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The results in Eq. (18.8) now follow from Eq. (18.6) and item 5 of Theorem 18.3.
For example, since pt(x) = t−n/2p1(x/

√
t),

(bpt)(ξ) = t−n/2
³√

t
´n

p̂1(
√
tξ) = e−

t
2 |ξ|2 .

This may also be written as (bpt)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that pt

is an even function,

(bpt)∨(x) = Fbpt(−x) = t−n/2Fp 1
t
(−x) = t−n/2tn/2pt(−x) = pt(x).

18.2. Schwartz Test Functions.

Definition 18.5. A function f ∈ C(Rn,C) is said to have rapid decay or rapid
decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN < ∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at most)
polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C <∞ such that |f(x)| ≤ C(1 + |x|)N for all x ∈ Rn.
Definition 18.6 (Schwartz Test Functions). Let S denote the space of functions
f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid decay and let

kfkN,α = sup
x∈Rn

¯̄
(1 + |x|)N∂αf(x)¯̄

so that
S =

n
f ∈ C∞(Rn) : kfkN,α <∞ for all N and α

o
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its derivatives
have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-indices
α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)
Remark 18.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in L2(Rn).

Exercise 18.1. Let

(18.10) L =
X
|α|≤k

aα(x)∂
α

with aα ∈ P. Show L(S) ⊂ S and in particular ∂αf and xαf are back in S for all
multi-indices α.

Notation 18.8. Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function aα(x)
is a smooth function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.
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Proposition 18.9. Let p(x, ξ) be as above and assume each aα(x) is a polynomial
in x. Then for f ∈ S,
(18.11) (p(x,Dx)f)

∧ (ξ) = p(−Dξ, ξ)f̂ (ξ)

and

(18.12) p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ).
Proof. The identities (−Dξ)

α
e−ix·ξ = xαe−ix·ξ and Dα

x e
ix·ξ = ξαeix·ξ imply,

for any polynomial function q on Rn,
(18.13) q(−Dξ)e

−ix·ξ = q(x)e−ix·ξ and q(Dx)e
ix·ξ = q(ξ)eix·ξ.

Therefore using Eq. (18.13) repeatedly,

(p(x,Dx)f)
∧
(ξ) =

Z
Rn
Σ|α|≤Naα(x)Dα

xf(x) · e−ix·ξdξ

=

Z
Rn
Σ|α|≤NDα

xf(x) · aα(−Dξ)e
−ix·ξdξ

=

Z
Rn

f(x)Σ|α|≤N (−Dx)
α £aα(−Dξ)e

−ix·ξ¤dξ
=

Z
Rn

f(x)Σ|α|≤Naα(−Dξ)
£
ξαe−ix·ξ

¤
dξ = p(−Dξ, ξ)f̂ (ξ)

wherein the third inequality we have used Lemma 9.26 to do repeated integration
by parts, the fact that mixed partial derivatives commute in the fourth, and in the
last we have repeatedly used Corollary 5.43 to differentiate under the integral. The
proof of Eq. (18.12) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)

Z
Rn

f(x)e−ix·ξdx =
Z
Rn

f(x)p(ξ,−x)e−ix·ξdx

=
X
α

Z
Rn

f(x)(−x)αaα(ξ)e−ix·ξdx =
X
α

Z
Rn

f(x)(−x)αaα(−Dx)e
−ix·ξdx

=
X
α

Z
Rn

e−ix·ξaα(Dx) [(−x)αf(x)]dx = [p(Dx,−x)f(x)]∧(ξ).

Corollary 18.10. The Fourier transform preserves the space S, i.e. F(S) ⊂ S.
Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with each aα(x) being a polynomial func-

tion in x. If f ∈ S then p(Dx,−x)f ∈ S ⊂ L1 and so by Eq. (18.12), p(ξ,Dξ)f̂(ξ)
is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Taking p(x, ξ) = (1 + |ξ|2)Nξα with N ∈ Z+ in this estimate shows f̂(ξ) and all of
its derivatives have rapid decay, i.e. f̂ is in S.
18.3. Fourier Inversion Formula .

Theorem 18.11 (Fourier Inversion Theorem). Suppose that f ∈ L1 and f̂ ∈ L1,
then

(1) there exists f0 ∈ C0(Rn) such that f = f0 a.e.
(2) f0 = F−1F f and f0 = FF−1f,


