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18. Fourier Transform

The underlying space in this section is Rn with Lebesgue measure. The Fourier
inversion formula is going to state that

(18.1) f(x) =

µ
1

2π

¶n Z
Rn

dξeiξx
Z
Rn

dyf(y)e−iyξ.

If we let ξ = 2πη, this may be written as

f(x) =

Z
Rn

dηei2πηx
Z
Rn

dyf(y)e−iy2πη

and we have removed the multiplicative factor of
¡
1
2π

¢n
in Eq. (18.1) at the expense

of placing factors of 2π in the arguments of the exponential. Another way to avoid
writing the 2π’s altogether is to redefine dx and dξ and this is what we will do here.

Notation 18.1. Let m be Lebesgue measure on Rn and define:

dx =

µ
1√
2π

¶n
dm(x) and dξ ≡

µ
1√
2π

¶n
dm(ξ).

To be consistent with this new normalization of Lebesgue measure we will redefine
kfkp and hf, gi as

kfkp =
µZ

Rn
|f(x)|p dx

¶1/p
=

Ãµ
1

2π

¶n/2 Z
Rn
|f(x)|p dm(x)

!1/p
and

hf, gi :=
Z
Rn

f(x)g(x)dx when fg ∈ L1.

Similarly we will define the convolution relative to these normalizations by fFg :=¡
1
2π

¢n/2
f ∗ g, i.e.

fFg(x) =

Z
Rn

f(x− y)g(y)dy =

Z
Rn

f(x− y)g(y)

µ
1

2π

¶n/2
dm(y).

The following notation will also be convenient; given a multi-index α ∈ Zn+, let
|α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
and

Dα
x =

µ
1

i

¶|α|µ
∂

∂x

¶α
=

µ
1

i

∂

∂x

¶α
.

Also let

hxi := (1 + |x|2)1/2

and for s ∈ R let
νs(x) = (1 + |x|)s.
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18.1. Fourier Transform.

Definition 18.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=
Z
Rn

e−ix·ξf(x)dx(18.2)

g∨(x) = F−1g(x) =
Z
Rn

eix·ξg(ξ)dξ = Fg(−x)(18.3)

The next theorem summarizes some more basic properties of the Fourier trans-
form.

Theorem 18.3. Suppose that f, g ∈ L1. Then

(1) f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ kfk1 .

(2) For y ∈ Rn, (τyf) ˆ(ξ) = e−iy·ξf̂(ξ).
(3) The Fourier transform takes convolution to products, i.e. (fFg)ˆ = f̂ ĝ.

(4) For f, g ∈ L1, hf̂ , gi = hf, ĝi.
(5) If T : Rn → Rn is an invertible linear transformation, then

(f ◦ T )∧ (ξ) = |detT |−1 f̂(¡T−1¢∗ ξ) and
(f ◦ T )∨ (ξ) = |detT |−1 f∨(¡T−1¢∗ ξ)

(6) If (1+ |x|)kf(x) ∈ L1, then f̂ ∈ Ck and ∂αf̂ ∈ C0 for all |α| ≤ k. Moreover,

(18.4) ∂αξ f̂(ξ) = F [(−ix)α f(x)] (ξ)
for all |α| ≤ k.

(7) If f ∈ Ck and ∂αf ∈ L1 for all |α| ≤ k, then (1 + |ξ|)kf̂(ξ) ∈ C0 and

(18.5) (∂αf)ˆ (ξ) = (iξ)αf̂(ξ)

for all |α| ≤ k.
(8) Suppose g ∈ L1(Rk) and h ∈ L1(Rn−k) and f = g ⊗ h, i.e.

f(x) = g(x1, . . . , xk)h(xk+1, . . . , xn),

then f̂ = ĝ ⊗ ĥ.

Proof. Item 1. is the Riemann Lebesgue Lemma 9.26. Items 2. — 5. are proved
by the following straight forward computations:

(τyf) ˆ(ξ) =

Z
Rn

e−ix·ξf(x− y)dx =

Z
Rn

e−i(x+y)·ξf(x)dx = e−iy·ξf̂(ξ),

hf̂ , gi =
Z
Rn

f̂(ξ)g(ξ)dξ =

Z
Rn
dξg(ξ)

Z
Rn
dxe−ix·ξf(x)

=

Z
Rn×Rn

dxdξe−ix·ξg(ξ)f(x) =
Z
Rn×Rn

dxĝ(x)f(x) = hf, ĝi,

(fFg)
ˆ
(ξ) =

Z
Rn

e−ix·ξfFg(x)dx =

Z
Rn

e−ix·ξ
µZ

Rn
f(x− y)g(y)dy

¶
dx

=

Z
Rn
dy

Z
Rn
dxe−ix·ξf(x− y)g(y) =

Z
Rn
dy

Z
Rn
dxe−i(x+y)·ξf(x)g(y)

=

Z
Rn
dye−iy·ξg(y)

Z
Rn
dxe−ix·ξf(x) = f̂(ξ)ĝ(ξ)
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and letting y = Tx so that dx = |detT |−1 dy
(f ◦ T )ˆ (ξ) =

Z
Rn

e−ix·ξf(Tx)dx =
Z
Rn

e−iT
−1y·ξf(y) |detT |−1 dy

= |detT |−1 f̂(¡T−1¢∗ ξ).
Item 6. is simply a matter of differentiating under the integral sign which is easily
justified because (1 + |x|)kf(x) ∈ L1.
Item 7. follows by using Lemma 9.25 repeatedly (i.e. integration by parts) to

find

(∂αf)ˆ (ξ) =

Z
Rn

∂αx f(x)e
−ix·ξdx = (−1)|α|

Z
Rn

f(x)∂αx e
−ix·ξdx

= (−1)|α|
Z
Rn

f(x)(−iξ)αe−ix·ξdx = (iξ)αf̂(ξ).

Since ∂αf ∈ L1 for all |α| ≤ k, it follows that (iξ)αf̂(ξ) = (∂αf)ˆ (ξ) ∈ C0 for all
|α| ≤ k. Since

(1 + |ξ|)k ≤
Ã
1 +

nX
i=1

|ξi|
!k

=
X
|α|≤k

cα |ξα|

where 0 < cα <∞,¯̄̄
(1 + |ξ|)k f̂(ξ)

¯̄̄
≤
X
|α|≤k

cα

¯̄̄
ξαf̂(ξ)

¯̄̄
→ 0 as ξ →∞.

Item 8. is a simple application of Fubini’s theorem.

Example 18.4. If f(x) = e−|x|
2/2 then f̂(ξ) = e−|ξ|

2/2, in short

(18.6) Fe−|x|2/2 = e−|ξ|
2/2 and F−1e−|ξ|2/2 = e−|x|

2/2.

More generally, for t > 0 let

(18.7) pt(x) := t−n/2e−
1
2t |x|2

then

(18.8) bpt(ξ) = e−
t
2 |ξ|2 and (bpt)∨(x) = pt(x).

By Item 8. of Theorem 18.3, to prove Eq. (18.6) it suffices to consider the 1 —

dimensional case because e−|x|
2/2 =

Qn
i=1 e

−x2i/2. Let g(ξ) :=
³
Fe−x2/2

´
(ξ) , then

by Eq. (18.4) and Eq. (18.5),
(18.9)

g0(ξ) = F
h
(−ix) e−x2/2

i
(ξ) = iF

·
d

dx
e−x

2/2

¸
(ξ) = i(iξ)F

h
e−x

2/2
i
(ξ) = −ξg(ξ).

Lemma 6.36 implies

g(0) =

Z
R
e−x

2/2dx =
1√
2π

Z
R
e−x

2/2dm(x) = 1,

and so solving Eq. (18.9) with g(0) = 1 gives F
h
e−x

2/2
i
(ξ) = g(ξ) = e−ξ

2/2 as

desired. The assertion that F−1e−|ξ|2/2 = e−|x|
2/2 follows similarly or by using Eq.

(18.3) to conclude,

F−1
h
e−|ξ|

2/2
i
(x) = F

h
e−|−ξ|

2/2
i
(x) = F

h
e−|ξ|

2/2
i
(x) = e−|x|

2/2.
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The results in Eq. (18.8) now follow from Eq. (18.6) and item 5 of Theorem 18.3.
For example, since pt(x) = t−n/2p1(x/

√
t),

(bpt)(ξ) = t−n/2
³√

t
´n

p̂1(
√
tξ) = e−

t
2 |ξ|2 .

This may also be written as (bpt)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that pt

is an even function,

(bpt)∨(x) = Fbpt(−x) = t−n/2Fp 1
t
(−x) = t−n/2tn/2pt(−x) = pt(x).

18.2. Schwartz Test Functions.

Definition 18.5. A function f ∈ C(Rn,C) is said to have rapid decay or rapid
decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN < ∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at most)
polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C <∞ such that |f(x)| ≤ C(1 + |x|)N for all x ∈ Rn.
Definition 18.6 (Schwartz Test Functions). Let S denote the space of functions
f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid decay and let

kfkN,α = sup
x∈Rn

¯̄
(1 + |x|)N∂αf(x)¯̄

so that
S =

n
f ∈ C∞(Rn) : kfkN,α <∞ for all N and α

o
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its derivatives
have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-indices
α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)
Remark 18.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in L2(Rn).

Exercise 18.1. Let

(18.10) L =
X
|α|≤k

aα(x)∂
α

with aα ∈ P. Show L(S) ⊂ S and in particular ∂αf and xαf are back in S for all
multi-indices α.

Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function aα(x) is a smooth
function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.
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Proposition 18.8. Suppose that each function aα(x) is smooth and f ∈ S, then

p(x,Dx)f(x) =

Z
Rn

p(x, ξ)f̂ (ξ) eix·ξdξ.

If we further assume that each function aα(x) is a polynomial in x, then

(18.11) (p(x,Dx)f)
∧ (ξ) = p(−Dξ, ξ)f̂ (ξ)

and

(18.12) p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ).
Alternatively we may write this last equation as

(18.13) p(Dx,−x)f(x) =
h
p(ξ,Dξ)f̂(ξ)

i∨
(x).

Proof. For f ∈ S, we have

p(x,Dx)f(x) = p(x,Dx)
³
F−1f̂

´
(x) = p(x,Dx)

Z
Rn

f̂ (ξ) eix·ξdξ

=

Z
Rn

f̂ (ξ) p(x,Dx)e
ix·ξdξ =

Z
Rn

f̂ (ξ) p(x, ξ)eix·ξdξ

wherein we have used the fact thatDα
xe

ix·ξ = ξαeix·ξ. Now if we further assume that
each function aα(x) is a polynomial in x, we may use the relation xαeix·ξ = Dα

ξ e
ix·ξ

to write Z
Rn

f̂ (ξ) p(x, ξ)eix·ξdξ =
Z
Rn

f̂ (ξ)Σ|α|≤Nξαaα(Dξ)e
ix·ξdξ

= Σ|α|≤N

Z
Rn

eix·ξaα(−Dξ)
h
ξαf̂ (ξ)

i
dξ

=

Z
Rn

eix·ξp(−Dξ, ξ)f̂ (ξ)dξ

wherein the second equality we have used repeated integration by parts. Combining
the last two displayed equations gives

p(x,Dx)f(x) =

Z
Rn

eix·ξp(−Dξ, ξ)f̂ (ξ)dξ

which upon taking the Fourier Transform is equivalent to Eq. (18.11). The proof
of Eq. (18.12) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)

Z
Rn

f(x)e−ix·ξdx =
Z
Rn

f(x)p(ξ,−Dx)e
−ix·ξdx

=
X
α

Z
Rn

f(x)(−x)αaα(ξ)e−ix·ξdx =
X
α

Z
Rn

f(x)(−x)αaα(−Dx)e
−ix·ξdx

=
X
α

Z
Rn

e−ix·ξaα(Dx) [(−x)αf(x)]dx = [p(Dx,−x)f(x)]∧(ξ).

Corollary 18.9. The Fourier transform preserves the space S, i.e. F(S) ⊂ S.
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Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with aα(x) being a polynomial function
in x. If f ∈ S, then because p(Dx,−x)f ∈ S ⊂ L1 we have by Eq. (18.12) that
p(ξ,Dξ)f̂(ξ) is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Since p is arbitrary it follows easily that all derivative of f̂(ξ) have fast decay and
therefore f̂ is in S.

18.3. Fourier Inversion Formula .

Theorem 18.10 (Fourier Inversion Theorem). Suppose that f ∈ L1 and f̂ ∈ L1,
then

(1) there exists f0 ∈ C0(Rn) such that f = f0 a.e.
(2) f0 = F−1F f and f0 = FF−1f,
(3) f and f̂ are in L1 ∩ L∞ and

(4) kfk2 =
°°°f̂°°°

2
.

In particular, F : S → S is a linear isomorphism of vector spaces.

Proof. First notice that f̂ ∈ C0 (Rn) ⊂ L∞ and f̂ ∈ L1 by assumption, so that
f̂ ∈ L1∩L∞. Let pt(x) ≡ t−n/2e−

1
2t |x|2 be as in Example 18.4 so that bpt(ξ) = e−

t
2 |ξ|2

and bp∨t = pt. Define f0 := f̂∨ ∈ C0 then

f0(x) = (f̂)
∨(x) =

Z
Rn

f̂(ξ)eiξ·xdξ = lim
t↓0

Z
Rn

f̂(ξ)eiξ·xbpt(ξ)dξ
= lim

t↓0

Z
Rn

Z
Rn

f(y)eiξ·(x−y)bpt(ξ)dξ dy
= lim

t↓0

Z
Rn

f(y)pt(y)dy = f(x) a.e.

wherein we have used Theorem 9.20 in the last equality along with the observations
that pt(y) = p1(y/

√
t) and

R
Rn p1(y)dy = 1. In particular this shows that f ∈

L1 ∩ L∞. A similar argument shows that F−1F f = f0 as well.
Let us now compute the L2 — norm of f̂ ,

kf̂k22 =
Z
Rn

f̂(ξ)f̂(ξ)dξ =

Z
Rn
dξf̂(ξ)

Z
Rn
dxf(x)eix·ξ

=

Z
Rn
dx f(x)

Z
Rn
dξf̂(ξ)eix·ξ

=

Z
Rn
dx f(x)f(x) = kfk22

because
R
Rn dξf̂(ξ)e

ix·ξ = F−1f̂(x) = f(x) a.e.

Corollary 18.11. By the B.L.T. Theorem 3.67, the maps F|S and F−1|S extend
to bounded linear maps F̄ and F̄−1 from L2 → L2. These maps satisfy the following
properties:

(1) F̄ and F̄−1 are unitary and are inverses to one another as the notation
suggests.
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(2) For f ∈ L2 we may compute F̄ and F̄−1 by

F̄f(ξ) = L2— lim
R→∞

Z
|x|≤R

f(x)e−ix·ξdx and(18.14)

F̄−1f(ξ) = L2— lim
R→∞

Z
|x|≤R

f(x)eix·ξdx.(18.15)

(3) We may further extend F̄ to a map from L1 + L2 → C0 + L2 (still denote
by F̄) defined by F̄f = ĥ+ F̄g where f = h+g ∈ L1+L2. For f ∈ L1+L2,
F̄f may be characterized as the unique function F ∈ L1loc(Rn) such that

(18.16) hF, φi = hf, φ̂i for all φ ∈ C∞c (Rn).

Moreover if Eq. (18.16) holds then F ∈ C0+L2 ⊂ L1loc(Rn) and Eq.(18.16)
is valid for all φ ∈ S.

Proof. Item 1., If f ∈ L2 and φn ∈ S such that φn → f in L2, then F̄f :=
limn→∞ φ̂n. Since φ̂n ∈ S ⊂ L1, we may concluded that

°°°φ̂n°°°
2
= kφnk2 for all n.

Thus °°F̄f°°
2
= lim

n→∞

°°°φ̂n°°°
2
= lim

n→∞ kφnk2 = kfk2
which shows that F̄ is an isometry from L2 to L2 and similarly F̄−1 is an isometry.
Since F̄−1F̄ = F−1F = id on the dense set S, it follows by continuity that F̄−1F̄ =
id on all of L2. Hence F̄F̄−1 = id, and thus F̄−1 is the inverse of F̄ . This proves
item 1.
Item 2. Let f ∈ L2 and R <∞ and set fR(x) := f(x)1|x|≤R. Then fR ∈ L1∩L2.

Let φ ∈ C∞c (Rn) be a function such that
R
Rn φ(x)dx = 1 and set φk(x) = knφ(kx).

Then fRFφk → fR ∈ L1 ∩ L2 with fRFφk ∈ C∞c (Rn) ⊂ S. Hence
F̄fR = L2— lim

k→∞
F (fRFφk) = FfR a.e.

where in the second equality we used the fact that F is continuous on L1. HenceR
|x|≤R f(x)e−ix·ξdx represents F̄fR(ξ) in L2. Since fR → f in L2, Eq. (18.14)

follows by the continuity of F̄ on L2.
Item 3. If f = h+ g ∈ L1 + L2 and φ ∈ S, then

hĥ+ F̄g, φi = hh, φi+ hF̄g, φi = hh, φ̂i+ lim
R→∞

hF ¡g1|·|≤R¢ , φi
= hh, φ̂i+ lim

R→∞
hg1|·|≤R, φ̂i = hh+ g, φ̂i.(18.17)

In particular if h + g = 0 a.e., then hĥ + F̄g, φi = 0 for all φ ∈ S and since
ĥ+ F̄g ∈ L1loc it follows from Corollary 9.27 that ĥ+ F̄g = 0 a.e. This shows that
F̄f is well defined independent of how f ∈ L1 + L2 is decomposed into the sum
of an L1 and an L2 function. Moreover Eq. (18.17) shows Eq. (18.16) holds with
F = ĥ + F̄g ∈ C0 + L2 and φ ∈ S. Now suppose G ∈ L1loc and hG,φi = hf, φ̂i for
all φ ∈ C∞c (Rn). Then by what we just proved, hG,φi = hF, φi for all φ ∈ C∞c (Rn)
and so an application of Corollary 9.27 shows G = F ∈ C0 + L2.

Notation 18.12. Given the results of Corollary 18.11, there is little danger in
writing f̂ or Ff for F̄f when f ∈ L1 + L2.
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Corollary 18.13. If f and g are L1 functions such that f̂ , ĝ ∈ L1, then

F(fg) = f̂Fĝ and F−1(fg) = f∨Fg∨.

Since S is closed under pointwise products and F : S → S is an isomorphism it
follows that S is closed under convolution as well.
Proof. By Theorem 18.10, f, g, f̂ , ĝ ∈ L1 ∩ L∞ and hence f · g ∈ L1 ∩ L∞ and

f̂Fĝ ∈ L1 ∩ L∞. Since

F−1
³
f̂Fĝ

´
= F−1

³
f̂
´
· F−1 (ĝ) = f · g ∈ L1

we may conclude from Theorem 18.10 that

f̂Fĝ = FF−1
³
f̂Fĝ

´
= F(f · g).

Similarly one shows F−1(fg) = f∨Fg∨.

Corollary 18.14. Suppose α is a multi-index and f ∈ L2. Then ∂αf exists in L2

iff ξ → (iξ)αf̂(ξ) ∈ L2 and if ∂αf ∈ L2 then

(∂αf)ˆ (ξ) = (iξ)αf̂(ξ) for ξ — a.e. ξ.

Proof. Suppose f, ∂αf ∈ L2 and φ ∈ C∞c (Rn), then by item 2. of Lemma 17.12
and Eq. (18.4),

hd∂αf, φi = h∂αf, φ̂i = (−1)|α| hf, ∂αφ̂i = (−1)|α| hf(ξ),F [(−ix)α φ(x)] (ξ)i
= hf̂(ξ), (iξ)α φ(ξ)i = h(iξ)α f̂(ξ), φ(ξ)i.

Since this holds for all φ ∈ C∞c (Rn), we conclude that (iξ)
α f̂(ξ) = d∂αf(ξ) ∈ L2.

Conversely if (iξ)αf̂(ξ) ∈ L2, let g(x) := F−1
h
(iξ)αf̂(ξ)

i
(x) ∈ L2. Then for φ ∈

C∞c (Rn),

hg, φi = hF−1
h
(iξ)αf̂(ξ)

i
(x), φ(x)i = h(iξ)αf̂(ξ), φ∨(ξ)i = hf̂(ξ), (iξ)αφ∨(ξ)i

= hf̂(ξ), ((−∂)α φ)∨ (ξ)i = hf(x),F
h
((−∂)α φ)∨ (ξ)

i
(x)i

= hf, (−∂)α φi.
Since this equation holds for all φ ∈ C∞c (Rn), it follows that ∂αf exists and ∂αf =
g ∈ L2.
The following table summarizes some of the basic properties of the Fourier trans-

form and its inverse.

f ←→ f̂ or f∨

Smoothness ←→ Decay at infinity
∂α ←→ Multiplication by (±iξ)α
S ←→ S

L2(Rn) ←→ L2(Rn)
Convolution ←→ Products.
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18.4. Constant Coefficient partial differential equations. Suppose that
p(ξ) =

P
|α|≤k aαξ

α with aα ∈ C and

L = p(Dx) := Σ|α|≤NaαDα
x = Σ|α|≤Naα

µ
1

i
∂x

¶α
.

Then for f ∈ S cLf(ξ) = p(ξ)f̂(ξ),

that is to say the Fourier transform takes a constant coefficient partial differential
operator to multiplication by a polynomial. This fact can often be used to solve
constant coefficient partial differential equation. For example suppose g : Rn → C is
a given function and we want to find a solution to the equation Lf = g. Taking the
Fourier transform of both sides of the equation Lf = g would imply p(ξ)f̂(ξ) = ĝ(ξ)

and therefore f̂(ξ) = ĝ(ξ)/p(ξ) provided p(ξ) is never zero. (We will discuss what
happens when p(ξ) has zeros a bit more later on.) So we should expect

f(x) = F−1
µ
1

p(ξ)
ĝ(ξ)

¶
(x) = F−1

µ
1

p(ξ)

¶
Fg(x).

18.4.1. Elliptic examples. As a specific example consider the equation¡−∆+m2
¢
f = g

where f, g : Rn → C and ∆ =
Pn

i=1 ∂
2/∂x2i is the usual Laplacian on Rn. Taking

the Fourier transform of this equation implies¡|ξ|2 +m2
¢
f̂(ξ) = ĝ(ξ)

and therefore,

f̂(ξ) =
¡|ξ|2 +m2

¢−1
ĝ(ξ)

from which we deduce

f(x) = GmFg(x) =

Z
Rn

Gm(x− y)g(y)dy

where

Gm(x) := F−1
¡|ξ|2 +m2

¢−1
(x) =

Z
Rn

1

m2 + |ξ|2 e
iξ·xdξ.

At the moment F−1 ¡|ξ|2 +m2
¢−1

only makes sense when n = 1, 2, or 3 because

only then is
¡|ξ|2 +m2

¢−1 ∈ L1(Rn). For now we will restrict our attention to the
one dimensional case, n = 1, in which case

(18.18) Gm(x) =
1√
2π

Z
R

1

(ξ +mi) (ξ −mi)
eiξxdξ.

The function Gm may be computed using standard complex variable contour inte-
gration methods to find, for x ≥ 0,

Gm(x) =
1√
2π
2πi

ei
2mx

2im
=

1

2m

√
2πe−mx

and since Gm is an even function,

(18.19) Gm(x) = F−1
¡|ξ|2 +m2

¢−1
(x) =

√
2π

2m
e−m|x|.



REAL ANALYSIS LECTURE NOTES 353

This result is easily verified to be correct, since

F
"√

2π

2m
e−m|x|

#
(ξ) =

√
2π

2m

Z
R
e−m|x|e−ix·ξdx

=
1

2m

µZ ∞
0

e−mxe−ix·ξdx+
Z 0

−∞
emxe−ix·ξdx

¶
=

1

2m

µ
1

m+ iξ
+

1

m− iξ

¶
=

1

m2 + ξ2
.

Hence in conclusion we find that
¡−∆+m2

¢
f = g has solution given by

f(x) = GmFg(x) =

√
2π

2m

Z
R
e−m|x−y|g(y)dy =

1

2m

Z
R
e−m|x−y|g(y)dy.

Question. Why do we get a unique answer here given that f(x) = A sinh(x) +
B cosh(x) solves ¡−∆+m2

¢
f = 0?

The answer is that such an f is not in L2 unless f = 0! More generally it is worth
noting that A sinh(x) +B cosh(x) is not in P unless A = B = 0.
What about when m = 0 in which case m2 + ξ2 becomes ξ2 which has a zero at

0. Noting that constants are solutions to ∆f = 0, we might look at

lim
m↓0

(Gm(x)− 1) = lim
m↓0

√
2π

2m
(e−m|x| − 1) = −

√
2π

2
|x| .

as a solution, i.e. we might conjecture that

f(x) := −1
2

Z
R
|x− y| g(y)dy

solves the equation −f 00 = g. To verify this we have

f(x) := −1
2

Z x

−∞
(x− y) g(y)dy − 1

2

Z ∞
x

(y − x) g(y)dy

so that

f 0(x) = −1
2

Z x

−∞
g(y)dy +

1

2

Z ∞
x

g(y)dy and

f 00(x) = −1
2
g(x)− 1

2
g(x).

18.4.2. Heat Equation on Rn. The heat equation for a function u : R+ × Rn → C
is the partial differential equation

(18.20)
µ
∂t − 1

2
∆

¶
u = 0 with u(0, x) = f(x),

where f is a given function on Rn. By Fourier transforming Eq. (18.20) in the x —
variables only, one finds that (18.20) implies that

(18.21)
µ
∂t +

1

2
|ξ|2
¶
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ).

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then shows

that
u(t, x) = F−1

³
e−t|ξ|

2/2f̂(ξ)
´
(x) =

³
F−1

³
e−t|ξ|

2/2
´
Ff

´
(x).
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From Example 18.4,

F−1
³
e−t|ξ|

2/2
´
(x) = pt(x) = t−n/2e−

1
2t |x|2

and therefore,

u(t, x) =

Z
Rn

pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 18.15. Let

(18.22) ρ(t, x, y) := (2πt)−n/2 e−|x−y|
2/2t

be the heat kernel on Rn. Then

(18.23)
µ
∂t − 1

2
∆x

¶
ρ(t, x, y) = 0 and lim

t↓0
ρ(t, x, y) = δx(y),

where δx is the δ — function at x in Rn. More precisely, if f is a continuous bounded
(can be relaxed considerably) function on Rn, then u(t, x) =

R
Rn ρ(t, x, y)f(y)dy is

a solution to Eq. (18.20) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
¡
∂t − 1

2∆x

¢
ρ(t, x, y) = 0 and an ap-

plication of Theorem 9.20 shows limt↓0 ρ(t, x, y) = δx(y) or equivalently that
limt↓0

R
Rn ρ(t, x, y)f(y)dy = f(x) uniformly on compact subsets of Rn. This shows

that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.

Notation 18.16. We will write
¡
et∆/2f

¢
(x) for

R
Rn ρ(t, x, y)f(y)dy = ptFf.

This notation suggests that we should be able to compute the solution to g to
(∆−m2)g = f using

g(x) =
¡
m2 −∆¢−1 f(x) = Z ∞

0

³
e(∆−m

2)tf
´
(x)dt =

Z ∞
0

³
e−m

2tp2tFf
´
(x)dt,

as may be easily verified using the Fourier transform. This gives us a method to
compute Gm(x) from the previous section, namely t−n/2e−

1
2t |x|2

Gm(x) =

Z ∞
0

e−m
2tp2t(x)dt =

Z ∞
0

(2t)−n/2e−m
2t− 1

4t |x|2dt.

We make the change of variables, λ = |x|2 /4t (t = |x|2 /4λ, dt = − |x|24λ2 dλ) to find

Gm(x) =

Z ∞
0

(2t)−n/2e−m
2t− 1

4t |x|2dt =
Z ∞
0

Ã
|x|2
2λ

!−n/2
e−m

2|x|2/4λ−λ |x|2
(2λ)2

dλ

=
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ.(18.24)

In case n = 3, Eq. (18.24) becomes

Gm(x) =

√
π√
2 |x|

Z ∞
0

1√
πλ

e−λe−m
2|x|2/4λdλ =

√
π√
2 |x|e

−m|x|
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where the last equality follows from Exercise 18.4. Hence when n = 3 we have
found ¡

m2 −∆¢−1 f(x) = GmFf(x) = (2π)−3/2
Z
R3

√
π√
2 |x|e

−m|x−y|f(y)dy

=

Z
R3

1

4π |x− y|e
−m|x−y|f(y)dy.(18.25)

The function 1
4π|x|e

−m|x| is called the Yukawa potential.
When m = 0, Eq. (18.24) becomes

G0(x) =
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−1e−λ
dλ

λ
=
2(n/2−2)

|x|n−2 Γ(n/2− 1)

where Γ(x) in the gamma function defined in Eq. (6.30). Hence for “reasonable”
functions f (and n 6= 2)
(−∆)−1f(x) = G0Ff(x) = 2(n/2−2)Γ(n/2− 1)(2π)−n/2

Z
Rn

1

|x− y|n−2 f(y)dy

=
1

4πn/2
Γ(n/2− 1)

Z
Rn

1

|x− y|n−2 f(y)dy.

The function

G̃0(x, y) :=
1

4πn/2
Γ(n/2− 1) 1

|x− y|n−2
is a “Green’s function” for −∆. Recall from Exercise 6.16 that, for n = 2k, Γ(n2 −
1) = Γ(k − 1) = (k − 2)!, and for n = 2k + 1,

Γ(
n

2
− 1) = Γ(k − 1/2) = Γ(k − 1 + 1/2) = √π1 · 3 · 5 · · · · · (2k − 3)

2k−1

=
√
π
(2k − 3)!!
2k−1

where (−1)!! ≡ 1.
Hence

G̃0(x, y) =
1

4

1

|x− y|n−2
½ 1

πk
(k − 2)! if n = 2k

1
πk

(2k−3)!!
2k−1 if n = 2k + 1

and in particular when n = 3,

G̃0(x, y) =
1

4π

1

|x− y|
which is consistent with Eq. (18.25) with m = 0.

18.4.3. Wave Equation on Rn. Let us now consider the wave equation on Rn,
0 =

¡
∂2t −∆

¢
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x).

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ) with
û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ).

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t|ξ|
|ξ|
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and hence we should have

u(t, x) = F−1
µ
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t|ξ|
|ξ|

¶
(x)

= F−1 cos (t |ξ|)Ff(x) + F−1 sin t|ξ||ξ| Fg (x)

=
d

dt
F−1

·
sin t|ξ|
|ξ|

¸
Ff(x) + F−1

·
sin t|ξ|
|ξ|

¸
Fg (x) .(18.26)

The question now is how interpret this equation. In particular what are the inverse
Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ||ξ| . Since d

dtF−1 sin t|ξ||ξ| Ff(x) =

F−1 cos (t |ξ|)Ff(x), it really suffices to understand F−1
h
sin t|ξ|
|ξ|

i
. The problem we

immediately run into here is that sin t|ξ|
|ξ| ∈ L2(Rn) iff n = 1 so that is the case we

should start with.
Again by complex contour integration methods one can show¡F−1ξ−1 sin tξ¢ (x) = π√

2π

¡
1x+t>0 − 1(x−t)>0

¢
=

π√
2π
(1x>−t − 1x>t) = π√

2π
1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Again this easily seen to
be correct because

F
·

π√
2π
1[−t,t](x)

¸
(ξ) =

1

2

Z
R
1[−t,t](x)e−iξ·xdx =

1

−2iξ e
−iξ·x|t−t

=
1

2iξ

£
eiξt − e−iξt

¤
= ξ−1 sin tξ.

Therefore, ¡F−1ξ−1 sin tξ¢Ff(x) =
1

2

Z t

−t
f(x− y)dy

and the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

Z t

−t
f(x− y)dy +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows. We
first note in the one dimensional case that wave operator factors, namely

0 =
¡
∂2t − ∂2x

¢
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0 and
hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f 0(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f 0(x+ t).
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Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f 0(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +

Z t

0

{g(x+ 2τ) + f 0(x+ 2τ)} dτ

= f(x) +

Z t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

Z t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

Z t

0

g(x− t+ 2τ)dτ

and then letting y = x− t+ 2τ in the last integral shows again that

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

Let us now go to the n = 3 case where it turns out that we should interpret

F−1
h
sin t|ξ|
|ξ|

i
as a measure. When n > 3 it is necessary to treat F−1

h
sin t|ξ|
|ξ|

i
as a

“distribution” or “generalized function,” see Section 24 below. To motivate the next
definition suppose that µ is a finite measure on Rn which is absolutely continuous
relative to Lebesgue measure, dµ(x) = ρ(x)dx. Then it is reasonable to require

µ̂(ξ) := ρ̂(ξ) =

Z
Rn

e−iξ·xρ(x)dx =
Z
Rn

e−iξ·xdµ(x)

and

(µFg) (x) := ρFg(x) =

Z
Rn

g(x− y)ρ(x)dx =

Z
Rn

g(x− y)dµ(y)

when g : Rn → C is a function such that the latter integral is defined, for example
assume g is bounded. This considerations lead to the following definitions.

Definition 18.17. The Fourier transform, µ̂, of a complex measure µ on BRn is
defined by

(18.27) µ̂(ξ) =

Z
Rn

e−iξ·xdµ(x)

and the convolution with a function g is defined by

(µFg) (x) =

Z
Rn

g(x− y)dµ(y)

when the integral is defined.

It follows from the dominated convergence theorem that µ̂ is continuous. Also
by a variant of Exercise 9.11, if µ and ν are two complex measure on BRn such that
µ̂ = ν̂, then µ = ν. The reader is asked to give another proof of this fact in Exercise
18.3 below.
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Example 18.18. Let σt be the surface measure on the sphere St of radius t centered
at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ| .

Indeed,

σ̂t(ξ) =

Z
tS2

e−ix·ξdσ(x) = t2
Z
S2

e−itx·ξdσ(x)

= t2
Z
S2

e−itx3|ξ|dσ(x) = t2
Z 2π

0

dθ

Z π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
Z 1

−1
e−itu|ξ|du = 2πt2

1

−it |ξ|e
−itu|ξ||u=1u=−1 = 4πt

2 sin t |ξ|
t |ξ| .

From this example we should expect

F−1
·
sin t |ξ|
|ξ|

¸
=

t

4πt2
σt = tσ̄t

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure

one. Hence from Eq. (18.26) the solution to the three dimensional wave equation
should be given by

(18.28) u(t, x) =
d

dt
(tσ̄tFf(x)) + tσ̄tFg (x) .

Using this definition in Eq. (18.28) gives

u(t, x) =
d

dt

½
t

Z
St

f(x− y)dσ̄t(y)

¾
+ t

Z
St

g(x− y)dσ̄t(y)

=
d

dt

½
t

Z
S1

f(x− tω)dω

¾
+ t

Z
S1

g(x− tω)dω

=
d

dt

½
t

Z
S1

f(x+ tω)dω

¾
+ t

Z
S1

g(x+ tω)dω(18.29)

where dω := dσ̄1(ω). It is possible to verify directly that this formula does solve the
wave equation when f ∈ C3(R3) and g ∈ C2(R3) but we will not pause to do this
now.
Rather let us simply point out that solution exhibits a basic property of wave

equations, namely finite propagation speed. To exhibit the finite propagation speed,
suppose that f = 0 (for simplicity) and g has compact support near the origin, for
example think of g = δ0(x). Then x + tw = 0 for some w iff |x| = t. Hence the
“wave front” propagates at unit speed and the wave front is sharp. See Figure 36
below.
The solution of the two dimensional wave equation may be found using

“Hadamard’s method of decent” which we now describe. Suppose now that f and
g are functions on R2 which we may view as functions on R3 which happen not to
depend on the third coordinate. We now go ahead and solve the three dimensional
wave equation using Eq. (18.29) and f and g as initial conditions. It is easily seen
that the solution u(t, x, y, z) is again independent of z and hence is a solution to
the two dimensional wave equation. See figure 37 below.
Notice that we still have finite speed of propagation but no longer sharp prop-

agation. In fact we can work out the solution analytically as follows. Again for



REAL ANALYSIS LECTURE NOTES 359

Figure 36. The geometry of the solution to the wave equation in
three dimensions.

Figure 37. The geometry of the solution to the wave equation in
two dimensions.

simplicity assume that f ≡ 0. Then

u(t, x, y) =
t

4π

Z 2π

0

dθ

Z π

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

=
t

2π

Z 2π

0

dθ

Z π/2

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

and letting u = sinφ, so that du = cosφdφ =
√
1− u2dφ we find

u(t, x, y) =
t

2π

Z 2π

0

dθ

Z 1

0

du√
1− u2

ug((x, y) + ut(cos θ, sin θ))
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and then letting r = ut we learn,

u(t, x, y) =
1

2π

Z 2π

0

dθ

Z t

0

drp
1− r2/t2

r

t
g((x, y) + r(cos θ, sin θ))

=
1

2π

Z 2π

0

dθ

Z t

0

dr√
t2 − r2

rg((x, y) + r(cos θ, sin θ))

=
1

2π

ZZ
Dt

g((x, y) + w))p
t2 − |w|2 dm(w).

Here is a better alternative derivation of this result. We begin by using symmetry
to find

u(t, x) = 2t

Z
S+t

g(x− y)dσ̄t(y) = 2t

Z
S+t

g(x+ y)dσ̄t(y)

where S+t is the portion of St with z ≥ 0. This sphere is parametrized by
R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

©
(u, v) : u2 + v2 ≤ t2

ª
. In these

coordinates we have

4πt2dσ̄t =
¯̄̄³
−∂u

p
t2 − u2 − v2,−∂v

p
t2 − u2 − v2, 1

´¯̄̄
dudv

=

¯̄̄̄µ
u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1

¶¯̄̄̄
dudv

=

r
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

Z
S+t

g(x+ (u, v,
p
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

Z
S+t

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

ZZ
Dt

g((x, y) + w))p
t2 − |w|2 dm(w)

as before. (I should check on the sgn(t) term.)

18.5. Bochner’s Theorem. Let µ be a finite measure on BRn and µ̂(ξ) be the
Fourier transform of µ as in Definition 18.17 above. If λ ∈ Cm, then
mX

k,j=1

µ̂(ξk − ξj)λkλ̄j =

Z
Rn

mX
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x) =
Z
Rn

mX
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=

Z
Rn

¯̄̄̄
¯
mX
k=1

e−iξk·xλk

¯̄̄̄
¯
2

dµ(x) ≥ 0

that is to say µ̂ is a positive definite function. Since µ̂(0) |λ|2 ≥ 0, it follows that
µ̂(0) ≥ 0 and since

A :=

·
µ̂(0) µ̂(ξ − η)

µ̂(η − ξ) µ̂(0)

¸



REAL ANALYSIS LECTURE NOTES 361

is positive definite of all ξ, η ∈ Rd it follows that µ̂(−η) = µ̂(η) (since A∗ = A) and

0 ≤ det
·

µ̂(0) µ̂(ξ − η)
µ̂(η − ξ) µ̂(0)

¸
= |µ̂(0)|2 − |µ̂(ξ − η)|2

and hence |µ̂(ξ)| ≤ µ̂(0) for all ξ. In particular µ̂ is continuous. Moreover, if
f ∈ S(Rd) thenZ

Rd
µ̂(ξ − η)f(ξ)f(η)dξdη = lim

mesh→0

X
µ̂(ξk − ξj)f(ξj)f(ξk) ≥ 0.

Theorem 18.19. Suppose χ ∈ C(Rn,C) is positive definite function, then there
exists a unique measure µ on BRn such that χ = µ̂.

Proof. For f ∈ S, define

I(f) :=

Z
Rn

χ(ξ)f∨(ξ)dξ.

Notice that

I(|f |2) =
Z
Rn

χ(ξ)
³
|f |2

´∨
(ξ)dξ =

Z
Rn

χ(ξ)
¡
f∨Ff̄∨

¢
(ξ)dξ

=

Z
Rn

χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =
Z
Rn

χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=

Z
Rn

χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0

for all f ∈ S. Let pt(x − ·) be the usual heat kernel, then
p
pt(x− ·) is still a

Gaussian function and hence
p
pt(x− ·) ∈ S. Therefore,

hI, pt(x− ·)i = hI,
¯̄̄p

pt(x− ·)
¯̄̄2
i ≥ 0 for all x ∈ R and t > 0.

Hence we have shown, IFpt ≥ 0 for all t.
We will now show37 for ψ ∈ S that hIFpt, ψi→ hI, ψi as t ↓ 0. Since

IFpt(x) = hI, pt(x− ·)i =
Z
Rn

¡
eiξAv, v

¢ \pt(x− ·)(ξ)dξ

=

Z
Rn

¡
eiξAv, v

¢
e−ix·ξp̂t(ξ)dξ,

hIFpt, ψi =
Z
Rn
dxψ(x)

Z
Rn
dξ
¡
eiξAv, v

¢
e−ix·ξp̂t(ξ)

=

Z
Rn
dξ

Z
Rn
dxψ(x)

¡
eiξAv, v

¢
e−ix·ξp̂t(ξ)

=

Z
Rn
dξψ̂(ξ)

¡
eiξAv, v

¢
p̂t(ξ)→

Z
Rn
dξψ̂(ξ)

¡
eiξAv, v

¢
= hI, ψi

since p̂t(ξ) = e−t|ξ|
2/2 → 1 as t ↓ 0. Hence if ψ ≥ 0, we find

hI, ψi = lim
t↓0
hIFpt, ψi ≥ 0.

37It is known more generally that if T ∈ S0 then T ∗ pt → T in S0 as t ↓ 0.
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Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such that
ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K, then
0 ≤ kfk∞ ψ − f ∈ S and hence

0 ≤ hI, kfk∞ ψ − fi = kfk∞ hI, ψi− hI, fi
and therefore hI, fi ≤ kfk∞ hI, ψi. Replacing f by −f implies, −hI, fi ≤
kfk∞ hI, ψi and hence we have proved
(18.30) |hI, fi| ≤ C(supp(f)) kfk∞
for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each compact
subset of Rn. Because of the estimate in Eq. (18.30), it follows that I|DRn has a
unique extension I to Cc(Rn,R) still satisfying the estimates in Eq. (18.30) and
moreover this extension is still positive. So by the Riesz — Markov theorem, there
exists a unique Radon — measure µ on Rn such that such that hI, fi = µ(f) for all
f ∈ Cc(Rn,R).
To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R).

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing as
|x| increases. Let f (x) := f( x), then by Theorem 18.3,

F−1 £e−iηxf (x)¤ (ξ) = −nf∨(
ξ − η

)

and therefore

(18.31) µ(e−iηxf (x)) =
Z
Rn

χ(ξ) −nf∨(
ξ − η

)dξ.

Because
R
Rn f

∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ —
function Theorem 9.20 to Eq. (18.31) to find

(18.32) µ(e−iηxf (x))→ χ(η) as ↓ 0.
On the the other hand, when η = 0, the monotone convergence theorem implies
µ(f ) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now knowing the
µ is a finite measure we may use the dominated convergence theorem to concluded

µ(e−iηxf (x))→ µ(e−iηx) = µ̂(η) as ↓ 0
for all η. Combining this equation with Eq. (18.32) shows µ̂(η) = χ(η) for all
η ∈ Rn.

18.6. Supplement: Heisenberg Uncertainty Principle Exercise. Suppose
that H is a Hilbert space and A,B are two densely defined symmetric operators on
H. More explicitly, A is a densely defined symmetric linear operator on H means
there is a dense subspace DA ⊂ H and a linear map A : DA → H such that
(Aφ,ψ) = (φ,Aψ) for all φ,ψ ∈ DA. Let DAB := {φ ∈ H : φ ∈ DB and Bφ ∈ DA}
and for φ ∈ DAB let (AB)φ = A(Bφ) with a similar definition of DBA and BA.
Moreover, let DC := DAB ∩DBA and for φ ∈ DC , let

Cφ =
1

i
[A,B]φ =

1

i
(AB −BA)φ.
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Notice that for φ, ψ ∈ DC we have

(Cφ,ψ) =
1

i
{(ABφ,ψ)− (BAφ,ψ)} = 1

i
{(Bφ,Aψ)− (Aφ,Bψ)}

=
1

i
{(φ,BAψ)− (φ,ABψ)} = (φ,Cψ),

so that C is symmetric as well.

Theorem 18.20 (Heisenberg Uncertainty Principle). Continue the above notation
and assumptions,

(18.33)
1

2
|(ψ,Cψ)| ≤

q
kAψk2 − (ψ,Aψ) ·

q
kBψk2 − (ψ,Bψ)

for all ψ ∈ DC . Moreover if kψk = 1 and equality holds in Eq. (18.33), then
(A− (ψ,Aψ))ψ = iλ(B − (ψ,Bψ))ψ or
(B − (ψ,Bψ)) = iλψ(A− (ψ,Aψ))ψ(18.34)

for some λ ∈ R.
Proof. By homogeneity (18.33) we may assume that kψk = 1. Let a := (ψ,Aψ),

b = (ψ,Bψ), Ã = A− aI, and B̃ = B − bI. Then we have still have

[Ã, B̃] = [A− aI,B − bI] = iC.

Now

i(ψ,Cψ) = (ψ, iCψ) = (ψ, [Ã, B̃]ψ) = (ψ, ÃB̃ψ)− (ψ, B̃Ãψ)
= (Ãψ, B̃ψ)− (B̃ψ, Ãψ) = 2i Im(Ãψ, B̃ψ)

from which we learn

|(ψ,Cψ)| = 2
¯̄̄
Im(Ãψ, B̃ψ)

¯̄̄
≤ 2

¯̄̄
(Ãψ, B̃ψ)

¯̄̄
≤ 2

°°°Ãψ°°°°°°B̃ψ°°°
with equality iff Re(Ãψ, B̃ψ) = 0 and Ãψ and B̃ψ are linearly dependent, i.e. iff
Eq. (18.34) holds.
The result follows from this equality and the identities°°°Ãψ°°°2 = kAψ − aψk2 = kAψk2 + a2 kψk2 − 2aRe(Aψ,ψ)

= kAψk2 + a2 − 2a2 = kAψk2 − (Aψ,ψ)
and °°°B̃ψ°°° = kBψk2 − (Bψ,ψ).
Example 18.21. As an example, take H = L2(R), A = 1

i ∂x and B =
Mx with DA := {f ∈ H : f 0 ∈ H} (f 0 is the weak derivative) and DB :=n
f ∈ H :

R
R |xf(x)|2 dx <∞

o
. In this case,

DC = {f ∈ H : f 0, xf and xf 0 are in H}
and C = −I on DC . Therefore for a unit vector ψ ∈ DC ,

1

2
≤
°°°°1i ψ0 − aψ

°°°°
2

· kxψ − bψk2
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where a = i
R
R ψψ̄

0dm 38 and b =
R
R x |ψ(x)|2 dm(x). Thus we have

(18.35)
1

4
=
1

4

Z
R
|ψ|2 dm ≤

Z
R
(k − a)2

¯̄̄
ψ̂(k)

¯̄̄2
dk ·

Z
R
(x− b)2 |ψ(x)|2 dx.

Equality occurs if there exists λ ∈ R such that
iλ (x− b)ψ(x) = (

1

i
∂x − a)ψ(x) a.e.

Working formally, this gives rise to the ordinary differential equation (in weak form),

(18.36) ψx = [−λ(x− b) + ia]ψ

which has solutions (see Exercise 18.5 below)

(18.37) ψ = C exp

µZ
R
[−λ(x− b) + ia] dx

¶
= C exp

µ
−λ
2
(x− b)2 + iax

¶
.

Let λ = 1
2t and choose C so that kψk2 = 1 to find

ψt,a,b(x) =

µ
1

2t

¶1/4
exp

µ
− 1
4t
(x− b)2 + iax

¶
are the functions which saturate the Heisenberg uncertainty principle in Eq. (18.35).

18.6.1. Exercises.

Exercise 18.2. Let f ∈ L2(Rn) and α be a multi-index. If ∂αf exists in L2(Rn)
then F(∂αf) = (iξ)α f̂(ξ) in L2(Rn) and conversely if

³
ξ → ξαf̂(ξ)

´
∈ L2(Rn) then

∂αf exists.

Exercise 18.3. Suppose µ is a complex measure on Rn and µ̂(ξ) is its Fourier
transform as defined in Definition 18.17. Show µ satisfies,

hµ̂, φi :=
Z
Rn

µ̂(ξ)φ(ξ)dξ = µ(φ̂) :=

Z
Rn

φ̂dµ for all φ ∈ S
and use this to show if µ is a complex measure such that µ̂ ≡ 0, then µ ≡ 0.
Exercise 18.4. Using

1

|ξ|2 +m2
=

Z ∞
0

e−λ(|ξ|
2+m2)dλ

the identity in Eq. (18.19) and Example 18.4, show for m > 0 and x ≥ 0 that

e−mx =
m√
π

Z ∞
0

dλ
1√
λ
e−

1
4λx

2

e−λm
2

(let λ→ λ/m2)

=

Z ∞
0

dλ
1√
πλ

e−λe−
m2

4λ x2 .(18.38)

Use this to formula and and Example 18.4 again to show, in dimension n, that

F
h
e−m|x|

i
(ξ) =

Γ((n+ 1)/2)√
π2n/2

m

(m2 + |ξ|2)(n+1)/2
where Γ(x) in the gamma function defined in Eq. (6.30). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)

38We will see in later that a may be described using the Fourier transform as: a =R
k
¯̄̄
ψ̂(k)

¯̄̄2
dm(k).
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Exercise 18.5. Show that ψ described in Eq. (18.37) is the general solution to
Eq. (18.36). Hint: Suppose that φ is any solution to Eq. (18.36) and ψ is given
as in Eq. (18.37) with C = 1. Consider the weak — differential equation solved by
φ/ψ.

18.6.2. More Proofs of the Fourier Inversion Theorem.

Exercise 18.6. Suppose that f ∈ L1(R) and assume that f continuously differen-
tiable in a neighborhood of 0, show

(18.39) lim
M→∞

Z ∞
−∞

sinMx

x
f(x)dx = πf(0)

using the following steps.
(1) Use Example 6.26 to deduce,

lim
M→∞

Z 1

−1

sinMx

x
dx = lim

M→∞

Z M

−M

sinx

x
dx = π.

(2) Explain why

0 = lim
M→∞

Z
|x|≥1

sinMx · f(x)
x

dx and

0 = lim
M→∞

Z
|x|≤1

sinMx · f(x)− f(0)

x
dx.

(3) Add the previous two equations and use part (1) to prove Eq. (18.39).

Exercise 18.7 (Fourier Inversion Formula). Suppose that f ∈ L1(R) such that
f̂ ∈ L1(R).

(1) Further assume that f is continuously differentiable in a neighborhood of
0. Show that

Λ :=

Z
R
f̂(ξ)dξ = f(0).

Hint: by the dominated convergence theorem, Λ := limM→∞
R
|ξ|≤M f̂(ξ)dξ.

Now use the definition of f̂(ξ), Fubini’s theorem and Exercise 18.6.
(2) Apply part 1. of this exercise with f replace by τyf for some y ∈ R to

prove

(18.40) f(y) =

Z
R
f̂(ξ)eiy·ξdξ

provided f is now continuously differentiable near y.

The goal of the next exercises is to give yet another proof of the Fourier inversion
formula.

Notation 18.22. For L > 0, let Ck
L(R) denote the space of Ck — 2πL periodic

functions:

Ck
L(R) :=

©
f ∈ Ck(R) : f(x+ 2πL) = f(x) for all x ∈ Rª .

Also let h·, ·iL denote the inner product on the Hilbert space HL := L2([−πL, πL])
given by

(f, g)L :=
1

2πL

Z
[−πL,πL]

f(x)ḡ(x)dx.



366 BRUCE K. DRIVER†

Exercise 18.8. Recall that
©
χLk (x) := eikx/L : k ∈ Zª is an orthonormal basis for

HL and in particular for f ∈ HL,

(18.41) f =
X
k∈Z
hf, χLk iLχLk

where the convergence takes place in L2([−πL, πL]). Suppose now that f ∈
C2L(R)39. Show (by two integration by parts)¯̄

(fL, χ
L
k )L

¯̄ ≤ L2

k2
kf 00ku

where kgku denote the uniform norm of a function g. Use this to conclude that the
sum in Eq. (18.41) is uniformly convergent and from this conclude that Eq. (18.41)
holds pointwise.

Exercise 18.9 (Fourier Inversion Formula on S). Let f ∈ S(R), L > 0 and

(18.42) fL(x) :=
X
k∈Z

f(x+ 2πkL).

Show:
(1) The sum defining fL is convergent and moreover that fL ∈ C∞L (R).
(2) Show (fL, χLk )L =

1√
2πL

f̂(k/L).

(3) Conclude from Exercise 18.8 that

(18.43) fL(x) =
1√
2πL

X
k∈Z

f̂(k/L)eikx/L for all x ∈ R.

(4) Show, by passing to the limit, L → ∞, in Eq. (18.43) that Eq. (18.40)
holds for all x ∈ R. Hint: Recall that f̂ ∈ S.

Exercise 18.10. Folland 8.13 on p. 254.

Exercise 18.11. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 18.12. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution F.19 below.)

Exercise 18.13. Folland 8.16 on p. 255.

Exercise 18.14. Folland 8.17 on p. 255.

Exercise 18.15. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 18.16. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 18.17. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 18.18. Folland 8.31 on p. 263. (Poisson Summation formula problem.)

39We view C2L(R) as a subspace of HL by identifying f ∈ C2L(R) with f |[−πL,πL] ∈ HL.




