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17. Weak and Strong Derivatives and Sobolev Spaces

For this section, let Ω be an open subset of Rd, p, q, r ∈ [1,∞], Lp(Ω) =
Lp(Ω,BΩ,m) and Lploc(Ω) = Lploc(Ω,BΩ,m), where m is Lebesgue measure on BRd
and BΩ is the Borel σ — algebra on Ω. If Ω = Rd, we will simply write Lp and Lploc
for Lp(Rd) and Lploc(Rd) respectively. Also let

hf, gi :=
Z
Ω

fgdm

for any pair of measurable functions f, g : Ω → C such that fg ∈ L1(Ω). For
example, by Hölder’s inequality, if hf, gi is defined for f ∈ Lp(Ω) and g ∈ Lq(Ω)
when q = p

p−1 . The following simple but useful remark will be used (typically
without further comment) in the sequel.

Remark 17.1. Suppose r, p, q ∈ [1,∞] are such that r−1 = p−1 + q−1 and ft → f
in Lp(Ω) and gt → g in Lq(Ω) as t→ 0, then ftgt → fg in Lr(Ω). Indeed,

kftgt − fgkr = k(ft − f) gt + f (gt − g)kr
≤ kft − fkp kgtkq + kfkp kgt − gkq → 0 as t→ 0

Definition 17.2 (Weak Differentiability). Let v ∈ Rd and f ∈ Lp(Ω) (f ∈ Lploc(Ω))
then ∂vf is said to exist weakly in Lp(Ω) (Lploc(Ω)) if there exists a function
g ∈ Lp(Ω) (g ∈ Lploc(Ω)) such that

(17.1) hf, ∂vφi = −hg, φi for all φ ∈ C∞c (Ω).

The function g if it exists will be denoted by ∂(w)v f. (By Corollary 9.27, there is at
most one g ∈ L1loc(Ω) such that Eq. (17.1) holds, so ∂

(w)
v f is well defined.)

Lemma 17.3. Suppose f ∈ L1loc(Ω) and ∂
(w)
v f exists weakly in L1loc(Ω). Then

(1) suppm(∂
(w)
v f) ⊂ suppm(f), where suppm(f) is the essential support of f

relative to Lebesgue measure, see Definition 9.14.
(2) If f is continuously differentiable on U ⊂o Ω, then ∂

(w)
v f = ∂vf a.e. on U.

Proof.
(1) Since

h∂(w)v f, φi = −hf, ∂vφi = 0 for all φ ∈ C∞c (Ω \ suppm(f)),
and application of Corollary 9.27 shows ∂(w)v f = 0 a.e. on Ω \ suppm(f).
So by Lemma 9.15, Ω\ suppm(f) ⊂ Ω\ suppm(∂(w)v f), i.e. suppm(∂

(w)
v f) ⊂

suppm(f).
(2) Suppose that f |U is C1 and let ψ ∈ C∞c (U) which we view as a function

in C∞c (Rd) by setting ψ ≡ 0 on Rd \ U. By Corollary 9.24, there exists
γ ∈ C∞c (Ω) such that 0 ≤ γ ≤ 1 and γ = 1 in a neighborhood of supp(ψ).
Then by setting γf = 0 on Rd \ supp(γ) we may view γf ∈ C1c (Rd) and
so by standard integration by parts (see Lemma 9.25) and the ordinary
product rule,

h∂(w)v f, ψi = −hf, ∂vψi = −hγf, ∂vψi
= h∂v (γf) , ψi = h∂vγ · f + γ∂vf, ψi = h∂vf, ψi(17.2)
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wherein the last equality we have used ψ∂vγ = 0 and ψγ = ψ. Since Eq.
(17.2) is true for all ψ ∈ C∞c (U), an application of Corollary 9.27 with
h = ∂

(w)
v f(x) − ∂vf(x) and µ = m shows ∂(w)v f(x) = ∂vf(x) for m — a.e.

x ∈ U.

Lemma 17.4 (Product Rule). Let f ∈ L1loc(Ω), v ∈ Rd and φ ∈ C∞(Ω). If ∂(w)v f

exists in L1loc(Ω), then ∂
(w)
v (φf) exists in L1loc(Ω) and

∂(w)v (φf) = ∂vφ · f + φ∂(w)v f a.e.

Moreover if φ ∈ C∞c (Rd) and F := φf ∈ L1 (here we define F on Rd by setting
F = 0 on Rd \ Ω ), then ∂(w)F = ∂vφ · f + φ∂

(w)
v f exists weakly in L1(Rd).

Proof. Let ψ ∈ C∞c (Ω), then

−hφf, ∂vψi = −hf, φ∂vψi = −hf, ∂v (φψ)− ∂vφ · ψi = h∂(w)v f, φψi+ h∂vφ · f, ψi
= hφ∂(w)v f, ψi+ h∂vφ · f, ψi.

This proves the first assertion. To prove the second assertion let γ ∈ C∞c (Ω) such
that 0 ≤ γ ≤ 1 and γ = 1 on a neighborhood of supp(φ). So for ψ ∈ C∞c (Rd), using
∂vγ = 0 on supp(φ) and γψ ∈ C∞c (Ω), we find

hF, ∂vψi = hγF, ∂vψi = hF, γ∂vψi = h(φf) , ∂v (γψ)− ∂vγ · ψi
= h(φf) , ∂v (γψ)i = −h∂(w)v (φf) , (γψ)i
= −h∂vφ · f + φ∂(w)v f, γψi = −h∂vφ · f + φ∂(w)v f, ψi.

This show ∂
(w)
v F = ∂vφ · f + φ∂

(w)
v f as desired.

Lemma 17.5. Suppose p ∈ [1,∞), v ∈ Rd and f ∈ Lploc(Ω).

(1) If there exists {fm}∞m=1 ⊂ Lploc(Ω) such that ∂
(w)
v fm exists in Lploc(Ω) for

all m and there exists g ∈ Lploc(Ω) such that for all φ ∈ C∞c (Ω),

lim
m→∞hfm, φi = hf, φi and lim

m→∞h∂vfm, φi = hg, φi

then ∂
(w)
v f exists in Lploc(Ω) and ∂vf = g.

(2) If ∂(w)v f exists in Lploc(Ω) then there exists fn ∈ C∞c (Ω) such that fn → f

in Lp(K) (i.e. limn→∞ kf − fnkLp(K) = 0) and ∂vfn → ∂
(w)
v f in Lp(K)

for all K @@ Ω.
Proof.
(1) Since

hf, ∂vφi = lim
m→∞hfm, ∂vφi = − lim

m→∞h∂
(w)
v fm, φi = hg, φi

for all φ ∈ C∞c (Ω), ∂
(w)
v f exists and is equal to g ∈ Lploc(Ω).

(2) Let K0 := ∅ and
Kn := {x ∈ Ω : |x| ≤ n and d(x,Ωc) ≥ 2/n}

(so Kn ⊂ Ko
n+1 ⊂ Kn+1 for all n and Kn ↑ Ω as n → ∞ or see Lemma

8.10) and choose ψn ∈ C∞c (Ko
n, [0, 1]) using Corollary 9.24 so that ψn = 1

on a neighborhood of Kn−1. Given a compact set K ⊂ Ω, for all sufficiently
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large m, ψmf = f on K and by Lemma 17.4 and item 1. of Lemma 17.3,
we also have

∂(w)v (ψmf) = ∂vψm · f + ψm∂
(w)
v f = ∂(w)v f on K.

This argument shows we may assume suppm(f) is a compact subset of Ω
in which case we extend f to a function F on Rd by setting F = f on Ω
and F = 0 on Ωc. This function F is in Lp(Rd) and ∂(w)v F = ∂

(w)
v f. Indeed,

if φ ∈ C∞c (Rd) and ψ ∈ C∞c (Rd) is chosen so that supp(ψ) ⊂ Ω, 0 ≤ ψ ≤ 1
and ψ = 1 in a neighborhood of suppm(f), then

hF, ∂vφi = hF,ψ∂vφi = hf, ∂v (ψφ)i
= −h∂(w)v f, ψφi = −hψ∂(w)v f, φi

which shows ∂(w)v F exist in Lp(Rd) and

∂(w)v F = ψ∂(w)v f = 1Ω∂
(w)
v f.

Let χ ∈ C∞c (B0(1)) with
R
Rd χdm = 1 and set δk(x) = ndχ(nx). Then

there exists N ∈ N and a compact subset K ⊂ Ω such that fn := F ∗ δn ∈
C∞c (Ω) and supp(fn) ⊂ K for all n ≥ N. By Proposition 9.23 and the
definition of ∂(w)v F,

∂vfn(x) = F ∗ ∂vδn(x) =
Z
Rd

F (y)∂vδn(x− y)dy

= −hF, ∂v [δn(x− ·)]i = h∂(w)v F, δn(x− ·)i = ∂(w)v F ∗ δn(x).
Hence by Theorem 9.20, fn → F = f and ∂vfn → ∂

(w)
v F = ∂

(w)
v f in Lp(Ω)

as n→∞.

Definition 17.6 (Strong Differentiability). Let v ∈ Rd and f ∈ Lp, then ∂vf is
said to exist strongly in Lp if the limt→0 (τ−tvf − f) /t exists in Lp, where as above
τvf(x) := f(x− v). We will denote the limit by ∂(s)v f.

It is easily verified that if f ∈ Lp, v ∈ Rd and ∂(s)v f ∈ Lp exists then ∂(w)v f exists
and ∂(w)v f = ∂

(s)
v f. To check this assertion, let φ ∈ C∞c (Rd) and then using Remark

17.1,

∂(s)v f · φ = L1— lim
t→0

τ−tvf − f

t
φ.

HenceZ
Rd

∂(s)v f · φdm = lim
t→0

Z
Rd

τ−tvf − f

t
φdm = lim

t→0

Z
Rd

f
τtvφ− φ

t
dm

=
d

dt
|0
Z
Rd

fτtvφdm =

Z
Rd

f · d
dt
|0τtvφdm = −

Z
Rd

f · ∂vφdm,

wherein we have used Corollary 5.43 to differentiate under the integral in the fourth
equality. This shows ∂(w)v f exists and is equal to ∂

(s)
v f. What is somewhat more

surprising is that the converse assertion that if ∂(w)v f exists then so does ∂(s)v f. The
next theorem is a generalization of Theorem 10.36 from L2 to Lp.

Theorem 17.7 (Weak and Strong Differentiability). Suppose p ∈ [1,∞), f ∈
Lp(Rd) and v ∈ Rd \ {0} . Then the following are equivalent:
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(1) There exists g ∈ Lp(Rd) and {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0
and

lim
n→∞h

f(·+ tnv)− f(·)
tn

, φi = hg, φi for all φ ∈ C∞c (Rd).

(2) ∂
(w)
v f exists and is equal to g ∈ Lp(Rd), i.e. hf, ∂vφi = −hg, φi for all
φ ∈ C∞c (Rd).

(3) There exists g ∈ Lp(Rd) and fn ∈ C∞c (Rd) such that fn
Lp→ f and ∂vfn

Lp→ g
as n→∞.

(4) ∂
(s)
v f exists and is is equal to g ∈ Lp(Rd), i.e.

f(·+ tv)− f(·)
t

Lp→ g as t→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.

10. There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

°°°°f(·+ tnv)− f(·)
tn

°°°°
p

<∞.

Proof. 4. =⇒ 1. is simply the assertion that strong convergence implies weak
convergence.
1. =⇒ 2. For φ ∈ C∞c (Rd),

hg, φi = lim
n→∞h

f(·+ tnv)− f(·)
tn

, φi = lim
n→∞hf,

φ(·− tnv)− φ(·)
tn

i

= hf, lim
n→∞

φ(·− tnv)− φ(·)
tn

i = −hf, ∂vφi,

wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.
2. =⇒ 3. Let φ ∈ C∞c (Rd,R) such that

R
Rd φ(x)dx = 1 and let φm(x) =

mdφ(mx), then by Proposition 9.23, hm := φm ∗ f ∈ C∞(Rd) for all m and

∂vhm(x) = ∂vφm ∗ f(x) =
Z
Rd

∂vφm(x− y)f(y)dy = hf,−∂v [φm (x− ·)]i
= hg, φm (x− ·)i = φm ∗ g(x).

By Theorem 9.20, hm → f ∈ Lp(Rd) and ∂vhm = φm ∗g → g in Lp(Rd) as m→∞.
This shows 3. holds except for the fact that hm need not have compact support.
To fix this let ψ ∈ C∞c (Rd, [0, 1]) such that ψ = 1 in a neighborhood of 0 and let
ψ�(x) = ψ(�x) and (∂vψ)� (x) := (∂vψ) (�x). Then

∂v (ψ�hm) = ∂vψ�hm + ψ�∂vhm = � (∂vψ)� hm + ψ�∂vhm

so that ψ�hm → hm in Lp and ∂v (ψ�hm)→ ∂vhm in Lp as � ↓ 0. Let fm = ψ�mhm
where �m is chosen to be greater than zero but small enough so that

kψ�mhm − hmkp + k∂v (ψ�mhm)→ ∂vhmkp < 1/m.

Then fm ∈ C∞c (Rd), fm → f and ∂vfm → g in Lp as m→∞.



334 BRUCE K. DRIVER†

3. =⇒ 4. By the fundamental theorem of calculus

τ−tvfm(x)− fm(x)

t
=

fm(x+ tv)− fm(x)

t

=
1

t

Z 1

0

d

ds
fm(x+ stv)ds =

Z 1

0

(∂vfm) (x+ stv)ds.(17.3)

Let

Gt(x) :=

Z 1

0

τ−stvg(x)ds =
Z 1

0

g(x+ stv)ds

which is defined for almost every x and is in Lp(Rd) by Minkowski’s inequality for
integrals, Theorem 7.27. Therefore

τ−tvfm(x)− fm(x)

t
−Gt(x) =

Z 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds

and hence again by Minkowski’s inequality for integrals,°°°°τ−tvfm − fm
t

−Gt

°°°°
p

≤
Z 1

0

kτ−stv (∂vfm)− τ−stvgkp ds =
Z 1

0

k∂vfm − gkp ds.

Letting m→∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one more
application of Minkowski’s inequality for integrals implies,°°°°τ−tvf − f

t
− g

°°°°
p

= kGt − gkp =
°°°°Z 1

0

(τ−stvg − g) ds

°°°°
p

≤
Z 1

0

kτ−stvg − gkp ds.

By the dominated convergence theorem and Proposition 9.13, the latter term tends
to 0 as t→ 0 and this proves 4.
(10. =⇒ 1. when p > 1) This is a consequence of Theorem 16.27 which asserts, by

passing to a subsequence if necessary, that f(·+tnv)−f(·)
tn

w→ g for some g ∈ Lp(Rd).

Example 17.8. The fact that (10) does not imply the equivalent conditions 1 —
4 in Theorem 17.7 when p = 1 is demonstrated by the following example. Let
f := 1[0,1], thenZ

R

¯̄̄̄
f(x+ t)− f(x)

t

¯̄̄̄
dx =

1

|t|
Z
R

¯̄
1[−t,1−t](x)− 1[0,1](x)

¯̄
dx = 2

for |t| < 1. For contradiction sake, suppose there exists g ∈ L1(R, dm) such that

lim
n→∞

f(x+ tn)− f(x)

tn
= g(x) in L1

for some sequence {tn}∞n=1 as above. Then for φ ∈ C∞c (R) we would have on one
hand,Z
R

f(x+ tn)− f(x)

tn
φ(x)dx =

Z
R

φ(x− tn)− φ(x)

tn
f(x)dx→ −

Z 1

0

φ0(x)dx = (φ(0)−φ(1)),

while on the other hand,Z
R

f(x+ tn)− f(x)

tn
φ(x)dx→

Z
R
g(x)φ(x)dx.
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These two equations imply

(17.4)
Z
R
g(x)φ(x)dx = φ(0)− φ(1) for all φ ∈ C∞c (R)

and in particular that
R
R g(x)φ(x)dx = 0 for all φ ∈ Cc(R\ {0, 1}). By Corollary

9.27, g(x) = 0 for m — a.e. x ∈ R\ {0, 1} and hence g(x) = 0 for m — a.e. x ∈ R.
But this clearly contradicts Eq. (17.4). This example also shows that the unit ball
in L1(R, dm) is not sequentially weakly compact.

We will now give a couple of applications of Theorem 17.7.

Proposition 17.9. Let Ω ⊂ R be an open interval and f ∈ L1loc(Ω). Then ∂wf

exists in L1loc(Ω) iff f has a continuous version f̃ which is absolutely continuous on
all compact subintervals of Ω. Moreover, ∂wf = f̃ 0 a.e., where f̃ 0(x) is the usual
pointwise derivative.

Proof. If f is locally absolutely continuous and φ ∈ C∞c (Ω) with supp(φ) ⊂
[a, b] ⊂ Ω, then by Corollary 14.32,Z

Ω

f 0φdm =

Z b

a

f 0φdm = −
Z b

a

fφ0dm+ fφ|ba = −
Z
Ω

fφ0dm.

This shows ∂wf exists and ∂wf = f 0 ∈ L1loc(Ω).
Now suppose that ∂wf exists in L1loc(Ω), let [a, b] be a compact subinterval of Ω,

ψ ∈ C∞c (Ω) such that ψ = 1 on a neighborhood of [a, b] and 0 ≤ ψ ≤ 1 on Ω and
define F := ψf. By Lemma 17.4, F ∈ L1 and ∂(w)F exists in L1 and is given by

∂(w) (ψf) = ψ0f + ψ∂(w)f.

From Theorem 17.7 there exists Fn ∈ C∞c (R) such that Fn → F and F 0n → ∂(w)F
in L1 as n→∞. Hence, using the fundamental theorem of calculus,

(17.5) Fn(x) =

Z x

−∞
F 0n(y)dy →

Z x

−∞
∂(w)F (y)dy =: G(x)

as n→∞. Since Fn → G pointwise and Fn → F in L1, it follows that F = ψf = G
a.e. In particular, G = f a.e. on [a, b] and we conclude that f has a continuous
version on [a, b], this version, G|[a,b], is absolutely continuous on [a, b] and by Eq.
(17.5) and fundamental theorem of calculus for absolutely continuous functions
(Theorem 14.31),

G0(x) = ∂(w)F (x) = ∂(w)f(x) for m a.e. x ∈ [a, b].
Since [a, b] ⊂ Ω was an arbitrary compact subinterval and continuous versions of a
measurable functions are unique if they exist, it follows from the above considera-
tions that there exists a unique function f̃ ∈ C(Ω) such that f̃ = G|[a,b] for all such
pairs ([a, b], G) as above. The function f̃ then satisfies all of the desired properties.

Because of Lemma 17.3, Theorem 17.7 and Proposition 17.9 it is now safe to
simply write ∂vf for the ordinary partial derivative of f, the weak derivative ∂

(w)
v f

and the strong derivative ∂(s)v f.

Definition 17.10. Let X and Y be metric spaces. A function f : X → Y is said
to be Lipschitz if there exists C <∞ such that

dY (f(x), f(x0)) ≤ CdX(x, x0) for all x, x0 ∈ X
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and said to be locally Lipschitz if for all compact subsets K ⊂ X there exists
CK <∞ such that

dY (f(x), f(x0)) ≤ CKd
X(x, x0) for all x, x0 ∈ K.

Proposition 17.11. Let f ∈ L1(Rd) such that essential support, suppm(f), is
compact. Then there exists a Lipschitz function F : Rd → C such that F = f a.e.
iff ∂

(w)
v f exists and is bounded for all v ∈ Rd.
Proof. Suppose f = F a.e. and F is Lipschitz and let p ∈ (1,∞). Since F is

Lipschitz and has compact support, for all 0 < |t| ≤ 1,Z
Rd

¯̄̄̄
f(x+ tv)− f(x)

t

¯̄̄̄p
dx =

Z
Rd

¯̄̄̄
F (x+ tv)− F (x)

t

¯̄̄̄p
dx ≤ C̃ |v|p ,

where C̃ is a constant depending on the size of the support of f and on the Lipschitz
constant, C, for F. Therefore Theorem 17.7 may be applied to conclude ∂(w)v f exists
in Lp and moreover,

lim
t→0

F (x+ tv)− F (x)

t
= ∂(w)v f(x) for m — a.e. x.

Since there exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and¯̄̄
∂(w)v f(x)

¯̄̄
= lim

n→∞

¯̄̄̄
F (x+ tnv)− F (x)

tn

¯̄̄̄
≤ C |v| for a.e. x ∈ Rd,

it follows that
°°°∂(w)v f

°°°
∞
≤ C |v| for all v ∈ Rd.

Conversely, let φm be an approximate δ — function sequence as used in the
proof of Theorem 17.7 and fm := f ∗ φm. Then fm ∈ C∞c (Rd), ∂vfm = ∂vf ∗ φm,
|∂vfm| ≤ k∂vfk∞ <∞ and therefore,

|fm(y)− fm(x)| =
¯̄̄̄Z 1

0

d

dt
fm(x+ t(y − x))dt

¯̄̄̄
=

¯̄̄̄Z 1

0

(y − x) ·∇fm(x+ t(y − x))dt

¯̄̄̄
≤
Z 1

0

|y − x| · |∇fm(x+ t(y − x))| dt ≤ C |y − x|(17.6)

where C is a constant independent of m. By passing to a subsequence of the
{φm}∞m=1 if necessary, we may assume that limm→∞ fm(x) = f(x) for m — a.e.
x ∈ Rd. Letting m→∞ in Eq. (17.6) then implies

|f(y)− f(x)| ≤ C |y − x| for all x, y /∈ E

where E ⊂ Rd is a m — null set. It is now easily verified that if F : Rd → C is
defined by F = f on Ec and

F (x) =

(
f(x) if x /∈ E

limy→x
y/∈E

f(y) if x ∈ E

defines a Lipschitz function F on Rd such that F = f a.e.

Lemma 17.12. Let v ∈ Rd.
(1) If h ∈ L1 and ∂vh exists in L1, then

R
Rd ∂vh(x)dx = 0.
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(2) If p, q, r ∈ [1,∞) satisfy r−1 = p−1+ q−1, f ∈ Lp and g ∈ Lq are functions
such that ∂vf and ∂vg exists in Lp and Lq respectively, then ∂v(fg) exists in
Lr and ∂v(fg) = ∂vf ·g+f ·∂vg. Moreover if r = 1 we have the integration
by parts formula,

(17.7) h∂vf, gi = −hf, ∂vgi.
(3) If p = 1, ∂vf exists in L1 and g ∈ BC1(Rd) (i.e. g ∈ C1(Rd) with g and

its first derivatives being bounded) then ∂v(gf) exists in L1 and ∂v(fg) =
∂vf · g + f · ∂vg and again Eq. (17.7) holds.

Proof. 1) By item 3. of Theorem 17.7 there exists hn ∈ C∞c (Rd) such that
hn → h and ∂vhn → ∂vh in L1. ThenZ

Rd
∂vhn(x)dx =

d

dt
|0
Z
Rd

hn(x+ tv)dx =
d

dt
|0
Z
Rd

hn(x)dx = 0

and letting n→∞ proves the first assertion.
2) Similarly there exists fn, gn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in

Lp and gn → g and ∂vgn → ∂vg in Lq as n→∞. So by the standard product rule
and Remark 17.1, fngn → fg ∈ Lr as n→∞ and

∂v(fngn) = ∂vfn · gn + fn · ∂vgn → ∂vf · g + f · ∂vg in Lr as n→∞.

It now follows from another application of Theorem 17.7 that ∂v(fg) exists in Lr

and ∂v(fg) = ∂vf · g + f · ∂vg. Eq. (17.7) follows from this product rule and item
1. when r = 1.
3) Let fn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in L1 as n→∞. Then

as above, gfn → gf in L1 and ∂v(gfn) → ∂vg · f + g∂vf in L1 as n → ∞. In
particular if φ ∈ C∞c (Rd), then

hgf, ∂vφi = lim
n→∞hgfn, ∂vφi = − lim

n→∞h∂v (gfn) , φi
= − lim

n→∞h∂vg · fn + g∂vfn, φi = −h∂vg · f + g∂vf, φi.

This shows ∂v(fg) exists (weakly) and ∂v(fg) = ∂vf · g+ f · ∂vg. Again Eq. (17.7)
holds in this case by item 1. already proved.

Lemma 17.13. Let p, q, r ∈ [1,∞] satisfy p−1 + q−1 = 1 + r−1, f ∈ Lp, g ∈ Lq

and v ∈ Rd.
(1) If ∂vf exists strongly in Lr, then ∂v(f ∗ g) exists strongly in Lp and

∂v(f ∗ g) = (∂vf) ∗ g.
(2) If ∂vg exists strongly in Lq, then ∂v(f ∗ g) exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg.
(3) If ∂vf exists weakly in Lp and g ∈ C∞c (Rd), then f ∗ g ∈ C∞(Rd), ∂v(f ∗ g)

exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg = (∂vf) ∗ g.
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Proof. Items 1 and 2. By Young’s inequality and simple computations:°°°°τ−tv(f ∗ g)− f ∗ g
t

− (∂vf) ∗ g
°°°°
r

=

°°°°τ−tvf ∗ g − f ∗ g
t

− (∂vf) ∗ g
°°°°
r

=

°°°°·τ−tvf − f

t
− (∂vf)

¸
∗ g
°°°°
r

≤
°°°°τ−tvf − f

t
− (∂vf)

°°°°
p

kgkq

which tends to zero as t→ 0. The second item is proved analogously, or just make
use of the fact that f ∗ g = g ∗ f and apply Item 1.
Using the fact that g(x− ·) ∈ C∞c (Rd) and the definition of the weak derivative,

f ∗ ∂vg(x) =
Z
Rd

f(y) (∂vg) (x− y)dy = −
Z
Rd

f(y) (∂vg(x− ·)) (y)dy

=

Z
Rd

∂vf(y)g(x− y)dy = ∂vf ∗ g(x).

Item 3. is a consequence of this equality and items 1. and 2.

17.1. Sobolev Spaces.

Notation 17.14. Let ∂α be defined as in Notation 9.10 and f ∈ L1loc(Ω). We say
∂αf exists weakly in L1loc(Ω) iff there exists g ∈ L1loc(Ω) such that

hf, ∂αφi = (−1)|α|hg, φi for all φ ∈ C∞c (Ω).

As usual g is unique if it exists and we will denote g by ∂αf.

Definition 17.15. For p ∈ [1,∞], k ∈ N and Ω an open subset of Rd, let
W k,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) (weakly) for all |α| ≤ k}

and define
kfkWk,p(Ω) :=

X
|α|≤k

k∂αfkLp(Ω) .

Theorem 17.16. The space W k,p(Ω) with the norm k·kWk,p(Ω) is a Banach space.

Proof. Suppose that {fn}∞n=1 ⊂W k,p(Ω) is a Cauchy sequence, then {∂αfn}∞n=1
is a Cauchy sequence in Lp(Ω) for all |α| ≤ k. By the completeness of Lp(Ω), there
exists gα ∈ Lp(Ω) such that gα = Lp— limn→∞ ∂αfn for all |α| ≤ k. Therefore, for
all φ ∈ C∞c (Ω),

hf, ∂αφi = lim
n→∞hfn, ∂

αφi = (−1)|α| lim
n→∞h∂

αfn, φi = (−1)|α| lim
n→∞hgα, φi.

This shows ∂αf exists weakly and gα = ∂αf a.e.

Example 17.17. Let Ω be an open subset of Rd, then H1(Ω) := W 1,2(Ω) is a
Hilbert space with inner product defined by

(f, g) =

Z
Ω

f · ḡdm+

Z
Ω

∇f ·∇ḡdm.

Proposition 17.18. C∞c (Rd) is dense in W k,p(Rd) for all 1 ≤ p <∞.
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Proof. The proof of this proposition is left an exercise to the reader. How-
ever, note that the assertion 2. implies 3. in Theorem 17.7 essentially proves the
statement when k = 1 and the same smooth approximations used in the proof of
Theorem 17.7 will work here as well.

17.2. Hölder Spaces.

Notation 17.19. Let Ω be an open subset of Rd, BC(Ω) and BC(Ω̄) be the
bounded continuous functions on Ω and Ω̄ respectively. By identifying f ∈ BC(Ω̄)
with f |Ω ∈ BC(Ω), we will consider BC(Ω̄) as a subset of BC(Ω). For u ∈ BC(Ω)
and 0 < β ≤ 1 let

kuku := sup
x∈Ω

|u(x)| and [u]β := sup
x,y∈Ω
x6=y

½ |u(x)− u(y)|
|x− y|β

¾
.

If [u]β <∞, we say u is β — Hölder continuous with holder exponent35 β and we
let

C0,β(Ω) := {u ∈ BC(Ω) : [u]β <∞}
denote the space of Hölder continuous functions on Ω. For u ∈ C0,β(Ω) let

(17.8) kukC0,β(Ω) := kuku + [u]β .
Remark 17.20. If u : Ω → C and [u]β < ∞ for some β > 1, then u is constant on
each connected component of Ω. Indeed, if x ∈ Ω and h ∈ Rd then¯̄̄̄

u(x+ th)− u(x)

t

¯̄̄̄
≤ [u]βtβ/t→ 0 as t→ 0

which shows ∂hu(x) = 0 for all x ∈ Ω. If y ∈ Ω is in the same connected component
as x, then by Exercise 15.5 there exists as smooth curve σ : [0, 1] → Ω such that
σ(0) = x and σ(1) = y. So by the fundamental theorem of calculus and the chain
rule,

u(y)− u(x) =

Z 1

0

d

dt
u(σ(t))dt =

Z 1

0

0 dt = 0.

This is why we do not talk about Hölder spaces with Hölder exponents larger than
1.

Exercise 17.1. Suppose u ∈ C1(Ω)∩BC(Ω) and ∂iu ∈ BC(Ω) for i = 1, 2, . . . , d.
Show [u]1 <∞, i.e. u ∈ C0,1(Ω).

Theorem 17.21. Let Ω be an open subset of Rd. Then
(1) BC(Ω̄) is a closed subspace of BC(Ω).
(2) Every element u ∈ C0,β(Ω) has a unique extension to a continuous function

(which we will still denote by u) on Ω̄. Therefore we may identify C0,β(Ω)
with a subspace of BC(Ω̄). We may also write C0,β(Ω) as C0,β(Ω̄) to em-
phasize this point.

(3) The function u ∈ C0,β(Ω) → kukC0,β(Ω) ∈ [0,∞) is a norm on C0,β(Ω)

which make C0,β(Ω) into a Banach space.

35If β = 1, u is is said to be Lipschitz continuous.
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Proof. 1. The first item is trivial since for u ∈ BC(Ω̄), the sup-norm of u on Ω̄
agrees with the sup-norm on Ω and BC(Ω̄) is complete in this norm.
2. Suppose that [u]β < ∞ and x0 ∈ ∂Ω. Let {xn}∞n=1 ⊂ Ω be a sequence such

that x0 = limn→∞ xn. Then

|u(xn)− u(xm)| ≤ [u]β |xn − xm|β → 0 as m,n→∞
showing {u(xn)}∞n=1 is Cauchy so that ū(x0) := limn→∞ u(xn) exists. If {yn}∞n=1 ⊂
Ω is another sequence converging to x0, then

|u(xn)− u(yn)| ≤ [u]β |xn − yn|β → 0 as n→∞,

showing ū(x0) is well defined. In this way we define ū(x) for all x ∈ ∂Ω and let
ū(x) = u(x) for x ∈ Ω. Since a similar limiting argument shows

|ū(x)− ū(y)| ≤ [u]β |x− y|β for all x, y ∈ Ω̄
it follows that ū is still continuous. In the sequel we will abuse notation and simply
denote ū by u.
3. For u, v ∈ C0,β(Ω),

[v + u]β = sup
x,y∈Ω
x6=y

½ |v(y) + u(y)− v(x)− u(x)|
|x− y|β

¾

≤ sup
x,y∈Ω
x6=y

½ |v(y)− v(x)|+ |u(y)− u(x)|
|x− y|β

¾
≤ [v]β + [u]β

and for λ ∈ C it is easily seen that [λu]β = λ[u]β . This shows [·]β is a semi-norm
on C0,β(Ω) and therefore k · kC0,β(Ω) defined in Eq. (17.8) is a norm.
To see that C0,β(Ω) is complete, let {un}∞n=1 be a C0,β(Ω)—Cauchy sequence.

Since BC(Ω̄) is complete, there exists u ∈ BC(Ω̄) such that ku− unku → 0 as
n→∞. For x, y ∈ Ω with x 6= y,

|u(x)− u(y)|
|x− y|β

= lim
n→∞

|un(x)− un(y)|
|x− y|β

≤ lim sup
n→∞

[un] ≤ lim
n→∞ kunkC0,β(Ω) <∞,

and so we see that u ∈ C0,β(Ω). Similarly,

|u(x)− un(x)− (u(y)− un(y))|
|x− y|β

= lim
m→∞

|(um − un)(x)− (um − un)(y)|
|x− y|β

≤ lim sup
m→∞

[um − un]β → 0 as n→∞,

showing [u− un]β → 0 as n→∞ and therefore limn→∞ ku− unkC0,β(Ω) = 0.

Notation 17.22. Since Ω and Ω̄ are locally compact Hausdorff spaces, we may
define C0(Ω) and C0(Ω̄) as in Definition 8.29. We will also let

C0,β0 (Ω) := C0,β(Ω) ∩ C0(Ω) and C0,β0 (Ω̄) := C0,β(Ω) ∩ C0(Ω̄).
It has already been shown in Proposition 8.30 that C0(Ω) and C0(Ω̄) are closed

subspaces of BC(Ω) and BC(Ω̄) respectively. The next proposition describes the
relation between C0(Ω) and C0(Ω̄).

Proposition 17.23. Each u ∈ C0(Ω) has a unique extension to a continuous
function on Ω̄ given by ū = u on Ω and ū = 0 on ∂Ω and the extension ū is in
C0(Ω̄). Conversely if u ∈ C0(Ω̄) and u|∂Ω = 0, then u|Ω ∈ C0(Ω). In this way we
may identify C0(Ω) with those u ∈ C0(Ω̄) such that u|∂Ω = 0.
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Proof. Any extension u ∈ C0(Ω) to an element ū ∈ C(Ω̄) is necessarily unique,
since Ω is dense inside Ω̄. So define ū = u on Ω and ū = 0 on ∂Ω. We must show ū
is continuous on Ω̄ and ū ∈ C0(Ω̄).
For the continuity assertion it is enough to show ū is continuous at all points

in ∂Ω. For any � > 0, by assumption, the set K� := {x ∈ Ω : |u(x)| ≥ �} is a
compact subset of Ω. Since ∂Ω = Ω̄ \ Ω, ∂Ω ∩K� = ∅ and therefore the distance,
δ := d(K�, ∂Ω), between K� and ∂Ω is positive. So if x ∈ ∂Ω and y ∈ Ω̄ and
|y − x| < δ, then |ū(x)− ū(y)| = |u(y)| < � which shows ū : Ω̄ → C is continuous.
This also shows {|ū| ≥ �} = {|u| ≥ �} = K� is compact in Ω and hence also in Ω̄.
Since � > 0 was arbitrary, this shows ū ∈ C0(Ω̄).
Conversely if u ∈ C0(Ω̄) such that u|∂Ω = 0 and � > 0, then K� :=©

x ∈ Ω̄ : |u(x)| ≥ �
ª
is a compact subset of Ω̄ which is contained in Ω since

∂Ω ∩K� = ∅. Therefore K� is a compact subset of Ω showing u|Ω ∈ C0(Ω̄).

Definition 17.24. Let Ω be an open subset of Rd, k ∈ N∪ {0} and β ∈ (0, 1]. Let
BCk(Ω) (BCk(Ω̄)) denote the set of k — times continuously differentiable functions
u on Ω such that ∂αu ∈ BC(Ω) (∂αu ∈ BC(Ω̄))36 for all |α| ≤ k. Similarly, let
BCk,β(Ω) denote those u ∈ BCk(Ω) such that [∂αu]β < ∞ for all |α| = k. For
u ∈ BCk(Ω) let

kukCk(Ω) =
X
|α|≤k

k∂αuku and

kukCk,β(Ω) =
X
|α|≤k

k∂αuku +
X
|α|=k

[∂αu]β .

Theorem 17.25. The spaces BCk(Ω) and BCk,β(Ω) equipped with k · kCk(Ω) and
k · kCk,β(Ω) respectively are Banach spaces and BCk(Ω̄) is a closed subspace of
BCk(Ω) and BCk,β(Ω) ⊂ BCk(Ω̄). Also

Ck,β
0 (Ω) = Ck,β

0 (Ω̄) = {u ∈ BCk,β(Ω) : ∂αu ∈ C0(Ω) ∀ |α| ≤ k}
is a closed subspace of BCk,β(Ω).

Proof. Suppose that {un}∞n=1 ⊂ BCk(Ω) is a Cauchy sequence, then {∂αun}∞n=1
is a Cauchy sequence in BC(Ω) for |α| ≤ k. Since BC(Ω) is complete, there exists
gα ∈ BC(Ω) such that limn→∞ k∂αun − gαku = 0 for all |α| ≤ k. Letting u := g0,
we must show u ∈ Ck(Ω) and ∂αu = gα for all |α| ≤ k. This will be done by
induction on |α| . If |α| = 0 there is nothing to prove. Suppose that we have
verified u ∈ Cl(Ω) and ∂αu = gα for all |α| ≤ l for some l < k. Then for x ∈ Ω,
i ∈ {1, 2, . . . , d} and t ∈ R sufficiently small,

∂aun(x+ tei) = ∂aun(x) +

Z t

0

∂i∂
aun(x+ τei)dτ.

Letting n→∞ in this equation gives

∂au(x+ tei) = ∂au(x) +

Z t

0

gα+ei(x+ τei)dτ

from which it follows that ∂i∂αu(x) exists for all x ∈ Ω and ∂i∂
αu = gα+ei . This

completes the induction argument and also the proof that BCk(Ω) is complete.

36To say ∂αu ∈ BC(Ω̄) means that ∂αu ∈ BC(Ω) and ∂αu extends to a continuous function
on Ω̄.
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It is easy to check that BCk(Ω̄) is a closed subspace of BCk(Ω) and by using
Exercise 17.1 and Theorem 17.21 that that BCk,β(Ω) is a subspace of BCk(Ω̄). The
fact that Ck,β

0 (Ω) is a closed subspace of BCk,β(Ω) is a consequence of Proposition
8.30.
To prove BCk,β(Ω) is complete, let {un}∞n=1 ⊂ BCk,β(Ω) be a k · kCk,β(Ω) —

Cauchy sequence. By the completeness of BCk(Ω) just proved, there exists u ∈
BCk(Ω) such that limn→∞ ku−unkCk(Ω) = 0.An application of Theorem 17.21 then
shows limn→∞ k∂αun − ∂αukC0,β(Ω) = 0 for |α| = k and therefore limn→∞ ku −
unkCk,β(Ω) = 0.

17.3. Exercises.

Exercise 17.2. Let p ∈ [1,∞), α be a multi index (if α = 0 let ∂0 be the identity
operator on Lp),

D(∂α) := {f ∈ Lp(Rn) : ∂αf exists weakly in Lp(Rn)}
and for f ∈ D(∂α) (the domain of ∂α) let ∂αf denote the α — weak derivative of f.
(See Notation 17.14.)

(1) Show ∂α is a densely defined operator on Lp, i.e. D(∂α) is a dense linear
subspace of Lp and ∂α : D(∂α)→ Lp is a linear transformation.

(2) Show ∂α : D(∂α)→ Lp is a closed operator, i.e. the graph,

Γ(∂α) := {(f, ∂αf) ∈ Lp × Lp : f ∈ D(∂α)} ,
is a closed subspace of Lp × Lp.

(3) Show ∂α : D(∂α) ⊂ Lp → Lp is not bounded unless α = 0. (The norm on
D(∂α) is taken to be the Lp — norm.)

Exercise 17.3. Let p ∈ [1,∞), f ∈ Lp and α be a multi index. Show ∂αf exists
weakly (see Notation 17.14) in Lp iff there exists fn ∈ C∞c (Rn) and g ∈ Lp such
that fn → f and ∂αfn → g in Lp as n → ∞. Hint: One direction follows from
Exercise 17.2. For the other direction, see the proof of Theorem 17.7.

Exercise 17.4. Folland 8.8 on p. 246.

Exercise 17.5. Assume n = 1 and let ∂ = ∂e1 where e1 = (1) ∈ R1 = R.
(1) Let f(x) = |x| , show ∂f exists weakly in L1loc(R) and ∂f(x) = sgn(x) for

m — a.e. x.
(2) Show ∂(∂f) does not exists weakly in L1loc(R).
(3) Generalize item 1. as follows. Suppose f ∈ C(R,R) and there exists a finite

set Λ := {t1 < t2 < · · · < tN} ⊂ R such that f ∈ C1(R \ Λ,R). Assuming
∂f ∈ L1loc (R) , show ∂f exists weakly and ∂(w)f(x) = ∂f(x) for m — a.e. x.

Exercise 17.6. Suppose that f ∈ L1loc(Ω) and v ∈ Rd and {ej}nj=1 is the standard
basis for Rd. If ∂jf := ∂ejf exists weakly in L1loc(Ω) for all j = 1, 2, . . . , n then ∂vf

exists weakly in L1loc(Ω) and ∂vf =
Pn

j=1 vj∂jf.

Exercise 17.7. Show Proposition 17.11 generalizes as follows. Let Ω be an open
subset of Rd and f ∈ L1loc(Ω), then there exists a locally Lipschitz function F : Ω→
C such that F = f a.e. iff ∂

(w)
v f exists and is locally bounded for all v ∈ Rd. (Here

we say ∂
(w)
v f is locally bounded if for all compact subsets K ⊂ Ω, there exists a

constant MK <∞ such that
¯̄̄
∂
(w)
v f(x)

¯̄̄
≤MK for m — a.e. x ∈ K.
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Exercise 17.8. Suppose, f ∈ L1loc(Rd) and ∂vf exists weakly and ∂vf = 0 in
L1loc(Rd) for all v ∈ Rd. Then there exists λ ∈ C such that f(x) = λ for m — a.e.
x ∈ Rd. Hint: See steps 1. and 2. in the outline given in Exercise 17.9 below.
Exercise 17.9. (A generalization of Exercise 17.8.) Suppose Ω is a connected open
subset of Rd and f ∈ L1loc(Ω). If ∂

αf = 0 weakly for α ∈ Zn+ with |α| = N +1, then
f(x) = p(x) for m — a.e. x where p(x) is a polynomial of degree at most N. Here
is an outline.

(1) Suppose x0 ∈ Ω and � > 0 such that C := Cx0(�) ⊂ Ω and let δn be a
sequence of approximate δ — functions such supp(δn) ⊂ B0(1/n) for all n.
Then for n large enough, ∂α(f ∗δn) = (∂αf)∗δn on C for |α| = N+1. Now
use Taylor’s theorem to conclude there exists a polynomial pn of degree at
most N such that fn = pn on C.

(2) Show p := limn→∞ pn exists on C and then let n →∞ in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

(3) Use Taylor’s theorem to show if p and q are two polynomials on Rd which
agree on an open set then p = q.

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 17.10. Suppose Ω ⊂o Rd and v,w ∈ Rd. Assume f ∈ L1loc(Ω) and that
∂v∂wf exists weakly in L1loc(Ω), show ∂w∂vf also exists weakly and ∂w∂vf = ∂v∂wf.

Exercise 17.11. Let d = 2 and f(x, y) = 1x≥0. Show ∂(1,1)f = 0 weakly in L1loc
despite the fact that ∂1f does not exist weakly in L1loc!


