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17. WEAK AND STRONG DERIVATIVES AND SOBOLEV SPACES

For this section, let  be an open subset of RY, p,q,r € [1,00], LP(Q)) =
LP(Q,Bg,m) and L} () = L (Q,Bq, m), where m is Lebesgue measure on Bga

loc

and Bg is the Borel o — algebra on Q. If Q = R?, we will simply write L? and Ly
for LP(R?) and L} (R?) respectively. Also let

loc
= gd
<f, g> / f m

for any pair of measurable functions f,g : Q — C such that fg € L'(Q). For
example, by Holder’s inequality, if (f,g) is defined for f € LP(Q) and g € LI(Q)
when ¢ = %. The following simple but useful remark will be used (typically
without further comment) in the sequel.

Remark 17.1. Suppose ,p,q € [1,00] are such that r~! = p~t + ¢! and f; — f
in LP(Q) and g; — ¢ in LI(Q) as t — 0, then f;g: — fg in L" (). Indeed,

1fege — foll, = I(fe = ) ge + F (9 — 9l
< fe = fllp Ngellg + A1, lge — glly = 0 as £ —0

Definition 17.2 (Weak Differentiability). Let v € R% and f € LP(Q) (f € LL (Q))
then 9,f is said to exist weakly in LP(Q) (L} (€)) if there exists a function
g€ LP(Q) (g€ Ll (Q)) such that

loc

(17.1) (f, 0p0) = —(g, @) for all p € C(Q).

The function g if it exists will be denoted by 81(,1”) f. (By Corollary 9.27, there is at
most one g € L} () such that Eq. (17.1) holds, so 81(,w)f is well defined.)

loc

Lemma 17.3. Suppose f € L} .(Q) and &(,w)f exists weakly in L}, (). Then

loc loc

(1) suppm(&(,w)f) C supp,,(f), where supp,,(f) is the essential support of f
relative to Lebesque measure, see Definition 9.14.

(2) If f is continuously differentiable on U C, Q, then 875w)f =0,f a.e. onU.

Proof.
(1) Since

(05 f,¢) = —(f,Dpp) = 0 for all ¢ € C=(Q\ supp,y,(f)),

and application of Corollary 9.27 shows 81(,w)f =0 a.e. on Q\ supp,,(f)-
So by Lemma 9.15, Q\ supp,,, (f) C Q\suppm(&(}w)f), ie. suppm(&(,w)f) C
supp,, (f)-

(2) Suppose that f|y is C* and let 1 € C°(U) which we view as a function
in C°(R?) by setting ¥ = 0 on R?\ U. By Corollary 9.24, there exists
v € C°(9) such that 0 <+ <1 and v =1 in a neighborhood of supp(?).
Then by setting vf = 0 on R? \ supp(y) we may view vf € C}(R%) and
so by standard integration by parts (see Lemma 9.25) and the ordinary
product rule,

(05 f,4b) = —(f, D) = —(vf, 0ut))
(17.2) = (3y (Vf), ) = (Do - f + 70 f, ) = (Do f, )
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wherein the last equality we have used ¥3d,y = 0 and ¥y = 9. Since Eq.
(17.2) is true for all ¢p € C°(U), an application of Corollary 9.27 with
h = é)f,w)f(:n) — Opf(z) and p = m shows quw)f(x) = 0, f(x) for m — a.e.
zeU.

|

Lemma 17.4 (Product Rule). Let f € L}, (), v € R? and ¢ € C=(Q). If o) f
(Q), then o) (¢f) exists in L},.(2) and
O (6) = 0u6 - [+ 000" f a.e.
Moreover if ¢ € C®(RY) and F := ¢f € L' (here we define F on RY by setting
F=00onR\Q ), then 9 F =0,¢- f + qﬁ&(,w)f exists weakly in L'(R?).
Proof. Let ¢ € C°(Q), then

—(0f, 0u) = —(f, $0b) = —(f, By ($0) — Db - ) = (OS) f, ) + (Db - £, )
= (05 f,0) + (00 - £,1)).

This proves the first assertion. To prove the second assertion let v € C°(Q) such
that 0 <y <1 and v = 1 on a neighborhood of supp(¢). So for ¢ € C°(R?), using
Oyy = 0 on supp(¢) and vy € C°(2), we find

(F,000) = (YF, 000) = (F,70u0) = ((&f) , 00 (vih) — Dy - )
= {(6£), 0y (y)) = —(0") (8f) , (v¥))
= (06 [+ 000" f,) = — (06~ [+ 00" f, ).
This show é)q(,w)F =0,0- f+ ¢81(,w)f as desired. =
Lemma 17.5. Suppose p € [1,00), v € R and f € L} (D).

loc
(1) If there exists {fm}y_q C LI () such that O™ £ exists in LP. (Q) for

loc
all m and there exists g € LY (Q) such that for all ¢ € C°(R2),

loc

nllij)floo<f7rza¢> = <f7 ¢> and mlgnoo<8@fmv¢> = <gv¢>
then S f exists in LP (Q) and d,f = g.

loc
(2) If O f exists in LY () then there exists f, € C°(QY) such that f, — f
in LP(K) (i.e. limy oo [|f — fn“Lv(K) = 0) and 9, fn — 81()w)f in LP(K)
for all K CC Q.
Proof.

(1) Since
(,000) = 1 (fn, 00) =
for all ¢ € C°(QY), &(,w)f exists and is equal to g € L} ().
(2) Let Ko :=0 and
K, :={zeQ:|z| <nand d(z,Q°) > 2/n}

(so K, C Kf,y C Kyy for all n and K, T  as n — oo or see Lemma
8.10) and choose 1, € C*(K2,[0,1]) using Corollary 9.24 so that ¢, =1
on a neighborhood of K,,_1. Given a compact set K C €2, for all sufficiently

exists in L,

im <81(1w)fm7¢> = <gv¢>

-1
m—0o0



332 BRUCE K. DRIVER'

large m, ¥, f = f on K and by Lemma 17.4 and item 1. of Lemma 17.3,
we also have

a[()w) <wmf) = av'ébm ! f + '(/Jmal()w)f = aq()w)f on K.

This argument shows we may assume supp,, (f) is a compact subset of Q
in which case we extend f to a function F' on R? by setting F = f on Q

and F' = 0 on Q°. This function F is in LP (Rd) and 81(,w)F = 81(,w)f. Indeed,
if ¢ € C°(RY) and ¢ € C°(R?) is chosen so that supp(y)) C Q,0 <y <1
and ¥ = 1 in a neighborhood of supp,,(f), then
(F,0p0) = (F,10,¢) = (f, 0y (¥9))
= (0§ f,9¢) = —(wd() £, 9)
which shows 9\ F exist in LP (R9) and
OV F = 4ol f = 105" f.

Let x € C°(By(1)) with [y, xdm =1 and set 6x(z) = nx(nx). Then
there exists N € N and a compact subset K C € such that f,, :== F'x 6, €
C*(Q2) and supp(f,) C K for all n > N. By Proposition 9.23 and the

definition of 81()w)F ,
By fol) = F 5 8,6, (x) = / F(y)0u6,(x — y)dy
Rd
= —(F,0, [6n(z —)]) = (O F,6,(x —-)) = O\ F x 6, ().

Hence by Theorem 9.20, f,, — F = f and 0, f,, — N F = &(,w)f in LP(2)
as n — oo.
|

Definition 17.6 (Strong Differentiability). Let v € R? and f € LP, then 9, f is
said to exist strongly in L? if the lim;_,o (7_¢, f — f) /t exists in LP, where as above

Tof(x) := f(z — v). We will denote the limit by .

It is easily verified that if f € LP, v € R% and 81(,8) f € LP exists then é)f,w) f exists
and 9 f= o f- To check this assertion, let ¢ € C°(R9) and then using Remark

17.1,
) f o= [ i =t =
O f ¢ =L lim =20,
Hence
/ O f - pdm = lim Totf = i = tim [ 722 =
R4 t—0 Rd t t—0 R4

d d
=2l | frodm = [ £ Slorudn =~ [ f-,0am.

wherein we have used Corollary 5.43 to differentiate under the integral in the fourth
equality. This shows af}”) f exists and is equal to 8755) f. What is somewhat more
surprising is that the converse assertion that if Bf,w) f exists then so does 81(,5) f- The
next theorem is a generalization of Theorem 10.36 from L? to LP.

Theorem 17.7 (Weak and Strong Differentiability). Suppose p € [1,00), f €
LP(R?) and v € R?\ {0}. Then the following are equivalent:
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(1) There exists g € LP(RY) and {t,},-; C R\ {0} such that lim, o t, = 0
and

i (L E0) = 5O

n—oo tn

,0) = (g,0) for all ¢ € C(R?).

(2) &(,w)f exists and is equal to g € LP(RY), i.e. (f,0,0) = —(g,$) for all
# € C(RY).

(3) There exists g € LP(R?) and f, € C°(R?) such that f, 22 f and Oy fr L g
as m — o0o.

(4) O f exists and is is equal to g € LP(RY), i.e.

fCtt) - f0) o

; —gast—0.
Moreover if p € (1,00) any one of the equivalent conditions 1. — 4. above are
implied by the following condition.
1'. There exists {t,},-, C R\ {0} such that lim, .. t, =0 and

‘f(""tnv) _f()
2

< 00.
P

sup
n

Proof. 4. = 1. is simply the assertion that strong convergence implies weak

convergence.
1. = 2. For ¢ € C°(RY),

{9,9) = n{lgj%?_m?@ = lim (f, %ﬁ?“b(%
:4ﬂ£&ﬂ:%91ﬂ%:fmmw

wherein we have used the translation invariance of Lebesgue measure and the dom-
inated convergence theorem.

2. = 3. Let ¢ € C°(R%,R) such that [p, ¢(z)dz = 1 and let ¢y, (z) =
m?¢(maz), then by Proposition 9.23, h,, := ¢, * f € C°(R?) for all m and

Ophm () = Oppm * f(z) = /]Rd Outm(z —y) f(y)dy = (f, =0y [dm (x — -)])

= (9:0m (& =) = dm * g(2).

By Theorem 9.20, h,,, — f € L?(R%) and 0,h,, = ¢ *g — g in LP(R?) as m — oo.
This shows 3. holds except for the fact that h,, need not have compact support.
To fix this let ¥ € C°(R,[0,1]) such that ¢ = 1 in a neighborhood of 0 and let

Ye(r) = Y(ex) and (9,%), () := (Ov®) (€x). Then
81) (wehm) = a1)7/}6hm + ¢eavhm =€ (81)7/})5 hm, + ¢eavhm

so that Yehy, — hp, in LP and 0y, (Yehm) — Oyl in LP as € | 0. Let fr, = e, hm
where €, is chosen to be greater than zero but small enough so that

1%be, m — hme + 1100 (Ve m) — avhm”p <1/m.

Then f,, € C°(R?), f,, — f and O, fr, — g in LP as m — oo.
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3. = 4. By the fundamental theorem of calculus
T—tvfm(z) - fm(x) _ fm(x + tv) - fm(x)
t t

(17.3) = % /01 disfm(ac + stv)ds = /01 (Oy fm) (x + stv)ds.

1 1
Gi(z) 5:/ T_stog (@ / g(x + stv)d
0 0

which is defined for almost every z and is in LP?(RY) by Minkowski’s inequality for
integrals, Theorem 7.27. Therefore

T—tvfm(x) — fm(g:)
t

Let

—Gy(w) = /O (Do fon) (2 + 5t0) — gla + stv)] ds

and hence again by Minkowski’s inequality for integrals,

1 1
T—toJm — Jm
T=tofm = fm < / 17— st0 Do) — 7 stogl], ds = / 100 fn — g1l ds.
P 0 0

t — G

Letting m — oo in this equation implies (7_4, f — f) /t = G a.e. Finally one more
application of Minkowski’s inequality for integrals implies,

_ 1
L{f - /0 (Tfstvg - g) ds

1
S / HT—stvg_ngdS'
0

By the dominated convergence theorem and Proposition 9.13, the latter term tends
to 0 as t — 0 and this proves 4.
(1. = 1. when p > 1) This is a consequence of Theorem 16.27 which asserts, by

9| =G —gl, =
p p

passing to a subsequence if necessary, that w 2 g for some g € LP(R?).
|

Example 17.8. The fact that (1’) does not imply the equivalent conditions 1 —
4 in Theorem 17.7 when p = 1 is demonstrated by the following example. Let
f = 1[0’1], then

/ M dﬂczi/|1[—t1_t]($)_1[01](x)|dx:2
i el Je " ’

t
for |t| < 1. For contradiction sake, suppose there exists g € L'(R,dm) such that

lim fl@+t,) — fz)

n—00 tn

=g(x) in L*

for some sequence {t,} -, as above. Then for ¢ € C>°(R) we would have on one
hand,

/ — / = ) )z — / @) = (6(0)-6(1),

while on the other hand,

/fx—i—t dx—>/
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These two equations imply
(17.4) /g(m)¢(m)dm = ¢(0) — ¢(1) for all ¢ € C°(R)
R

and in particular that [, g(x)¢(z)dz = 0 for all ¢ € C.(R\{0,1}). By Corollary
9.27, g(x) = 0 for m — a.e. x € R\ {0,1} and hence g(z) = 0 for m — a.e. x € R.
But this clearly contradicts Eq. (17.4). This example also shows that the unit ball
in L'(R, dm) is not sequentially weakly compact.

We will now give a couple of applications of Theorem 17.7.

Proposition 17.9. Let @ C R be an open interval and f € L}, .(Q2). Then 0" f
exists in L}, () iff f has a continuous version f which is absolutely continuous on
all compact subintervals of Q. Moreover, OV f = f' a.e., where f'(z) is the usual

pointwise derivative.

Proof. If f is locally absolutely continuous and ¢ € C°(Q2) with supp(¢) C
[a,b] C £, then by Corollary 14.32,

/Qf/qﬁdm:/abf'sbdm:—/(lbf¢’dm+f¢|g=—/gf¢’dm.

This shows 9% f exists and ¥ f = f’ € L} ().

loc
Now suppose that 0* f exists in L},,.(f), let [a,b] be a compact subinterval of €2,

P € C°(Q) such that ) = 1 on a neighborhood of [a,b] and 0 < 9 < 1 on 2 and
define F := ¢ f. By Lemma 17.4, F € L' and 0(")F exists in L' and is given by

oW () = ¢'f + 9™ f.
From Theorem 17.7 there exists F,, € C°(R) such that F, — F and F. — W F
in L' as n — oo. Hence, using the fundamental theorem of calculus,

(17.5) Fuo) = [ " F )y — / "9 F(y)dy = G(a)

as n — o0. Since F,, — G pointwise and F},, — F in L', it follows that F = ¢ f = G
a.e. In particular, G = f a.e. on [a,b] and we conclude that f has a continuous
version on [a, b], this version, G|, ), is absolutely continuous on [a,b] and by Eq.
(17.5) and fundamental theorem of calculus for absolutely continuous functions
(Theorem 14.31),

G (z) = O F(z) = 8™ f(x) for m a.e. x € [a,b)].

Since [a, b] C Q was an arbitrary compact subinterval and continuous versions of a
measurable functions are unique if they exist, it follows from the above considera-
tions that there exists a unique function f € C(£2) such that f = G|, for all such
pairs ([a, ], G) as above. The function f then satisfies all of the desired properties.
|

Because of Lemma 17.3, Theorem 17.7 and Proposition 17.9 it is now safe to
simply write 0, f for the ordinary partial derivative of f, the weak derivative 81(,“)) f
and the strong derivative 9" f.

Definition 17.10. Let X and Y be metric spaces. A function f: X — Y is said
to be Lipschitz if there exists C < oo such that

d* (f(z), f(2)) < Cd* (z,2’) for all w2’ € X
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and said to be locally Lipschitz if for all compact subsets K C X there exists
Ck < oo such that

d¥ (f(z), f(a) < Crd™(z,2) for all 2,2’ € K.

Proposition 17.11. Let f € L'(R?) such that essential support, supp,,(f), is
compact. Then there exists a Lipschitz function F : R* — C such that F = f a.e.

iff 85’“)f exists and is bounded for all v € R?.

Proof. Suppose f = F a.e. and F is Lipschitz and let p € (1,00). Since F' is
Lipschitz and has compact support, for all 0 < |t < 1,

/ flz+tv) — f(x) pdw:/ F(z +tv) — F(x) |
Rd Rd

dz < C v,
t t
where C is a constant depending on the size of the support of f and on the Lipschitz

constant, C, for F. Therefore Theorem 17.7 may be applied to conclude &(,w) f exists
in LP and moreover,

lim F(x+tv) — F(x)
t—0 t

Since there exists {t,},-; C R\ {0} such that lim, ¢, = 0 and

F(z +t,v) — F(x)
129

=9\ f(x) for m — a.e. .

‘3£w)f($)) = lim ‘ < Clv| for ae. x € R,

n—oo

it follows that H&(,w)fH < Cv| for all v € R
0

Conversely, let ¢,, be an approximate § — function sequence as used in the
proof of Theorem 17.7 and f,, := f * ¢, Then f,, € C(RY), Oy frn = Ouf * G,
|0v fm| < 1|0v f|| o < 00 and therefore,

1 1
) = ) = | [ Gyt ety =20 = | [0 =) Wt 1ty - o)

1
(17.6) s/o ly— | - [V fonl + t(y — )| dt < Cly — 1]

where C' is a constant independent of m. By passing to a subsequence of the
{¢m}oo_, if necessary, we may assume that lim,, .o fm(z) = f(z) for m — a.e.
x € RZ. Letting m — oo in Eq. (17.6) then implies

[f(y) = f@)| <Cly—af forall z,y ¢ E

where E ¢ R% is a m — null set. It is now easily verified that if F : R¢ — C is
defined by F = f on E° and

f(z) if z¢FE

F(z) = lim, ., fy) if z€kFE
y¢E

defines a Lipschitz function F' on R? such that F = f a.e. m

Lemma 17.12. Let v € R%.
(1) If h e L* and 8,h exists in L*, then [, Oyh(z)dz = 0.
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(2) If p,q,r € [1,00) satisfy r—t =p~ L +q~, f € LP and g € LY are functions
such that 0, f and 0,9 exists in LP and L9 respectively, then 0,(fg) exists in
L" and 0,(fg) = Ouf-g+ f-0vg. Moreover if r = 1 we have the integration
by parts formula,

(17.7) (Ouf,g) = —(f.0vg)-

(3) If p=1, O,f ewists in L' and g € BCY(RY) (i.e. g € C*(RY) with g and
its first derivatives being bounded) then 0,(gf) ewists in L* and 0,(fg) =
Owf g+ f-0vg and again Eq. (17.7) holds.

Proof. 1) By item 3. of Theorem 17.7 there exists h, € C°(RY) such that
h, — h and O,h,, — Oyh in L. Then

d

d
[ ou(o)is = o /R e+ to)dz = /R o (2)dzz = 0

and letting n — oo proves the first assertion.

2) Similarly there exists f,,, g, € C2°(R?) such that f, — f and 9, f, — 0, f in
LP and g, — ¢ and 0,9, — 0yg in LY as n — oo. So by the standard product rule
and Remark 17.1, f,9, — fg € L" as n — oo and

8v(fngn) =0ufn Gn+ frn Ougn — Ouf g+ f-0ugin L" as n — oo.

It now follows from another application of Theorem 17.7 that 0,(fg) exists in L"
and 0, (fg) = 0uf - g+ f - Ovg. Eq. (17.7) follows from this product rule and item
1. when r = 1.

3) Let f, € C(RY) such that f,, — f and 0, f, — 0, f in L* as n — oo. Then
as above, gf, — gf in L' and 8,(9f,) — O0vg - f + g0y f in L' as n — oo. In
particular if ¢ € C°(R%), then

<gf7 av¢> = nh_{go<gfn7 8v¢> = - HILII;O<8D (gfn) 7¢>

= 1—>H;c<avg : fn +gavfna¢> = _<avg : f+gavf’ ¢>

n

This shows 0,(fg) exists (weakly) and 9,(fg) = 0, f - g+ f - Ovg. Again Eq. (17.7)
holds in this case by item 1. already proved. m

Lemma 17.13. Let p,q,7 € [1,00] satisfy p™* + ¢t =1+r"1 fe LP, ge L4
and v € R

(1) If Oy f exists strongly in L, then O,(f * g) exists strongly in LP and
Ou(f*g) = (9uf) * 9.

(2) If Opg exists strongly in L1, then O,(f x g) exists strongly in L™ and
Ou(f xg) = [+ Oug.

(3) If Oy f exists weakly in LP and g € C=°(RY), then fxg € C(RY), 9,(f *g)
exists strongly in L™ and

u(f xg) = fx0pg = (0uf) xg.
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Proof. Items 1 and 2. By Young’s inequality and simple computations:

T—“’(f*f)_f*g—(avf)*g = M—(avf)*g
_ [w_@f)]*g
< | ==L )| ol

which tends to zero as ¢ — 0. The second item is proved analogously, or just make
use of the fact that f * g = g * f and apply Item 1.
Using the fact that g(z —-) € C2°(R?) and the definition of the weak derivative,

frug@) = [ 1) @) =)y == [ £0) @uglo =) ()
= [ 21wt =)y = 0, + gla).

Item 3. is a consequence of this equality and items 1. and 2. =

17.1. Sobolev Spaces.
Notation 17.14. Let % be defined as in Notation 9.10 and f € L}, (). We say

loc

9 f exists weakly in L, () iff there exists g € L, .(Q) such that
(f,0%¢) = (—1)!*l(g,¢) for all ¢ € C°().
As usual g is unique if it exists and we will denote g by 0°f.
Definition 17.15. For p € [1,00], k € N and Q an open subset of R?, let
WhEP(Q) .= {f € LP(Q) : 0°f € LP(Q) (weakly) for all |a| <k}
and define
1f lwkw ) = Z 10%Fll Lo () -

la|<k
Theorem 17.16. The space WP (Q) with the norm [llyr.0(y is @ Banach space.

Proof. Suppose that {f,} =, C W"P(Q) is a Cauchy sequence, then {0 f,,} 2,
is a Cauchy sequence in LP(Q) for all |a| < k. By the completeness of LP(Q2), there
exists g, € LP(Q) such that g, = LP— lim,_,o, 0% f, for all |a| < k. Therefore, for
all ¢ € C(9),

(f,0°¢) = lim (fn,0%6) = (- lim (0 fy¢) = (~1)'*! lim (g 6).

This shows 9% f exists weakly and g, = 0“f a.e. ®

Example 17.17. Let Q be an open subset of R?, then H'(Q) := WH2(Q) is a
Hilbert space with inner product defined by

(f;g):/52f'§dm+/QVf~V§dm.

Proposition 17.18. C(R%) is dense in WP (R?) for all 1 < p < oo.
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Proof. The proof of this proposition is left an exercise to the reader. How-
ever, note that the assertion 2. implies 3. in Theorem 17.7 essentially proves the
statement when k = 1 and the same smooth approximations used in the proof of
Theorem 17.7 will work here as well. m

17.2. Hoélder Spaces.

Notation 17.19. Let © be an open subset of R, BC(Q) and BC(2) be the
bounded continuous functions on € and €2 respectively. By identifying f € BC(£2)
with flq € BC(Q), we will consider BC(Q) as a subset of BC(£2). For u € BC(1)
and 0 < 5 <1 let

o) )}

|, := sup |u(x)| and |u]g := sup
full = sup ute)] and fuly = sup { D=

z,yeN
z#y

If [u]g < oo, we say u is 3 — Holder continuous with holder exponent®> 3 and we
let

CYP(Q) == {u € BC(Q) : [u]s < oo}
denote the space of Holder continuous functions on Q. For u € C%#(Q) let
(17.8) [ullcos @y = llullu + [uls-
Remark 17.20. If u : Q — C and [u]s < oo for some 8 > 1, then w is constant on
each connected component of Q. Indeed, if z € Q and h € R? then

u(z +th) — u(z)

" < [ulpt?Jt —0ast — 0

which shows dpu(z) = 0 for all z € Q. If y € Q is in the same connected component
as z, then by Exercise 15.5 there exists as smooth curve o : [0,1] — € such that
o(0) = x and o(1) = y. So by the fundamental theorem of calculus and the chain
rule,

1 1
u(y) —u(z) = /0 %u(a(t))dt = /0 0dt=0.

This is why we do not talk about Holder spaces with Holder exponents larger than
1.

Exercise 17.1. Suppose u € C1(Q) N BC(Q) and d;u € BC(Q) for i =1,2,...,d.
Show [u]; < oo, i.e. u € COL(Q).

Theorem 17.21. Let Q be an open subset of R%. Then

(1) BC(Q) is a closed subspace of BC(Q).

(2) Every element u € C*P(Q) has a unique extension to a continuous function
(which we will still denote by u) on Q. Therefore we may identify C%P(Q)
with a subspace of BC(Q). We may also write C%P () as C%#(Q) to em-
phasize this point.

(3) The function u € C%P(Q) — lullco.s(q) € [0,00) is a norm on CYB(Q)
which make C%P(Q) into a Banach space.

351f B =1, u is is said to be Lipschitz continuous.
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Proof. 1. The first item is trivial since for u € BC(€), the sup-norm of u on {2
agrees with the sup-norm on €2 and BC(f) is complete in this norm.

2. Suppose that [u]g < co and z¢ € 9. Let {z,},-; C Q be a sequence such
that z¢g = lim,, .o ©,,. Then

lu(xn) — w(@m)| < [ulg|zn — Zm|” — 0 as m,n — 0o
showing {u(z,)}, -, is Cauchy so that @(xo) := lim,, o u(x,) exists. If {y,} ~, C
Q is another sequence converging to xg, then
(@) = ulyn)| < [ulg [2n = yal” — 0 as n — oo,

showing @(xg) is well defined. In this way we define @(z) for all © € 9Q and let
(z) = u(x) for z € Q. Since a similar limiting argument shows

a(z) — a(y)| < [ulg |z —y|” for all z,y € Q

it follows that @ is still continuous. In the sequel we will abuse notation and simply
denote u by wu.
3. For u,v € C*#(Q),

[U + U]B = sup { |U(y) + U(y) — U(x) — u(gj)| }

m,zyfﬁ ‘.’E - y|B
[v(y) = v(@)] + |uly) — u(z)|
<é§3{ |z —yl? }SWM+WM

and for A € C it is easily seen that [Au]g = Alu]g. This shows [-]g is a semi-norm
on C%#(Q) and therefore || - ||co.5(q) defined in Eq. (17.8) is a norm.

To see that C%#(Q) is complete, let {u,}oo, be a C%?()-Cauchy sequence.
Since BC(Q) is complete, there exists u € BC(Q2) such that ||u —u,|/, — 0 as
n — oo. For z,y € Q with x # y,

M—uéyﬂ = lim M—ug(yﬂ <limsuplu,] < Hm |Jug, || co.s ) < oo,
|z -yl nmee o —y n—co e
and so we see that v € C%#(Q). Similarly,
u(z) = un(2) = (Wly) —un@)] _ o [ = 1) (@) = (4 — ) (y)]
B o —ylB
|z — gyl m—oo |z —yl

< limsup[um, — uplg — 0 as n — oo,

m—00

showing [u — u,]s — 0 as n — oo and therefore lim,, oo || — Un|[co.8(0) = 0. W

Notation 17.22. Since Q and Q) are locally compact Hausdorff spaces, we may
define Cy(€2) and Cp(2) as in Definition 8.29. We will also let

CIP(Q) := COP(Q) N Co(Q) and CIP(Q) := COP () N Co (D).
It has already been shown in Proposition 8.30 that Co(£2) and Cy(f2) are closed

subspaces of BC(Q2) and BC(f2) respectively. The next proposition describes the

relation between Cp(Q2) and Cy(2).

Proposition 17.23. Each u € Cy(R?) has a unique extension to a continuous
function on Q given by @ = u on Q and @ = 0 on 0 and the extension @ is in
Co(Q). Conversely if u € Co(Q) and u|pq = 0, then ulg € Co(Q). In this way we
may identify Co(Q) with those u € Co(Q) such that u|pg = 0.
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Proof. Any extension u € Cy(Q2) to an element % € C(Q) is necessarily unique,
since €2 is dense inside Q. So define % = u on 2 and @ = 0 on 9. We must show @
is continuous on Q and @ € Cp().

For the continuity assertion it is enough to show # is continuous at all points
in 9. For any € > 0, by assumption, the set K. := {x € Q: |u(z)| > €} is a
compact subset of . Since 9Q = Q\ Q, 92N K. = 0 and therefore the distance,
§ = d(K.,00), between K. and 99 is positive. So if z € 9Q and y € Q and
ly — x| < 6, then |ii(x) — i(y)| = |u(y)| < € which shows @ : Q — C is continuous.
This also shows {|i| > ¢} = {|u| > ¢} = K. is compact in © and hence also in €.
Since € > 0 was arbitrary, this shows @ € Cp(€2).

Conversely if v € Cp(Q) such that ulpg = 0 and € > 0, then K, :=
{z €Q:|u(z)] > €} is a compact subset of Q which is contained in Q since
90N K, = (). Therefore K, is a compact subset of {2 showing u|o € Cp(2). m

Definition 17.24. Let © be an open subset of R?, k € NU{0} and 3 € (0,1]. Let
BC*(Q) (BCk(€)) denote the set of k — times continuously differentiable functions
u on Q such that 0%u € BC(Q) (0%u € BC(Q))3¢ for all |a| < k. Similarly, let
BCkP(Q) denote those u € BC¥(2) such that [0%u]sz < oo for all |a| = k. For
u € BC*(Q) let

lullcr) = D 19%ull, and

la| <k
|u||ck5 @ = Z 10%ullu + Z [0%u]
lo| <k lo| =k

Theorem 17.25. The spaces BC*() and BC*P(Q) equipped with | - ||crq) and
| - llcrsgm respectively are Banach spaces and BC*(Q) is a closed subspace of
BCk(Q) and BCH8(Q) ¢ BC*(Q). Also

CEA(Q) = CPP(Q) = {u e BC*P(Q): %u e Co() V |al < k}
is a closed subspace of BC*P(Q).

Proof. Suppose that {u,} -, C BC¥(Q) is a Cauchy sequence, then {0%u, }oo
is a Cauchy sequence in BC(Q) for |a| < k. Since BC(R?) is complete, there exists
ga € BC(Q) such that lim, o [|0%Upn — gall, = 0 for all |a| < k. Letting u := go,
we must show u € C¥(Q) and 0% = g, for all |a| < k. This will be done by
induction on |a|. If |o| = 0 there is nothing to prove. Suppose that we have

verified u € C'(Q) and 0%u = g, for all || < I for some [ < k. Then for z € €,
i€{1,2,...,d} and t € R sufficiently small,

t
O%up(x + te;) = 0%up(x) + / 0;0%up (x + Te;)dr.
0
Letting n — oo in this equation gives
t
0%u(x + te;) = 0%u(x) + / Jorte; (T + TE)dT
0

from which it follows that 0;0%u(x) exists for all € Q and 0;0%u = gate,. This
completes the induction argument and also the proof that BC*(Q) is complete.

36T say 0°u € BC(Q) means that 9w € BC(Q) and 8%u extends to a continuous function
on Q.
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It is easy to check that BC*() is a closed subspace of BC*(Q) and by using
Exercise 17.1 and Theorem 17.21 that that BC*# () is a subspace of BC*(Q). The
fact that Ci”(Q) is a closed subspace of BC¥#() is a consequence of Proposition
8.30.

To prove BC*A(Q) is complete, let {u,}>o, € BC*A(Q) be a || - lews@) —
Cauchy sequence. By the completeness of BC*(Q) just proved, there exists u €
BC*(9) such that lim,, . lu—un||ck @) = 0. An application of Theorem 17.21 then
shows limy, oo [[0%un — 0%Ul| o5y = 0 for |a] = k and therefore limy, .o [|u —
17.3. Exercises.

Exercise 17.2. Let p € [1,00), a be a multi index (if & = 0 let 3° be the identity
operator on LP),

D(0%) :={f € LP(R") : 0 f exists weakly in LP(R™)}

and for f € D(9*) (the domain of 9%) let 0“ f denote the o — weak derivative of f.
(See Notation 17.14.)

(1) Show 9“ is a densely defined operator on LP, i.e. D(9*) is a dense linear
subspace of L? and 0% : D(0%) — L” is a linear transformation.
(2) Show 9% : D(9%) — LP is a closed operator, i.e. the graph,
[(0%) :={(f,0%f) e I? x L? : f € D(8%)},
is a closed subspace of LP x LP.
(3) Show 9% : D(9%) C LP — LP is not bounded unless @ = 0. (The norm on
D(0%) is taken to be the LP — norm.)

Exercise 17.3. Let p € [1,00), f € L? and « be a multi index. Show 9% exists
weakly (see Notation 17.14) in LP iff there exists f, € C°(R") and g € L such
that f, — f and 0“f,, — ¢ in LP as n — oo. Hint: One direction follows from
Exercise 17.2. For the other direction, see the proof of Theorem 17.7.

Exercise 17.4. Folland 8.8 on p. 246.

Exercise 17.5. Assume n =1 and let d = §,, where e; = (1) € R = R.
(1) Let f(z) = |z|, show Of exists weakly in L}, .(R) and df(x) = sgn(z) for
m—a.e. T.
(2) Show 9(0f) does not exists weakly in L} (R).
(3) Generalize item 1. as follows. Suppose f € C(R,R) and there exists a finite
set A= {t; <ty <--- <ty} C R such that f € C}(R\ A,R). Assuming
df € L _(R), show 0f exists weakly and ) f(z) = df(z) for m — a.e. z.

loc

Exercise 17.6. Suppose that f € Lj,.(?) and v € R? and {e;}"_, is the standard

basis for R If 9; f := 9., f exists weakly in L}, (Q) for all j = 1,2,...,n then 0, f
exists weakly in Lj,.(Q) and 9, f = 37, v;0; f.

Exercise 17.7. Show Proposition 17.11 generalizes as follows. Let €2 be an open
subset of R? and f € L} (f2), then there exists a locally Lipschitz function ' : Q —

loc
C such that F' = f a.e. iff af,“’>f exists and is locally bounded for all v € R?. (Here
we say 81(,w) f is locally bounded if for all compact subsets K C 2, there exists a

61(,1“)]‘(35)) < Mg for m —a.e. z € K.

constant My < oo such that
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Exercise 17.8. Suppose, f € L} (R%) and 0,f exists weakly and 9,f = 0 in
L} (R?) for all v € R Then there exists A € C such that f(z) = A for m — a.e.

x € R%. Hint: See steps 1. and 2. in the outline given in Exercise 17.9 below.

Exercise 17.9. (A generalization of Exercise 17.8.) Suppose 2 is a connected open
subset of R and f € L], (). If 0° f = 0 weakly for a € Z" with |a| = N +1, then
f(z) = p(z) for m — a.e. & where p(z) is a polynomial of degree at most N. Here

is an outline.

(1) Suppose zg € © and € > 0 such that C := Cy,(¢e) C  and let J,, be a
sequence of approximate d — functions such supp(é,) C By(1/n) for all n.
Then for n large enough, 9%(f *d,) = (0% f) *d,, on C for || = N+ 1. Now
use Taylor’s theorem to conclude there exists a polynomial p,, of degree at
most N such that f, = p, on C.

(2) Show p := lim,,— o py, exists on C and then let n — oo in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on C.

(3) Use Taylor’s theorem to show if p and ¢ are two polynomials on R? which
agree on an open set then p = q.

(4) Finish the proof with a connectedness argument using the results of steps
2. and 3. above.

Exercise 17.10. Suppose Q C, R? and v,w € R%. Assume f € L} (Q) and that

loc

0,0y [ exists weakly in L}OC(Q), show 0,0, f also exists weakly and 0,0, f = 9,04 f.

Exercise 17.11. Let d = 2 and f(z,y) = 1,5¢. Show 0V f = 0 weakly in L},
despite the fact that 0y f does not exist weakly in L}, !



