17. Weak and Strong Derivatives and Sobolev Spaces

For this section, let Ω be an open subset of $\mathbb{R}^{d}, p, q, r \in[1, \infty], L^{p}(\Omega)=$ $L^{p}\left(\Omega, \mathcal{B}_{\Omega}, m\right)$ and $L_{l o c}^{p}(\Omega)=L_{l o c}^{p}\left(\Omega, \mathcal{B}_{\Omega}, m\right)$, where m is Lebesgue measure on $\mathcal{B}_{\mathbb{R}^{d}}$ and \mathcal{B}_{Ω} is the Borel σ - algebra on Ω. If $\Omega=\mathbb{R}^{d}$, we will simply write L^{p} and $L_{\text {loc }}^{p}$ for $L^{p}\left(\mathbb{R}^{d}\right)$ and $L_{l o c}^{p}\left(\mathbb{R}^{d}\right)$ respectively. Also let

$$
\langle f, g\rangle:=\int_{\Omega} f g d m
$$

for any pair of measurable functions $f, g: \Omega \rightarrow \mathbb{C}$ such that $f g \in L^{1}(\Omega)$. For example, by Hölder's inequality, if $\langle f, g\rangle$ is defined for $f \in L^{p}(\Omega)$ and $g \in L^{q}(\Omega)$ when $q=\frac{p}{p-1}$. The following simple but useful remark will be used (typically without further comment) in the sequel.

Remark 17.1. Suppose $r, p, q \in[1, \infty]$ are such that $r^{-1}=p^{-1}+q^{-1}$ and $f_{t} \rightarrow f$ in $L^{p}(\Omega)$ and $g_{t} \rightarrow g$ in $L^{q}(\Omega)$ as $t \rightarrow 0$, then $f_{t} g_{t} \rightarrow f g$ in $L^{r}(\Omega)$. Indeed,

$$
\begin{aligned}
\left\|f_{t} g_{t}-f g\right\|_{r} & =\left\|\left(f_{t}-f\right) g_{t}+f\left(g_{t}-g\right)\right\|_{r} \\
& \leq\left\|f_{t}-f\right\|_{p}\left\|g_{t}\right\|_{q}+\|f\|_{p}\left\|g_{t}-g\right\|_{q} \rightarrow 0 \text { as } t \rightarrow 0
\end{aligned}
$$

Definition 17.2 (Weak Differentiability). Let $v \in \mathbb{R}^{d}$ and $f \in L^{p}(\Omega)\left(f \in L_{l o c}^{p}(\Omega)\right)$ then $\partial_{v} f$ is said to exist weakly in $L^{p}(\Omega)\left(L_{l o c}^{p}(\Omega)\right)$ if there exists a function $g \in L^{p}(\Omega)\left(g \in L_{l o c}^{p}(\Omega)\right)$ such that

$$
\begin{equation*}
\left\langle f, \partial_{v} \phi\right\rangle=-\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}(\Omega) \tag{17.1}
\end{equation*}
$$

The function g if it exists will be denoted by $\partial_{v}^{(w)} f$. (By Corollary 9.27, there is at most one $g \in L_{l o c}^{1}(\Omega)$ such that Eq. (17.1) holds, so $\partial_{v}^{(w)} f$ is well defined.)

Lemma 17.3. Suppose $f \in L_{l o c}^{1}(\Omega)$ and $\partial_{v}^{(w)} f$ exists weakly in $L_{l o c}^{1}(\Omega)$. Then
(1) $\operatorname{supp}_{m}\left(\partial_{v}^{(w)} f\right) \subset \operatorname{supp}_{m}(f)$, where $\operatorname{supp}_{m}(f)$ is the essential support of f relative to Lebesgue measure, see Definition 9.14.
(2) If f is continuously differentiable on $U \subset_{o} \Omega$, then $\partial_{v}^{(w)} f=\partial_{v} f$ a.e. on U.

Proof.

(1) Since

$$
\left\langle\partial_{v}^{(w)} f, \phi\right\rangle=-\left\langle f, \partial_{v} \phi\right\rangle=0 \text { for all } \phi \in C_{c}^{\infty}\left(\Omega \backslash \operatorname{supp}_{m}(f)\right)
$$

and application of Corollary 9.27 shows $\partial_{v}^{(w)} f=0$ a.e. on $\Omega \backslash \operatorname{supp}_{m}(f)$. So by Lemma 9.15, $\Omega \backslash \operatorname{supp}_{m}(f) \subset \Omega \backslash \operatorname{supp}_{m}\left(\partial_{v}^{(w)} f\right)$, i.e. $\operatorname{supp}_{m}\left(\partial_{v}^{(w)} f\right) \subset$ $\operatorname{supp}_{m}(f)$.
(2) Suppose that $\left.f\right|_{U}$ is C^{1} and let $\psi \in C_{c}^{\infty}(U)$ which we view as a function in $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ by setting $\psi \equiv 0$ on $\mathbb{R}^{d} \backslash U$. By Corollary 9.24 , there exists $\gamma \in C_{c}^{\infty}(\Omega)$ such that $0 \leq \gamma \leq 1$ and $\gamma=1$ in a neighborhood of $\operatorname{supp}(\psi)$. Then by setting $\gamma f=0$ on $\mathbb{R}^{d} \backslash \operatorname{supp}(\gamma)$ we may view $\gamma f \in C_{c}^{1}\left(\mathbb{R}^{d}\right)$ and so by standard integration by parts (see Lemma 9.25) and the ordinary product rule,

$$
\begin{align*}
\left\langle\partial_{v}^{(w)} f, \psi\right\rangle & =-\left\langle f, \partial_{v} \psi\right\rangle=-\left\langle\gamma f, \partial_{v} \psi\right\rangle \\
& =\left\langle\partial_{v}(\gamma f), \psi\right\rangle=\left\langle\partial_{v} \gamma \cdot f+\gamma \partial_{v} f, \psi\right\rangle=\left\langle\partial_{v} f, \psi\right\rangle \tag{17.2}
\end{align*}
$$

wherein the last equality we have used $\psi \partial_{v} \gamma=0$ and $\psi \gamma=\psi$. Since Eq. (17.2) is true for all $\psi \in C_{c}^{\infty}(U)$, an application of Corollary 9.27 with $h=\partial_{v}^{(w)} f(x)-\partial_{v} f(x)$ and $\mu=m$ shows $\partial_{v}^{(w)} f(x)=\partial_{v} f(x)$ for m - a.e. $x \in U$.

Lemma 17.4 (Product Rule). Let $f \in L_{l o c}^{1}(\Omega), v \in \mathbb{R}^{d}$ and $\phi \in C^{\infty}(\Omega)$. If $\partial_{v}^{(w)} f$ exists in $L_{l o c}^{1}(\Omega)$, then $\partial_{v}^{(w)}(\phi f)$ exists in $L_{l o c}^{1}(\Omega)$ and

$$
\partial_{v}^{(w)}(\phi f)=\partial_{v} \phi \cdot f+\phi \partial_{v}^{(w)} f \text { a.e. }
$$

Moreover if $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $F:=\phi f \in L^{1}$ (here we define F on \mathbb{R}^{d} by setting $F=0$ on $\left.\mathbb{R}^{d} \backslash \Omega\right)$, then $\partial^{(w)} F=\partial_{v} \phi \cdot f+\phi \partial_{v}^{(w)} f$ exists weakly in $L^{1}\left(\mathbb{R}^{d}\right)$.

Proof. Let $\psi \in C_{c}^{\infty}(\Omega)$, then

$$
\begin{aligned}
-\left\langle\phi f, \partial_{v} \psi\right\rangle & =-\left\langle f, \phi \partial_{v} \psi\right\rangle=-\left\langle f, \partial_{v}(\phi \psi)-\partial_{v} \phi \cdot \psi\right\rangle=\left\langle\partial_{v}^{(w)} f, \phi \psi\right\rangle+\left\langle\partial_{v} \phi \cdot f, \psi\right\rangle \\
& =\left\langle\phi \partial_{v}^{(w)} f, \psi\right\rangle+\left\langle\partial_{v} \phi \cdot f, \psi\right\rangle
\end{aligned}
$$

This proves the first assertion. To prove the second assertion let $\gamma \in C_{c}^{\infty}(\Omega)$ such that $0 \leq \gamma \leq 1$ and $\gamma=1$ on a neighborhood of $\operatorname{supp}(\phi)$. So for $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, using $\partial_{v} \gamma=0$ on $\operatorname{supp}(\phi)$ and $\gamma \psi \in C_{c}^{\infty}(\Omega)$, we find

$$
\begin{aligned}
\left\langle F, \partial_{v} \psi\right\rangle & =\left\langle\gamma F, \partial_{v} \psi\right\rangle=\left\langle F, \gamma \partial_{v} \psi\right\rangle=\left\langle(\phi f), \partial_{v}(\gamma \psi)-\partial_{v} \gamma \cdot \psi\right\rangle \\
& =\left\langle(\phi f), \partial_{v}(\gamma \psi)\right\rangle=-\left\langle\partial_{v}^{(w)}(\phi f),(\gamma \psi)\right\rangle \\
& =-\left\langle\partial_{v} \phi \cdot f+\phi \partial_{v}^{(w)} f, \gamma \psi\right\rangle=-\left\langle\partial_{v} \phi \cdot f+\phi \partial_{v}^{(w)} f, \psi\right\rangle
\end{aligned}
$$

This show $\partial_{v}^{(w)} F=\partial_{v} \phi \cdot f+\phi \partial_{v}^{(w)} f$ as desired.
Lemma 17.5. Suppose $p \in[1, \infty), v \in \mathbb{R}^{d}$ and $f \in L_{l o c}^{p}(\Omega)$.
(1) If there exists $\left\{f_{m}\right\}_{m=1}^{\infty} \subset L_{l o c}^{p}(\Omega)$ such that $\partial_{v}^{(w)} f_{m}$ exists in $L_{l o c}^{p}(\Omega)$ for all m and there exists $g \in L_{l o c}^{p}(\Omega)$ such that for all $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\lim _{m \rightarrow \infty}\left\langle f_{m}, \phi\right\rangle=\langle f, \phi\rangle \text { and } \lim _{m \rightarrow \infty}\left\langle\partial_{v} f_{m}, \phi\right\rangle=\langle g, \phi\rangle
$$

then $\partial_{v}^{(w)} f$ exists in $L_{l o c}^{p}(\Omega)$ and $\partial_{v} f=g$.
(2) If $\partial_{v}^{(w)} f$ exists in $L_{l o c}^{p}(\Omega)$ then there exists $f_{n} \in C_{c}^{\infty}(\Omega)$ such that $f_{n} \rightarrow f$ in $L^{p}(K)$ (i.e. $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{L^{p}(K)}=0$) and $\partial_{v} f_{n} \rightarrow \partial_{v}^{(w)} f$ in $L^{p}(K)$ for all $K \sqsubset \sqsubset \Omega$.

Proof.

(1) Since

$$
\left\langle f, \partial_{v} \phi\right\rangle=\lim _{m \rightarrow \infty}\left\langle f_{m}, \partial_{v} \phi\right\rangle=-\lim _{m \rightarrow \infty}\left\langle\partial_{v}^{(w)} f_{m}, \phi\right\rangle=\langle g, \phi\rangle
$$

for all $\phi \in C_{c}^{\infty}(\Omega), \partial_{v}^{(w)} f$ exists and is equal to $g \in L_{l o c}^{p}(\Omega)$.
(2) Let $K_{0}:=\emptyset$ and

$$
K_{n}:=\left\{x \in \Omega:|x| \leq n \text { and } d\left(x, \Omega^{c}\right) \geq 2 / n\right\}
$$

(so $K_{n} \subset K_{n+1}^{o} \subset K_{n+1}$ for all n and $K_{n} \uparrow \Omega$ as $n \rightarrow \infty$ or see Lemma 8.10) and choose $\psi_{n} \in C_{c}^{\infty}\left(K_{n}^{o},[0,1]\right)$ using Corollary 9.24 so that $\psi_{n}=1$ on a neighborhood of K_{n-1}. Given a compact set $K \subset \Omega$, for all sufficiently
large $m, \psi_{m} f=f$ on K and by Lemma 17.4 and item 1. of Lemma 17.3, we also have

$$
\partial_{v}^{(w)}\left(\psi_{m} f\right)=\partial_{v} \psi_{m} \cdot f+\psi_{m} \partial_{v}^{(w)} f=\partial_{v}^{(w)} f \text { on } K
$$

This argument shows we may assume $\operatorname{supp}_{m}(f)$ is a compact subset of Ω in which case we extend f to a function F on \mathbb{R}^{d} by setting $F=f$ on Ω and $F=0$ on Ω^{c}. This function F is in $L^{p}\left(\mathbb{R}^{d}\right)$ and $\partial_{v}^{(w)} F=\partial_{v}^{(w)} f$. Indeed, if $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is chosen so that $\operatorname{supp}(\psi) \subset \Omega, 0 \leq \psi \leq 1$ and $\psi=1$ in a neighborhood of $\operatorname{supp}_{m}(f)$, then

$$
\begin{aligned}
\left\langle F, \partial_{v} \phi\right\rangle & =\left\langle F, \psi \partial_{v} \phi\right\rangle=\left\langle f, \partial_{v}(\psi \phi)\right\rangle \\
& =-\left\langle\partial_{v}^{(w)} f, \psi \phi\right\rangle=-\left\langle\psi \partial_{v}^{(w)} f, \phi\right\rangle
\end{aligned}
$$

which shows $\partial_{v}^{(w)} F$ exist in $L^{p}\left(\mathbb{R}^{d}\right)$ and

$$
\partial_{v}^{(w)} F=\psi \partial_{v}^{(w)} f=1_{\Omega} \partial_{v}^{(w)} f
$$

Let $\chi \in C_{c}^{\infty}\left(B_{0}(1)\right)$ with $\int_{\mathbb{R}^{d}} \chi d m=1$ and set $\delta_{k}(x)=n^{d} \chi(n x)$. Then there exists $N \in \mathbb{N}$ and a compact subset $K \subset \Omega$ such that $f_{n}:=F * \delta_{n} \in$ $C_{c}^{\infty}(\Omega)$ and $\operatorname{supp}\left(f_{n}\right) \subset K$ for all $n \geq N$. By Proposition 9.23 and the definition of $\partial_{v}^{(w)} F$,

$$
\begin{aligned}
\partial_{v} f_{n}(x) & =F * \partial_{v} \delta_{n}(x)=\int_{\mathbb{R}^{d}} F(y) \partial_{v} \delta_{n}(x-y) d y \\
& =-\left\langle F, \partial_{v}\left[\delta_{n}(x-\cdot)\right]\right\rangle=\left\langle\partial_{v}^{(w)} F, \delta_{n}(x-\cdot)\right\rangle=\partial_{v}^{(w)} F * \delta_{n}(x)
\end{aligned}
$$

Hence by Theorem 9.20, $f_{n} \rightarrow F=f$ and $\partial_{v} f_{n} \rightarrow \partial_{v}^{(w)} F=\partial_{v}^{(w)} f$ in $L^{p}(\Omega)$ as $n \rightarrow \infty$.

Definition 17.6 (Strong Differentiability). Let $v \in \mathbb{R}^{d}$ and $f \in L^{p}$, then $\partial_{v} f$ is said to exist strongly in L^{p} if the $\lim _{t \rightarrow 0}\left(\tau_{-t v} f-f\right) / t$ exists in L^{p}, where as above $\tau_{v} f(x):=f(x-v)$. We will denote the limit by $\partial_{v}^{(s)} f$.

It is easily verified that if $f \in L^{p}, v \in \mathbb{R}^{d}$ and $\partial_{v}^{(s)} f \in L^{p}$ exists then $\partial_{v}^{(w)} f$ exists and $\partial_{v}^{(w)} f=\partial_{v}^{(s)} f$. To check this assertion, let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and then using Remark 17.1,

$$
\partial_{v}^{(s)} f \cdot \phi=L^{1}-\lim _{t \rightarrow 0} \frac{\tau_{-t v} f-f}{t} \phi .
$$

Hence

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \partial_{v}^{(s)} f \cdot \phi d m & =\lim _{t \rightarrow 0} \int_{\mathbb{R}^{d}} \frac{\tau_{-t v} f-f}{t} \phi d m=\lim _{t \rightarrow 0} \int_{\mathbb{R}^{d}} f \frac{\tau_{t v} \phi-\phi}{t} d m \\
& =\left.\frac{d}{d t}\right|_{0} \int_{\mathbb{R}^{d}} f \tau_{t v} \phi d m=\left.\int_{\mathbb{R}^{d}} f \cdot \frac{d}{d t}\right|_{0} \tau_{t v} \phi d m=-\int_{\mathbb{R}^{d}} f \cdot \partial_{v} \phi d m
\end{aligned}
$$

wherein we have used Corollary 5.43 to differentiate under the integral in the fourth equality. This shows $\partial_{v}^{(w)} f$ exists and is equal to $\partial_{v}^{(s)} f$. What is somewhat more surprising is that the converse assertion that if $\partial_{v}^{(w)} f$ exists then so does $\partial_{v}^{(s)} f$. The next theorem is a generalization of Theorem 10.36 from L^{2} to L^{p}.
Theorem 17.7 (Weak and Strong Differentiability). Suppose $p \in[1, \infty), f \in$ $L^{p}\left(\mathbb{R}^{d}\right)$ and $v \in \mathbb{R}^{d} \backslash\{0\}$. Then the following are equivalent:
(1) There exists $g \in L^{p}\left(\mathbb{R}^{d}\right)$ and $\left\{t_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} t_{n}=0$ and

$$
\lim _{n \rightarrow \infty}\left\langle\frac{f\left(\cdot+t_{n} v\right)-f(\cdot)}{t_{n}}, \phi\right\rangle=\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

(2) $\partial_{v}^{(w)} f$ exists and is equal to $g \in L^{p}\left(\mathbb{R}^{d}\right)$, i.e. $\left\langle f, \partial_{v} \phi\right\rangle=-\langle g, \phi\rangle$ for all $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.
(3) There exists $g \in L^{p}\left(\mathbb{R}^{d}\right)$ and $f_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $f_{n} \xrightarrow{L^{p}} f$ and $\partial_{v} f_{n} \xrightarrow{L^{p}} g$ as $n \rightarrow \infty$.
(4) $\partial_{v}^{(s)} f$ exists and is is equal to $g \in L^{p}\left(\mathbb{R}^{d}\right)$, i.e.

$$
\frac{f(\cdot+t v)-f(\cdot)}{t} \stackrel{L^{p}}{ } g \text { as } t \rightarrow 0
$$

Moreover if $p \in(1, \infty)$ any one of the equivalent conditions 1. - 4. above are implied by the following condition.
1^{\prime}. There exists $\left\{t_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} t_{n}=0$ and

$$
\sup _{n}\left\|\frac{f\left(\cdot+t_{n} v\right)-f(\cdot)}{t_{n}}\right\|_{p}<\infty
$$

Proof. 4. $\Longrightarrow 1$. is simply the assertion that strong convergence implies weak convergence.

1. $\Longrightarrow 2$. For $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
\langle g, \phi\rangle & =\lim _{n \rightarrow \infty}\left\langle\frac{f\left(\cdot+t_{n} v\right)-f(\cdot)}{t_{n}}, \phi\right\rangle=\lim _{n \rightarrow \infty}\left\langle f, \frac{\phi\left(\cdot-t_{n} v\right)-\phi(\cdot)}{t_{n}}\right\rangle \\
& =\left\langle f, \lim _{n \rightarrow \infty} \frac{\phi\left(\cdot-t_{n} v\right)-\phi(\cdot)}{t_{n}}\right\rangle=-\left\langle f, \partial_{v} \phi\right\rangle
\end{aligned}
$$

wherein we have used the translation invariance of Lebesgue measure and the dominated convergence theorem.
2. $\Longrightarrow 3$. Let $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ such that $\int_{\mathbb{R}^{d}} \phi(x) d x=1$ and let $\phi_{m}(x)=$ $m^{d} \phi(m x)$, then by Proposition 9.23, $h_{m}:=\phi_{m} * f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ for all m and

$$
\begin{aligned}
\partial_{v} h_{m}(x) & =\partial_{v} \phi_{m} * f(x)=\int_{\mathbb{R}^{d}} \partial_{v} \phi_{m}(x-y) f(y) d y=\left\langle f,-\partial_{v}\left[\phi_{m}(x-\cdot)\right]\right\rangle \\
& =\left\langle g, \phi_{m}(x-\cdot)\right\rangle=\phi_{m} * g(x)
\end{aligned}
$$

By Theorem 9.20, $h_{m} \rightarrow f \in L^{p}\left(\mathbb{R}^{d}\right)$ and $\partial_{v} h_{m}=\phi_{m} * g \rightarrow g$ in $L^{p}\left(\mathbb{R}^{d}\right)$ as $m \rightarrow \infty$. This shows 3. holds except for the fact that h_{m} need not have compact support. To fix this let $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{d},[0,1]\right)$ such that $\psi=1$ in a neighborhood of 0 and let $\psi_{\epsilon}(x)=\psi(\epsilon x)$ and $\left(\partial_{v} \psi\right)_{\epsilon}(x):=\left(\partial_{v} \psi\right)(\epsilon x)$. Then

$$
\partial_{v}\left(\psi_{\epsilon} h_{m}\right)=\partial_{v} \psi_{\epsilon} h_{m}+\psi_{\epsilon} \partial_{v} h_{m}=\epsilon\left(\partial_{v} \psi\right)_{\epsilon} h_{m}+\psi_{\epsilon} \partial_{v} h_{m}
$$

so that $\psi_{\epsilon} h_{m} \rightarrow h_{m}$ in L^{p} and $\partial_{v}\left(\psi_{\epsilon} h_{m}\right) \rightarrow \partial_{v} h_{m}$ in L^{p} as $\epsilon \downarrow 0$. Let $f_{m}=\psi_{\epsilon_{m}} h_{m}$ where ϵ_{m} is chosen to be greater than zero but small enough so that

$$
\left\|\psi_{\epsilon_{m}} h_{m}-h_{m}\right\|_{p}+\left\|\partial_{v}\left(\psi_{\epsilon_{m}} h_{m}\right) \rightarrow \partial_{v} h_{m}\right\|_{p}<1 / m
$$

Then $f_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), f_{m} \rightarrow f$ and $\partial_{v} f_{m} \rightarrow g$ in L^{p} as $m \rightarrow \infty$.
3. $\Longrightarrow 4$. By the fundamental theorem of calculus

$$
\begin{align*}
\frac{\tau_{-t v} f_{m}(x)-f_{m}(x)}{t} & =\frac{f_{m}(x+t v)-f_{m}(x)}{t} \\
& =\frac{1}{t} \int_{0}^{1} \frac{d}{d s} f_{m}(x+s t v) d s=\int_{0}^{1}\left(\partial_{v} f_{m}\right)(x+s t v) d s \tag{17.3}
\end{align*}
$$

Let

$$
G_{t}(x):=\int_{0}^{1} \tau_{-s t v} g(x) d s=\int_{0}^{1} g(x+s t v) d s
$$

which is defined for almost every x and is in $L^{p}\left(\mathbb{R}^{d}\right)$ by Minkowski's inequality for integrals, Theorem 7.27. Therefore

$$
\frac{\tau_{-t v} f_{m}(x)-f_{m}(x)}{t}-G_{t}(x)=\int_{0}^{1}\left[\left(\partial_{v} f_{m}\right)(x+s t v)-g(x+s t v)\right] d s
$$

and hence again by Minkowski's inequality for integrals,

$$
\left\|\frac{\tau_{-t v} f_{m}-f_{m}}{t}-G_{t}\right\|_{p} \leq \int_{0}^{1}\left\|\tau_{-s t v}\left(\partial_{v} f_{m}\right)-\tau_{-s t v} g\right\|_{p} d s=\int_{0}^{1}\left\|\partial_{v} f_{m}-g\right\|_{p} d s
$$

Letting $m \rightarrow \infty$ in this equation implies $\left(\tau_{-t v} f-f\right) / t=G_{t}$ a.e. Finally one more application of Minkowski's inequality for integrals implies,

$$
\begin{aligned}
\left\|\frac{\tau_{-t v} f-f}{t}-g\right\|_{p} & =\left\|G_{t}-g\right\|_{p}=\left\|\int_{0}^{1}\left(\tau_{-s t v} g-g\right) d s\right\|_{p} \\
& \leq \int_{0}^{1}\left\|\tau_{-s t v} g-g\right\|_{p} d s
\end{aligned}
$$

By the dominated convergence theorem and Proposition 9.13, the latter term tends to 0 as $t \rightarrow 0$ and this proves 4 .
$\left(1^{\prime} . \Longrightarrow 1\right.$. when $\left.p>1\right)$ This is a consequence of Theorem 16.27 which asserts, by passing to a subsequence if necessary, that $\frac{f\left(\cdot+t_{n} v\right)-f(\cdot)}{t_{n}} \xrightarrow{w} g$ for some $g \in L^{p}\left(\mathbb{R}^{d}\right)$.

Example 17.8. The fact that (1^{\prime}) does not imply the equivalent conditions 1 4 in Theorem 17.7 when $p=1$ is demonstrated by the following example. Let $f:=1_{[0,1]}$, then

$$
\int_{\mathbb{R}}\left|\frac{f(x+t)-f(x)}{t}\right| d x=\frac{1}{|t|} \int_{\mathbb{R}}\left|1_{[-t, 1-t]}(x)-1_{[0,1]}(x)\right| d x=2
$$

for $|t|<1$. For contradiction sake, suppose there exists $g \in L^{1}(\mathbb{R}, d m)$ such that

$$
\lim _{n \rightarrow \infty} \frac{f\left(x+t_{n}\right)-f(x)}{t_{n}}=g(x) \text { in } L^{1}
$$

for some sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ as above. Then for $\phi \in C_{c}^{\infty}(\mathbb{R})$ we would have on one hand,
$\int_{\mathbb{R}} \frac{f\left(x+t_{n}\right)-f(x)}{t_{n}} \phi(x) d x=\int_{\mathbb{R}} \frac{\phi\left(x-t_{n}\right)-\phi(x)}{t_{n}} f(x) d x \rightarrow-\int_{0}^{1} \phi^{\prime}(x) d x=(\phi(0)-\phi(1))$,
while on the other hand,

$$
\int_{\mathbb{R}} \frac{f\left(x+t_{n}\right)-f(x)}{t_{n}} \phi(x) d x \rightarrow \int_{\mathbb{R}} g(x) \phi(x) d x
$$

These two equations imply

$$
\begin{equation*}
\int_{\mathbb{R}} g(x) \phi(x) d x=\phi(0)-\phi(1) \text { for all } \phi \in C_{c}^{\infty}(\mathbb{R}) \tag{17.4}
\end{equation*}
$$

and in particular that $\int_{\mathbb{R}} g(x) \phi(x) d x=0$ for all $\phi \in C_{c}(\mathbb{R} \backslash\{0,1\})$. By Corollary 9.27, $g(x)=0$ for m - a.e. $x \in \mathbb{R} \backslash\{0,1\}$ and hence $g(x)=0$ for m - a.e. $x \in \mathbb{R}$. But this clearly contradicts Eq. (17.4). This example also shows that the unit ball in $L^{1}(\mathbb{R}, d m)$ is not sequentially weakly compact.

We will now give a couple of applications of Theorem 17.7.
Proposition 17.9. Let $\Omega \subset \mathbb{R}$ be an open interval and $f \in L_{l o c}^{1}(\Omega)$. Then $\partial^{w} f$ exists in $L_{\text {loc }}^{1}(\Omega)$ iff f has a continuous version \tilde{f} which is absolutely continuous on all compact subintervals of Ω. Moreover, $\partial^{w} f=\tilde{f}^{\prime}$ a.e., where $\tilde{f}^{\prime}(x)$ is the usual pointwise derivative.

Proof. If f is locally absolutely continuous and $\phi \in C_{c}^{\infty}(\Omega)$ with $\operatorname{supp}(\phi) \subset$ $[a, b] \subset \Omega$, then by Corollary 14.32,

$$
\int_{\Omega} f^{\prime} \phi d m=\int_{a}^{b} f^{\prime} \phi d m=-\int_{a}^{b} f \phi^{\prime} d m+\left.f \phi\right|_{a} ^{b}=-\int_{\Omega} f \phi^{\prime} d m
$$

This shows $\partial^{w} f$ exists and $\partial^{w} f=f^{\prime} \in L_{l o c}^{1}(\Omega)$.
Now suppose that $\partial^{w} f$ exists in $L_{l o c}^{1}(\Omega)$, let $[a, b]$ be a compact subinterval of Ω, $\psi \in C_{c}^{\infty}(\Omega)$ such that $\psi=1$ on a neighborhood of $[a, b]$ and $0 \leq \psi \leq 1$ on Ω and define $F:=\psi f$. By Lemma 17.4, $F \in L^{1}$ and $\partial^{(w)} F$ exists in L^{1} and is given by

$$
\partial^{(w)}(\psi f)=\psi^{\prime} f+\psi \partial^{(w)} f
$$

From Theorem 17.7 there exists $F_{n} \in C_{c}^{\infty}(\mathbb{R})$ such that $F_{n} \rightarrow F$ and $F_{n}^{\prime} \rightarrow \partial^{(w)} F$ in L^{1} as $n \rightarrow \infty$. Hence, using the fundamental theorem of calculus,

$$
\begin{equation*}
F_{n}(x)=\int_{-\infty}^{x} F_{n}^{\prime}(y) d y \rightarrow \int_{-\infty}^{x} \partial^{(w)} F(y) d y=: G(x) \tag{17.5}
\end{equation*}
$$

as $n \rightarrow \infty$. Since $F_{n} \rightarrow G$ pointwise and $F_{n} \rightarrow F$ in L^{1}, it follows that $F=\psi f=G$ a.e. In particular, $G=f$ a.e. on $[a, b]$ and we conclude that f has a continuous version on $[a, b]$, this version, $\left.G\right|_{[a, b]}$, is absolutely continuous on $[a, b]$ and by Eq. (17.5) and fundamental theorem of calculus for absolutely continuous functions (Theorem 14.31),

$$
G^{\prime}(x)=\partial^{(w)} F(x)=\partial^{(w)} f(x) \text { for } m \text { a.e. } x \in[a, b]
$$

Since $[a, b] \subset \Omega$ was an arbitrary compact subinterval and continuous versions of a measurable functions are unique if they exist, it follows from the above considerations that there exists a unique function $\tilde{f} \in C(\Omega)$ such that $\tilde{f}=\left.G\right|_{[a, b]}$ for all such pairs $([a, b], G)$ as above. The function \tilde{f} then satisfies all of the desired properties.

Because of Lemma 17.3, Theorem 17.7 and Proposition 17.9 it is now safe to simply write $\partial_{v} f$ for the ordinary partial derivative of f, the weak derivative $\partial_{v}^{(w)} f$ and the strong derivative $\partial_{v}^{(s)} f$.

Definition 17.10. Let X and Y be metric spaces. A function $f: X \rightarrow Y$ is said to be Lipschitz if there exists $C<\infty$ such that

$$
d^{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq C d^{X}\left(x, x^{\prime}\right) \text { for all } x, x^{\prime} \in X
$$

and said to be locally Lipschitz if for all compact subsets $K \subset X$ there exists $C_{K}<\infty$ such that

$$
d^{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leq C_{K} d^{X}\left(x, x^{\prime}\right) \text { for all } x, x^{\prime} \in K
$$

Proposition 17.11. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$ such that essential support, $\operatorname{supp}_{m}(f)$, is compact. Then there exists a Lipschitz function $F: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that $F=f$ a.e. iff $\partial_{v}^{(w)} f$ exists and is bounded for all $v \in \mathbb{R}^{d}$.

Proof. Suppose $f=F$ a.e. and F is Lipschitz and let $p \in(1, \infty)$. Since F is Lipschitz and has compact support, for all $0<|t| \leq 1$,

$$
\int_{\mathbb{R}^{d}}\left|\frac{f(x+t v)-f(x)}{t}\right|^{p} d x=\int_{\mathbb{R}^{d}}\left|\frac{F(x+t v)-F(x)}{t}\right|^{p} d x \leq \tilde{C}|v|^{p}
$$

where \tilde{C} is a constant depending on the size of the support of f and on the Lipschitz constant, C, for F. Therefore Theorem 17.7 may be applied to conclude $\partial_{v}^{(w)} f$ exists in L^{p} and moreover,

$$
\lim _{t \rightarrow 0} \frac{F(x+t v)-F(x)}{t}=\partial_{v}^{(w)} f(x) \text { for } m \text { - a.e. } x
$$

Since there exists $\left\{t_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R} \backslash\{0\}$ such that $\lim _{n \rightarrow \infty} t_{n}=0$ and

$$
\left|\partial_{v}^{(w)} f(x)\right|=\lim _{n \rightarrow \infty}\left|\frac{F\left(x+t_{n} v\right)-F(x)}{t_{n}}\right| \leq C|v| \text { for a.e. } x \in \mathbb{R}^{d}
$$

it follows that $\left\|\partial_{v}^{(w)} f\right\|_{\infty} \leq C|v|$ for all $v \in \mathbb{R}^{d}$.
Conversely, let ϕ_{m} be an approximate δ - function sequence as used in the proof of Theorem 17.7 and $f_{m}:=f * \phi_{m}$. Then $f_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right), \partial_{v} f_{m}=\partial_{v} f * \phi_{m}$, $\left|\partial_{v} f_{m}\right| \leq\left\|\partial_{v} f\right\|_{\infty}<\infty$ and therefore,
$\begin{aligned}\left|f_{m}(y)-f_{m}(x)\right| & =\left|\int_{0}^{1} \frac{d}{d t} f_{m}(x+t(y-x)) d t\right|=\left|\int_{0}^{1}(y-x) \cdot \nabla f_{m}(x+t(y-x)) d t\right| \\ & \leq \int_{0}^{1}|y-x| \cdot\left|\nabla f_{m}(x+t(y-x))\right| d t \leq C|y-x|\end{aligned}$
where C is a constant independent of m. By passing to a subsequence of the $\left\{\phi_{m}\right\}_{m=1}^{\infty}$ if necessary, we may assume that $\lim _{m \rightarrow \infty} f_{m}(x)=f(x)$ for m - a.e. $x \in \mathbb{R}^{d}$. Letting $m \rightarrow \infty$ in Eq. (17.6) then implies

$$
|f(y)-f(x)| \leq C|y-x| \text { for all } x, y \notin E
$$

where $E \subset \mathbb{R}^{d}$ is a m - null set. It is now easily verified that if $F: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is defined by $F=f$ on E^{c} and

$$
F(x)=\left\{\begin{array}{cll}
f(x) & \text { if } & x \notin E \\
\lim _{\substack{y \rightarrow x \\
y \notin E}} f(y) & \text { if } & x \in E
\end{array}\right.
$$

defines a Lipschitz function F on \mathbb{R}^{d} such that $F=f$ a.e.
Lemma 17.12. Let $v \in \mathbb{R}^{d}$.
(1) If $h \in L^{1}$ and $\partial_{v} h$ exists in L^{1}, then $\int_{\mathbb{R}^{d}} \partial_{v} h(x) d x=0$.
(2) If $p, q, r \in[1, \infty)$ satisfy $r^{-1}=p^{-1}+q^{-1}, f \in L^{p}$ and $g \in L^{q}$ are functions such that $\partial_{v} f$ and $\partial_{v} g$ exists in L^{p} and L^{q} respectively, then $\partial_{v}(f g)$ exists in L^{r} and $\partial_{v}(f g)=\partial_{v} f \cdot g+f \cdot \partial_{v} g$. Moreover if $r=1$ we have the integration by parts formula,

$$
\begin{equation*}
\left\langle\partial_{v} f, g\right\rangle=-\left\langle f, \partial_{v} g\right\rangle \tag{17.7}
\end{equation*}
$$

(3) If $p=1, \partial_{v} f$ exists in L^{1} and $g \in B C^{1}\left(\mathbb{R}^{d}\right)$ (i.e. $g \in C^{1}\left(\mathbb{R}^{d}\right)$ with g and its first derivatives being bounded) then $\partial_{v}(g f)$ exists in L^{1} and $\partial_{v}(f g)=$ $\partial_{v} f \cdot g+f \cdot \partial_{v} g$ and again Eq. (17.7) holds.

Proof. 1) By item 3. of Theorem 17.7 there exists $h_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $h_{n} \rightarrow h$ and $\partial_{v} h_{n} \rightarrow \partial_{v} h$ in L^{1}. Then

$$
\int_{\mathbb{R}^{d}} \partial_{v} h_{n}(x) d x=\left.\frac{d}{d t}\right|_{0} \int_{\mathbb{R}^{d}} h_{n}(x+t v) d x=\left.\frac{d}{d t}\right|_{0} \int_{\mathbb{R}^{d}} h_{n}(x) d x=0
$$

and letting $n \rightarrow \infty$ proves the first assertion.
2) Similarly there exists $f_{n}, g_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $f_{n} \rightarrow f$ and $\partial_{v} f_{n} \rightarrow \partial_{v} f$ in L^{p} and $g_{n} \rightarrow g$ and $\partial_{v} g_{n} \rightarrow \partial_{v} g$ in L^{q} as $n \rightarrow \infty$. So by the standard product rule and Remark 17.1, $f_{n} g_{n} \rightarrow f g \in L^{r}$ as $n \rightarrow \infty$ and

$$
\partial_{v}\left(f_{n} g_{n}\right)=\partial_{v} f_{n} \cdot g_{n}+f_{n} \cdot \partial_{v} g_{n} \rightarrow \partial_{v} f \cdot g+f \cdot \partial_{v} g \text { in } L^{r} \text { as } n \rightarrow \infty .
$$

It now follows from another application of Theorem 17.7 that $\partial_{v}(f g)$ exists in L^{r} and $\partial_{v}(f g)=\partial_{v} f \cdot g+f \cdot \partial_{v} g$. Eq. (17.7) follows from this product rule and item 1. when $r=1$.
3) Let $f_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $f_{n} \rightarrow f$ and $\partial_{v} f_{n} \rightarrow \partial_{v} f$ in L^{1} as $n \rightarrow \infty$. Then as above, $g f_{n} \rightarrow g f$ in L^{1} and $\partial_{v}\left(g f_{n}\right) \rightarrow \partial_{v} g \cdot f+g \partial_{v} f$ in L^{1} as $n \rightarrow \infty$. In particular if $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\left\langle g f, \partial_{v} \phi\right\rangle & =\lim _{n \rightarrow \infty}\left\langle g f_{n}, \partial_{v} \phi\right\rangle=-\lim _{n \rightarrow \infty}\left\langle\partial_{v}\left(g f_{n}\right), \phi\right\rangle \\
& =-\lim _{n \rightarrow \infty}\left\langle\partial_{v} g \cdot f_{n}+g \partial_{v} f_{n}, \phi\right\rangle=-\left\langle\partial_{v} g \cdot f+g \partial_{v} f, \phi\right\rangle .
\end{aligned}
$$

This shows $\partial_{v}(f g)$ exists (weakly) and $\partial_{v}(f g)=\partial_{v} f \cdot g+f \cdot \partial_{v} g$. Again Eq. (17.7) holds in this case by item 1. already proved.

Lemma 17.13. Let $p, q, r \in[1, \infty]$ satisfy $p^{-1}+q^{-1}=1+r^{-1}, f \in L^{p}, g \in L^{q}$ and $v \in \mathbb{R}^{d}$.
(1) If $\partial_{v} f$ exists strongly in L^{r}, then $\partial_{v}(f * g)$ exists strongly in L^{p} and

$$
\partial_{v}(f * g)=\left(\partial_{v} f\right) * g
$$

(2) If $\partial_{v} g$ exists strongly in L^{q}, then $\partial_{v}(f * g)$ exists strongly in L^{r} and

$$
\partial_{v}(f * g)=f * \partial_{v} g
$$

(3) If $\partial_{v} f$ exists weakly in L^{p} and $g \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, then $f * g \in C^{\infty}\left(\mathbb{R}^{d}\right), \partial_{v}(f * g)$ exists strongly in L^{r} and

$$
\partial_{v}(f * g)=f * \partial_{v} g=\left(\partial_{v} f\right) * g
$$

Proof. Items 1 and 2. By Young's inequality and simple computations:

$$
\begin{aligned}
\left\|\frac{\tau_{-t v}(f * g)-f * g}{t}-\left(\partial_{v} f\right) * g\right\|_{r} & =\left\|\frac{\tau_{-t v} f * g-f * g}{t}-\left(\partial_{v} f\right) * g\right\|_{r} \\
& =\left\|\left[\frac{\tau_{-t v} f-f}{t}-\left(\partial_{v} f\right)\right] * g\right\|_{r} \\
& \leq\left\|\frac{\tau_{-t v} f-f}{t}-\left(\partial_{v} f\right)\right\|_{p}\|g\|_{q}
\end{aligned}
$$

which tends to zero as $t \rightarrow 0$. The second item is proved analogously, or just make use of the fact that $f * g=g * f$ and apply Item 1 .

Using the fact that $g(x-\cdot) \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ and the definition of the weak derivative,

$$
\begin{aligned}
f * \partial_{v} g(x) & =\int_{\mathbb{R}^{d}} f(y)\left(\partial_{v} g\right)(x-y) d y=-\int_{\mathbb{R}^{d}} f(y)\left(\partial_{v} g(x-\cdot)\right)(y) d y \\
& =\int_{\mathbb{R}^{d}} \partial_{v} f(y) g(x-y) d y=\partial_{v} f * g(x)
\end{aligned}
$$

Item 3. is a consequence of this equality and items 1 . and 2.

17.1. Sobolev Spaces.

Notation 17.14. Let ∂^{α} be defined as in Notation 9.10 and $f \in L_{l o c}^{1}(\Omega)$. We say $\partial^{\alpha} f$ exists weakly in $L_{l o c}^{1}(\Omega)$ iff there exists $g \in L_{l o c}^{1}(\Omega)$ such that

$$
\left\langle f, \partial^{\alpha} \phi\right\rangle=(-1)^{|\alpha|}\langle g, \phi\rangle \text { for all } \phi \in C_{c}^{\infty}(\Omega)
$$

As usual g is unique if it exists and we will denote g by $\partial^{\alpha} f$.
Definition 17.15. For $p \in[1, \infty], k \in \mathbb{N}$ and Ω an open subset of \mathbb{R}^{d}, let

$$
W^{k, p}(\Omega):=\left\{f \in L^{p}(\Omega): \partial^{\alpha} f \in L^{p}(\Omega) \text { (weakly) for all }|\alpha| \leq k\right\}
$$

and define

$$
\|f\|_{W^{k, p}(\Omega)}:=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{L^{p}(\Omega)}
$$

Theorem 17.16. The space $W^{k, p}(\Omega)$ with the norm $\|\cdot\|_{W^{k, p}(\Omega)}$ is a Banach space.
Proof. Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty} \subset W^{k, p}(\Omega)$ is a Cauchy sequence, then $\left\{\partial^{\alpha} f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^{p}(\Omega)$ for all $|\alpha| \leq k$. By the completeness of $L^{p}(\Omega)$, there exists $g_{\alpha} \in L^{p}(\Omega)$ such that $g_{\alpha}=L^{p}-\lim _{n \rightarrow \infty} \partial^{\alpha} f_{n}$ for all $|\alpha| \leq k$. Therefore, for all $\phi \in C_{c}^{\infty}(\Omega)$,

$$
\left\langle f, \partial^{\alpha} \phi\right\rangle=\lim _{n \rightarrow \infty}\left\langle f_{n}, \partial^{\alpha} \phi\right\rangle=(-1)^{|\alpha|} \lim _{n \rightarrow \infty}\left\langle\partial^{\alpha} f_{n}, \phi\right\rangle=(-1)^{|\alpha|} \lim _{n \rightarrow \infty}\left\langle g_{\alpha}, \phi\right\rangle .
$$

This shows $\partial^{\alpha} f$ exists weakly and $g_{\alpha}=\partial^{\alpha} f$ a.e.
Example 17.17. Let Ω be an open subset of \mathbb{R}^{d}, then $H^{1}(\Omega):=W^{1,2}(\Omega)$ is a Hilbert space with inner product defined by

$$
(f, g)=\int_{\Omega} f \cdot \bar{g} d m+\int_{\Omega} \nabla f \cdot \nabla \bar{g} d m
$$

Proposition 17.18. $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $W^{k, p}\left(\mathbb{R}^{d}\right)$ for all $1 \leq p<\infty$.

Proof. The proof of this proposition is left an exercise to the reader. However, note that the assertion 2. implies 3. in Theorem 17.7 essentially proves the statement when $k=1$ and the same smooth approximations used in the proof of Theorem 17.7 will work here as well.

17.2. Hölder Spaces.

Notation 17.19. Let Ω be an open subset of $\mathbb{R}^{d}, B C(\Omega)$ and $B C(\bar{\Omega})$ be the bounded continuous functions on Ω and $\bar{\Omega}$ respectively. By identifying $f \in B C(\bar{\Omega})$ with $\left.f\right|_{\Omega} \in B C(\Omega)$, we will consider $B C(\bar{\Omega})$ as a subset of $B C(\Omega)$. For $u \in B C(\Omega)$ and $0<\beta \leq 1$ let

$$
\|u\|_{u}:=\sup _{x \in \Omega}|u(x)| \text { and }[u]_{\beta}:=\sup _{\substack{x, y \in \Omega \\ x \neq y}}\left\{\frac{|u(x)-u(y)|}{|x-y|^{\beta}}\right\}
$$

If $[u]_{\beta}<\infty$, we say u is $\beta-\mathbf{H o ̈ l d e r}$ continuous with holder exponent ${ }^{35} \beta$ and we let

$$
C^{0, \beta}(\Omega):=\left\{u \in B C(\Omega):[u]_{\beta}<\infty\right\}
$$

denote the space of Hölder continuous functions on Ω. For $u \in C^{0, \beta}(\Omega)$ let

$$
\begin{equation*}
\|u\|_{C^{0, \beta}(\Omega)}:=\|u\|_{u}+[u]_{\beta} \tag{17.8}
\end{equation*}
$$

Remark 17.20. If $u: \Omega \rightarrow \mathbb{C}$ and $[u]_{\beta}<\infty$ for some $\beta>1$, then u is constant on each connected component of Ω. Indeed, if $x \in \Omega$ and $h \in \mathbb{R}^{d}$ then

$$
\left|\frac{u(x+t h)-u(x)}{t}\right| \leq[u]_{\beta} t^{\beta} / t \rightarrow 0 \text { as } t \rightarrow 0
$$

which shows $\partial_{h} u(x)=0$ for all $x \in \Omega$. If $y \in \Omega$ is in the same connected component as x, then by Exercise 15.5 there exists as smooth curve $\sigma:[0,1] \rightarrow \Omega$ such that $\sigma(0)=x$ and $\sigma(1)=y$. So by the fundamental theorem of calculus and the chain rule,

$$
u(y)-u(x)=\int_{0}^{1} \frac{d}{d t} u(\sigma(t)) d t=\int_{0}^{1} 0 d t=0
$$

This is why we do not talk about Hölder spaces with Hölder exponents larger than 1.

Exercise 17.1. Suppose $u \in C^{1}(\Omega) \cap B C(\Omega)$ and $\partial_{i} u \in B C(\Omega)$ for $i=1,2, \ldots, d$. Show $[u]_{1}<\infty$, i.e. $u \in C^{0,1}(\Omega)$.
Theorem 17.21. Let Ω be an open subset of \mathbb{R}^{d}. Then
(1) $B C(\bar{\Omega})$ is a closed subspace of $B C(\Omega)$.
(2) Every element $u \in C^{0, \beta}(\Omega)$ has a unique extension to a continuous function (which we will still denote by u) on $\bar{\Omega}$. Therefore we may identify $C^{0, \beta}(\Omega)$ with a subspace of $B C(\bar{\Omega})$. We may also write $C^{0, \beta}(\Omega)$ as $C^{0, \beta}(\bar{\Omega})$ to emphasize this point.
(3) The function $u \in C^{0, \beta}(\Omega) \rightarrow\|u\|_{C^{0, \beta}(\Omega)} \in[0, \infty)$ is a norm on $C^{0, \beta}(\Omega)$ which make $C^{0, \beta}(\Omega)$ into a Banach space.

[^0]Proof. 1. The first item is trivial since for $u \in B C(\bar{\Omega})$, the sup-norm of u on $\bar{\Omega}$ agrees with the sup-norm on Ω and $B C(\bar{\Omega})$ is complete in this norm.
2. Suppose that $[u]_{\beta}<\infty$ and $x_{0} \in \partial \Omega$. Let $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \Omega$ be a sequence such that $x_{0}=\lim _{n \rightarrow \infty} x_{n}$. Then

$$
\left|u\left(x_{n}\right)-u\left(x_{m}\right)\right| \leq[u]_{\beta}\left|x_{n}-x_{m}\right|^{\beta} \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

showing $\left\{u\left(x_{n}\right)\right\}_{n=1}^{\infty}$ is Cauchy so that $\bar{u}\left(x_{0}\right):=\lim _{n \rightarrow \infty} u\left(x_{n}\right)$ exists. If $\left\{y_{n}\right\}_{n=1}^{\infty} \subset$ Ω is another sequence converging to x_{0}, then

$$
\left|u\left(x_{n}\right)-u\left(y_{n}\right)\right| \leq[u]_{\beta}\left|x_{n}-y_{n}\right|^{\beta} \rightarrow 0 \text { as } n \rightarrow \infty
$$

showing $\bar{u}\left(x_{0}\right)$ is well defined. In this way we define $\bar{u}(x)$ for all $x \in \partial \Omega$ and let $\bar{u}(x)=u(x)$ for $x \in \Omega$. Since a similar limiting argument shows

$$
|\bar{u}(x)-\bar{u}(y)| \leq[u]_{\beta}|x-y|^{\beta} \text { for all } x, y \in \bar{\Omega}
$$

it follows that \bar{u} is still continuous. In the sequel we will abuse notation and simply denote \bar{u} by u.
3. For $u, v \in C^{0, \beta}(\Omega)$,

$$
\begin{aligned}
{[v+u]_{\beta} } & =\sup _{\substack{x, y \in \Omega \\
x \neq y}}\left\{\frac{|v(y)+u(y)-v(x)-u(x)|}{|x-y|^{\beta}}\right\} \\
& \leq \sup _{\substack{x, y \in \Omega \\
x \neq y}}\left\{\frac{|v(y)-v(x)|+|u(y)-u(x)|}{|x-y|^{\beta}}\right\} \leq[v]_{\beta}+[u]_{\beta}
\end{aligned}
$$

and for $\lambda \in \mathbb{C}$ it is easily seen that $[\lambda u]_{\beta}=\lambda[u]_{\beta}$. This shows $[\cdot]_{\beta}$ is a semi-norm on $C^{0, \beta}(\Omega)$ and therefore $\|\cdot\|_{C^{0, \beta}(\Omega)}$ defined in Eq. (17.8) is a norm.

To see that $C^{0, \beta}(\Omega)$ is complete, let $\left\{u_{n}\right\}_{n=1}^{\infty}$ be a $C^{0, \beta}(\Omega)$-Cauchy sequence. Since $B C(\bar{\Omega})$ is complete, there exists $u \in B C(\bar{\Omega})$ such that $\left\|u-u_{n}\right\|_{u} \rightarrow 0$ as $n \rightarrow \infty$. For $x, y \in \Omega$ with $x \neq y$,

$$
\frac{|u(x)-u(y)|}{|x-y|^{\beta}}=\lim _{n \rightarrow \infty} \frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|^{\beta}} \leq \limsup _{n \rightarrow \infty}\left[u_{n}\right] \leq \lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{C^{0, \beta}(\Omega)}<\infty
$$

and so we see that $u \in C^{0, \beta}(\Omega)$. Similarly,

$$
\begin{aligned}
\frac{\left|u(x)-u_{n}(x)-\left(u(y)-u_{n}(y)\right)\right|}{|x-y|^{\beta}} & =\lim _{m \rightarrow \infty} \frac{\left|\left(u_{m}-u_{n}\right)(x)-\left(u_{m}-u_{n}\right)(y)\right|}{|x-y|^{\beta}} \\
& \leq \limsup _{m \rightarrow \infty}\left[u_{m}-u_{n}\right]_{\beta} \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

showing $\left[u-u_{n}\right]_{\beta} \rightarrow 0$ as $n \rightarrow \infty$ and therefore $\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{C^{0, \beta}(\Omega)}=0$.
Notation 17.22. Since Ω and $\bar{\Omega}$ are locally compact Hausdorff spaces, we may define $C_{0}(\Omega)$ and $C_{0}(\bar{\Omega})$ as in Definition 8.29. We will also let

$$
C_{0}^{0, \beta}(\Omega):=C^{0, \beta}(\Omega) \cap C_{0}(\Omega) \text { and } C_{0}^{0, \beta}(\bar{\Omega}):=C^{0, \beta}(\Omega) \cap C_{0}(\bar{\Omega})
$$

It has already been shown in Proposition 8.30 that $C_{0}(\Omega)$ and $C_{0}(\bar{\Omega})$ are closed subspaces of $B C(\Omega)$ and $B C(\bar{\Omega})$ respectively. The next proposition describes the relation between $C_{0}(\Omega)$ and $C_{0}(\bar{\Omega})$.
Proposition 17.23. Each $u \in C_{0}(\Omega)$ has a unique extension to a continuous function on $\bar{\Omega}$ given by $\bar{u}=u$ on Ω and $\bar{u}=0$ on $\partial \Omega$ and the extension \bar{u} is in $C_{0}(\bar{\Omega})$. Conversely if $u \in C_{0}(\bar{\Omega})$ and $\left.u\right|_{\partial \Omega}=0$, then $\left.u\right|_{\Omega} \in C_{0}(\Omega)$. In this way we may identify $C_{0}(\Omega)$ with those $u \in C_{0}(\bar{\Omega})$ such that $\left.u\right|_{\partial \Omega}=0$.

Proof. Any extension $u \in C_{0}(\Omega)$ to an element $\bar{u} \in C(\bar{\Omega})$ is necessarily unique, since Ω is dense inside $\bar{\Omega}$. So define $\bar{u}=u$ on Ω and $\bar{u}=0$ on $\partial \Omega$. We must show \bar{u} is continuous on $\bar{\Omega}$ and $\bar{u} \in C_{0}(\bar{\Omega})$.

For the continuity assertion it is enough to show \bar{u} is continuous at all points in $\partial \Omega$. For any $\epsilon>0$, by assumption, the set $K_{\epsilon}:=\{x \in \Omega:|u(x)| \geq \epsilon\}$ is a compact subset of Ω. Since $\partial \Omega=\bar{\Omega} \backslash \Omega, \partial \Omega \cap K_{\epsilon}=\emptyset$ and therefore the distance, $\delta:=d\left(K_{\epsilon}, \partial \Omega\right)$, between K_{ϵ} and $\partial \Omega$ is positive. So if $x \in \partial \Omega$ and $y \in \bar{\Omega}$ and $|y-x|<\delta$, then $|\bar{u}(x)-\bar{u}(y)|=|u(y)|<\epsilon$ which shows $\bar{u}: \bar{\Omega} \rightarrow \mathbb{C}$ is continuous. This also shows $\{|\bar{u}| \geq \epsilon\}=\{|u| \geq \epsilon\}=K_{\epsilon}$ is compact in Ω and hence also in $\bar{\Omega}$. Since $\epsilon>0$ was arbitrary, this shows $\bar{u} \in C_{0}(\bar{\Omega})$.

Conversely if $u \in C_{0}(\bar{\Omega})$ such that $\left.u\right|_{\partial \Omega}=0$ and $\epsilon>0$, then $K_{\epsilon}:=$ $\{x \in \bar{\Omega}:|u(x)| \geq \epsilon\}$ is a compact subset of $\bar{\Omega}$ which is contained in Ω since $\partial \Omega \cap K_{\epsilon}=\emptyset$. Therefore K_{ϵ} is a compact subset of Ω showing $\left.u\right|_{\Omega} \in C_{0}(\bar{\Omega})$.
Definition 17.24. Let Ω be an open subset of $\mathbb{R}^{d}, k \in \mathbb{N} \cup\{0\}$ and $\beta \in(0,1]$. Let $B C^{k}(\Omega)\left(B C^{k}(\bar{\Omega})\right)$ denote the set of k - times continuously differentiable functions u on Ω such that $\partial^{\alpha} u \in B C(\Omega)\left(\partial^{\alpha} u \in B C(\bar{\Omega})\right)^{36}$ for all $|\alpha| \leq k$. Similarly, let $B C^{k, \beta}(\Omega)$ denote those $u \in B C^{k}(\Omega)$ such that $\left[\partial^{\alpha} u\right]_{\beta}<\infty$ for all $|\alpha|=k$. For $u \in B C^{k}(\Omega)$ let

$$
\begin{aligned}
\|u\|_{C^{k}(\Omega)} & =\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{u} \text { and } \\
\|u\|_{C^{k, \beta}(\bar{\Omega})} & =\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} u\right\|_{u}+\sum_{|\alpha|=k}\left[\partial^{\alpha} u\right]_{\beta}
\end{aligned}
$$

Theorem 17.25. The spaces $B C^{k}(\Omega)$ and $B C^{k, \beta}(\Omega)$ equipped with $\|\cdot\|_{C^{k}(\Omega)}$ and $\|\cdot\|_{C^{k, \beta}(\bar{\Omega})}$ respectively are Banach spaces and $B C^{k}(\bar{\Omega})$ is a closed subspace of $B C^{k}(\Omega)$ and $B C^{k, \beta}(\Omega) \subset B C^{k}(\bar{\Omega})$. Also

$$
C_{0}^{k, \beta}(\Omega)=C_{0}^{k, \beta}(\bar{\Omega})=\left\{u \in B C^{k, \beta}(\Omega): \partial^{\alpha} u \in C_{0}(\Omega) \forall|\alpha| \leq k\right\}
$$

is a closed subspace of $B C^{k, \beta}(\Omega)$.
Proof. Suppose that $\left\{u_{n}\right\}_{n=1}^{\infty} \subset B C^{k}(\Omega)$ is a Cauchy sequence, then $\left\{\partial^{\alpha} u_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $B C(\Omega)$ for $|\alpha| \leq k$. Since $B C(\Omega)$ is complete, there exists $g_{\alpha} \in B C(\Omega)$ such that $\lim _{n \rightarrow \infty}\left\|\partial^{\alpha} u_{n}-g_{\alpha}\right\|_{u}=0$ for all $|\alpha| \leq k$. Letting $u:=g_{0}$, we must show $u \in C^{k}(\Omega)$ and $\partial^{\alpha} u=g_{\alpha}$ for all $|\alpha| \leq k$. This will be done by induction on $|\alpha|$. If $|\alpha|=0$ there is nothing to prove. Suppose that we have verified $u \in C^{l}(\Omega)$ and $\partial^{\alpha} u=g_{\alpha}$ for all $|\alpha| \leq l$ for some $l<k$. Then for $x \in \Omega$, $i \in\{1,2, \ldots, d\}$ and $t \in \mathbb{R}$ sufficiently small,

$$
\partial^{a} u_{n}\left(x+t e_{i}\right)=\partial^{a} u_{n}(x)+\int_{0}^{t} \partial_{i} \partial^{a} u_{n}\left(x+\tau e_{i}\right) d \tau
$$

Letting $n \rightarrow \infty$ in this equation gives

$$
\partial^{a} u\left(x+t e_{i}\right)=\partial^{a} u(x)+\int_{0}^{t} g_{\alpha+e_{i}}\left(x+\tau e_{i}\right) d \tau
$$

from which it follows that $\partial_{i} \partial^{\alpha} u(x)$ exists for all $x \in \Omega$ and $\partial_{i} \partial^{\alpha} u=g_{\alpha+e_{i}}$. This completes the induction argument and also the proof that $B C^{k}(\Omega)$ is complete.

[^1]It is easy to check that $B C^{k}(\bar{\Omega})$ is a closed subspace of $B C^{k}(\Omega)$ and by using Exercise 17.1 and Theorem 17.21 that that $B C^{k, \beta}(\Omega)$ is a subspace of $B C^{k}(\bar{\Omega})$. The fact that $C_{0}^{k, \beta}(\Omega)$ is a closed subspace of $B C^{k, \beta}(\Omega)$ is a consequence of Proposition 8.30.

To prove $B C^{k, \beta}(\Omega)$ is complete, let $\left\{u_{n}\right\}_{n=1}^{\infty} \subset B C^{k, \beta}(\Omega)$ be a $\|\cdot\|_{C^{k, \beta}(\bar{\Omega})}-$ Cauchy sequence. By the completeness of $B C^{k}(\Omega)$ just proved, there exists $u \in$ $B C^{k}(\Omega)$ such that $\lim _{n \rightarrow \infty}\left\|u-u_{n}\right\|_{C^{k}(\Omega)}=0$. An application of Theorem 17.21 then shows $\lim _{n \rightarrow \infty}\left\|\partial^{\alpha} u_{n}-\partial^{\alpha} u\right\|_{C^{0, \beta}(\Omega)}=0$ for $|\alpha|=k$ and therefore $\lim _{n \rightarrow \infty} \| u-$ $u_{n} \|_{C^{k, \beta}(\bar{\Omega})}=0$.

17.3. Exercises.

Exercise 17.2. Let $p \in\left[1, \infty\right.$), α be a multi index (if $\alpha=0$ let ∂^{0} be the identity operator on L^{p}),

$$
D\left(\partial^{\alpha}\right):=\left\{f \in L^{p}\left(\mathbb{R}^{n}\right): \partial^{\alpha} f \text { exists weakly in } L^{p}\left(\mathbb{R}^{n}\right)\right\}
$$

and for $f \in D\left(\partial^{\alpha}\right)$ (the domain of ∂^{α}) let $\partial^{\alpha} f$ denote the α - weak derivative of f. (See Notation 17.14.)
(1) Show ∂^{α} is a densely defined operator on L^{p}, i.e. $D\left(\partial^{\alpha}\right)$ is a dense linear subspace of L^{p} and $\partial^{\alpha}: D\left(\partial^{\alpha}\right) \rightarrow L^{p}$ is a linear transformation.
(2) Show $\partial^{\alpha}: D\left(\partial^{\alpha}\right) \rightarrow L^{p}$ is a closed operator, i.e. the graph,

$$
\Gamma\left(\partial^{\alpha}\right):=\left\{\left(f, \partial^{\alpha} f\right) \in L^{p} \times L^{p}: f \in D\left(\partial^{\alpha}\right)\right\}
$$

is a closed subspace of $L^{p} \times L^{p}$.
(3) Show $\partial^{\alpha}: D\left(\partial^{\alpha}\right) \subset L^{p} \rightarrow L^{p}$ is not bounded unless $\alpha=0$. (The norm on $D\left(\partial^{\alpha}\right)$ is taken to be the L^{p} - norm.)

Exercise 17.3. Let $p \in[1, \infty), f \in L^{p}$ and α be a multi index. Show $\partial^{\alpha} f$ exists weakly (see Notation 17.14) in L^{p} iff there exists $f_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}$ such that $f_{n} \rightarrow f$ and $\partial^{\alpha} f_{n} \rightarrow g$ in L^{p} as $n \rightarrow \infty$. Hint: One direction follows from Exercise 17.2. For the other direction, see the proof of Theorem 17.7.
Exercise 17.4. Folland 8.8 on p. 246.
Exercise 17.5. Assume $n=1$ and let $\partial=\partial_{e_{1}}$ where $e_{1}=(1) \in \mathbb{R}^{1}=\mathbb{R}$.
(1) Let $f(x)=|x|$, show ∂f exists weakly in $L_{l o c}^{1}(\mathbb{R})$ and $\partial f(x)=\operatorname{sgn}(x)$ for m - a.e. x.
(2) Show $\partial(\partial f)$ does not exists weakly in $L_{l o c}^{1}(\mathbb{R})$.
(3) Generalize item 1. as follows. Suppose $f \in C(\mathbb{R}, \mathbb{R})$ and there exists a finite set $\Lambda:=\left\{t_{1}<t_{2}<\cdots<t_{N}\right\} \subset \mathbb{R}$ such that $f \in C^{1}(\mathbb{R} \backslash \Lambda, \mathbb{R})$. Assuming $\partial f \in L_{l o c}^{1}(\mathbb{R})$, show ∂f exists weakly and $\partial^{(w)} f(x)=\partial f(x)$ for m - a.e. x.

Exercise 17.6. Suppose that $f \in L_{l o c}^{1}(\Omega)$ and $v \in \mathbb{R}^{d}$ and $\left\{e_{j}\right\}_{j=1}^{n}$ is the standard basis for \mathbb{R}^{d}. If $\partial_{j} f:=\partial_{e_{j}} f$ exists weakly in $L_{l o c}^{1}(\Omega)$ for all $j=1,2, \ldots, n$ then $\partial_{v} f$ exists weakly in $L_{l o c}^{1}(\Omega)$ and $\partial_{v} f=\sum_{j=1}^{n} v_{j} \partial_{j} f$.
Exercise 17.7. Show Proposition 17.11 generalizes as follows. Let Ω be an open subset of \mathbb{R}^{d} and $f \in L_{l o c}^{1}(\Omega)$, then there exists a locally Lipschitz function $F: \Omega \rightarrow$ \mathbb{C} such that $F=f$ a.e. iff $\partial_{v}^{(w)} f$ exists and is locally bounded for all $v \in \mathbb{R}^{d}$. (Here we say $\partial_{v}^{(w)} f$ is locally bounded if for all compact subsets $K \subset \Omega$, there exists a constant $M_{K}<\infty$ such that $\left|\partial_{v}^{(w)} f(x)\right| \leq M_{K}$ for m - a.e. $x \in K$.

Exercise 17.8. Suppose, $f \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ and $\partial_{v} f$ exists weakly and $\partial_{v} f=0$ in $L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ for all $v \in \mathbb{R}^{d}$. Then there exists $\lambda \in \mathbb{C}$ such that $f(x)=\lambda$ for m - a.e. $x \in \mathbb{R}^{d}$. Hint: See steps 1. and 2. in the outline given in Exercise 17.9 below.
Exercise 17.9. (A generalization of Exercise 17.8.) Suppose Ω is a connected open subset of \mathbb{R}^{d} and $f \in L_{l o c}^{1}(\Omega)$. If $\partial^{\alpha} f=0$ weakly for $\alpha \in \mathbb{Z}_{+}^{n}$ with $|\alpha|=N+1$, then $f(x)=p(x)$ for m - a.e. x where $p(x)$ is a polynomial of degree at most N. Here is an outline.
(1) Suppose $x_{0} \in \Omega$ and $\epsilon>0$ such that $C:=C_{x_{0}}(\epsilon) \subset \Omega$ and let δ_{n} be a sequence of approximate δ - functions such $\operatorname{supp}\left(\delta_{n}\right) \subset B_{0}(1 / n)$ for all n. Then for n large enough, $\partial^{\alpha}\left(f * \delta_{n}\right)=\left(\partial^{\alpha} f\right) * \delta_{n}$ on C for $|\alpha|=N+1$. Now use Taylor's theorem to conclude there exists a polynomial p_{n} of degree at most N such that $f_{n}=p_{n}$ on C.
(2) Show $p:=\lim _{n \rightarrow \infty} p_{n}$ exists on C and then let $n \rightarrow \infty$ in step 1. to show there exists a polynomial p of degree at most N such that $f=p$ a.e. on C.
(3) Use Taylor's theorem to show if p and q are two polynomials on \mathbb{R}^{d} which agree on an open set then $p=q$.
(4) Finish the proof with a connectedness argument using the results of steps 2. and 3. above.

Exercise 17.10. Suppose $\Omega \subset_{o} \mathbb{R}^{d}$ and $v, w \in \mathbb{R}^{d}$. Assume $f \in L_{l o c}^{1}(\Omega)$ and that $\partial_{v} \partial_{w} f$ exists weakly in $L_{l o c}^{1}(\Omega)$, show $\partial_{w} \partial_{v} f$ also exists weakly and $\partial_{w} \partial_{v} f=\partial_{v} \partial_{w} f$.
Exercise 17.11. Let $d=2$ and $f(x, y)=1_{x \geq 0}$. Show $\partial^{(1,1)} f=0$ weakly in $L_{\text {loc }}^{1}$ despite the fact that $\partial_{1} f$ does not exist weakly in $L_{l o c}^{1}$!

[^0]: ${ }^{35}$ If $\beta=1, u$ is is said to be Lipschitz continuous.

[^1]: ${ }^{36}$ To say $\partial^{\alpha} u \in B C(\bar{\Omega})$ means that $\partial^{\alpha} u \in B C(\Omega)$ and $\partial^{\alpha} u$ extends to a continuous function on $\bar{\Omega}$.

