz − λµx)

which shows that Eq. (16.6) is true and by working backwards, there exist an α ∈ R
such that f(y) + λα ≤ p(y + λx). Therefore F (y + λx) := f(y) + λα is the desired
extension.
Step (2) Let us now write F : X → R to mean F is defined on a linear subspace

D(F ) ⊂ X and F : D(F ) → R is linear. For F,G : X → R we will say F < G if
D(F ) ⊂ D(G) and F = G|D(F ), that is G is an extension of F. Let

F = {F : X → R :M ⊂ D(F ), F ≤ p on D(F )}.
Then (F , <) is a partially ordered set. If Φ ⊂ F is a chain (i.e. a linearly ordered
subset of F) then Φ has an upper bound G ∈ F defined by D(G) =

S
F∈Φ

D(F )

and G(x) = F (x) for x ∈ D(F ). Then it is easily checked that D(G) is a linear
subspace, G ∈ F , and F < G for all F ∈ Φ. We may now apply Zorn’s Lemma
(see Theorem B.7) to conclude there exists a maximal element F ∈ F . Necessarily,
D(F ) = X for otherwise we could extend F by step (1), violating the maximality
of F. Thus F is the desired extension of f.

Corollary 16.16. Suppose that X is a complex vector space, p : X → [0,∞) is a
semi-norm, M ⊂ X is a linear subspace, and f : M → C is linear functional such
that |f(x)| ≤ p(x) for all x ∈ M. Then there exists F ∈ X 0 (X 0 is the algebraic
dual of X) such that F |M = f and |F | ≤ p.

Proof. Let u = Ref then u ≤ p onM and hence by Theorem 16.15, there exists
U ∈ X 0

R such that U |M = u and U ≤ p on M . Define F (x) = U(x)− iU(ix) then
as in Proposition 16.12, F = f on M and |F | ≤ p.

Theorem 16.17. Let X be a normed space M ⊂ X be a closed subspace and
x ∈ X \M . Then there exists f ∈ X∗ such that kfk = 1, f(x) = δ = d(x,M) and
f = 0 on M .

Proof. Define f :M ⊕ Cx→ C by f(m+λx) ≡ λδ for all m ∈M and λ ∈ C.
Notice that

km+ λxk = |λ|kx+m/λk ≥ |λ|δ
and hence

|f(m+ λx)| = |λ|δ ≤ km+ λxk
which shows kfk ≤ 1. In fact, since |f(m+ x)| = δ = inf

m∈M
kx+mk, kfk = 1. By

Hahn-Banach theorem there exists F ∈ X∗ such that F |M⊕Cx = f and |F (x)| ≤ kxk
for all x ∈ X, i.e. kFk ≤ 1. Since 1 = kfk ≤ kFk ≤ 1 we see kFk = kfk.
Corollary 16.18. The linear map x ∈ X → x̂ ∈ X∗∗ where x̂(f) = f(x) for all
x ∈ X is an isometry. (This isometry need not be surjective.)

Proof. Since |x̂(f)| = |f(x)| ≤ kfkX∗ kxkX for all f ∈ X∗, it follows that
kx̂kX∗∗ ≤ kxkX . Now applying Theorem 16.17 with M = {0} , there exists f ∈ X∗

such that kfk = 1 and |x̂(f)| = f(x) = kxk , which shows that kx̂kX∗∗ ≥ kxkX .
This shows that x ∈ X → x̂ ∈ X∗∗ is an isometry. Since isometries are necessarily
injective, we are done.
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Definition 16.19. A Banach space X is reflexive if the map x ∈ X → x̂ ∈ X∗∗ is
surjective.

Example 16.20. Every Hilbert space H is reflexive. This is a consequence of the
Riesz Theorem, Proposition 10.15.

Example 16.21. Suppose that µ is a σ — finite measure on a measurable space
(X,M), then Lp(X,M, µ) is reflexive for all p ∈ (1,∞), see Theorem 13.14.

Example 16.22 (Following Riesz and Nagy, p. 214). The Banach space X :=
C([0, 1]) is not reflexive. To prove this recall thatX∗ may be identified with complex
measures µ on [0, 1] which may be identified with right continuous functions of
bounded variation (F ) on [0, 1], namely

F → µF → (f ∈ X →
Z
[0,1]

fdµF =

Z 1

0

fdF ).

Define λ ∈ X∗∗ by

λ(µ) =
X

x∈[0,1]
µ({x}) =

X
x∈[0,1]

(F (x)− F (x−)) ,

so λ(µ) is the sum of the “atoms” of µ. Suppose there existed an f ∈ X such that
λ(µ) =

R
[0,1]

fdµ for all µ ∈ X∗. Choosing µ = δx for some x ∈ (0, 1) would then
imply that

f(x) =

Z
[0,1]

fδx = λ(δx) = 1

showing f would have to be the constant function,1, which clearly can not work.

Example 16.23. The Banach space X := L1(R,m) is not reflexive. As we have
seen in Theorem 13.14, X∗ ∼= L∞(R,m). The argument in Example 13.15 shows
(L∞(R,m))∗ À L1(R,m).

16.3. Weak and Strong Topologies.

Definition 16.24. Let X and Y be be a normed vector spaces and L(X,Y ) the
normed space of bounded linear transformations from X to Y.

(1) The weak topology on X is the topology generated by X∗, i.e. sets of
the form

N = ∩ni=1{x ∈ X : |fi(x)− fi(x0)| < }
where fi ∈ X∗ and > 0 form a neighborhood base for the weak topology
on X at x0.

(2) The weak-∗ topology on X∗ is the topology generated by X, i.e.

N ≡ ∩ni=1{g ∈ X∗ : |f(xi)− g(xi)| < }
where xi ∈ X and > 0 forms a neighborhood base for the weak—∗ topology
on X∗ at f ∈ X∗.

(3) The strong operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ Tx ∈ Y is continuous for all x ∈ X.

(4) The weak operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ f(Tx) ∈ C is continuous for all x ∈ X and f ∈ Y ∗.

Theorem 16.25 (Alaoglu’s Theorem). If X is a normed space the unit ball in X∗

is weak - ∗ compact.
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Proof. For all x ∈ X let Dx = {z ∈ C : |z| ≤ kxk}. Then Dx ⊂ C is a
compact set and so by Tychonoff’s Theorem Ω ≡ Q

x∈X
Dx is compact in the product

topology. If f ∈ B := {f ∈ X∗ : kfk ≤ 1}, |f(x)| ≤ kfk kxk ≤ kxk which implies
that f(x) ∈ Dx for all x ∈ X, i.e. B ⊂ Ω. The topology on B̄ inherited from
the weak—∗ topology on X∗ is the same as that relative topology coming from the
product topology on Ω. So to finish the proof it suffices to show B̄ is a closed subset
of the compact space Ω. To prove this let πx(f) = f(x) be the projection maps.
Then

B = {f ∈ Ω : f is linear}
= {f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0 for all x, y ∈ X and c ∈ C}
=

\
x,y∈X

\
c∈C
{f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0}

=
\

x,y∈X

\
c∈C

(πx+cy − πx − cπy)
−1
({0})

which is closed because (πx+cy − πx − cπy) : Ω→ C is continuous.

Theorem 16.26 (Alaoglu’s Theorem for separable spaces). Suppose that X is a
separable Banach space, C∗ := {f ∈ X∗ : kfk ≤ 1} is the closed unit ball in X∗ and
{xn}∞n=1 is an countable dense subset of C := {x ∈ X : kxk ≤ 1} . Then

(16.7) ρ(f, g) :=
∞X
n=1

1

2n
|f(xn)− g(xn)|

defines a metric on C∗ which is compatible with the weak topology on C∗, τC∗ :=
(τw∗)C∗ = {V ∩ C : V ∈ τw∗} . Moreover (C∗, ρ) is a compact metric space.
Proof. The routine check that ρ is a metric is left to the reader. Let τρ be

the topology on C∗ induced by ρ. For any g ∈ X and n ∈ N, the map f ∈ X∗ →
(f(xn)− g(xn))∈C is τw∗ continuous and since the sum in Eq. (16.7) is uniformly
convergent for f ∈ C∗, it follows that f → ρ(f, g) is τC∗ — continuous. This implies
the open balls relative to ρ are contained in τC∗ and therefore τρ ⊂ τC∗ .
We now wish to prove τC∗ ⊂ τρ. Since τC∗ is the topology generated by

{x̂|C∗ : x ∈ C} , it suffices to show x̂ is τρ — continuous for all x ∈ C. But given x ∈ C
there exists a subsequence yk := xnk of {xn}∞n=1 such that such that x = limk→∞ yk.
Since

sup
f∈C∗

|x̂(f)− ŷk(f)| = sup
f∈C∗

|f(x− yk)| ≤ kx− ykk→ 0 as k →∞,

ŷk → x̂ uniformly on C∗ and using ŷk is τρ — continuous for all k (as is easily
checked) we learn x̂ is also τρ continuous. Hence τC∗ = τ(x̂|C∗ : x ∈ X) ⊂ τρ.
The compactness assertion follows from Theorem 16.25. The compactness as-

sertion may also be verified directly using: 1) sequential compactness is equivalent
to compactness for metric spaces and 2) a Cantor’s diagonalization argument as in
the proof of Theorem 10.35.

16.4. Supplement: Quotient spaces, adjoints, and more reflexivity.

Definition 16.27. Let X and Y be Banach spaces and A : X → Y be a linear
operator. The transpose of A is the linear operator A† : Y ∗ → X∗ defined by
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A†f

¢
(x) = f(Ax) for f ∈ Y ∗ and x ∈ X. The null space of A is the subspace

nul(A) := {x ∈ X : Ax = 0} ⊂ X. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and
N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

Proposition 16.28 (Basic Properties). (1) kAk = °°A†°° and A††x̂ = cAx for
all x ∈ X.

(2) M0 and N⊥ are always closed subspace of X∗ and X respectively.
(3)

¡
M0

¢⊥
= M̄.

(4) N̄ ⊂ ¡N⊥¢0 with equality when X is reflexive.
(5) nul(A) = ran(A†)⊥ and nul(A†) = ran(A)0. Moreover, ran(A) = nul(A†)⊥

and if X is reflexive, then ran(A†) = nul(A)0.
(6) X is reflexive iff X∗ is reflexive. More generally X∗∗∗ = cX∗ ⊕ X̂0.

Proof.
(1)

kAk = sup
kxk=1

kAxk = sup
kxk=1

sup
kfk=1

|f(Ax)|

= sup
kfk=1

sup
kxk=1

¯̄
A†f(x)

¯̄
= sup

kfk=1

°°A†f°° = °°A†°° .
(2) This is an easy consequence of the assumed continuity off all linear func-

tionals involved.
(3) If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈ ¡M0

¢⊥
. Therefore

M̄ ⊂ ¡M0
¢⊥

. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0 while

f(x) 6= 0, i.e. f ∈ M0 yet f(x) 6= 0. This shows x /∈ ¡M0
¢⊥
and we have

shown
¡
M0

¢⊥ ⊂ M̄.

(4) It is again simple to showN ⊂ ¡N⊥¢0 and therefore N̄ ⊂ ¡N⊥¢0 .Moreover,
as above if f /∈ N̄ there exists ψ ∈ X∗∗ such that ψ|N̄ = 0 while ψ(f) 6= 0.
If X is reflexive, ψ = x̂ for some x ∈ X and since g(x) = ψ(g) = 0 for
all g ∈ N̄, we have x ∈ N⊥. On the other hand, f(x) = ψ(f) 6= 0 so
f /∈ ¡N⊥¢0 . Thus again ¡N⊥¢0 ⊂ N̄ .

(5)

nul(A) = {x ∈ X : Ax = 0} = {x ∈ X : f(Ax) = 0 ∀ f ∈ X∗}
=
©
x ∈ X : A†f(x) = 0 ∀ f ∈ X∗

ª
=
©
x ∈ X : g(x) = 0 ∀ g ∈ ran(A†)ª = ran(A†)⊥.

Similarly,

nul(A†) =
©
f ∈ Y ∗ : A†f = 0

ª
=
©
f ∈ Y ∗ : (A†f)(x) = 0 ∀ x ∈ X

ª
= {f ∈ Y ∗ : f(Ax) = 0 ∀ x ∈ X}
=
©
f ∈ Y ∗ : f |ran(A) = 0

ª
= ran(A)0.

(6) Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) = ψ(x̂) for all x ∈ X and set
ψ0 := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ0(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.
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This shows ψ0 ∈ X̂0 and we have shown X∗∗∗ = cX∗+ X̂0. If ψ ∈ cX∗ ∩ X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X,

i.e. f = 0 so ψ = 0. Therefore X∗∗∗ = cX∗ ⊕ X̂0 as claimed. If X is
reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing X∗∗∗ = cX∗, i.e. X∗

is reflexive. Conversely if X∗ is reflexive we conclude that X̂0 = {0} and
therefore X∗∗ = {0}⊥ =

³
X̂0
´⊥

= X̂, so that X is reflexive.

Alternative proof. Notice that fψ = J†ψ, where J : X → X∗∗ is given
by Jx = x̂, and the composition

f ∈ X∗ ˆ→ f̂ ∈ X∗∗∗ J†→ J†f̂ ∈ X∗

is the identity map since
³
J†f̂

´
(x) = f̂(Jx) = f̂(x̂) = x̂(f) = f(x) for all

x ∈ X. Thus it follows that X∗ ˆ→ X∗∗∗ is invertible iff J† is its inverse
which can happen iff nul(J†) = {0} . But as above nul(J†) = ran(J)0 which
will be zero iff ran(J) = X∗∗ and since J is an isometry this is equivalent
to saying ran(J) = X∗∗. So we have again shown X∗ is reflexive iff X is
reflexive.

Theorem 16.29. Let X be a Banach space, M ⊂ X be a proper closed subspace,
X/M the quotient space, π : X → X/M the projection map π(x) = x +M for
x ∈ X and define the quotient norm on X/M by

kπ(x)kX/M = kx+MkX/M = inf
m∈M

kx+mkX .

Then
(1) k·kX/M is a norm on X/M.

(2) The projection map π : X → X/M has norm 1, kπk = 1.
(3) (X/M, k·kX/M ) is a Banach space.
(4) If Y is another normed space and T : X → Y is a bounded linear transfor-

mation such that M ⊂ nul(T ), then there exists a unique linear transfor-
mation S : X/M → Y such that T = S ◦ π and moreover kTk = kSk .

Proof. 1) Clearly kx+Mk ≥ 0 and if kx+Mk = 0, then there exists mn ∈M
such that kx +mnk → 0 as n → ∞, i.e. x = lim

n→∞mn ∈ M̄ = M. Since x ∈ M,

x+M = 0 ∈ X/M. If c ∈ C\ {0} , x ∈ X, then

kcx+Mk = inf
m∈M

kcx+mk = |c| inf
m∈M

kx+m/ck = |c| kx+Mk
becausem/c runs throughM asm runs throughM. Let x1, x2 ∈ X andm1,m2 ∈M
then

kx1 + x2 +Mk ≤ kx1 + x2 +m1 +m2k ≤ kx1 +m1k+ kx2 +m2k.
Taking infinums over m1,m2 ∈M then implies

kx1 + x2 +Mk ≤ kx1 +Mk+ kx2 +Mk.
and we have completed the proof the (X/M, k · k) is a normed space.
2) Since kπ(x)k = infm∈M kx+mk ≤ kxk for all x ∈ X, kπk ≤ 1. To see kπk = 1,

let x ∈ X \M so that π(x) 6= 0. Given α ∈ (0, 1), there exists m ∈M such that

kx+mk ≤ α−1 kπ(x)k .
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Therefore,
kπ(x+m)k
kx+mk =

kπ(x)k
kx+mk ≥

α kx+mk
kx+mk = α

which shows kπk ≥ α. Since α ∈ (0, 1) is arbitrary we conclude that kπ(x)k = 1.
3) Let π(xn) ∈ X/M be a sequence such that

P kπ(xn)k < ∞. As above there
exists mn ∈ M such that kπ(xn)k ≥ 1

2kxn + mnk and hence
P kxn + mnk ≤

2
P kπ(xn)k <∞. SinceX is complete, x :=

∞P
n=1
(xn+mn) exists inX and therefore

by the continuity of π,

π(x) =
∞X
n=1

π(xn +mn) =
∞X
n=1

π(xn)

showing X/M is complete.
4) The existence of S is guaranteed by the “factor theorem” from linear algebra.

Moreover kSk = kTk because
kTk = kS ◦ πk ≤ kSk kπk = kSk

and

kSk = sup
x/∈M

kS(π(x))k
kπ(x)k = sup

x/∈M

kTxk
kπ(x)k

≥ sup
x/∈M

kTxk
kxk = sup

x6=0
kTxk
kxk = kTk .

Theorem 16.30. Let X be a Banach space. Then

(1) Identifying X with X̂ ⊂ X∗∗, the weak — ∗ topology on X∗∗ induces the
weak topology on X. More explicitly, the map x ∈ X → x̂ ∈ X̂ is a homeo-
morphism when X is equipped with its weak topology and X̂ with the relative
topology coming from the weak-∗ topology on X∗∗.

(2) X̂ ⊂ X∗∗ is dense in the weak-∗ topology on X∗∗.
(3) Letting C and C∗∗ be the closed unit balls in X and X∗∗ respectively, then

Ĉ := {x̂ ∈ C∗∗ : x ∈ C} is dense in C∗∗ in the weak — ∗ topology on X∗∗..
(4) X is reflexive iff C is weakly compact.

Proof.
(1) The weak — ∗ topology on X∗∗ is generated byn

f̂ : f ∈ X∗
o
= {ψ ∈ X∗∗ → ψ(f) : f ∈ X∗} .

So the induced topology on X is generated by

{x ∈ X → x̂ ∈ X∗∗ → x̂(f) = f(x) : f ∈ X∗} = X∗

and so the induced topology on X is precisely the weak topology.
(2) A basic weak - ∗ neighborhood of a point λ ∈ X∗∗ is of the form

(16.8) N := ∩nk=1 {ψ ∈ X∗∗ : |ψ(fk)− λ(fk)| < }
for some {fk}nk=1 ⊂ X∗ and > 0. be given. We must now find x ∈ X such
that x̂ ∈ N , or equivalently so that

(16.9) |x̂(fk)− λ(fk)| = |fk(x)− λ(fk)| < for k = 1, 2, . . . , n.
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In fact we will show there exists x ∈ X such that λ(fk) = fk(x) for
k = 1, 2, . . . , n. To prove this stronger assertion we may, by discard-
ing some of the fk’s if necessary, assume that {fk}nk=1 is a linearly in-
dependent set. Since the {fk}nk=1 are linearly independent, the map
x ∈ X → (f1(x), . . . , fn(x)) ∈ Cn is surjective (why) and hence there
exists x ∈ X such that

(16.10) (f1(x), . . . , fn(x)) = Tx = (λ (f1) , . . . , λ(fn))

as desired.
(3) Let λ ∈ C∗∗ ⊂ X∗∗ and N be the weak - ∗ open neighborhood of λ as

in Eq. (16.8). Working as before, given > 0, we need to find x ∈ C
such that Eq. (16.9). It will be left to the reader to verify that it suffices
again to assume {fk}nk=1 is a linearly independent set. (Hint: Suppose that
{f1, . . . , fm} were a maximal linearly dependent subset of {fk}nk=1 , then
each fk with k > m may be written as a linear combination {f1, . . . , fm} .)
As in the proof of item 2., there exists x ∈ X such that Eq. (16.10)
holds. The problem is that x may not be in C. To remedy this, let N :=
∩nk=1nul(fk) = nul(T ), π : X → X/N ∼= Cn be the projection map and f̄k
∈ (X/N)

∗ be chosen so that fk = f̄k ◦ π for k = 1, 2, . . . , n. Then we have
produced x ∈ X such that

(λ (f1) , . . . , λ(fn)) = (f1(x), . . . , fn(x)) = (f̄1(π(x)), . . . , f̄n(π(x))).

Since
©
f̄1, . . . , f̄n

ª
is a basis for (X/N)

∗ we find

kπ(x)k = sup
α∈Cn\{0}

¯̄Pn
i=1 αif̄i(π(x))

¯̄°°Pn
i=1 αif̄i

°° = sup
α∈Cn\{0}

|Pn
i=1 αiλ(fi)|

kPn
i=1 αifik

= sup
α∈Cn\{0}

|λ(Pn
i=1 αifi)|

kPn
i=1 αifik

≤ kλk sup
α∈Cn\{0}

kPn
i=1 αifik

kPn
i=1 αifik

= 1.

Hence we have shown kπ(x)k ≤ 1 and therefore for any α > 1 there
exists y = x + n ∈ X such that kyk < α and (λ (f1) , . . . , λ(fn)) =
(f1(y), . . . , fn(y)). Hence

|λ(fi)− fi(y/α)| ≤
¯̄
fi(y)− α−1fi(y)

¯̄ ≤ (1− α−1) |fi(y)|
which can be arbitrarily small (i.e. less than ) by choosing α sufficiently
close to 1.

(4) Let Ĉ := {x̂ : x ∈ C} ⊂ C∗∗ ⊂ X∗∗. If X is reflexive, Ĉ = C∗∗ is weak
- ∗ compact and hence by item 1., C is weakly compact in X. Conversely
if C is weakly compact, then Ĉ ⊂ C∗∗ is weak — ∗ compact being the
continuous image of a continuous map. Since the weak — ∗ topology on
X∗∗ is Hausdorff, it follows that Ĉ is weak — ∗ closed and so by item 3,

C∗∗ = Ĉ
weak—∗

= Ĉ. So if λ ∈ X∗∗, λ/ kλk ∈ C∗∗ = Ĉ, i.e. there exists
x ∈ C such that x̂ = λ/ kλk . This shows λ = (kλkx)ˆ and therefore
X̂ = X∗∗.

16.5. Exercises.
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16.5.1. More Examples of Banach Spaces.

Exercise 16.1. Let (X,M) be a measurable space and M(X) denote the space
of complex measures on (X,M) and for µ ∈ M(X) let kµk ≡ |µk(X). Show
(M(X), k·k) is a Banach space. (Move to Section 14.)
Exercise 16.2. Folland 5.9.

Exercise 16.3. Folland 5.10.

Exercise 16.4. Folland 5.11.

16.5.2. Hahn-Banach Theorem Problems.

Exercise 16.5. Folland 5.17.

Exercise 16.6. Folland 5.18.

Exercise 16.7. Folland 5.19.

Exercise 16.8. Folland 5.20.

Exercise 16.9. Folland 5.21.

Exercise 16.10. Let X be a Banach space such that X∗ is separable. Show X
is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e. suppose
D ⊂ X∗ \{0} is a countable dense subset of X∗, for ∈ D choose x ∈ X such that
kx k = 1 and | (x )| ≥ 1

2k k.
Exercise 16.11. Folland 5.26.

16.5.3. Baire Category Result Problems.

Exercise 16.12. Folland 5.29.

Exercise 16.13. Folland 5.30.

Exercise 16.14. Folland 5.31.

Exercise 16.15. Folland 5.32.

Exercise 16.16. Folland 5.33.

Exercise 16.17. Folland 5.34.

Exercise 16.18. Folland 5.35.

Exercise 16.19. Folland 5.36.

Exercise 16.20. Folland 5.37.

Exercise 16.21. Folland 5.38.

Exercise 16.22. Folland 5.39.

Exercise 16.23. Folland 5.40.

Exercise 16.24. Folland 5.41.



328 BRUCE K. DRIVER†

16.5.4. Weak Topology and Convergence Problems.

Exercise 16.25. Folland 5.47.

Definition 16.31. A sequence {xn}∞n=1 ⊂ X is weakly Cauchy if for all V ∈ τw
such that 0 ∈ V, xn − xm ∈ V for all m,n sufficiently large. Similarly a sequence
{fn}∞n=1 ⊂ X∗ is weak—∗ Cauchy if for all V ∈ τw∗ such that 0 ∈ V, fn− fm ∈ V
for all m,n sufficiently large.

Remark 16.32. These conditions are equivalent to {f(xn)}∞n=1 being Cauchy for all
f ∈ X∗ and {fn(x)}∞n=1 being Cauchy for all x ∈ X respectively.

Exercise 16.26. Folland 5.48.

Exercise 16.27. Folland 5.49.

Exercise 16.28. land 5.50.

Exercise 16.29. Show every weakly compact subset X is norm bounded and every
weak—∗ compact subset of X∗ is norm bounded.

Exercise 16.30. Folland 5.51.

Exercise 16.31. Folland 5.53.


